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CONTENTS

The Great Barrier R eef (GBR) (Figure 1) is characterised by a juxtaposition of 
regions of low reef density (where the reefs block only 10% of the length along the 
shelf) and high reef density (where the reefs block about 90% of the length; Pickard 
et al., 1977). Each of these regions is a few hundred kilometres in length. A  large 
spring-neap tide cycle exists on the GBR. Wolanski (1994) coined the term “sticky 
water” to explain why regions of high reef density may be less permeable to low- 
frequency currents at spring tides than at neap tides due to purely physical reasons. 
Wolanski and Spagnol (2000) further investigated this effect numerically. They used 
the two-dimensional model of King and Wolanski (1996) for a model barrier reef. In 
this idealised bathymetry the reefs were assumed to be rectangular. Also, the prevail­
ing tidal and mean currents were parallel to each other. The prevailing currents were 
oriented perpendicular to the longest sides of the rectangles. To illustrate the block­
ing effect, passive tracers were seeded upstream of the matrix of reefs. Only half as 
much tracers filter through an ideal model reef matrix at spring tides than at neap 
tides; the rest was deflected sideways. This deflection was due to energy dissipation 
by bottom friction and island wakes. Further investigation into this effect for a real­
istic bathymetry and realistic currents could not be carried out due to lack of high res­
olution bathymetry data for the study region.

In this study, the work of Wolanski and Spagnol (2000) is extended to investigate 
the currents flowing through and around a high reef density area in the central GBR. 
In this area the spring and neap tide variability is pronounced, with the prevailing 
tidal currents oriented perpendicular to the mean current (the East Australian 
Current).
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METHODS

The field data were described by Wolanski and Spagnol (2000). In summary, the field 
study was carried out along a cross-shelf transect on the outer shelf of the central 
GBR (see Figure 1). The transect passes between Bowden Reef and Damley Reef. 
North of Bowden Reef, the reef density is low, i.e., the reefs block about 10% of the 
distance along the shelf. South of Bowden Reef the reef density is high, i.e., the reefs 
block about 90% of the length along the shelf. Offshore, in the adjoining Coral Sea, 
the net flow is southward with the East Australian current (Wolanski, 1994). In this 
area the tidal currents at the shelf break are mainly oriented cross-shelf.

Vector-averaging Aanderaa and InterOcean S4 current meters were deployed 
along a cross-shelf transect at sites A to D (Figure 1) from January to March 1994. 
Table 1 summarises the water depth and immersion depths of the meters. All current 
meters and the tide gage recorded 30-min averaged currents. The water depth on the 
shelf varies between 40 and 100 m. In this region only the crest of the reefs come out 
of water at low spring tides.

CTD data were obtained at each mooring site at moorings’ deployment and 
recovery.

Tidally predicted currents were calculated from field data using tidal harmonic 
analysis. The tidally predicted currents include the mean current over the whole 
period of observations. The residual currents were calculated as the difference 
between the observed and tidally predicted currents. The wind-driven currents were 
calculated as the linear fit between wind and residual currents.

The results from the field and the model were visualised using OpenDX, for­
merly known as Data Explorer (Galloway et al., 1995).

The depth-averaged two-dimensional model of King and Wolanski (1996) was 
used to calculate the currents in this region including the tidal currents. The model 
domain is shown in Figure 2; it was 169 km long and 119 km wide. The grid size was 
500 m, the resolution at which bathymetric data were available. The forcing includes 
the tides, the wind, and the East Australian Current, the latter being forced by pre­
scribing mean long-shelf and cross-shelf mean water slopes. These slopes were cal­
culated from a large-scale model of the circulation in the GBR (R. Brinkman, 
unpublished data). The trajectories of water-bome tracers were predicted from these

TABLE 1
C u r re n t  M e te r  M oor ing  Sites, J a n u a r y - M a r c h  1 9 9 4

Site  W a t e r  D e p t h  (m) E leva t ion  (m) o f  C u r r e n t  M e te r s

A 37 10 and 18
B 55 10 and 30
C 65 20
D 114 38
E 7 5
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data using the Lagrangian advection-diffusion model described by Oliver et al. 
(1992) for which the eddy-diffusion coefficient was set to  3 m2 s-1.

RESULTS

The CTD data show vertically well-mixed conditions in salinity and temperature.
Two days o f current data are shown in Animations 1 and 2 for, respectively, neap 

and spring tides. As noted also by Wolanski and Spagnol (2000), there was a net 
southward current of about 0.15 to 0.2 m s~' at both inshore and offshore ends of the 
region of high reef density (sites A  and D). During that tim e calm weather prevailed 
and the wind-driven currents were negligible. These two animations illustrate what 
happens when in calm weather a net current meets a region of high reef density. At 
neap tides (Animation 1) the currents at site B pointed for several hours toward the 
passage between Old and Dam ley Reef. Hence, the current was able to filter through 
the reef matrix. However, at spring tides (Animation 2) the currents were deflected 
offshore or inshore and largely flowed around, instead o f through, the reef matrix.

The model was run for two tidal regimes, a neap tide o f 2 m and a spring tide of 
4 m (Animations 3 and 4 , respectively). Clearly the model reproduced well the 
spring-neap tide variability.

What is striking in these animations is the evidence of topographic steering of 
both the tidal and mean currents. At neap tides, tidal and mean currents are of simi­
lar magnitude and the currents are able to filter through the reef passages. However, 
at spring tides, the tidal currents are stronger than the mean currents and a boundary 
layer effect develops. By this process the water entering the reef passage originates 
from a tidal boundary layer along the upstream side of the reef. This layer is about 
2 km wide. Outside of this layer the water is deflected around the reef. The reef 
matrix thus becomes impermeable to the bulk of the water upstream; this water mov­
ing toward'the reef assemblage with the East Australian Current is deflected sideways 
at spring tides.

This blocking effect is made obvious by the evolution of a plume o f passive trac­
ers released upstream from  the area of high reef density. As shown in Animation 5 the 
plume spreads and diffuses through the reef at neap tides. However, it is deflected 
sideways around the reef matrix at spring tides (Animation 6). Thus the connectivity 
of reefs for water-borne larvae (crown-of-thoms starfish, coral, and fish) is quite dif­
ferent at spring tide and at neap tides.

CONCLUSION

The variability of reef density and marked spring neap tidal cycle serves to introduce 
spatial and temporal variability in the water circulation through the GBR that previ­
ous studies have neglected. This has profound implications for understanding the 
connectivity between reefs and the degree of self-seeding of reefs. Studies of reef 
recruitment o f larvae have focused on individual reefs (see a literature review in 
Carleton et al., Chapter 13, this book) and assumed either that larvae are available
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from upstream or that the currents around a reef can be studied independently from 
other reefs. Previous reef connectivity studies (see a review in Wolanski & Spagnol, 
2000) have not considered the blocking effect detailed in this chapter. All these 
respective assumptions thus may be invalid in an area of high reef density at spring 
tides; therefore the conclusions from these studies may also be invalid for high reef 
density areas.

It is suggested that studies of reef recruitment and connectivity be initiated for 
high reef density areas. This is important because these high reef density areas 
occupy about half o f the GBR.
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FIGURE 1 Three-dimensional view of the area 
around Old R eef in the central region of the GBR. 
This view also shows the mooring sites. The view is 
from the north looking south. Australia is to the right 
and the Coral Sea to the left. The view is vertically 
distorted, mean depth around the reefs is 40 to 60 m, 
and the width o f the outer shelf where reefs are 
scattered is about 50 km.

FIGURE 2 Bathymetry of the model domain of the 
central region o f the GBR. The area shown in Figure 1 
is a subset o f this figure.
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ANIMATION 1 Three-dimensional visualisation of 
the measured currents at the mooring sites during neap 
tides and calm weather. The red arrows indicate the 
tidally predicted currents and the blue arrows the 
wind-driven currents (the latter are negligible). Local 
time is indicated at the bottom. Australia is to the right 
and the Coral Sea to the left. The view is vertically 
distorted; mean depth around the reefs is 40 to 60 m, 
and the width of the outer shelf where reefs are 
scattered is about 50 km.

ANIMATION 2 Visualization of the measured 
currents during spring tides and calm weather. The red 
arrows indicate the tidally predicted currents and the 
blue arrows the wind-driven currents (the latter are 
negligible). Local time is indicated on the bottom. 
Australia is to the right and the Coral Sea to the left. 
The view is vertically distorted, mean depth around 
the reefs is 40 to 60 m, and the width of the outer shelf 
where reefs are scattered is about 50 km.
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ANIMATION 3 Visualization of the predicted 
currents near Old Reef at neap tides in calm weather, 
during one tidal cycle.
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ANIMATION 4 Visualisation o f the plume o f water­
borne tracers released upstream of Old Reef at neap 
tides, no wind.

ANIMATION 5 Visualisation of the plume o f water­
borne tracers released upstream of Old Reef at neap 
tides, no wind.
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ANIMATION 6 Visualisation of the plume of water­
borne tracers released upstream of Old Reef at spring 
tides, no wind.


