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1. Introduction Flanders Marine Ingtitute

“Science is now a tripartite endeavour with simulation added to the two classical
components, experiment and theory (Robinson, 1987). The routine use of numerical
“simulation in scientific research (numerical experimentation, sensitivity and process studies,
etc.) is thought by many to represent the first major step forward in the basic scientific method
since the seventeenth century” (Robinson, 1987).

Marine sciences, as many other fields of scientific research, now intensively use
mathematical and numerical models. There might even be a tendency, among some
oceanographers, to overly rely on the predictions of the models, which are, in fact, no more
than artefacts, i.e., man-made objects. The models, however complex they may be, provide, at

« best, a reasonable estimate of the behaviour of the system under study.

b Numerical models are now so appealing that one might progressively forget that they are no
sutfstitute to reality. To avoid such “alienation”, it is helpful to realized that there are several
types of models, with different objectives. According to Nihoul (1994) one may distinguish:

— The test-oriented models, which are needed for "“testing mathematical and numerical methods
and their software implementation”. These models are based on a reduced set of equations and,
hence, are generally not intended to realistically simulate the reality.

— The process-oriented models, which focus on a few dominant or important processes. This
often implies sacrificing some of the realism of the results, but allows detailed analysis of the
mechanisms driving the system under study to be carried out.

— The system-oriented models, which are “called upon to tackle a practical situation™, such as
the management of the resources of the seas. The results of these models must be as realistic as
possible, which usually requires appropriate data assimilation procedure to operate together
with the prognostic model (Bennett, 1992). Encompassing a large number of processes,
system-oriented models are generally very complex, so that they are probably not the best
suited tool for investigating or “explaining” processes.
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Working out a system-oriented model, as well as interpreting its results, generally poses
several mathematical problems, which may sometimes be addressed with the help of simpler,
test-oriented models. Some of these problems are considered below.

For example, the numerical scheme selected for solving the equations of the model must
provide accurate results. To do so, the algorithm must be, at least, consistent and stable. In
most cases, consistency is easily checked. On the other hand, verifying that the numerical
scheme associated with a system-oriented model is stable often presents insurmountable
difficulties, for the equations are very complex. The usual approach is then to analyse sub-sets
of the whole algorithm, especially those that are likely to be the least stable. Properly choosing
the reduced sets of equations is thus the key problem. Any inappropriate choice may give rise to
unpleasant surprises, as exemplified in Section 3 (see also Beckers and Deleersnijder, 1993).

Another significant problem is the well-foundedness of the parameterizations. No numerical
model is able to cover all the time-space scales of marine phenomena. Once the resolution of the
model is chosen, the effect of the processes having smaller scales than the time-space
discretization grid, the so-called sub-grid scale phenomena, must be parameterized by
appropriate formulae. A parameterization is merely an approximation, hopefully providing a
reasonably good account of the process it addresses. It is thus conceivable that, for a given sub-
grid scale phenomenon, several parameterizations may be considered. The formulation to be
selected must obviously be capable of realistically representing the effect it addresses. More
importantly, perhaps, it must also be well-conditioned, i.e., when introduced into the model, it
must enable the model to produce well-behaved solutions. The latter property does not
necessarily ensue from the parameterization being sufficiently realistic, as will be shown in
Section 4 (see also Deleersnijder and Luyten, 1994).

Complex marine models routinely output millions, or even billibns, of real numbers, the
analysis and interpretation of which are far from straightforward. In fact, understanding such a
large amount of information is a real challenge. Simple models may be helpful for interpreting
the results of a complex one. Most quantities computed by marine models are four-dimensional,
ie., they depend on time and three space coordinates. Since the vast majority of the graphical
tools are two- or three-dimensional, the graphical representation of the model results requires
appropriate mapping onto a two- or three-dimensional space. This may be carried out in
numerous ways by means of existing graphical packages. One must however bear in mind that
the role of computer graphics is not just to produce attractive pictures, but to help gain insight
into the physics of the marine flow under study. In other words, physical intuition and
reasoning are also needed if profound understanding of the flow mechanisms is sought.
Schematically, this may be expressed by the following relation: quality of the interpretation =
(physical skill) x (computer graphics skill). This implies, for instance, that the best graphical
software will probably prove useless if operated by someone having no idea of ocean
dynamics! An example of an interpretation method based on little graphical skill but
considerable physical skill is given in Section 5, where the vertical velocity field produced by a
hydrodynamic model of the region of the Bering Strait is analyzed (see also Deleersnijder
1994a),

Finally, in Section 6, some results of a World QOcean model are given. Its equations are
similar to those used at smaller scales, but the nature of the phenomena is completely different.
A coordinate system is designed in such a way that the whole World Ocean, including the
Arctic Ocean, can be represented without facin g any singularity problem — as would happen,
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at the North Pole, with standard spherical coordinates. To avoid dealing with thrce-dimensiopal
velocity fields, the results are analysed with the help of the so-called meridional stream function
technique. ‘

Before examining the specific problems listed above, the equations of marine
hydrodynamics are briefly established (Section 2).

2. Equations of marine hydrodynamics

The equations governing marine hydrodynamics processes are derived from the general
theory of fluid mechanics. )

Reynolds (1883) realized that there are two types of fluid flow, the laminar mode and the
turbulent mode, in which apparently erratic fluctuations occur. Reynf)lds (1894) suggcstcd
filtering out the fluctuations and concentrating on the “mean” flow, considered as a laminar one
with modified properties and equations. .

Reynolds mostly studied flows he could produce in his laboratorly, i.e., small-scale flows.
In the ocean, however, analogous turbulent processes may be found in the surface and bottom
boundary layers, the thickness of which is of order 10-100 m for the former,.and 1-10 m for
the latter. The interior of the ocean experiences intermittent turbulence: at any instant, the total
volume of the turbulent spots does not exceed a few percents of the whole ocean volume.

Over the continental shelves, the seas are so shallow — with depth of order 10-100 m —,
and the processes generating turbulence may be so intense, that the surface and bottom
boundary layers may merge, resulting in a wl}olly turbulent water column. .

The time scales of marine turbulence range from seconds to minutes, while the length scales
are of order 107-10° m.

Most marine models, whether designed for deep or shallow sea problems, do not resolve the
turbulent scales of motion, implying that the turbulent processes appear as sub-grid scale effects
to be parameterized. Let v' and ¢’ denote the turbulent part c{f the velocity v* and of lany scilar
quantity ¢*, of which the mean parts read v and ¢, respectively. Thus, v*'= VY ‘and c*=

¢ + ¢’. The mean — or filtered — variables v and ¢ are part of the prognostic quanntles- of the
model, i.e., there exist equations for the time derivatives of v and ¢, obtained by averaging the
basic governing equations — which are, in principle, capable of resolving the turbu]enf‘scalfs.

For simplicity, it is hypothesized that the averaging operator — hcrcaftcT denoteq < > —
enjoys all the simplest properties of every sensible averaging operator one might consider (for a
review, see Bedford et al., 1987). .

As is usual in marine modelling, the Boussinesq approximation is assumed valid, so that the
density variations are neglected, except in the gravitational force. Accordingly, the average of
the advection terms of the governing equations reads

Qocvryts = Qo(vy) + Qocv'v'> , )

Qoacv*c*s = Qo(ve) + Qocv'e’> | @

where “Qs” is the divergence operator. The first term in the right-hand side of (1) and (2) ::)n'ly
encompasses prognostic variables, rendering its evaluation feasible. By contrast, o'?‘f v'>
and Qe<v'c'> do not contain prognostic quantities and, in fact, appear as additional
unknowns, pointing to the need for appropriate closure assumptions.
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As first suggested by Boussinesq (1877), Fourier-Fick-type parameterizations may be
resorted to, yielding

<V o= K [Ove O] + @, 3)
<v'e> = K Oc, @)

where (0v)T is the transposed of the tensor Ov: I is the identity tensor; g%2= <v'ev'>
denotes the turbulent kinetic energy; K, and K_ represent the turbulent, or “eddy”, viscosity
and diffusivity, respectively. The latter are generally of order 1072-10 m? 5™\, i.e., several
orders of magnitude larger than their molecular counterparts, which are < 1078 m? 51,

The depth of marine computational domains is, in most cases, much smaller that the
horizontal extent, for the processes under study have a small aspect ratio — which is defined as
the ratio of the vertical length scale 1o the horizontal one. As a result, the divergence of the
wrbulent flux of ¢ may be approximated by

d<w'c™>
oz

where z and w are the vertical coordinate and the vertical velocity, respectively.

The hydrostatic approximation is assumed valid, in agreement with the aspect ratio being
small. Therefore, we only need to examine the turbulent flux of horizontal momentum,
<v'u'>, where u' denotes the fluctuating horizontal velocity. Because of the smallness of the
aspect ratio, 0o <v'u'> may be reduced to

d dc
Qe<v'c” = —(-kK =), 5
<v'e™> az( ‘az) (5)

d<wu'>

dz

r ) -— i ill

Qosv'u'> az( K, az) . (6)

We are thus left with the problem of computing the eddy viscosity K, and the eddy
diffusivity K. To do so, many turbulence closure models have been suggested in the literature
(for areview, see Mellor and Yamada (1982), Rodi (1993) or Luyten et al. (1994)).

According to the discussion above, the generic form of the governing equations of marine
hydrodynamics reads

W, vy + 290 e, o 3 W
o + Ve(uy) + il 0 +V(AWV"’)+32(KW3 ) 5 @)

where v is a given prognostic variable (see Table 1); u and w denote the horizontal velocity
vector and the vertical velocity, respectively; ¢ represents time while V is the horizontal
“gradient operator”, i.e., V = e d/dx + eyalay (e, and e being the horizontal unit vectors
associated with the horizontal coordinates, x and y); @Q¥isan appropriate source/sink term. At
this stage, it is sufficient to use cartesian coordinates, but the equations may be re-formulated in
another coordinate systemn according to the type of problem considered (see Sections 5 and 6).

The horizontal diffusivity A is not associated with “proper” three-dimensional turbulent
phenomena. The horizontal diffsfision flux — AV represents mainly horizontal motions that
cannot be resolved by the numerical grid. Moreover, horizontal diffusion is generally needed to
filter out small-scale computational noise, arisin g because of the nonlinearity of the equations.
In general, A  depends on the grid size and is much larger than the vertical diffusivity K
Large uncertainties commonly exist as to the determination of A W The horizontal viscosity may
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be in the range 1-10° m? 5™}, while the horizontal diffusivity generally is such that 1 m?s™!

SA S0 mia

Table 1. The values of yand @Y, in accordance with (7), are given in this table. The Coriolis
parameter is denoted f (= + 10~ s™! at mid latitudes, = 0 at the Equator), while e.p and p
represent the vertical unit vector, the pressure and the density, respectively. In the scope of the
Boussinesq approximation, p is considered equal to an appropriate — constant — reference
value gy (= 1025 kg m™), except in the weight —pg, where g is the gravitational acceleration
(= 9.8 m® s™!). The variable ¢ represents any scalar quantity, for instance, temperature,
salinity, concentration of a pollutant...

v ¥
continuity equation 1 0
horiz. momentum egq. u ~fe,xu - p,;'Vp
vert. momentum eq. 0 —plopoz - g
scalar quantity budget ¢ =0 if passive tracer, # 0 otherwise

3. Numerical stability of inertia-gravity waves

Large scale atmospheric and oceanic motions roughly obey the geostrophic equilibrium.
When imbalances occur, the geostrophic balance is restored by means of inertia-gravity waves
(Blumen, 1972). The dynamics of tides and storm surges is dominated by the propagation of
external inertia-gravity waves, which are related to the motion of the sea surface. In strongly
stratified seas, one also considers the displacement of density surfaces, which leads to internal
inertia-gravity waves. The propagation of inertia-gravity waves, be they external or internal, is
thus a central issue to many geophysical fluid problems.

The phase speed of external inertia-gravity waves is of order 100 m s~ in the ocean.
Internal waves propagate at a few meter per second. Thus, inertia-gravity waves are faster than
advective processes, of which the characteristic velocity scale does not exceed 1 m s™*.
Consequently, inertia-gravity waves are likely to lead to more severe limitation of the time
increment of the numerical schemes than the advective phenomena,

There are thus physical and numerical reasons for requiring a careful design of the part of
the scheme corresponding to the inertia-gravity waves.

The external linear inertia-gravity waves, also called Poincaré waves, are governed by the
following dimensionless equations:

G H_0, ®
ar dx dy
a—u=7\"*a—n, %
or ox
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dv an

dy
where i and v denote horizontal velocity components in the x and y direction, respectively; 77
represents the sea surface elevation. The characteristic length, L, and time, T, used in the
derivation of the dimensionless variables obey L™ = ghT", where h is the unperiurbed depth of
the sea, assumed to be constant. The velocity scale, U, and the elevation scale, E, satisfy

= hU"/g. In addition, yis defined to be Y=/T, so that the pure gravity waves correspond to
r=0.

The goveming equations of internal inertia-gravity waves are similar to (8)-(10), except that
A, u, v and 11 are to be interpreted as equivalent quantities related to the particular internal mode
considered (LeBlond and Mysak, 1978).

Various studies focused on the space differencing aspects of (8)-(10). When time
differencing is also considered, it is customary te restrict the analysis to pure gravity waves (y=
0), for which stability conditions are readily obtained. It is common to content oneself with the
latter conditions. Here, a simple space-time differencing scheme is considered. It is seen that
the stability condition for the inertia-gravity waves (y# 0) is far more constraining than that for
the pure gravity waves. Indeed, the limit as y— 0 of the stability condition is not equal to the
stability condition when = 0.

(10)

Finite-difference schemes. The four classical space arrangements of the unknowns (1, u,
v) are taken into account, namely the A, B, C and D grids (Fig. 1) — according to Arakawa's
classification (Arakawa and Lamb, 1977). The C grid is used in most shallow sea models (e.g.
Blumberg and Mellor, 1987), while the B-grid is that of the now classical ocean model of
Bryan (1969) and Cox (1984). The B grid is believed to be better suited for large scale, low
resolution models (Mesinger and Arakawa, 1976), but is also thought to be more prone to
numerical noise (Batteen and Han, 1981; Deleersnijder and Campin, 1994).

Centered space differencing is used, as in Arakawa and Lamb (1977). A forward-backward
time stepping is selected (Mesinger and Arakawa, 197 6). The Coriolis force is prevented from
generating — or dissipating — mechanical energy by a simple technique originating from
Sielecki (1968) and adapted to ensure symmetry in the x and y directions. Accordingly, the
discrete counterparts of (8)-(10) read

r]"“ = 7" - Ar(dxu" + dyv") s (10
“n+1 = " - AI[— ¥s Ff!-rl _ )’(1 ‘-.f) T dxnnﬂ } , (12)
vn+l = " _ Ar [ vs o+ 7(1 73) ﬁ'”l 4£ d’nml] , (13)

where n is the index associated with the time discretization; Af represents the dimensionless
time increment; s is 0 or 1 according to whether n is even or odd; d_and d_ denote the discrete
space derivation operators along the x and ¥ axis, respectively; the overbar refers to the space
average that may be needed to evaluate v (or u) at a grid node where u (or v) is defined.

For instance, the explicit discretized form of continuity equation (11) is expressed as
(Fig. 1)
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e n - n e n
s S (“m;z i Mg = Yiapian T %ipian
i 2 2 Ax
n n n _ n
e Yz P Vipgn T Viapaan T Vg EU2Y) (14
2 Ay
n n n _yR
o= gt~ A (“m,:z i~ Yiap | Vi "'1['_1,12) , (15)
f Y Ax Ay

for the B and C grid, respectively.

v
n u v
U-12,j+112) i+12.j+1/2)
Agnd: G)) G Q@pn
Bgrd: (L0 (-1/2,/-1/2) (i-172, j-1/2)
Cgd: ) G-1L)  GUD)
Ay N Dgrd: (i) (/12 (=12
G.0)
((+12,j- 1) ——= X, U

G-172,j-172)
Ax

Figure 1. Location of the unknowns (7, u, v) on the A, B, C, and D grids; i and j are integer
indices associated with the space discretization. According to the type of grid considered, every
variable may be computed atx = (i - 1/2,i,i + 1/2) Axand y = (j - 1/2, j, j + 1/2) Ay, where
Ax and Ay denote the space increments,

Stability analysis. To perform the von Neumann stability analysis of the above schemes,
wave solutions of (11)-(13) are considered in an infinite domain, i.e., every unknown r is
assumed to be of the form r(1,x,y) = R(t) exp[/ tkx+ kyy)], with I = (-1)"2. Wavenumbers
k. and k_obey the inequalities set out below, A 3x3 amplification matrix is obtained, the
eigenvalues, A, of which are given by

A=D1 = 6., (16):

As the time-independent geostrophic motion is a possible solution to (11)-(13), one eigenvalue

must obviously be unity, in accordance with (16). Equations (8)-(10) contain no phenomenon

growing in time. Hence, numerical stability requires that |A] < 1 or, equivalently, -1 <b < 1.
Upon defining ¢ = yArand £ = £+ §y, b reads

(*_) (5*"2‘5)
b:1~8%2a2¢2[£"51+7—], an
® % *
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where @, £, fy and &, are defined in Table 2.

Putting ¢ = 0 yields the well-known pure gravity waves problem, of which the necessary
and sufficient siability condition is £ < §,. When ¢ # 0, for £ — £,/2, one has b = -1 —
8 a2¢2§x§ / 5*2. It follows that numerical stability necessitates £ < £,_/2. Therefore, the
maximum yadmissiblc time step is, at most, equal to that of pure gravity waves divided by a
factor of V2. This holds true whatever the value of ¥, provided = 0!

Table 2. Definitions of o, n‘,‘x, §y and &, for grids A, B, C and D. One sets (e cy) = Ar (Ax7!,
Ay~1). The angles@_ and By are defined to be 0 26 =k Ax<mand 0 < ZGy = kyAy <,
respectively.

2 2
o N £ /e, éy /C),
A grid: 1 4 sin®20, 5in’20,
B grid: 1 1 sin’g, coszﬂy sinzﬂy cos’,
Cgrid: |cosH, cosByI 1 sinzﬂx sinzf;Ji
Dgrid: [cos8, cosﬂyl 1 o sinzez a? sin By

Table 3. Necessary and sufficient von Neumann stability conditions for ¢ = 0 (pure gravity
waves) and ¢ # 0 (Poincaré waves). Below, i is such that sinzju = cyzl (cz?' + cf).

pure gravity waves Poincaré waves

2,2 2-¢°~ 181\ 9+ (- ¢ sin’2p

Agnd: c +c” <4 c T+ £
* Y * Y 1—¢2 sinzy coszp
2 2 2 2 1*¢'2
B gnd: cx.cy <1 C;'Cy ST
. 2 2 7 2 2 1
Cgrid: ¢, tc, <1 ¢ <1 and c e 3
D grid: 02 c2 <4 unknown in general
gnd: x 6 = &
and
2 2.3
(cJr +¢.) ) 2 2
—ZITSI if €, ¥¢ 26
2701 <, ?

The stability constraints, applicable for gravity and Poincaré waves, are collected in Table 3.

As may be seen in (17), b is a quadratic function of & _and &£ . That the stability constraint
for ¢ = 0 is different from that found for ¢ — 0 stems from a singular perturbation problem
arising because ¢” is a multiplicative factor of &6, which is one of the highest degree terms of
(17). An illuminating graphical interpretation thereof may be achieved.
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Graphical interpretation. Given a fixed value of b and &, (8 5)) describes an elliptical
path in the (éx, &,) space. By varying b one obtains concentric ellipses whose axes grow as b
increases. The minor axis of these ellipses lies on the symmetry axis § =& .

According to the stability criterion —1 < b < 1, the subspace 51, & =0 1is divided into three
areas, A , Ay =A; VA, and A , corresponding to b <-1,-1<b <1, and 1 <b (Fig. 2).
The stability conditins must be such that (6, & ) always lies in A . Since §_and i,‘y may vary
— not necessarily independently — from 0 to Lﬁeir respective maxima, it is clear that (€, €)
cannot enter AM without crossing A . Hence, the actual stability constraint must force (‘51' )
to remain within AO.:' When ¢ =0, the b = —1 ellipse limiting A_ transforms to a straight line
so that A_ vanishes: the stability area is then A, instead of Ag, only. This “jump” of the
stability domain explains easily the fact that the stability condition changes with a discontinuity
when switching from y=0to y=0.

Figure 2. Stability and instability (hatched) regions for 0 < ¢2 <landO<o.

Conclusion. The example above provides a striking illustration of the fact that studying a too
simple subset of equations may lead to inappropriate stability criteria. This topic has rarely been
addressed, probably because of the difficulty of the relevant mathematical manipulations.
Among those who have however dealt with similar problems, it is worth mentioning Cushman-
Roisin (1984) or Beckers (1992),

4. Eddy coefficient parameterization

We now turn our attention to the problem of devising parameterizations leading to well-
behaved model results. We will focus the Mellor and Yamada (1982) level 2.5 turbulence
closure model.

The eddy coefficient related to a variable a is given by K . =4S, where [ is the “turbulence
macro-scale” and S, is a dimensionless coefficient, called a “stability function”. Let the shear
and the stratification be measured by the Prandtl frequency M and the Brunt-Viisild frequency
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N, defined by M? = |0u/9z|* and N% = ~P,89p/oz. The stability functions are functions of the
dimensionless Prandtl and Brunt-Viisili frequencies, M = (IM/q) and N = (IN/g). Suictly
speaking, N is defined for statically stable situations only, where lighter water lies on top of
heavier water, so that N2 2 0. In the present study, it is assumed that N2> 0 ar every
location and at every instant.

The eddy coefficients are thus assumed proportional to a velacity scale, ¢, and a length
scale, [, which is that of the largest turbulent eddies, those which contain most of the turbulent
kinetic energy.

The velocity and length scales obey the following evolution equations (Mellor and Yamada,
1982; Blumberg and Mellor, 1987):

3 2
Qg; = &M - &N - %% + %(quiz) +F@h . s
34 |\ em® - Laa? - WO v 2 a"—2’) + F@Yy . (19
ar T = 166 ° 3; 9 o
I Il 11 v

where K _stands for the eddy viscosity relevant to the turbulence model variables. In (18)-(19),
the operator F accounts for the effect of advection and horizontal diffusion, if any. The wall-
proximity function W is a function of the turbulence macroscale as well as the distance to the
sea surface and the sea bottom (e.g. Blumberg and Mellor, 1987). The coefficients 1.8 and
16.6 in (18)-(19) are of empirical nature, and have been determined from laboratory data. The
stability functions also contain empirical coefficients and are given by

[ (0699 + 9.34N° , 0.74 + 0.90247° + 4.538% )

[§..5.8] = = - —— —
e 1+5.080° + 36.7N° + 88.841°N* + 187N°

,02], @

where S, S, and S, pertain to the eddy viscosity K, the eddy diffusivity K_ — generally
assumed equal for all scalar variables —, and the eddy diffusivity of turbulent quantities Kq,
respectively. The level 2.5 model should be praised for taking into account the effect on g and !
of advection, production by shear (I), inhibition by stratification (II), viscous dissipation (III)
and turbulent diffusion (IV).

In a stable environment (V? > 0), the vertical, turbulent flux of density generally tends to
convert turbulent kinetic energy into gravitational, potential energy, thus inhibitin g turbulence.
By contrast, the shearing has the opposite effect: the more sheared the flow is, the more energy
can be extracted from the mean flow and transformed into turbulent energy. Molecular viscosity
processes, acting at scales much smaller than /, dissipate turbulent energy into heat.

The robustness of the level 2.5 closure — i.e., its ability to produce reasonable results in a
wide range of situations — has been questioned several times (Mellor and Yamada, 1982;
Galperin eral., 1988; Helfand and Labraga, 1988; Deleersnijder and Luyten, 1994). When N?
is positive, it is believed that the stability functions, particularly §,» though based on apparently
sound physical basis, are mathematically ill-conditioned.

Stability functions. As can be seen in (20), §,and §_are decreasing function of N%. Thus,
if all other variables are kept fixed, any increase of N2 will lead to a decrease of K,and K,
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reflecting in a quite natural way the effect of stratification. On the other hand, the influence of
M*ons u and §_is completely counterintuitive. Indeed, increasing M? leads to a decrease of S,
and S, which may not be appropriate.

Imagine that, for some reason, M is increasing at a given location in the domain of interest.
This would lead to a decrease of Ku, which might allow a further increase of the shear, since
the turbulent swress, K uE)u;faz, is unlikely to exhibit wild variations. Indeed, the order of
magnitude of K ,M is commonly thought to be prescribed by the stress driving the turbulent
boundary layer, i.e., the surface wind stress or the bottom stress. Thus, a positive feedback
may develop, possibly leading to a “discontinuity in the velocity” (Mellor and Yamada, 1982),
which would obviously be an artefact. In other words, the velocity field may possibly present
unphysical oscillatons in the vertical direction.

To prevent regions of exceedingly high shear from developing, a limitation of M2 has been
considered (Mellor and Yamada, 1982), as well as a numerical filtering procedure of M2
(Mellor, personal communication). Instead of trying to constrain, in a rather artificial way, the
cvolution of some variables of the turbulence model, it may seem desirable to improve the
model by reappraising some of the assumptions underlying its parameterizations. This was
achieved by Galperin er al. (1988), who devised the so-called quasi-equilibrium version of the

present model. They only modified the stability functions § y and S, which are then evaluated
as

6.8) = ( 0:393 +3.008 0.494
e 1+40.88% + 2128* 1 + 34,757

These alternative expressions, which no longer depend on M, are referred to as “quasi-
equilibrium parameterizations”, for they may be obtained from the original ones by assuming
— only in the stability functions — that the sources and sinks of turbulent kinetic energy
balance each other. It is readily seen that, in (21), S.. and Sc are decreasing functions of N2,

The physical basis of the modified stability functions is not better than that of the original
ones. In a certain sense, it may even be deemed weaker, since more constraining assumptions
are needed. Nevertheless, from a purely mathematical point of view, they are probably better
conditioned.

In the quasi-equilibrium model, g and ! are computed by means of the same evolution
equations as those of the classical 2.5 model. Therefore, the main advantages of the original
model are preserved, while its shortcomings are likely to be cured, as shown by the numerical
experiments presented below.

(21)

The one-dimensional model. The well-foundedness of the parameterizations included in a
model cannot be assessed by simple reasoning only. Appropriate numerical tests are obviously
necessary. Accordingly, a series of numerical simulations pertaining to the surface boundary
layer is carried out.

In the surface boundary layer, turbulence is partly generated by the shearing of the current,
caused by the wind stress acting on the sea surface. Surface waves, when they break, also
supply turbulence, a contribution which is not taken into account here. The deepening of the
turbulent layer is impeded by viscous dissipation and stratification. In addition, the Coriolis
force tends to limit the height of the boundary layer, even in the absence of stratification. All
these phenomena are included in the model used herein,
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The sea is assumed horizontally homogeneous, so that the governing equations of the
problem read

du ) du

5, =led () P 22

a TIExY = 5 ) e
ap d ap
5 T 5, K. oo) 23
or az(caz) @3

At the initial instant, the velocity u is zero and the density is a linear function of z, pt=0,2) =
(ﬁpoNuzlg)z + p(r=0,z=0), where N, is the constant initial Brunt-Vis4li frequency. The fluid
is set into motion by a constant stress T applied at the sea surface; at z = 0, K, (Qu/oz) = T'fp.
No mass or heat flux is imposed at the sea surface, implying that K_ (9p/dz) =0 at z = 0. The
surface boundary conditions for the turbulent variables are (Blumberg and Mellor, 1987) ¢ =
16.6'%u_and I = 0, where i, denotes the friction velocity, defined by u,? = |T')/p. We take
uf =10~ m? 52 and No2 =10%s2

Discrete model. Equations (18), (19), (22) and (23) are solved numerically by a standard
finite volume technique. The only difficulty pertains to the turbulent variables: obtainin g, from
the numerical algorithm, negative values of ¢* or ¢*l would be devastating. Thus, the equations
of the wrbulence closure model (18)-(19) must be discretized in such a way that the positivity
of g% and q*l be guaranteed.

To gain some insight into the problem of ensuring the positivity of the numerical solution of
an evolution equation, let us first examine a simple model, dy/dr = —-D(y), where D, the sink
term, is always positive. With an explicit time stepping, ¥ =yt _ ArD(y") — where y" =
y(nAn, n=0, 1, 2... —, it is required thar V" be larger than ArD(y") for w*! 1o be positive,
This condition may not always be verified. Patankar (1980) suggested an alternative
discretization, consisting in evaluating the destruction term in a pseudo-implicit way, viz
Dy )y /y". Accordingly, the modified scheme is Y=y + AD (),
guaranteeing that y**! is always positive — provided " is positive. This scheme is simple,
consistent and robust — in the sense that it is able to provide positive results, whatever the
value of ¥, D(y/") and Ar. Consequently, Patankar (1980) pointed out, in a footnote, that “this
seemingly minor topic may turm out to contain the most valuable information™ in his book.

When F is neglected, the equations of the closure scheme are of the form

dy d oy
=P -+ (K Yy 4
or +32( Waz) 24

where v stands for ¢° or @*l; P (20) and D(20) denote appropriate source or sink terms.

It is desirable that the numerical scheme be able to cope with values of the dimensionless
ratio K wArfAzz — where Az is the mesh size — that may be larger than 1/2. Consequently, to
avoid numerical instability, an implicit discretization of the diffusion term must be implemented
(e.g. Hirsch, 1988).

Using Patankar's (1980) rrick, opting for a conservative and implicit discretization of the
diffusion operator, setting 9 n=K W)Ztl n At/ A7, the discretized counterpart of (24) reads

n +1 n n +1 +1
Ol Vi + @2, +1 YAID Wi+ 8L W - %1 Vin

W
= u{ + AP (25)
Therefore, the minimum value, at the new time level, of the unknown  satisfies
i +1
1+ ArD:/ t;/k’) rr}:ml;/k‘
n u 1 1 : +1 "o
= ak_uz(';’ﬂkj = n}‘“""f) + S W - ““k‘“'l‘/k' )+ Y+ AP (26)

If the minimum value of y is not found at a grid point adjacent to a boundary of the
computational domain, then

Pﬂ
miny}*' 2 MO L @n
k

1 + AtDY 1y}
The scheme may be considered positive, although there exists a slight risk that the boundary

conditions be so ill-conditioned that negative values of ymay be generated. This did not occur

in our simulations.
Obviously, discretizing the sink term in an explicit manner would have been less safe,

especially when A1DY >> AtP) + /).
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Figure 3. Profiles of Prandtl frequency M (solid curves) and velocity (dashed curves) for f= 0
(no rotation) and r = 30 hours in the four types of numerical simulations.

. 2

Numerical experiments. In order to investigate the supposedly harmful influence of M~ on

§_ . four model runs are defined. The first, referred to as run (a), corresponds to the standard
u - . . v .

level 2.5 model. The experiments (b) and (c) are similar to (a), with two noticeable exceptions.
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In (b), K M = qlS M , appearing in the production terms of (18) and (19), is computed with
the help "of the quasi-equilibrium version of § . In (0), itis K du/dz = qlS du/oz that is
evaluated by resorting to the modified stability funcuon S, as deﬁned in (21) The quasi-
equilibrium closure is used in the run (d).
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Figure 4. Profiles of Brunt-Viisild frequency N (solid curves) and buoyancy (= —g(p - p)ip,)
(dashed curves) for f = 0 (no rotation) and ¢ = 30 hours in the four types of numerical
simulations.

First, the four types of simulations are carried out with =0, a time step of At =120 5, and
a grid size of Az = 1 m. When f = 0, laboratory data (Kato and Phillips, 1969), that may be
ransposed to marine scales, show that the turbulent layer depth d, may be evaluated, in a very
reliable manner, as d = (6/5)"*u N2 (7 (Price, 1979). All simulations are limited to 30
hours, in order not to cxcecd the domam of validity of Price's formula (1979).

Deleersnijder and Luyten (1994) show that, in the four types of simulation, the thickness of
the turbulent layer is within a few percents of Price's formula (1979). The best agreement is
obtained with the quasi-equilibrium model, but this is not a decisive argument in favour of this
closure scheme, for the discrepancies between the theoretical and predicted values of d are
rather small in all model runs.

In experiment (a), the profiles of velocity (Fig. 3a) and density (Fig. 4a) predicted by the
standard model exhibit a level of noise that is certainly unphysical. The variability of u and pis
associated with large oscillations of the eddy viscosity and the eddy diffusivity (Fig. 5a). The
results of the quasi-equilibrium closure are obviously much better, as depicted in Figs. 3d, 4d,
and 5d.
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The experiments (b) and (c) clearly confirm that, in accordance with the theoretical reasoning
put forward above, it is solely the behaviour of the stability functions that is inadequate in the
level 2.5 model. More precisely, itis S , through Kuaujaz in the momentum equation, that has
the most harmful influence. Indeed, evaluating the vertical momentum flux with the quasi-
equilibrium expression of K o 88 in experiment (c), provides much smoother results, (Figs. 3c,
4c and 5c¢).
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Figure 5. Profiles of turbulent diffusivity K (solid curves) and wrbulent viscosity K| (dashed
curves) for f = 0 (no rotation) and ¢ = 30 hours in the four types of numerical simulations.

The turbulence closure's equations (18)-(19) have source terms proportional to K| M?. In the
standard level 2.5 scheme, o(K Mz)iaM is positive. It might then be argued that any mcrease of
the shear would lead to a gmwth of gl that could compensate for the possible reduction of § .
In the present experiments, this does not seem to occur, even when K M? is compun:d
according to the quasi-equilibrium formulation of S (Figs. 3b, 4b and 5b). In fact, in the
standard model, even though B(K MY/aM 20, K M the norm of the turbulent stress, does
not necessarily increase as M increases: d(K M)/BM is positive if M? < (0.197 + 7.22N? +
36. 8N4)/(1 + 17. 5N2) and is negative otherwmc — provided the water colum is stable
(W2 2 0). Clearly, there is the potential for any increase of M to be unimpeded by the associated
enhancement of the turbulent energy.

The noise present in the standard level 2.5 model is not a transient feature that would
eventually disappear if one could wait for a sufficiently long time. Regions of exceedingly high
shear tend to persist, despite the unsteady nature of the flow. This is illustrated in Deleersnijder
and Luyten (1994).
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It is worth pointing out that the pathological behaviour of the standard closure does not seem
to be directly related to the mesh size. For instance, with Az =2 m and Az = 0.5 m, the level
2.5 model still exhibits unacceptable oscillations, whereas the quasi-equilibrium version
produces results free of unphysical noise (Deleersnijder and Luyten, 1994). With non zero
Coriolis factor (f # 0), the rate of deepening of the turbulent layer is considerably slower
(Mellor and Strub, 1980}, but the level 2.5 model's results are still significantly less acceptable
than those of the quasi-equilibrium model (Deleersnijder and Luyten, 1994).

Conclusion. The numerical experiments described above clearly show that ensuring the
physical well-foundedness of a given parameterization is not sufficient. The stability functions
tested, which seemingly are a small detail in the governing equations, may be deemed equally
valid from a physical point of view, but lead to significantly different model results. One should
always investigate the influence of every parameterization on the behaviour of the whole model.
In general, this is not an easy task, which is no excuse for disregarding it...

5. Interpretation of the results of a three-dimensional marine model

In this Section, we address the problem of interpreting the large amount of information
generated by a marine model. The study concentrates on the understanding of the vertical
velocity field of a three-dimesional model of the region of the Berig Strait. )

The Pacific and Arctic Oceans exchange mass, momentum and energy through the Bering
Strait only (Fig. 6). The region of the Bering Strait exhibits some of the most intense biological
productivity ever measured in the sea (Sambrotto er al., 1984), with peak values that can be of
the order of 102 kg Cm2day™!. Froma physical and biological point of view, this region is
thus of great importance,

The monthly flow through the Bering Strait, which is of order 1 Sverdrup (= 108 m® s7), is
directed to the North, i.e., from the Pacific to the Arctic. Since Coachman and Aagaard (1966),
it seems clear that this northward flow is primarily induced by the water level difference
berween the Pacific and the Arctic. It is also believed that the variability of the flow mainly
results from the wind forcing (Coachman and Aagaard, 1988). On average, two thirds of the
flow pass through the Anadyr Strait.

In the domain of interest the salinity variations are predominantly horizontal, whereas the
temperature contrasts are mostly observed in the vertical direction, with a marked thermocline
(Coachman et al., 1975). Satellite infra-red pictures show that a plume of cold water originates
in the Anadyr Strait, near the Siberian coast. Although its extent depends on meso-scale
phenomena, the cold water plume seems to be a permanent hydrodynamic feature (Fig. 7).

All in situ data analysed by Brasseur (1991) and Brasseur and Haus (1991) confirm the
existence and persistence of a plume of cold water downstream of the Anadyr Strait and suggest
that it is due to an intense upwelling taking place in the “Siberian half” of the Anadyr Strait.
Throughout the summer period the Anadyr upwelling is likely 1o bring nutrients from the lower
layer to the euphotic zone — where photosynthesis can take place —, continuously fuelling the
primary production (Walsh ez al., 1989).

No device is able to directly measure vertical fluxes at reasonable cost. Moreover, indirect
methods for estimating the magnitude of the vertical motions are known to be rather inaccurate.
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Such considerations point to the need for a three-dimensional hydrodynamic model to compute
the vertical fluxes in the domain of interest.
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Figure 6. Limits of the computational domain, with bathymetry (depth in meters).
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Figure 7. Schematic representation of the plume of cold water downstream of the Anadyr Strait.
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The main objective of the hydrodynamic model study is thus the evaluation of the vertical
fluxes, to test the hypothesis that it is mainly the Anadyr stream which is fuelling the huge
biological production of the Bering Strait region.

The three-dimensional model. The hydrodynamic model study — extensively discussed
in Deleersnijder (1992), Nihoul et ai. (1993a) and Deleersnijder (1994a) — is carried out in an
ecological perspective. It concentrates on the summer period, when the region of interest is
virtually free of sea ice. The computational domain is a 700 km X 700 km shallow sea area,
where the sea depth is S 70 m (Fig. 6).

Since the ultimate aim of the study is the understanding of the biological activity, it is
deemed appropriate to devote most of the attention to the general circulation, i.e., the flow
averaged over a sufficiently long time, say one week to one month, so that the meso-scale
processes are filiered out. In the domain of interest, the general circulation is associated with
much of the kinetic energy, in marked contrast to what is observed in most shelf seas.

The model set-up is described in detail in Deleersnijder (1994a). Here it is sufficient to say
that the water is forced to enter the domain through the southem boundary, that steady solutions
are examined, and that no wind stress is applied. Three reasons leads to neglecting the wind
forcing. First, the intent is to simulate the steady state background flow, i.e., the circulation
free of wind-induced variability. Second, it is believed that the wind stress is not a major
forcing in the domain of interest, although, over the whole Bering-Chukchi shelf, the wind
stress certainly plays a major role. Third, the plume of cold water downstream of the Anadyr
Strait does not seem to obey the classical wind-induced coastal upwelling scenario. Wind data
indeed indicates that the wind stress is hardly ever directed so as to drive coastal upwelling
(Deleersnijder, 1992). Therefore, it is found appropriate to look for an upwelling mechanism in
which the wind stress has no significant role.

The equations of the model are solved numerically in the sigma-coordinate system (Phillips,
1957). Accordingly, the physical space-time coordinates are transformed to new coordinates as
follows:
z+h

(1.2,9,7=0) = (1),
+ h

) (28)

where & and 71 denote the unperturbed sea depth and the sea surface elevation, respectively.
Hence, the actual height of a water column is ¥ = b + 7. In the sigma-coordinate system, the
surface (z = 7)) and the bottom (z = —A) of the sea are coordinate surfaces. The latter is defined
as ¢ =0, while the former corresponds to o= 1.

Along with the wansformed vertical coordinate o, it is customary (o use a new vertical
velocity, defined as W = D, o, where D , Tepresents the material derivative operator, i.e., D =
/01 + us V + w 3/0z. With the ransformed vertical velocity, the impermeability of the surface
and the bottom is easily taken into account by prescribingw=0at o= 1, 0.

In the sigma-space, the generic equation (7) is transformed to

H_l [—a(}iw) + Vo(Huyf) + a——(wa)] =
o7 do

29k Wy g

Ve H ' VoA § H
e ¢ o O do Y 9o

57

with V = e,d/d¥ +e 9/3¥. The generic equation (29) is not more complicated than (7).
Following Mellor and iBlumbcrg (1985), the horizontal diffusion term has not been transformed
to its exact sigma-coordinate counterpart. In fact, a much simpler expression is chosen
(Deleersnijder and Wolanski, 1990; Deleersnijder, 1992).

The equations are discretized, in the sigma space, according to the finite volume technique
(Peyret and Taylor, 1983). The grid size is 10 km in both horizontal directions, and each water
column is divided into 10 sigma-levels. The vertical eddy diffusivities are computed from a
wurbulence closure which is similar to that described in Section 4, except that the turbulence
macro-scale is obtained from an algebraic, empirical formula, and that the stability functions are
those of Nihoul and Djenidi (1987) (see also Deleersnijder, 1992). According to an appropriate
model calibration procedure, the horizontal viscosity Au is taken to be 500 m? s}, while the
horizontal diffusivity is A_=75 m?s™..

Upsloping and upwelling. In the sigma coordinate, the equations of the model do not
explicitly involve the “physical” vertical velocity w. Computing the larter is then part of the
postprocessing of the model results.

As suggested by Waleffe (1985) and Deleersnjder (1989), it is useful to split w into two
contributions, w =w, . + w

) us T uwr
The upsloping velocity, w,q, reads

Wy = o‘aj—u-[(l-o)V}z— oVn] . 30)
or
It may be seen that a particle moving with a velocity equal to u + Wy ¢, does not cross any
iso-o surface, implying that this particle remains at the same relative height in the water column.
Since the bottom and the surface are iso-¢ surfaces, wys May be regarded as the vertical
velocity adapted to the slope of the surface and the bottom. Since the present analysis pertains
to steady state model results, the first term in the right-hand member of (30) is zero.
The upwelling velocity,

W = H® | (31)

uw

is the velocity with which the water crosses the iso-o surfaces. Therefore, Wiy may be
interpreted as the vertical velocity associated with proper up- or down-welling motions.

This decompositon of the vertical velocity provides an interesting analysis tool, for it renders
it possible to distinguish between the part of the vertical velocity that is necessary for the flow
to accommodate to the geometry of the basin and the extra vertical velocity related to actual up-
or down-wellings.A significant drawback must nevertheless be highlighted. Definitions (30)
and (31) are purely arbitrary: it is indeed possible to put forward several alternative expressions
of w5 and w ;. that could be equally valid as regards the distinction between the vertical
motions that are associated with the geometry of the basin and those that are not. What justifies
(30) and (31) is only that they take advantage in a very natural way of the use of the sigma-
coordinate system. In a certain sense, (30) and (31) are inherent in the sigma-transformation.

In accordance with the present reasoning, we will examine separately the upsloping and
upwelling velocities.

To understand the space distribution of the upsloping velocity, it is desirable to identify the
dominant terms of definition (30). The sea surface elevation does not exceed + (.4 m
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(Deleersnijder, 1992). Hence, in (30), 6V 7 may be neglected compared with (1 - oth.. Letd
=u — 1 denote the deviation of the horizontal velocity relative to its depth-averageu (Fig 8).
Model results indicate that, roughly speaking, |a] = 0.1 [i] (Fig. 9) (Deleersnijder, 1992). It is
thus suggested that wy, be approximated by a “simplified upsloping velocity” defined as

Wyss =~ (1 - o) us VH, which may be transformed to an expression better svited to
numerical calculations, viz wysg =1 -0 H Veii, by using the — steady state — depth-
integral of the continuity equation Ve(HiI) = 0.
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Figure 8. Depth-averaged horizontal velocity field computed by the model.

The modelled horizontal velocity field was shown 1o be in good agreement with the available
measurements (Deleersnijder, 1992; Nihoul et al., 1993a). The latter do not however permit the
evaluation of the vertical shear in a reliable way, because there were hardly ever several
currentmeters on the same vertical. Nevertheless, the available dataset loosely suggests that @ is
much smaller than .
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The simplified upsloping velocity turns out to be reasonably close to wys- Indeed, upon
denoting || the root mean square taken over the whole computational domain of a variable r,
one has IWUS!S — wUS'rms / leS'rms = 0.24, which means that W\q s Foughly speaking,
accounts for 76% of w,.
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Figure 9. Scarterplot displaying, for each wet vertical, the depth-average of |ii] as a function
of |u].

The most advantageous feature of the simplified upsloping velocity is that, over each water
column, the values of Wy s aT€ self-similar: |wus,s / (HVsil)] is a linear function of & only,
which is zero at the surface and maximum at the bottom.

Since wyg is close to Wys,g» the vertical profiles of the upsloping velocity are nearly self-
similar. As a result, to interpret the three-dimensional field of upsloping velocity, it is sufficient
to display a depth-independent quantity such as, for instance, the depth-mean upsloping
velocity #y;¢ (Fig. 10). It would be less appropriate to simply display the upsloping velocity in
a series of horizontal planes of section located at various depths below the surface. Doing that
would result in confusing pictures in which it would be difficult ro distinguish between the
horizontal variablity of w,,g that is intrinsic to the flow and that associated with the plane of
section being, from one location to another, relatively closer or more distant to the sea surface
or bottom,

Looking simultaneously at Figs. 6, 8 and 10, one immediately sees that, as expected, the
upsloping velocity is positive where the flow is directed towards shallower regions and is
negative otherwise. Furthermore, |WUS| is maximum in the vicinity of Anadyr and Bering
Straits, i.e., in the regions where the horizontal current most clearly crosses the isobaths while
having a large speed. In particular, the upsloping velocity is high in the Anadyr Strait,
indicating significant upwards water fluxes,

It must be pointed out that the upsloping velocity cannot bring a water parcel up to the
surface. However, when the upsloping velocity is positive, every water parcel comes closer to
the surface, while remaining at the same relative height in the water column, This may render it
more likely for the wrbulent diffusion to mix some of the water column, or even the whole
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water column, since the height of fluid to be mixed decreases. Whether or not this hypothesis is
correct is difficult to verify, because this mechanism involves two processes interacting non-
linearly. Anyway, this process, if it actually exists, could be responsible for part of the cold
water plume developing downstream of the Anadyr Strait.
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Figure 10. Depth-averaged upsloping velocity field. The verticals where Wy 2 2.5 105 m !
(Wys < 2.5%107° m s7) are identified by “+7 (“-").

According to the model results (Deleersnijder, 1992), most vertical profiles of Wy are of
the same type: as o increases from 0 to 1, Iwuwl grows from zero at the bottom, reaches a
maximum and finally decreases to zero at the surface. However, the location of the maximum
of |wy,,| may vary very widely from one vertical to another. Although the vertical profiles of
Wiw may not be regarded as approximately self-similar, they exhibit enough common features
for a method resembling that used to display w, to be feasible for the graphical representation
of the field of upwelling velocity (Fig. 11).

Significant up- and down-wellings are found in small areas, Upwelling phenomena taking
place in the one-grid-box-wide strip along the southern open boundary clearly correspond to an
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artefact due to improper boundary conditions imposed on the horizontal velocity (Deleersnijder,
1992). In the region of the Anadyr Strait, close to thclSiberian coast, the upwelling velocity is
directed upwards and can be as high as 10 m day . Thus, the upwelling velocity is large
enough to bring the thermocline, initially located at z = — 15 m, up to the surface.

EXTR. UPWELLING VELOCITY

Muwe

b 8 R R B & B Red ey

w2 210 mst

=i Wywg S0 ms!

Figure 11. Representation of the upwelling velocity. For each water column, one takes into
account the extremum of the upwelling velocity, Wyw g i€ the value of w;, that has the
maximum absolute value. The verticals where WiuwE 2'2x10% ms™ (WUW.E <2105 ms)
are identified by “+ (“-*).

As previously stated, the wind forcing is not the main cause of the vertical motions. It
follows that one has to look for another upwelling mechanism. Inspiration can be found in the
Ekman pumping theory set out in classical treatises of geophysical fluid mechanics (e.g.,
Cushman-Roisin, 1994).

It may be seen that
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g
Wow = ﬁ‘[ﬁ'.(H i) do . (32)
0
Consequently one has to analyse the behaviour of Hii in order to understand the distribution

of w .

Tlli::vdjrcction of u with respect to il is measured by the angle f§, which may be calculated
from sinfl = e_«(iWxu) / ([d] [u]). Angle B is positive if u is “on the left of @, and is negative
otherwise. For each water column, the veering = is defined as =5 = ™ ﬂmm, if the point
where B=f_is closer to the bottom than that where = B ;- Otherwise, == B =B
The mean veering is about 12°. The veering is positive in 2556 verticals out of a total of 2690.
In 95% of the verticals of the computational domain, the direction of u is qualitatively in
agreement with that of the bottom Ekman spiral, i.e., u is on the left of i near the bottom and
on the right near the surface.

The qualitative properties of Hii are accounted for in the following Taylor expansion of Hi
truncated at two terms:

Hé = (Ha), + HD), , (33)
with
[(Hay,, (H),] = (1-20)[-a,,a ¢ex]Hi, (34)

where a, and a are positive constants. Relations (33) and (34) are by no means intended to
provide a reliable approximation to the vertical profiles of Hil. Instead, (33)-(34) are simply
intuitively appealing formulae having some of the modelled properties of Hii: in (33)-(34), the
depth average of || is a linearly increasing function of [i| (Fig. 9), and the veering is always
positive.

Let Wy, and Wyw , denote the upwelling velocity related, through (32), to (4 L‘l)ﬂ and
(H @), respectively. Accordingly, Wow = Wouwy + Wow o

Introducing the two contributions to the transport Hi defined in (34), taking the depth-
integrated continuity equation, Ve (H) = 0, into account, it is readily seen that w,,, = Wiw.
and wy;, = 0. The same calculations may be carried out with the modelled field of Hii. To do
so, the following definitions are introduced

o % ——2 . = x - =
[H a),,(Ha), ] = [@ " [ad.T, (u-(ezxu))ezx] Hu . (35)
The corresponding upwelling velocities may then be evaluated. According to the model results,
the latter obey
0w~ Wowls - Wow, 1 = Wowlas | =

[0.72, 0.28] ( Wuw ilms ¥ Wow, ilms )+ (36)

where, for a given variable s, Isl,,, Tepresents (lslms)z. This clearly supports the well-
foundedness of the splitting (34), for the modelled upwelling velocity is mostly associated with
the variations of (H Q) » While the role of (H ﬁ),,,, is less important in this respect.
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Another type of analysis is suggested by the idealized form (34). Combining (32)-(34)
yields wy, =a, e «(VxHW) o (1 - o), implying

sign(wy,) = sign[ez-(VxHﬁ)] g 37

where Wy, represents the depth-average of the upwelling velocity.

Whether or not the sign of the upwelling velocity is actually given by the sign of the curl of
the transport Hul is easily checked. It turns out that (37) provides an excellent account of the
model results (Table 4).

Table 4. Assessment of (37): n, denotes the number of water columns where the sign of the
depth-averaged upwelling velocity is equal to that of ez-(VSx H‘_'l\ while n_ is the number of
verticals where (37) does not apply; W, is expressed in 10~ m s

n+
m " n +n

IWUW' 20.1 1547 315 0.83
Wyl 2 1 240 6 078
Wyl 2 3 30 3 091
gl 2 5 10 1 091
Wyl 27 1 0 1.00
R 0

The mechanism of the up- and down-wellings illustrated here is probably the following. The
main driving force of the horizontal velocity is the part of the pressure force that is associated
with the gradient of the sea surface elevation. Due to frictional forces associated with the bottom
stress, the horizontal velocity is not identically equal to its depth-average. Moreover, the
Coriolis force induces a positive veering of the velocity. The resulting space variations of
(Hi) » correlated with those of Hu, lead to local divergence or convergence of Hil, implying
vertical motion in the sigma-space. The variations of (Hii) , have less impact on the upwelling
velocity.

What has been done above simply amounts to adapting the Ekman pumping theory to our
results, where the bottom stress turns out to be the ultimate cause of the vertical motions.

Flow dynamics, The above analysis of the velocity field has mostly been “kinematic”. It is
appropriate to address some dynamical aspects. In particular, it is crucial to understand why the
veering is overwhelmingly positive.

By virtue of the hydrostatic equilibrium, the horizontal pressure gradient force reads

~py VP = —gVn-p 'V Tpg d . (38)

z
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Owing to the relative smallness of the sea depth and the horizontal density gradients, the last
term of (38) is negligible compared with —g V1, the pressure force due to the slope of the sea
surface (Deleersnijder, 1992).

On the other hand, the acceleration term Ve (uu) is generally much smaller than the Coriolis
term. This may be verified by evaluating the Rossby number,

U [Ve(uu)

Ro=ﬁ~m, (39)

where U and L denote the horizontal velocity and length scales, respectively. In view of the
domain (Fig. 6), one takes L ~ 30 km. It seems quite natural to prescribe V = |u| =
0.2 m s™'. Bearing in mind that f =~ 10~ 5™, one has Ro = 0.07.

The magnitude of the horizontal diffusion term relative to the Coriolis force is measured by
the horizontal Ekman number,

A Ve(A V
Ek = “2 s M R (40)
fL Lfezxu] .

It is readily seen that Ek = 0.006, implying that, for the basin-scale motions, the horizontal
diffusion of momentum is negligible. However, the two-grid interval noise, the length scale of
which is L = Ax/ = 3 ki, is significantly affected by the horizontal diffusion operator, At this
scale, one indeed has Ek = 0.5. As a consequence, the horizontal diffusion efficiently smoothes
the small-scale computational noise, while leaving relatively unaffected the meaningful scales of
motions.

This order of magnitude analysis implies that the dominant part of the horizontal momentum
equation is

du
Y az)

as verified in Deleersnijder (1992). The latter equation is often called “Ekman equation”.

All closed form solutions to (41), obtained in idealized cases — generally with K =
const. —, exhibit a positive veering in the Northern Hemisphere, where f > 0 (e.g. Cushman-
Roisin, 1994). This turns out to be reassuring as to the well-foundedness of the analysis carried
out in this lecture. It is however desirable that the positivity of the veering be understood by
means of a more general ratonale.

Let T = p A}, du/9z denote the siress due to the turbulent, vertical flux of horizontal
momentum. Bearing in mind that no wind stress is applied at the sea surface, i.e., T(c=1) =0,
the depth-average of (41) reads

fexu - gV + ai(x -0, @1
Z

—fe x@ — gVn - (pOH)‘l'c” =0, 42)

where T2 = T(o=1) is the rbulent stress exerted by the fluid on the sea bottom. Substracting
(42) from (41) yields

-fe,xn + (pUH)“(g—zar ™) = 0. (43)
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Near the sea bed, there is a thin boundary layer in which the velocity goes to zero — as the
bottom is approached — according to a logarithmic profile (e.g. Wimbush and Munk, 1971).
This boundary layer is not resolved by the numerical model, so that the modelled horizontal
velocity is not prescribed to be zero at the sea bed. Rather, a slip boundary condition is resorted
t0, whereby the bottom stress is evaluated as T? = £ Cp [u(d)| u(d), where C, and d represent
an appropriate drag coefficient (C) = 0.002) and the distance to the bottom of the first grid
point where u is computed, respectively. Since |&| << [, it is clear that T° is approximately
equal to p, C, [] . Upon defining e as the unit vector parallel toif, i.e., e = /G|, it is very
likely that

Tlee > 0 . (44)
Let (&, T, 7)) = es(~€,x &, T, T%). The dot product of € and equation (43) leads to

_1,07T,
fa, + o (e gy =0 @3)

The stress component T decreases from 1?, at the bottom to zero at the sea surface. It is
convenient to assume that the decay of T, is monotonic, requiring that d7,/do < 0. If, for
example, T, decreases linearly as the surface is approached, i.e., ,=(0-0) ’cff, then 3 =0.
But, the latter hypothesis is not likely to be valid. In the idealized closed-form solutions, the
stress generally obeys an exponential law. In the flow under study, the stress is nearly zero at
the pycnocline, for the stratification prevents large turbulent fluxes. Since the pycnocline is
generally located well below the sea surface, 7, must decrease faster than a linear function of o.

In the light of the arguments put forward above, it is conceivable that

oT

—4 4+ 12 < 0, near the bottom, (46a)

Jo /s

aT,

A4 s 0 . near the surface. (46b)

oo i

As aresult,

i@, >0, nearthe bottom, (47a)
4, <0, near the bottom. (47b)

The latter inequalities are in agrement with the fact that 7 » having zero depth-mean, must
exhibit at least one zero on every water column. Furthermore, (47a) and (47b) strongly suggest
that a positive veering prevails, which must indeed be the case when i | only has one zero,

Equations (41) and (42) do not clearly support the hypothesis that [ii| should scale as fa}. In
fact, various scaling arguments may be equally relevant, leading to linear or quadratic laws
(Deleersnijder, 1992). Moreover, it is not clear at all that ﬁ', ; and G . should scale in a similar
way. Finally, H should play some role in this order of magnitude analysis. Therefore, it may be
concluded that the dynamics of the flow agrees with |{i| being an increasing function of fa|, but
assuming a linear law, independent of the depth, is certainly an over-simplification, which has
however proved very fruitful in the preceding section,
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Overall, the kinematic arguments resorted to for gaining insight into the upwelling
mechanism are seemingly in accordance with the momentum budget, although there remain
some minor discrepancies.

Conclusion. The interpretation methods used above have been able to reduce, by hefty dose
of physical intuition, three-dimensional results to two-dimensional plots, “rms” figures or
simple, short, analytic formulae, such as (37). Synthetic information has thus been obtained
from the 26,900 grid nodes where the flow field variables are discretized.

The analysis technique of the vertical velocity, based on the distinction between upsloping
and upwelling velocity fields, has been shown to work rather well for two main reasons. First,
upsloping and upwelling are very different processes. Second, the typical profiles of the
corresponding vertical velocities are completely dissimilar.

The vertical velocity field produced by the model in the vicinity of the Anadyr Strait is
qualitatively in agreement with the observations. According to the results of the model, the
Anadyr Strait plume of cold water is caused by an upwelling process, possibly combined with
upsloping and turbulent diffusion. The upwelling mechanism identified in the simulated
currents closely resembles the classical Ekman pumping process, which is a concept generally
applied to the surface or bottom boundary layers in deep seas. It is proposed that the notion of
shallow-sea Ekman pumping be introduced, as a process concerning the whole water column.

The velocity field discussed above has been used as an input to an ecological model,
confirming the crucial role of the Anadyr Strait upwelling in fuelling the primary production
(Adam, 1990; Nihoul et al., 1993b).

6. Some results of a World Ocean model

Another problem of interest is that of predicting the evolution of the Earth's climate under
natural and anthropogenic forcings.

Mankind is currently conducting an “experiment” with the global climate. Each year, billions
of tons of carbon dioxide, an acknowledged greenhouse gas, are released into the atmosphere,
primarily as a result of the combustion of fossil fuels, i.e., coal, oil or gas. Other greenhouse
gases, namely methane, nitrous oxide and chlorofluorocarbons, are also being released. Large
amounts of these gases remain in the atmosphere, so that the atmospheric concentration in
greenhouse gases is increasing, which will significantly alter the Earth's climate. In a few
decades, the global temperature may increase to a level unprecedented in the recorded history of
mankind (Houghton er al., 1990; Houghton et al., 1992). It is believed that all human activities
will be affected, directly or indirectly, by any warming of the atmosphere — even of a few
degrees — and any associated modification of the rainfall,

Mathematical models are the only tools that can take up the challenge of predicting future
climates.

The Earth's climate system consists of the atmosphere, the hydrosphere, the cryosphere, the
surface lithosphere and the biosphere. These components have quite different physical
characteristics and time scales, and are linked to each other and to conditions external to the
system by a variety of physical processes. Ideally, climate models should treat all these
components in an interactive way, which is virtually impossible today, since the power of the
available computers is not sufficient,
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Predicting, with an acceptable degree of realism, the evolution of climate on time scales of a
few decades can be achieved with a model incorporating only representations of the
atmosphere, ocean and sea-ice sub-systems. At Louvain-la-Neuve, we are developing such a
model of the climate system, and some results of the oceanic component will be presented
below.

The model. As pointed out by Niiler (1992), “the principal role of the oceans in maintaining
the present climate system of the Earth is the creation of large reservoirs of heat in tropical
latitudes and the transport of this thermal energy to the polar latitudes”. Throughout the year,
the World Ocean transports about 10"* W — in thermal energy — from the low latitudes
toward the poles (e.g. Hastenrath, 1982), which is somewhat smaller than the meridional
atmospheric heat transport. Thus, by removing heat from the tropics and carrying it toward the
poles, the World Ocean significantly reduces the equator-poles contrasts. In addition, because
of their large heat capacity, the upper layers exhibit a large thermal inertia, moderating the
amplitude of the surface temperature seasonal cycle (e.g. Monin, 1975). Finally, the World
Ocean may act as a sink of carbon dioxide (e.g. Sarmiento, 1992).

The Louvain-la-Neuve Ocean General Circulation Model (OGCM) is rather similar to the
most classical OGCMs (e.g. Bryan, 1969). It is based on the usual set of assumptions, i.e, the
hydrostatic equilibrium and the Boussinesq approximation. The prognostic variables are the sea
surface elevation, the three components of the velocity, the potential temperature and the
salinity. The turbulence closure is achieved according to the simple formulae of Pacanowski
and Philander (1981). The space discretization uses the finite volume technique on an Arakawa
B-grid. The time stepping is of Euler-forward type, with a split-explicit mode splitting to
circumvent the severe numerical stability constraints associated with the propagation of external
inertia-gravity waves (Gadd, 1978; Killworth er al., 1991; Deleersnijder and Campin, 1995).

More details about our OGCM may be found in Deleersnijder and Campin (1993, 1995) and
in the Appendix. Hereafter, the curvilinear coordinate system underlying the horizontal
discretization is discussed.

Horizontal curvilinear coordinate system. In most OGCMs, the numerical grid is based
on the standard spherical coordinate system, which has singularities at both the North Pole and
the South Pole. As those singularities are approached, the latitudinal grid size tends to zero,
which may lead to numerical instabilities. Since the South Pole is located sufficiently far away
from the nearest oceanic region, the reduction of the latitudinal grid size has no harmful effect.
Thus, it is only in the Arctic Ocean that the grid or the numerical method has to be adapted to
circumvent this numerical instability problem.

Several methods to deal with the singularities of the spherical coordinates have been
examined (e.g. Williamson, 1979). Fourier-filtering along the longitudinal direction is used in
many OGCMs, in spite of the potential problems that may arise because not all the grid points
along a latitudinal circle are active.

Some years ago, the LODYC (Laboratoire d'Océanographie Dynamique et de Climatologie,
Paris) model has been adapted to an orthogonal curvilinear grid obtained by shifting the
northern singularity into a land region, located in the neighbourhood of the North Pole (Marti et
al., 1990; Marti et al., 1992)

Another modification of the standard spherical coordinate system has been suggested
(Deleersnijder et al., 1993; Eby and Holloway, 1994; Coward ef al., 1995), consisting in
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combining two spherical sub-grids in such a way that their singularities are not close to their
own wet grid points. The first sub-grid, G, covering the Southern Hemisphere, the Indian
Ocean, and the Pacific Ocean up to the Bering Strait, is based on geographical spherical
coordinates. The second sub-grid, G, is associated with spherical coordinates having their
poles on the Equator. This second grid encompasses the Northern Hemisphere part of the
Atlantic together with the Arctic Ocean. The two sub-grids are connected to each other in the

equatorial Atantic. With this technique, there is thus no singular point, neither in G, nor in G
(Fig. 12).
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" Figure 12. lllustration of the two-grid system, with the connection line in the equatorial Adantic
(courtesy Jacques Haus).

Instead of solving the equations of the model separately on the two sub-grids — with
appropriate matching of the fluxes across the connection line —, we consider the two spherical
coordinate systems as a single, orthogonal, curvilinear coordinate system. This way, the
computational domain does not have to be viewed as a set of two sub-domains. On the other
hand, however, the goveming equations must be written — and solved — in a curvilinear
coordinate system, which is slightly more complicated.

The North Pole of G’ is located on the geographical equator at longitude 8= 70°, j.e., in the
Indian Ocean (Deleersnijder et al., 1993). Ler a, A and ¢ denote the Earth's radius, the
geographical longitude and latitude, respectively. If 1*and ¢’ represent the longitude and

latitude in the spherical coordinate system on which G’ is based, it may be shown that
(Deleersnijder et al., 1993)
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(A-6,¢) = [—atan(sind’ cotang?), asin(cosA’ cosg?) | . (48)

It follows that the meridians of G are connected to the parallels of G’ in the equatorial Atlantic
— with equal tangents, but unequal curvatures. For G and G’ to be compatible, it is obviously
necessary that the grid sizes be such that A4 = A¢". It is also desirable, though not mandatory,
that A¢ = AL, In the present model AL = 3° = Ag.

The “horizontal” coordinates % and ¥ of the curvilinear coordinate system satisfy

d d 1.8 @

M By o B By o 49
('.932 ajr') a(az a¢) in (49)
2y s LB 2y up (50)

ax ' ay a‘ 34" 3A

The grid sizes are AT = a AL = a A¢" and A = a A¢ = a’AA". As for the spherical coordinates

used in most OGCM, it is considered that the metric coefficients are such that oh joz =0

=dh_/dz, and that hz = 1. It follows that (hx, hy) = (cos@, 1) in G, and = (1, cos¢) in G'.
nlike h, the metric coefficient 4, is discontinuous across the connection line of G and G*;

* on the northern side of this line hy is equal to cos¢’, whereas it is equal to 1 in the Southern

Hemisphere. If analytic calculations were carried out, this difficulty would be dealt with by
simply matching the values of the dependent variables and the appropriate fluxes across the
connection line. For the purposes of numerical calculations, a single value of k. is obviously
required at ¢ = 0. Consider a grid box straddling the Equator. Its area is about a® AA (A¢ +
cos¢’ AA")/2, which must be equivalent to h, hy AX AY. Hence, on the connection line, we
must have
1+ cos¢’

hy = . (51)

The model results will be pictared in the curvilinear coordinate system, in which equivalent
latitude and lengitude miay be defined as (%, §) = a™! (%, 7).

For simplicity, the wiggle “~" identifying the curvilinear coordinates will be dropped. For
example, “x” will, in fact, mean “%".

It is easily seen that the two coordinate systems, associated with G and G, do not joint
appropriately in the region of the Bering Strait. There is thus two options. First, we may
consider the Bering Strait as closed, so that the lack of matching of G and G’ does not matter.
Second, according to Reason and Power (1994), the influence on the World Ocean general
circulation of the Bering Strait flow, though small, may be regarded as non negligible,
requiring that a method for allowing a northward water flux be worked out.

We opt for the second solution. However, no attempt is made to solve the governing
equations of the model in the region of the strait. Instead, we parameterize the water,
temperature and salinity fluxes crossing the Bering Strait, while the momentum flux is assumed
negligible. Accordingly, an arificial water sink is placed in the Pacific grid boxes bordering on
the Bering Shelf. A source of equal strength is located on the northern side of the strait. The
water flux is proportional to the sea level difference between the Pacific and the Arctic grid
boxes, in accordance with the hypothesis that this flow is geostrophically controlled (Overland
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and Roach, 1987). A corresponding temperature and salinity flux is also prescnbcd. The
parameterizations are tuned so that the northward water flow be of order 108 m® 57

The meridional streamfunction. It is not easy to understand the results of an OGCM,
because of the complexity of the phenomena taking place in the World Ocean, and because of
the large amount of real numbers generated by an OGCM. An example of an interpretation
technique based on little graphical skill but considerable physical skill is the meridional
streamfunction approach. This technique, which has now become a standard for visualising and
discussing the results of OGCMs (e.g. Bryan 1982, 1987; Toggweiler et al., 1989; Killworth
et al., 1991; Marotzke and Willebrand, 1991; England 1992; Semtner and Chervin, 1992) since
it allows visualizing the “conveyor belt” circulation — which is described below. It consists in
integrating the velocity in meridional planes over the longitudinal width of the ocean basin
under study. Assuming that there is no water flux across the land and sea boundaries, the
resulting two-dimensional vector field is divergenceless, implying that it may be represented
with the help of a sireamfunction, termed *‘meridional streamfunction” since the longitudinal
velocity component is ignored. Contours of the streamfunction are drawn, and the difference
between the streamfunction values associated with two given isolines corresponds to the water
flux flowing between these isolines.
Assume that the domain of interest is defined as

[x 0y -hx. 0] £ (y2) < [x,0).2,.0], (52)
where, for simplicity, the ocean surface is assumed flat (1 =0); y_and y, are constants. The
two components of the transport that we want (o represent are

x.()
v, w) = _[ (hov, h b w)dx. (53)
x ()

The lateral boundaries of the domain of interest, located at x_(y) and x,(y), are either
impermeable or periodic — if x_(y) corresponds to the same location of the terrestrial sphere as
x (y).

+

The continuity equation
2 ad d
—(hu) + —(hv) + —(h h = 0, 54
L S i P

is integrated over x, from x _(y) to x,(y), and, taking into account the lateral boundary
conditions, it may be seen that

v W w0, (55)
dy dz
The ransport (V, W) is defined in the domain
b.-d»] < .2 < [v,0], (56)

where the depth d is given by

dly) = ™M h(x,y). (57)
=X
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The domain defined in (56) has impermeable lower and upper boundaries, requiring that
ddl
[Wo.-d). Wo.0) = [-Vo,-0) 952, 0] (58)

As indicated by (55), the wransport (V, W) is divergenceless, so that it may be represented
with the help of a streamfunction, ‘¥, as follows

v.w = I—all Ef} (39)

The impermeability conditions (58) imply that ¥ must be constant at the surface and the bottom
of the domain of interest, i.e.,

[¥0,—d), P, 00] = (¥, %) (60)

where ¥? and ¥ are constants which denote the value of the streamfunction at the bottom and
the surface, respectively. The difference ¥ _ ¥ is the — constant — water flux crossing the
domain fromy_toy .

The surface boundary conditions. The general circulation in the World Ocean is
ultimately driven by the boundary conditions applied at the atmosphere-ocean interface on the
momentum, the potential temperature and the salinity.

The wind stress, taken from the data set of Hellerman and Rosenstein (1983), is imposed at
the sea surface as

[PK ] (61)

surface

According to a frequently used ad hoc approach, the surface potential temperature, T, and
salinity, 5%, are relaxed to their observed values through the following surface fluxes

oT Az’

[KT 5 ]surl'ace = T_ obs) 4 (62}
2S Az

[KS glsurface = - Tr (Ss ubs) 1 (63)

where Az® and T respectively denote the height of the grid box adjacent to the ocean surface
and the relaxation time scale, commonly taken to be equal to a few days to a few months; T°
and §° represent the modelled surface temperature and salinity respectively, while T and S7
are their observed counterparts, obtained from the Levitus (1982) data set. The way condmons
(62) and (63) work is easily understood. For example, if T® is larger than Tibs, the observed
value, then the surface flux of temperature is upward, tending to decrease the surface
temperature. Conversely, if T < T‘;bs, a downward temperature flux is prescribed at the sea
surface.

Resorting to formulae (62)-(63) has some advantages. First, the boundary conditions do not
require the knowledge of the surface fluxes, the observed values of which are generally poor.
Second, as pointed out by Haidvogel and Bryan (1982), “it allows the model to develop
structures and small-scale features not present in the forcing data”, which are generally quite
smooth.
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Figure 13. Barotropic streamfunction ¥, for run [ (wind only simulation). The contour labels
are in Sverdrups (1 Sv = 10° m® s™). Thc arrows indicate the sense of circulation.

Boundary conditions (62)-(63) present, however, serious drawbacks. If the observed
surface value is time-dependent, the variations of the modelled variable are likely to be smaller
than those of the observed values, and there will probably be a phase lag, This may be
understood by considering a simple equation for a given variable v,

J
+
=

|

H

- T(V’* Vobs) - (64)

where 7! and i are an appropriate time scale and a constant advective velocity, respectively.
We study Fourier components of the form

(Wi V) = Re( (Y, Y ) expll (wr—kx)] }, (65)

where @ and k denote the angular frequency and the wavenumber, respectively. Introducing
(65) into (64), we have

7] L | (66)

v, |,
[+ (@—-uk)?/yp ]2 et

-uk
argY = :archbs — atan cuyu , 67)
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which shows that the amplitude of ¥ is smaller, in any case, than that of Y s 1n addition, the
phase lag — which may turn out to be negative — increases as (@— u k)/ y increases. In the
limit (w— u k)/7y— oo, the phase lag is /2.

In the complete evolution equation for the potential temperature or the salinity, if the
modelled surface value is equal to the observed one, then the modelled air-sea flux is zero,
which is unlikely to be correct. Conversely, if the modelled air-sea flux is right — and non
zer0 —, the modelled surface variable cannot be equal to its observed counterpart,

The simulations. As stated above, the circulation in the World Ocean is due to the wind and
the thermohaline (i.e., thermal and water fluxes at the air-sea interface) forcings. In an attempt
to distinguish the respective roles of theses forcings, several numerical experiments are carried
out with our OGCM.
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Figure 14, Barotropic streamfunction, ‘Pb, for run III (all the forcings with their seasonal
cycle). The contour labels are in Sverdrups. The arrows indicate the direction of the circulation.

In the first run — hereafier referred to as I —, only the wind forcing is taken into account.
Since the thermohaline forcing is neglected, the density of the water is considered constant, so
that the horizontal pressure gradient force is depth-independent and is due to the slope of the
ocean surface only. The seasonal cycle of the wind stress is implemented.

In the second simulation — hereafter Il —, the annual mean of the wind and thermohaline
forcings are taken into account. In this case, no forcing is omited, although the seasonal cycle is
neglected.
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The seasonal cycle of the forcings is retained in the third simulation — hereafter III. Of
course, it is this numerical experiment that is likely to perform best.

All model results presented below are yearly means, evaluated when the model has reached a
well established regime, i.e., when the transients associated with the initial conditions have
become negligible.

Table 5. Flow (in Sverdrups) through the Drake passage (castward) and the Indonesian passage
(from Pacific to Indian); North Atlantic overturning (in Sverdrup) and North Atantic Deep
Water (NADW) flow toward the Southern Ocean at 20°S (in Sverdrups). The observed
estimates are due to Nowlin and Klinck (1986} for the Drake passage, Godfrey (1989) for the
Indonesian passage, Gordon (1986) and Hall and Bryden (1982) for the North Atlantic
overturning, Gordon (1986) and Broecker (1991) for the southward NADW flow at 20°S. See
also Figs. 13-17.

observed I II III

Drake passage : 120 - 150 13. 134, 168.
Indonesian passage : 0(12) 8.4 15.1 15.6
N. Atlantic overturning : 15-20 meaningless 12.9 17.6
NADW southward (20°S) : 13-20 meaningless 6.3 9.0

Latitude

Figure 15, Meridional streamfunction, ¥, in the Atlantic and Arctic for simulation II (all

forcings without seasonal cycle). The contour labels are in Sverdrups. The arrows indicate the
direction of the circulation.
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First, we examine the barotropic streamfunction, ¥,, which is used to represent the
horizontal transport according to

n
ﬁa"ﬁ,%) = I (h u, h v)dz. (68)
dy  ox E
—h
As may be seen in Fig. 13, the pattern of ‘¥, of run 1 is qualitatively similar to that of the
hopefully more realistic simulation IIL. It must however be stressed that the Antarctic
Circumpolar Current is almost absent from the wind-only simulation. The eastward flow
through Drake passage is much weaker in I than in Il or III (Table 5). Surprinsingly, the Drake
passage transport is probably better when the seasonal cycle of the wind and thermohaline
forcings is not taken into account (Table 5). In I, the large subtropical gyres are present, but
exhibit weaker transports than in the experiment III (Fig. 14). The transport through the
Indonesian passage is probably too small in I, and too large in II and III (Table 5). Overall, it is
clear that the wind-only simulation exhibits large errors — especially in the representation of the
Antarctic Circumpolar Current.

300 m North Atlantic
590 m averfurning rate

3680 m
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Figure 16. Meridional streamfunction, ¥, in the Atlantic and Arctic for simulation III (all
forcings with seasonal cycle). The contour labels are in Sverdrups. The arrows indicate the
direction of the circulation.

The meridional circulation in the Atlantic is a key process for the circulation in the whole
World Ocean. North Atlantic Deep Water (NADW) is formed by convective processes in the
North Atlantic (Killworth, 1983). This cold and salty water mass flows southward, above a cell
of Antarctic Bottorn Water (AABW), formed by convective processes in the vicinity of the
Antarctic continent. The southward flow of NADW is compensated by a shallow, warm
current, flowing northward. This circulation scheme is qualitatively well represented in II (Fig.
15) and III (Fig. 16), but not at all in I (Fig. 17). The NADW is exported to the Indian and
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Pacific Oceans through the Antarctic Circumpolar Current. [n the Northern part of the Indian
and Pacific Oceans, upwelling is taking place, Finally a warm, shallow water current returns to
the Atlantic, through the Indonesian Passage, the Indian Ocean and a branch of the Agulhas
Current — around the southern tip of Africa. This return route is usually called “warm water
route”, as opposed to the “cold water route” — Pacific to Atlantic through Drake Passage —,
which is probably of lesser importance (Gordon, 1986; Doos, 1994). This global ocean
circulation scheme is known as the “conveyor belt” (Gordon, 1986, Broecker, 1991).

Latitude

Figure 17. Meridional streamfunction, ¥, in the Atlantic and Arctic for simulaton I (wind-only

simulation). The contour labels are in Sverdrups. The arrows indicate the direction of the
circulation.

The North Atlantic overturning, roughly speaking the production rate of NADW, and the
NADW southward transport, evaluated at 20°S, are significantly better in simulation III than in
II, where the seasonal cycle of the forcing is absent (Table 5). The two equatorial upwelling
cells are present in all numerical experiments, but those of run I reach a depth of about 4000 m,
while the depth of those of the other simulations does not exceed 200300 m, which is certainly
more realistic.

From the model results discussed above, it seems clear that the wind forcing alone cannot
account resonably well for the circulation in the World Ocean, which does not mean that the
wind stress should be neglected. The wind only simulation fails to represent most important
features of the circulation in both the horizontal and meridional planes.

As regards the simulations with wind and thermohaline forcings, the annual means of the
circulation parameters examined in Table 5 are more
forcings are taken into account.

As indicated in Table 6, the properties of the water m
simulation I1I, except that the thermocline and intermediate waters — located at depth ranging
from 200 to 1200 m, say — are too warm. This deficiency may be due to the fact that the model
is in general too diffusive and that no isopycnal diffusion scheme is activated.

realistic when the seasonal cycle of the

asses are fairly well represented in
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Table 6. Difference between the modelled — in run Il — water mass properties and the
Levitus (1982) climatological values. The quantity Ay denotes the average over the su.rf‘ace (_)f
the World Ocean of the modelled variable, i.e., potential temperature (in °C) or salinity (in
PSU), and the corresponding value in the Levitus (1982) climatology; Ay, represent the root
mean square difference. All statistical quantities are evaluated at the 20 model levels, the depths
of which are given in meters.

level depth AT AT . AS AS
1 5 -0.003 0.7 0.0003 0.1
2 16 —0.4 1.1 0.002 0.2
3 29 -0.5 1.5 0.002 03
4 45 -0.3 1.6 —0.02 04
5 65 0.1 1.7 -0.03 0.4
6 90 0.5 1.9 —0.05 0.4
7 122 0.9 2.1 ~-0.06 0.4
8 163 1.0 2.1 -0.05 0.3
9 219 1.6 2.4 -0.02 0.3
10 299 2.0 2.7 0.03 0.3
11 415 2.6 3.1 0.1 0.3
12 589 2.9 3.4 0.1 0.3
13 850 3.0 33 0.07 03
14 1225 2.5 2.7 -0.04 02
15 1718 1.6 1.7 -0.2 0.2
16 2307 0.9 1.1 -0.2 0.3
17 2963 0.6 0.7 -03 0.3
18 3661 0.3 0.6 -03 0.3
19 4385 0.1 0.5 —0.4 0.4
20 5126 0.07 0.4 -0.3 0.4

An important variable for global climate is the poleward heat transport, p. The latter is
calculated from the model results as

X

_Ir hvTdxdz, (69)

X

=
]
Sy

=

where the interval [x_, x, ] spans the whole terrestrial sphere along a curve whgrc ¥ is constant.
In the Northern Hemisphere, this quantity is larger in III than in IT (Fig. 18).. In both
hemispheres, the poleward heat transport is somewhat smaller than the es.ri.mates derived from
observations (e.g. Hastenrath, 1982; Hsiung, 1985). This deficiency is commeon to many
OGCMs (e.g. Semtner and Chervin, 1992; Maier-Reimer et al., 1993). However, othcr_ recent
numerical experiments have achieved quite realistic heat transports in the Southem .Henus phcr.c
(England, 1993; Hirst and Cai, 1994), as well as in the Northem Hemisphere (Hirst and Cai,
1994).
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Figure 18. Poleward heat tranport (in 10%3 Watts) in run III and in run II (dots) achieved by the
World Ocean. For run III, the contribution of the Atlantic is also given (dotted curve).

Appendix

A few ways of dealing with the external mode of an ocean model are outlined here.
Integrating the continuity equation over the whole water column, taking into account the
impermeability conditions of the surface and the bottom, we obtain

an
ot

where U is the horizontal transport, i.e., the depth-integral of the horizontal velocity.
The depth-integral of the horizontal momentum equation may be written as

au
ot

where F encompasses many terms, the list of which does not need to be given here.

For simplicity, we have written equations (A1)-(A2) in the beta-plane: Earth's curvature is
neglected — so that cartesian coordinates may be used —, except in the Coriolis factor. The
latter is assumed to be a linear function of a space coordinate,

f =t + By, (A3)

where f, and B are constants. For the beta-plane approximation to be valid, it is necessary that
the size of the domain of interest, characterized by length scale L, be much smaller than the
Earth's radius. In addition, we must also have BL << f. Further details on the beta-plane

theory are given in classical treatises of geophysical fluid dynamics (e.g. Cushman-Roisin,
1994).

= -V.U, (Al)

= —fe,xU - gHVn + F, (A2)
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Equations (A1)-(A2) are depth-independent, and are mainly concerned with motions
associated with the slope of the ocean surface. This is the reason that the ocean phenomena
obeying these equations are referred to as the “external mode”, as opposed to the “internal
mode”, in which the slope of density surfaces is the main source of motion.

To grasp the dynamics of the external mode, as well as that of the internal mode, it is helpful
to examine wavelike phenomena. It may be seen that the internal waves, i.e., the waves of the
internal mode, propagate at a phase speed that does not exceed a few meters per second. Note
in passing that this velocity is of the same order of magnitude as that of the fastest advective
processes. On the other hand, the external mode can sustain waves propagating as fast as
several hundreds of meters per second. Now, most numerical stability criteria are of the form

Ar < L (Ad)
[

where ¢_ is the fastets propagation speed of the phenomena considered. Therefore, the time step
of the numerical algorithm will be constrained by the external mode processes,

If the fast external waves could be ignored, the allowable time step would be 10 — 100 times
larger. This situation is so frustrating that several methods for circumventing the external wave
constraint, and hence for speeding up ocean models, have been suggested. However, before

outlining some of them, it is worth investigating the wave phenomena associated with the
external mode.

Equations (A1)-(A2) may be simplified and linearized to
an U oV

* =4 = = 05 AS

“a T i {5
U on

— - fV = —gh —, A6

> i gh o (A6)
Vv an

— +fU = —gh =, A7

ar f g 3 (AT)

where k, U and V denote the ocean depth — assumed constant — and the two components of
the transport, respectively. Of course, (A5)-(A7) are formally equivalent to (8)-(10), except
that, in the latter, the Coriolis factor is considered as constant — as it should be in the f-plane
approximation. In (A5), the coefficient x is normally equal to 1, but may be set to 0 when the
“rigid lid” approximation is introduced, as will be done below,

Appropnatc ma.mpulanons of (A5)-(A7) lead to (Longuet-Hl ggins, 1965)

x 20V
= V&— = A8
L= ;2 ﬂ) = ﬁ (A8)
Since By << fo' we may consider that f = =f, in the equation above. The latter then has constant
coefficient, so that plane wave solutions may be sought. For this solution, let @, k_ and k

¥
represent the angular frequency, and the wavenumbers in both space directions. The dlspersmn
relation of the waves under study reads

FE@-fDe = k2ekho + B, (A9)
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If the ocean surface is regarded as a “free-surface”, ie, il ¥ =1, (A9) admits two classes of
wave processes. The fast processes, the Poincaré waves (see also Section 3), for which
ol >> Bl |/ (k7 + kyz), are such that

@ = £+ ghtZriH]". (A10)

These waves are — asymptotically — not affected by the Earth's curvature, since (A10) does
not encompasses fB. The slow processes contained in (A9) emerge when small angular
frequencies are considered, ie, w? << foz. The corresponding wave processes, called
“planetary waves” or “Rossby waves”, obey the following dispersion relation

-8hBk,
2 2 2y -
A v gk kT k D)

The phase speed of the Poincaré and Rossby waves are displayed in Fig. Al — in a non-
asymptotic form.

W = (All)
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Figure Al. Phas?: §peed of the waves characterized by dispersion relation (A9) (free surface)
and by (}'_\513)1(ng1d lid) for an ocean depth of £ = 3500 m and j = 500 m. We have taken
j;) =8x107 57! and B=2x10"1 ! s'l, i.e., typical mid-latitudes values.

' It is far from clear that fast processes, such as the Poincaré waves, need to be included into a
climate models — since climate is presumably determined by much slower phenomena. In the
World Ocean, the fast external waves contain a very small amount of the total cnerg-y (e.g
Zhang and Endoh, 1992). In a climate model, it is thus tempting to ignore these processes. An

elegant way of filtering them out is to drop the time-derivative of 7 in (A1), which thus
transforms to
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VeU = 0. (A12)

This is the “rigid lid" approximation. In the linearized study, this amounts to setting ¥ =0, so
that dispersion relation (A9) reduces to
- Bk,

o = k,l " kf .- (A13)
In other words, by resorting to the rigid lid appoximation, the Poincaré waves are excluded,
and only modified Rossby waves, i.e., slow processes, are possible. It is easily seen that
(A13) is asymptotic to (Al11), when (kx2 + .Icyz)’l‘r2 << (gh)m/fo, i.e., when the length scale
of the phenomena under study is much smaller than the external Rossby radius of deformation,
g m'21f,

As may be seen in Fig. Al, the phase speeds of rigid lid and free surface Rossby waves are
almost equal, except for the longest waves, for which significant discrepancies may be found.

In shallow sea models, the external mode, i.e., essentially the tides and storm surges,
usually contains much of the kinetic energy. In this case, making the rigid lid approximation is
out of the question.

In deep-sea or ocean modelling, the tradition has been to resort to the rigid lid
approximation. Bryan (1969) decided to represent the transport by means of a barotropic
streamfunction, defined as in (68), in order for the continuity equation (A12) to be identically
satisfied. Dividing (A2) by the ocean depth, taking the curl of the resulting relation to eliminate
the gradient of 7, using the streamfunction representation, we obtain

G @ _ e
Ve[h'V at] e[ Vxh' (-fe,xU + F)] (Al4)

The streamfunction is prescribed to be constant along the coastlines limiting the computational
domain to enforce the impermeability of these boundaries. When discretized in time, (A 14) may
be regarded as a Poisson equation for ¥, at the new time level. This approach may present
several problems. Killworth and Smith (1984) pointed to possible instabilities in the iterative
procedure classically used to solve (A 14). Furthermore, the b~ coefficient appearing in the left-
hand side of (A14) was also shown to be detrimental to the numerical method (Dukowicz et al.,
1993). Finally, the nature of the boundary condition applied at the coastline of islands implies
the evaluation of non-local integrals, leading to data transfers that can seriously reduce the
performance of modem distributed memory computers (Dukowicz er al., 1993),

If the divergence of the momentum equation (A2) is taken, rather than the curl, a Poisson
equation for the ocean surface elevation is obtained:

VelghVn) = —Ve(fe xU) + VoF. (A15)

In the framework of the rigid approximation, the ocean surface elevation may be considered a
linear function of the “pressure acting on the rigid lid placed at the reference level of the ocean
surface” (e.g. Deleersnijder, 1994b; Pinardi ¢f al., 1995). From a numerical point of view,
(A15) is better conditioned than (A14): steep bottom slopes are more easily taken into account
and the impermeability boundary conditions involve local computations only (Gresho and Sani,
1987; Deleersnijder and Campin, 1993; Dukowicz et al., 1993; Pinardi et al.,, 1995). If n
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denotes the unit vector normal to the coastli i ili
‘ stline, the impermeability condition Uen =
applied to (A2), leads to 5 o hen

ghVnen = (—fesz+F)-n, (Al6)

which is indeed a purely local boundary condition for 1.

The alvtcrna[ivc to the rigid lid approximation is to consider the ocean surface as free. As a
result..n Is a prognostic variable of the model, i.e., a variable that may be computed frc.nm an
Fvolunon equation, namely (A1). This could allow studying phenomena such as tides or the
inveried barometer effect (Ponte, 1993). To overcome the severe limitations of the time step due
to the presence of fast-propagating Poincaré waves, the split-explicit method (Gadd, 1978
Madala, 1981) may be used, as is done in our OGCM, as well as in other models (Blt;mber ;
and Mello.r. 1987; Beckers, 1991; Killworth et al., 1991). The split explicit technique consisti
m-mu:g'ratmg the external and internal modes — according to a mainly explicit time stepping —
with different time steps, each time increment being selected according to the fasist—
prop?gau'ng phenomenon encountered in the mode considered. Even though the external time
step is 10-100 times smaller than that of the internal mode, the treatment of the external mode
anera.ll'y requires 10% of the total computer cost, because the external mode equations are two-
dfmens_;onal, and thus much cheaper to deal with than the internal mode which is three-
dlmer.|smna1. A recent variant of the free-surface approach is to integrate [l;c external mode
v:quauo_ns by means of a semi-implicit method, allowing a much longer time step to be used
(Casu.lh and Cheng, 1992; Casulli and Catani, 1994; Dukowicz and Smith, 1994). i

'lt 1s conceivable that, in the future, the streamfunction approach will cease 1o be the favourite
option. Whether or not all models will switch 1o the free surface formulation is far from clear. It
is however worth stressing that Dukowicz and Smith (1994), in the scope of their edciy-

lcSOlVng Wor Id OCﬂan m()dcl, ldﬂlluflﬂd no less [hﬂ.ﬂ 6 advant urface
ages of the llllpllclt free s ac
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