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VERTICAL MODES IN LEVEL MODELS

Eric Deleersnijder

The purpose of the present note is to briefly examine
how the vertical discretization of ocean level models modi-
fies the propagation of hydrostatic internal inertia-gravity
waves. The results obtained herein may be regarded, in
a certain sense, as a generalization of the part of Smith’s
work that was devoted to vertical modes in level models
(Ocean Modelling 56, April 1984).

We consider small perturbations of a motionless ref-
erence state in a constant depth (H) ocean, where the
stratification is characterized by a uniform value of the
Brunt-Vaisila frequency N. The variables are the three
components of the velocity, and the deviations of pressure
and density. For these variables, separation of the vertical
dependency is assumed to be valid. This leads to an in-
finite number of vertical modes. The amplitudes of these
modes obey equations that are similar to the shallow wa-
ter equations where an equivalent depth is introduced,
namely
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where g is the gravitational acceleration. The separation
constant @, is equal to nx. All this is well known (Moore
and Philander, 1977; LeBlond and Mysak, 1978).

It is possible to show that the mode splitting referred
to above may be straightforwardly applied to finite dif-
ference schemes used in ocean modelling. In particular, it
is easily seen that the amplitudes of the numerical modes
are governed by difference analogues of the shallow water
equations. The equivalent depth of the numerical modes
may however be very different from that corresponding
to the continuous description.

In the vertical direction, we consider centred finite dif-
ferences and a staggering of variables that is in agreement
with that of the most classical ocean models (Bryan, 1969;
Cox, 1984; Semtner, 1986). Index k identifies one of the
K vertical grid boxes of constant height Az. After some
calculations, we arrive at the following difference equation
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E=1,2,..,K-1, (2)

where ™ and W represent the numerical separation con-
stant and the vertical dependence of the vertical veloc-
ity, respectively. Taking into account the impermeabil-

ity conditions of the bottom and the surface of the sea,
Wij2 = 0 = Wk /3, the solution of (2) is (Bender and
Orszag, 1978)

Wk-1f2 =124 Slﬂ{(k - 1)9], (3)

where A is a real constant and 1 = +/—1. The admissible
values of 8 are
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Notice that there exist only K —1 discrete vertical modes.
After some calculations, we get

n=12...,K-1

_ 2K
"~ [14 (cot 22)?)1/% 4 cot BE°

oy
(5)
Combining (1) and (5) yields the numerical equivalent
depth
v J {1+ (cot B2)%2 + cot 2212 N2 H 3
“ 4K? g !
n=12..,K-1. (6)

Of course, when n, the order of the mode, is small
compared with the number of grid boxes in the vertical
direction, it is possible to show that HY is asymptotic to
H,. Indeed, when (n7)/K — 0, cot[(n7)K] ~ K/(nx),
so that HY ~ H,,.

To compare HY with H,, we found it appropriate to
examine the ratio
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where c{,“‘rﬂ is the phase speed of pure gravity waves related

to numerical mode “n” in the case where the truncation
errors associated with time and horizontal finite differ-
encing are negligible, e.g., for very long horizontal wave-
lengths. In (7), cpn obviously denotes the phase speed of
pure gravity waves in the continuous model.

The ratio (7) is calculated in Table 1 for all modes for
which 2 < K < 10. We see that cgn /¢p,n is a decreasing

function of n/K and that c),, /¢ n never exceeds 1.



When n decreases, the vertical length scale of the cor-
responding mode increases. Thus, the smaller n/K is, the
better the corresponding mode is resolved by the vertical
descretization.

To conclude, one may say that the vertical discretiza-
tion results in a relative decrease of the equivalent depth
that is all the more significant when the mode consid-
ered is less adequately resolved on a vertical grid. In
the numerical model, this implies a slower propagation of
the internal gravity and inertia-gravity waves. But, this
slowdown depends in detail on the particularities of time
and horizontal differencing. Therefore, with the excep-
tion of very special cases where the time and horizontal
discretizations are very accurate, cgﬂ /cpn only gives a
rough indication about the actual propagation speed er-
ror of numerical gravity waves.
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TABLE 1.

The ratio ¢, /cp » as a function of K and n. Notice that K and 7 are integers such that K > 2and 1<n< K -1.

order of the mode: n

1 2 3 4 5 6 7 8 9
2 [ 785 XX [ XX [ XX [ XX | XX | XX | XX | XX
3 1.907[.6051 XX | ¥X | XX | XX | XX | XX | XX
4 [ 948 [ 785 488 | XX | XX | XX | XX | XX | XX
5 | .967 [ .865 | .685 | .408 | XX | XX | XX | XX | XX
6 | .977 | .907 | .785 | .605 | .351 | XX | XX | XX | XX
7 | .983 ] .932 | 844 | 716 | .540 | .307 | XX | XX | XX
8 | .987 | 948 [ .882 | .785 | .656 | .488 | .273 | XX | XX
9 |.990 | .959 | .907 | .832 | .732 | .605 | .445 | .246 | XX
10 [ .992 | .967 | .925 | .865 | .785 | .687 | .560 | .408 | .224




