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Abstract—Coarse-grid ocean models parameterise the effects of mesoscale eddies by means of a
mixing operator which diffuses tracers along surfaces of constant potential density, called isopycnals.
We establish the consistency conditions, the spatio-temporal accuracy error and the computational
stability conditions for the small-slope isopycnal mixing operator. © 1999 Elsevier Science Ltd. All
rights reserved.
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1. INTRODUCTION

Ocean General Circulation Models (OGCMSs) with coarse horizontal resolution cannot resolve
explicitly the mesoscale eddies. It is genérally believed that mesoscale eddies cause tracers, such
as temperature or salinity, to mix predominantly along surfaces of constant potential density—
called isopycnals—rather than along horizontal surfaces (1]. This is why Redi [1] suggested that
a mixing operator leading to diffusion along isopycnals be used. The latter was impractical for
OGCM, so Cox [2] introduced a simplified form, obtained by taking chiefly into account the
smallness of the slope of the isopycnals (« is about 1073).
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Numerical properties of accuracy and stability of the isopycnal mixing scheme of [2] are explored
in this paper. In Section 2, the isopycnal diffusion operatot and its discretisation are briefly
described. In Section 3, the accuracy of the scheme on a nonuniform vertical grid is assessed.
In Section 4, the numerical behaviour of the spatial discretisation is investigated and stability
conditions for explicit and semi-implicit schemes are derived. Finally, conclusions are drawn in
Section 5.

2. ISOPYCNAL MIXING FORMULATION

As the isopycnal diffusion operator of Cox [2], by contrast to Redi’s, does not contain any
horizontal cross-derivatives, the present discussion may be carried out in a single vertical plane
without any loss of generality. Therefore, only two-dimensional operators, concerning the vertical
and one horizontal direction, will be dealt with below.

2.1. Small-Slope Isopycnal Diffusion Operator

Let t, z, and z represent time, the horizontal coordinate and the vertical coordinate—increasing
upward, respectively. Taking solely into account diffusion along surfaces of constant potential
density p, the concentration C of a passive tracer obeys the following partial differential equation
expressed in Cartesian coordinates:

ac
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where D represents the isopycnal diffusion operator of [2],
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where & is the along-isopycnal diffusivity and a = —(%f;) / (%5) denotes the slope of isopycnal lines.

For convenience, some useful conventions are introduced to identify the different components of
the isopycnal diffusion operator: D*, D!, and D~ refer to the parts of D that are linear in
the slope (z-z derivative), quadratic in the slope (z-z derivative), and independent of the slope
(z-z derivative), respectively.

2.2. Discretisation

The spatial discretisation of [2] which is implemented in the widely used Geophysical Fluids
Dynamics Laboratory (GFDL) model (3] is described below. Integer labels i, k, and n are
associated with the horizontal, the vertical, and the temporal discretisations, respectively. So,
a7, represents the value of a variable “a” discretised at position (i, k) (Figure 1) and at time
t = n/At, where At is the time step. The horizontal grid spacing Az is assumed constant, while the
height of the grid box Az can vary along the vertical (Figure 1). This assumption is appropriate
since, in OGCMs, the vertical resolution varies much more rapidly than the horizontal resolution.
It is convenient to use the following discrete difference and average operators:

(Bptin, O0i%) =

(3a)

(3b)

Ait1/2,k — Gi-1/2k i k+1/2 — Qi k—1/2
Ax ' Az ’

T = Qi+1/2,k+1/2 + Cim1/2,k+1/2 T Ci-1/2,k-1/2 T Git1/2,k-1/2
1y - 4 .

With the above notations, the discretised form D; of the continuous isopycnal diffusion opera-
tor D reads '

Diy =65 (ncSIC';-,k + mai,kéza;,_kz’z) + 6, (Ra%’kazCi,k + Hai,kémmx’z) ) (4)
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Figure 1. Numerical grid in the vertical plane. Tracer points are represented by
circles.

The isopycnal slope is defined so as to guarantee that, if C' were a linear function of the density,
no isopycnal diffusion would occur, i.e.,

(5)

epik  OuliE™*
(ai+1/2,k:az‘,k+1/2) = ( 2R cLdR] ) .

6:Pik™"" bapi

For consistency with the small-slope approximation and computational stability, Cox [2] rec-
ommended to limit the slope computed according to (5) to an appropriate threshold, typically
10~2.

The time stepping considered here is that of the CLIO (Coupled Large-scale Ice-Ocean) model
developed at Louvain-la-Neuve (see [4,5]), which is somewhat different from the leap-frog ap-
proach of the GFDL model [3]. Accordingly, (1) is discretised as

e O A CAITE N N

where p € [0,1] is the level of implicitness of the vertical derivatives. The need for a semi-
implicit resolution of Dl,k is related to the fine vertical resolution and the magnitude of the
vertical diffusivity xo? as discussed in Section 5.
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3. TRUNCATION ERROR

In this section, we determine the spatio-temporal accuracy of the numerical scheme. We assume
variable Az and constant Az, which is a good approximation in OGCMs. The Taylor expansion
of D around point (¢, k) yields the spatial truncation error €5 of the scheme which represents the
difference between the discrete operator D, and the continuous operator D:

Az + Az . 0°C '
ss—m( A7 Wl)( = o )-I—O(AI,AZ,-C). (M)

These terms of the error are, respectively, related to the discretisation of the vertical diffusive
operator D! and the crossed-derivative operator D*. As a result of the nonuniformity of the
vertical grid size, the scheme appears inconsistent (e of order zero) unless the vertical grid
spacing verifies

Azpyiyz + Azipo1y/a

2 ' (8)
For example, the above condition is verified for a vertical grid where grid box boundaries are
placed at an equal distance to the adjacent tracer points.

When the vertical grid is defined according to (8), Dix becomes consistent and first-order
accurate in space. In order to avoid working with lengthy expressions, the isopycnal diffusivity
and the isopycnal slope o will be taken constant for the rest of the paper. Then, the spatial
truncation error reads

Az =

ka? 83C  3ka O%C
gs = (Azk+1/2 — Azg_1/2) (T Frakie m) + O (Az%, Azelzpsayn, Azf) . (9)

Although constant vertical grid spacing is rarely used in OGCMs, it may be worth stressing
that the numerical scheme becomes second-order accurate in space on such a numerical lattice

=1z (A 2?£+ otz Qac)

dxd dz4 (10)
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The latter error involves terms of a diffusive nature (even-order derivatives) and of a dispersive
nature (odd-order derivatives). The dispersive terms, which are linear in a (i.e., associated
with D:k), are responsible for the nonmonotonic behaviour of the numerical isopycnal diffusion
operator, as pointed out in [6,7].

By carrying out a Taylor expansion in time of (6), we obtain the following temporal truncation
error for the scheme:

18°C oD! )
= At | oo +(h—1)—5= | + 0 (At%). (11)
By virtue of (1), for constant x and c, we have
o™ [ d 5/
atm " (a_+ az) | (12)

Substituting (12) into (11) yields the temporal truncation error in terms of spatial derivatives only.
By examining the term in fourth-order horizontal derivative (i.e., 1/ 2&2At%— which does not
vanish systematically, it is readily seen that for a # oo, the scheme is only first-order accurate in
time, whatever the value of u. This is easily understood, since the first term of the error rewritten
as 1 /23—2}" cannot compensate the second term of the error which involves solely the vertical
component D! of the operator D. In the particular case @ = oo, the operator D degenerates to
pure vertical diffusion and the value u = 1/2 leads to a scheme which is second-order accurate in

time (i.e., [7]).
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4. VON NEUMANN ANALYSIS

In this section, we employ the Von Neumann method [7] to explore the properties of the spatial
discretisation and provide the necessary stability conditions of the diffusion equations (1),(2) with
the operator D discretised according to (3)—(5). In order to perform this linear analysis, it is
necessary to assume that o, k, Az, and Az are constant.

4.1. Properties of the Spatial Dicretisation

In a periodic or infinite domain and under the assumptions above, the solution of (1) can be
expressed as a sum of waves periodic in space with amplitude A and wave numbers my and m:

Clz, 2,t) = A(t) exp [I(mgz + m,2)], where I = /—1. (13)
Substituting (13) into (1) yields
dA A
s + wA =0, (14)

where the damping coefficient w is given by the dispersion equation

w = k(mg + am,)?. (15)
It is readily shown that the solution of the differential equation (14) is

A(t) = A(0) exp[—wt], (16)

which means that the wave amplitude decays exponentially in time (w > 0). As the e-folding
time scale w™! is quadratic in the wave numbers, the diffusive operator D tends to leave the
long wave modes unaffected and strongly damps short waves except the modes verifying o =
—Mg/m, = A{%—S)/(%) (ie., modes such that the slope of concentration lines equals the slope
of isopycnals) (Figure 2a). This is natural, since isopycnal diffusion should not affect a tracer
homogeneous along isopycnals.

In analogy with the continuous case, we consider semidiscrete periodic solutions

Cik = A(t) exp [I(6zi + 6,k)] , (17)

where the discrete wave numbers 8, and 6§, are related to m, and m, by — 7w <8, =m;Ax <7
and —w £ 0; = m,;Az < m. By discretising the right-hand side of (1) with (4) and by introduc-
ing (17) into this semidiscrete equation, we obtain a differential equation which has the following
solution for the amplitude of the discrete wave solution:

A(t) = A(0) exp|-at]. (18)

The damping coefficient & for the discrete scheme is expressed in terms of the grid slope ratio r
which is the ratio of the isopycnal slope to the aspect ratio of the grid

Az

K

=2(1 - cosb;) + 2r%(1 — cos 8,) + 2rsin b, sin b, with r = _ozﬁ_z. (19)
z

In order to explore the properties of the spatial discretisation, it is very instructive to compare
the behaviour of the continuous (15),(16) and discrete (18),(19) wave amplitudes. As shown in
Figure 2, the discrete operator D; . provides a numerical treatment of long waves quite similar to
the continuous operator D. Two modes are of special interest: the “infinite” mode (6z,0,) = (0,0)
and the “computational” or “checkerboard” mode (|65, |6:|) = (m,7) associated, respectively,
with the infinite wave length and the shortest wave length (2Az, 2Az) resolved by the numerical
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(b) Function A(t) for the discrete scheme.

Figure 2. Parameters x/Az? = 0.01 and r = 0.5 are used.
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grid. Asillustrated in Figure 2b, the operator D;  does not affect the infinite mode and efficiently
damps the poorly represented short waves.

4.2. Linear Stability Analysis

The Von Neumann necessary conditions for computational stability require that modes of
form (18) cannot grow in time. These conditions are obtained by imposing that the module of
the temporal amplification factor G = )\?j{l /A% remains smaller than or equal to 1 for all modes
(8z,8;). For the discrete scheme (4)—(6), the amplification factor G is expressed as follows:
1—2d(1 — cosfg) — 2dr?(1 — cos6,)(1 — u) — 2drsiné,siné, At

K
14 2dr2(1 —cosf,)u ’ where d = A (20)

G:

The stability conditions G < 1 and G > —1, are therefore, equivalent to the following inequalities
where v =1 —2p € [-1,1]:
Fi = -2d(1 — cos ;) — 2dr®(1 — cosf,) — 2drsinf, sin, < 0, (21)
Fp =2~ 2d(1 - cosby) — 2ydr?(1 — cos8,) — 2drsin 6, sind, > 0. (22)
The function Fy reaches its extreme values for
OF,

2, = 0 — siné, + rsinf, cosf, = 0, (23)

?32 =0 —rsinf, +sinf;cosf, = 0, (24)
and Iy for

gg:j =0 —sinéd; +rsinfd, cosf, =0, (25)

‘Z‘gj =0 — rysind, + sinf, cos§, = 0. (26)

It is readily shown that condition (21) is always guaranteed since, for modes verifying (23),(24)
(ie., (0,0), (£m, £m), (Fm, £7), (0, £7), (£m,0)), the inequality (21) is satisfied. As a result, the
stability conditions will be obtained by imposing (22). By combining (25),(26), it can be shown
that the extreme of Fy is reached for modes (0,0), (£7, £x), (xm, Fx), (0, %), (£m,0), and for
modes verifying

1472 1-—+2
2 el 2 —
cos“ 8, =~ T+ 952 B p el (27)
14422 . (1—4?) 2
2 ey 2 —
cos 9_,; = W’ sin“ 8, = 1472 (28)

The most constraining condition for stability is given by modes (27),(28) which yield the minimal
value

Fp =2—2d—2ydr? — 2dv/1+ (1 +42) r? + 4214, (29)

The stability condition is obtained as follows by imposing that F; is positive:

d(l +'yr2+\/1+(1+72)7'2+72’"4) <L 30)

Two particular cases are of interest: the purely explicit scheme (y = 0, ¥ = 1) and the implicit
vertical resolution (u =1, v = —1), the stability condition of which simplify to

1

p=0-—4d(1 T2)55’

p=1-—d

IA
to_l Ll
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With typical values of & = 1072, k = 10°m?/s, At = 10%s, Az = 10m (at surface), and
Az = 10° m encountered in OGCMs corresponding to 7 = 100 and d = 10~2, condition (31) is
violated while (32) is trivially verified. As recommended by Cox [2], an implicit resolution of D!
is therefore necessary for long-term climatic simulations. This, however, requires the resolution
of a tridiagonal system at each time step.

In practice, in addition to computational stability, the numerical scheme is required to avoid
oscillations in time. This property is obtained by imposing G > 0 (no 'ﬂip-ﬁdp condition) rather
than G > —1. By proceeding in a similar way as for the stability condition, we get the following
no flip-flop condition where 4 =1 — p € [0, 1],

d(1+42+ I+ T+ +577r4) < . (33)

B | =

For an implicit resolution of D!, the stability condition simplifies to

a(1+vivTe) <, (31)

which, for large values of r, is asymptotic to

ra\t

ds 2
"= Azhz 2 (35)

The above no flip-flop condition is used to determine the limitation of the time step in our OGCM.

5. CONCLUSIONS

In this study, we have explored the numerical accuracy and stability of the Cox [2] scheme.
Consistency of the scheme was shown to require an appropriate definition of the vertical grid.
The scheme was shown to be first-order accurate in space on a nonuniform vertical grid. The
truncation error in time is of first-order accuracy whatever the value of the implicitness factor u.
Properties of the spatial discretisation have been explored by studying the behaviour of Fourier
modes in the numerical and continuous schemes. Finally, necessary stability and no flip-flop
conditions were established for the time stepping used in CLIO. The need for an implicit resolution
of the operator D! was underscored.
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