C.I.P.S.

TECHNICAL REPORT
1974/BIOL.02

1602

MATHEMATICAL MODEL
OF THE POLLUTION IN THE NORTH SEA

This paper not to be cited without prior reference to the author.

Analyse du taux respiratoire du zooplancton en différents points de la Mer du Nord.

(Croisière "Mechelen" P - Printemps 1974 et croisière "Mechelen" du 27 au 31.5.1974).

D. Heyden

J.H. Hecq

R. Moermans

Laboratoire de Biologie Marine, Université de Liège.

I. INTRODUCTION.

A la suite des travaux de J.H. HECQ et de D.HEYDEN, R.MOERMANS et M.BOSSICART, qui ont fait l'objet de technicals reports antérieurs, il nous a paru intéressant de mesurer le taux respiratoire du zooplancton en différents points de la Mer du Nord.

Cette étude s'est faite dans le double but : d'une part, de tester et d'affiner la méthode mise au point lors des études antérieures et, d'autre part, d'essayer de définir les masses d'eaux en caractérisant l'écosystème planctonique présent au moyen de sa respiration, activité métabolique qui permet de chiffrer la production secondaire.

II. MATERIEL et METHODES :

Le zooplancton est récolté aux différents points du réseau au moyen d'un filet de 300 / de vide de mailles, abandonné dans le courant (maximum 2 noeuds) pendant 10 minutes environ, à 2 mètres sous la surface.

Nous avons choisi ce maillage car il permet de capturer la fraction la plus importante de la biomasse des herbivores, tout en limitant celle du phytoplancton (la plupart des espèces de celui-ci sont en effet < 300 /r., en Mer du Nord).

Le contenu du collecteur (environ 2 litres) est alors versé dans un seau. On y ajoute de l'eau de mer (filtrée sur mailles de 300 /L) de façon à amener le volume total à 10 litres.

A l'aide de ce mélange, on remplit une série de bouteilles B.O.D. de 268 cc (série l) en prenant soin d'homogénéiser le mélange afin que la concentration soit la plus uniforme possible dans les différentes bouteilles. Une de celle-ci est réservée à la numération des organismes.

Une autre série de bouteilles B.O.D. (série 2) est remplie d'eau de mer filtrée sur mailles de $300\,\mu$ et sert de témoin.

Un second témoin (bouteilles 8.0.0. remplies d'eau de mer <u>non</u> filtrée, série 3) est fourni par les travaux de JOIRIS et VANTHOMME (résultats communiqués).

Ces 3 séries de bouteilles sont alors placées à l'obscurité et à la température de l'eau de mer pendant des temps croissants (0,1,3 et 9 heures) après lesquels la quantité d'O₂ restante est dosée par la méthode de WINKLER (STRICKLAND et PEARSONS)

III. OBSERVATIONS SUR L'UTILISATION DES DEUX TYPES DE TEMOIN.

a) Principe de la méthode (voir aussi HEYDEN, MOERMANS et BOSSICART, 1974):

Les 3 séries de bouteilles définies plus haut peuvent donc se schématiser comme suit :

- Série (1): bouteilles avec (Zoo + phyto) > 300 / et concentré
 + (phyto <300 / L + bactéries) à concentration naturelle
 (facteur de concentration C supposé connu).
- Série (2) : (Phyto total + bactéries) à concentration naturelle
- Série (3) : (Phyto < 300 / + bactéries) à concentration naturelle.
 - 2-3 = consommation $d'0_2$ par le phytoplancton > 300/k à concentration naturelle
 - et (2-3) x C = consommation d' θ_2 par le phytoplancton > 300 / concentré. De plus : 1-3 = consommation d' θ_2 par (Zoo + phyto > 300 / concentré.

Enfin (1-3) - (2-3) \times C = consommation d'O $_2$ par le zooplancton concentré.

Nous remercions vivement ces collègues pour leurs aimables communications.

b) Test de signification et intervalle de confiance d'une différence de deux moyennes : échantillons associés par paires.

(étude réalisée avec l'aimable assistance de M.BOSSICART).

Nous avons entrepris une courte étude statistique afin de vérifier si la méthode de WINKLER est suffisamment sensible pour distinguer la consommation d'oxygène dans les bouteilles de la série (2) de la consommation d'O2 dans les bouteilles de la série (3) : tableau I

- 1°. hypothèses de départ :
 - caractère aléatoire et simple des échantillons.
 - Normalité de la population des différences.
- 2°) A vérifier :

Hypothèse nulle :
$$H_0$$
 : m_1 = m_2 ou δ = 0

TABLEAU I

Disparition d'O2 en /umôle/1./h.

	A* 1	0
Eau de mer non filtrée	Eau de mer filtrée	D1fférences
0,47	-6,44	6,91
1,53	-2,44	3,97
1,33	2,11	-0,78
1,47	7,44	~5,97
1,17	-2,67	3,84
2,14	2,44	-0,30
2,28	. 0	2,28
2,08	1,11	0,97
3,33	8,00	~4,67
1,36	0,56	0,80
1,90	0,22	1,68
4,25	1,22	3,03
department from the lates	dheurosanthhilineagy.	Clay of the College o
23,31	11,55	11,76

$$\leq \bar{d}^2 = 155,2$$
 $(\leq \bar{d})^2 = 138,3$

$$(\{\vec{d}\})^2 = 138,3$$

Donc :

S.C.E. =
$$155.2 - \frac{1}{12}$$
 138,3 = 143,67

et t. obs =
$$0,98$$
 = $0,939$ = $0,939$ = $0,939$

t. crit 0,975 = 2,201 avec 11 degrés de liberté.

Conclusions :

En effet : 0,939 < 2,201.

La différence des moyennes n'est donc pas significative : l'hypothèse nulle est donc confirmée. Il résulte de cette analyse que la méthode de WINKLER n'est pas suffisamment sensible pour distinguer la consommation $d'O_2$ dans les bouteilles de la série (2) de la consommation $d'O_2$ dans les bouteilles de la série (3).

Nous sommes alors convenus de prendre comme valeur du témoin la moyenne (m) des consommations d' 0_2 des témoins (2) et des témoins (3).

La formule devient alors : $(\underline{1}) \text{- m = consommation d'} 0_2 \text{ par le zooplancton concentré.}$

IV. CALCUL DU FACTEUR DE CONCENTRATION C.

De la comparaison des numérations du zooplancton dans nos bouteilles conrue B.O.D. et de celles obtenues à partir d'une quantité d'eau de merv(50 1.) (M.BOSSICART; communication personnelle), le volume d'eau de mer filtré par le filet de 300 & peut théoriquement être calculé. Connaissant cette valeur, on pourrait exprimer les résultats du calcul du taux de respiration par mètre cube d'eau de mer.

Malheureusement, de trop grandes différences (du simple au triple) apparaissent suivant que l'on calcule le volume d'eau de mer filtré à l'aide de la concentration de l'une ou de l'autre espèce.

Ces différences sont liées aux techniques différentes de récolte du zooplancton et à divers phénomènes (évitement, etc.) qu'il est impossible de quantifier.

V. EXPRESSION DES RESULTATS.

a) L'un de nous (J.H.HECQ), lors de son étude préliminaire travaillait avec des temps d'incubation assez longs (18 heures). Il a remarqué d'une part, que pendant les premières heures, les valeurs du taux respiratoire (respiration initiale Ri)

étaient très élevées et probablement surestimées, sans doute en raison de l'état de choc dans lequel se trouvaient les organismes fraîchement récoltés. Il a observé d'autre part que vers la 12ème heure d'incubation, la respiration avait tendance à s'annuler et enfin qu'entre 12 et 18 heures, les courbes remontaient (probablement en raison d'une réaction parasite des réactifs ou d'une interférence de la matière organique morte). Les valeurs de la respiration totale (Rt), calculée sur 18 heures auraient donc été sous-estimées.

Les valeurs réelles de la respiration dans cette série d'expériences se seraient donc situées entre les 2 valeurs Rt et Ri

b) Nous avons choisi des durées d'incubation maximum de 9 heures.

Comme les valeurs mesurées sur les premières heures seraient surestimées et les valeurs mesurées sur les dernières heures seraient sous-estimées, nous pensons, qu'en calculant la valeur du taux de respiration à partir de la <u>pente</u> de la courbe de 0 à 9 heures, nous nous rapprochons de la valeur réelle, sans pouvoir préciser si la valeur trouvée est plus faible ou plus forte que la valeur réelle.

C) Les diverses espèces ont des poids frais (et donc des poids secs) très différents; contrairement à J.H.HECQ, nous avons choisi d'exprimer nos résultats non pas en respiration par individu (trop imprécise car trop variable), mais en respiration par unité de poids sec. Seuls les échantillons contenant moins de 250000 kg. de poids sec de zooplancton ont été pris en considération, afin d'éviter des phénomènes, par exemple d'étouffement, qu'entraîne une forte surpopulation.

Nous n'avons pas pu exprimer ces résultats en unité de volume d'eau de mer pour les raisons exprimées plus haut (impossibilité de calculer avec précision le coefficient C).

L'unité choisie est la môle $d^{\circ}0_2$ (ou le millième ou millionième de môle).

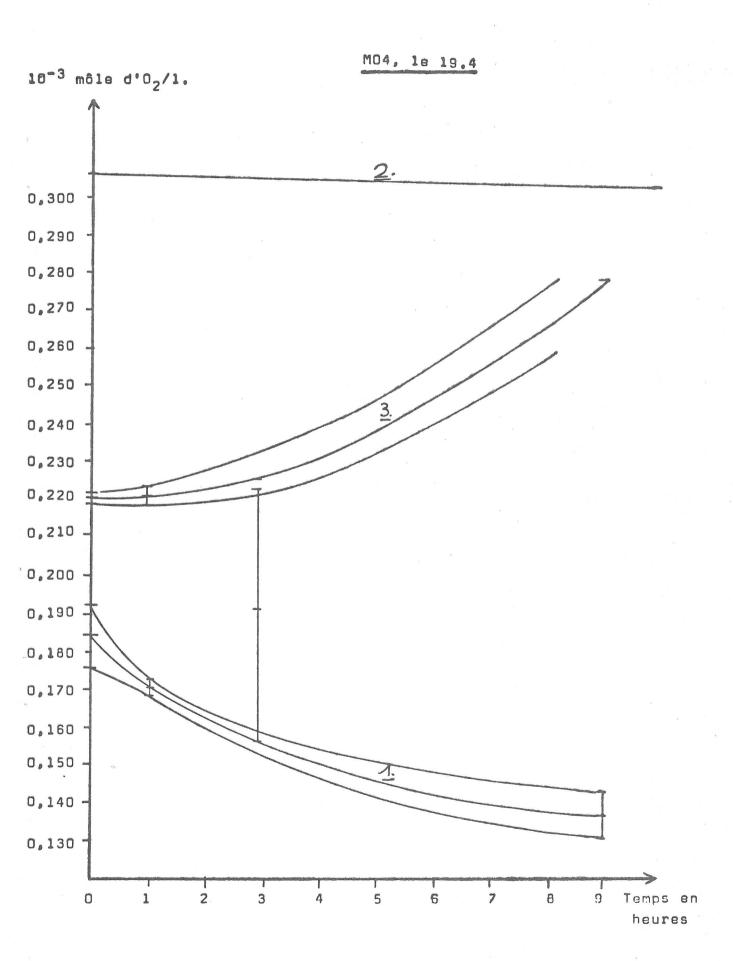
VI. RESULTATS.

Les différentes expériences ont été classées en fonction des dates et des points de capture, en tenant compte des zones, et font l'objet des tableaux et graphiques suivants.

TABLEAU II

MO4, le 19.4.74 $T_0 = 06h.30$

Résultats en 10^{-3} môle $d'O_2/1$.


	3	2	<u>1</u>
To	0,221 $m = 0,220$	306,25	0,193 $0,175$ $m = 0,184$
To + 1 h.	0,223 $m = 0,2205$		0,1715 $m = 0,1705$
To + 3 h.	$\begin{pmatrix} 0,225 \\ 0,225 \end{pmatrix} m = 0,225$		0,1575 $m = 0,191$
To + 9 h.	0,278 $m = 0,278$	0,302	0,131 $m = 0,137$
	-0,058/9h. -0,00644/1h.	0,00425/9h. = 0,00047/1h.	0,047/9h. = 0,00522/1h.
m = -0,00299/1h			

 $1 - m = 0.00745.10^{-3}$ môle $d'0_2/1./1h$.

Plancton/litre

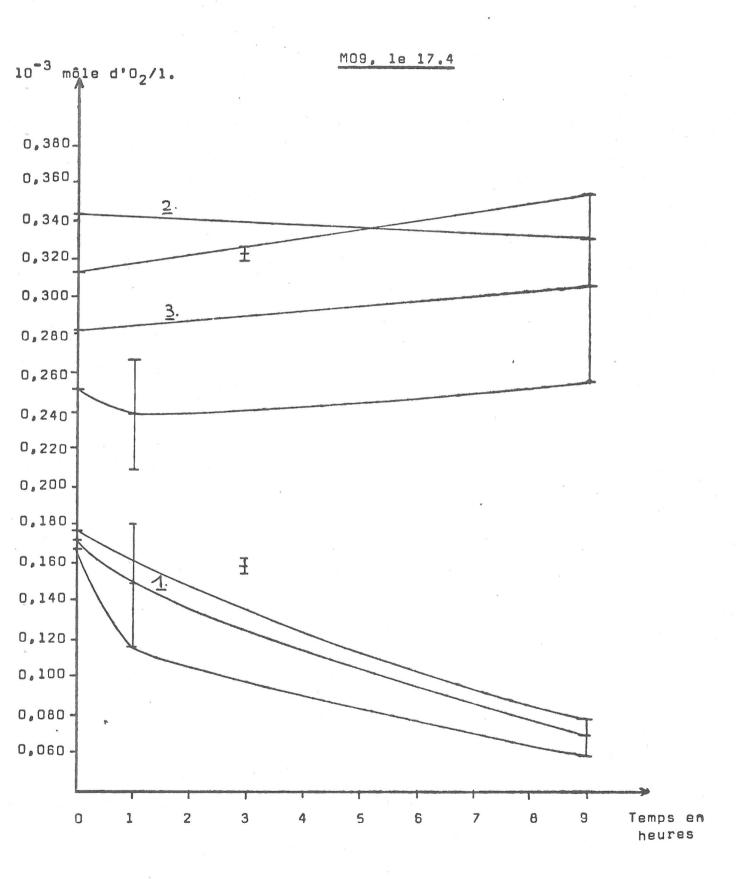
	Nombre	Foids sec en leg.
Copépodes	3574	31737,1
Fritillaria	119	2058 ,7
Oïkopleura	171	2958,3
Noctiluques	1029	2675,4
TOTAL		39429,5 Mg.
,		39429,5 kg. = 39,4265 mg.

 $0.00745.10^{-3}$ môle $d^{1}0_{2}/39.4295$ mg. de poids sec/h. = $7.45.10^{-6}$ môle $d^{1}0_{2}/39.4295$ mg. de poids sec/h. = $0.188.10^{-6}$ môle $d^{1}0_{2}/$ mg. de poids sec/h. = $4.534.10^{-6}$ môle $d^{1}0_{2}/$ mg. de poids sec/jour. On a donc

TABLEAU III

M09, le 17.4.74To = 19h.30

Résultats en 10^{-3} môle $d'0_2/1$.


	3	2	1
To	0,3135 $m = 0,2825$	0,3437	$ \begin{array}{c} 0,168 \\ 0,1775 \end{array} $ $m = 0,1707$
To + 1 h.	0,209 0,2695 \ m = 0,2392		0.115) 0.1795 $m = 0.1473$
To + 3 h.	0,327 0,3195 \ m = 0,3232		0,1605 0,1545
To + 9 h.	0,2575 0,353 $m = 0,3052$	0,330	0,0795 $0,059$ $m = 0,0692$
	- 0,0227/9h. = - 0,00252/1h.	0,0137/9h. = 0,00151/1h.	0,1035/9h. = 0,0115/1h.

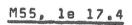
m = -0.0005/1h. $1 - m = 0.0120.10^{-5}$ môle $d^{\circ}0_2/1./1h$.

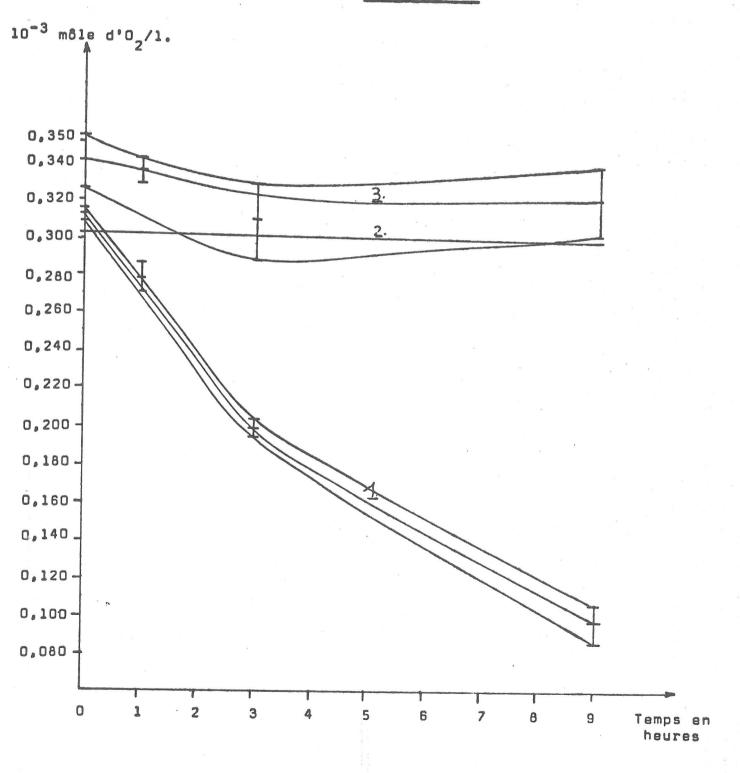
Plancton/litre

	Nombre	Poids sec en luz.
Copépodes	2591	23061,3
Oeufs de poissons	30	7237.8
TOTAL		30199,1

On a done $0.012 \cdot 10^{-3}$ môle $d^{\circ}0_{2}/30.2991$ mg. de poids sec/h. = $12 \cdot 10^{-6}$ môle $d^{\circ}0_{2}/30.2991$ mg. de poids sec/h. = $0.396 \cdot 10^{-6}$ môle $d^{\circ}0_{2}/mg$. de poids sec/h. = $9.505 \cdot 10^{-6}$ môle $d^{\circ}0_{2}/mg$. de poids sec/jour.

	3	2	1
То	0,328) 0,353 } m = 0,3405	0,3085	0,309 $0,3135$ $m = 0,3112$
To + 1 h.	$ \left.\begin{array}{c} 0,337 \\ 0,328 \end{array}\right\} m = 0,3325 $		$ \begin{vmatrix} 0,271 \\ 0,2855 \end{vmatrix} m = 0,2782 $
To + 3 h.	0,287 $0,331$ $m = 0,309$		0,2015 $0,193$ $m = 0,1972$
To + 9 h.	0,3385 $m = 0,3207$	0,2965	0,087 $0,1045$ $n = 0,0957$
	0,0198/9h. = 0,0021/1h.	0,012/9h. = 0,00133/1h.	0,2155/9h. = 0,02394/1h.


m = 0.001774/1h. $1 - m = 0.0222.10^{-3}$ mole/d' $\omega_2/1./1h$.


Plancton/litre

	Nombre	Poids sec en/ug.
Copépodes	4574	40617,1
Spionidae	63	1306,6
^T érébellidae	115	471,5
Oîkopleura	212	3667,6
Noctiluques	29	231,4
TOTAL		46294,2

On a done

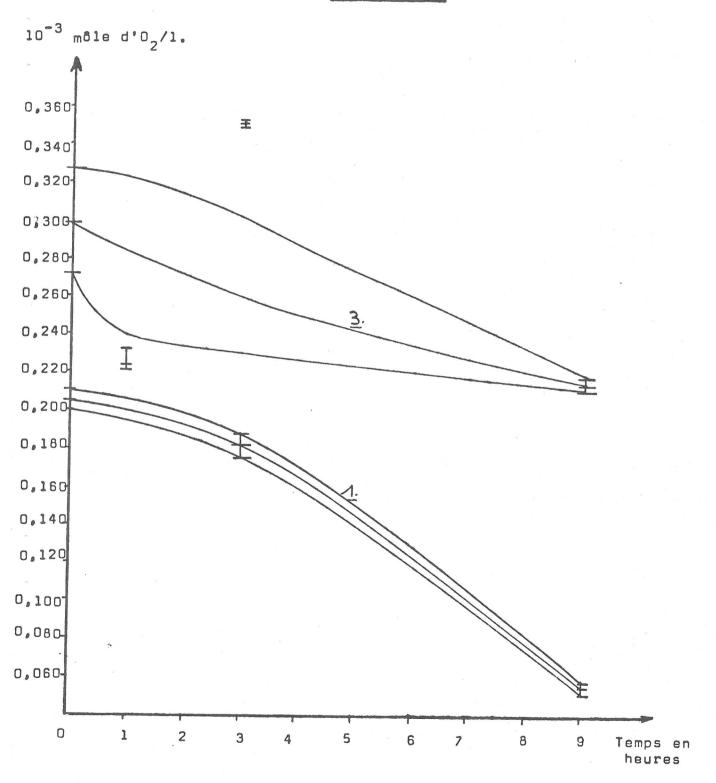
 $0.0222.10^{-3}$ môle $d^{\circ}0_2/46.2942$ mg. de poids sec/h. = $22.2.10^{-6}$ môle $d^{\circ}0_2/46.2942$ mg. de poids sec/h. = $0.479.10^{-6}$ môle $d^{\circ}0_2/\text{mg}\cdot\text{de}$ poids sec/l h. = $11.509.10^{-6}$ môle $d^{\circ}0_2/\text{mg}\cdot\text{de}$ poids sec/jour.

TABLEAU V

M05, le 22.4.74 To = 17h.45Résultats en 10⁻³ môle d'0₂/1.

			1
	3	2	1
То	0,271 $0,328$ $m = 0,2995$	/	$ \begin{array}{c} 0,2105 \\ 0,200 \end{array} $ $m = 0,2052$
To + 1 h.	0,240 $0,325$ $m = 0,2825$		0,221 $0,234$ $m = 0,2775$
To + 3 h.	0,350) $m = 0,3507$		0,1765 $0,187$ $m = 0,1817$
To + 9 h.	0,2165 $m = 0,2187$		0,0545 $0,053$ $m = 0,0537$
	0,0808/9h. = 0,0090/1h.		0,1515/9h. = 0,0168/1h.

 $1 - 3 = 0.0078.10^{-3}$ môle d'0₂/1./lh.


Plancton/litre

	Nombre	Poids sec en les.
Copépodes	1400	12430,0
Cténaires	75	10500.0
Spionidae	317	6574,5
Térébellidae	75	307,5
TOTAL		29814,0

On a donc

 $0,0070.10^{-3}$ môle $d^{\circ}0_{2}/29,814$ mg. de poids sec/lh. = $7.8.10^{-6}$ môle $d^{\circ}0_{2}/29,814$ mg. de poids sec/lh. = $0.2629.10^{-6}$ môle $d^{\circ}0_{2}/$ mg. de poids sec/lh. = $6.311.10^{-6}$ môle $d^{\circ}0_{2}/$ mg.de poids sec/jour.

MO5, le 22.4

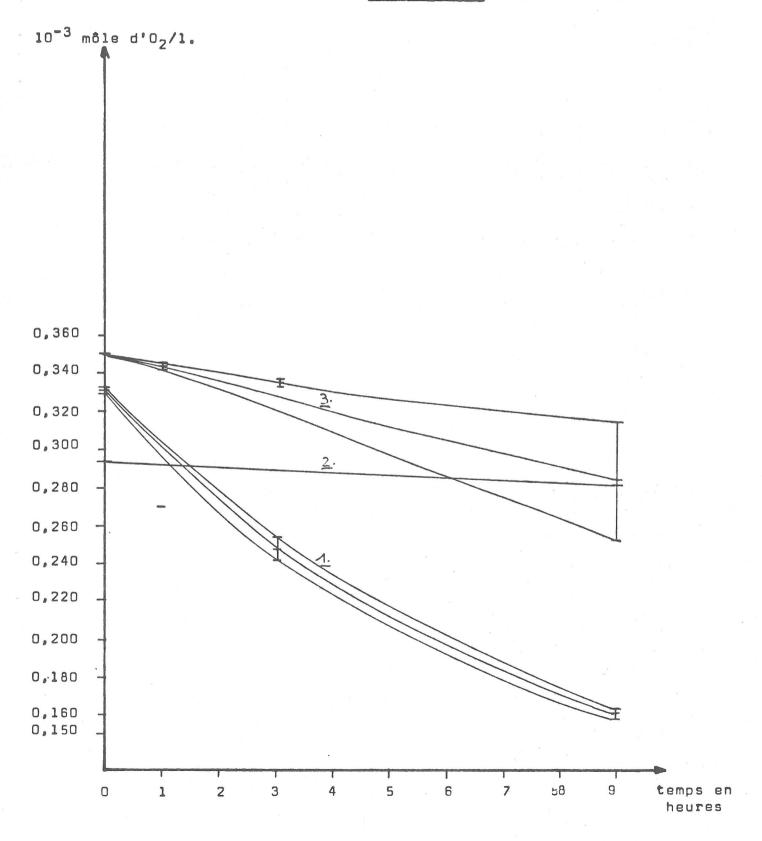
M09, le 30.4.74To = 15h.30

TABLEAU VI

Résultats en 10^{-3} môle $d^{\circ}O_2/1$.

	<u>3</u>	2	1
То	0,350 $m = 0,350$	0,2937	0,3295 0,331
To + 1 h.	0,343) $m = 0,3437$		0,2695 $0,2695$ $m = 0,2695$
To + 3 h.	0,334 $m = 0,3355$		0,253 $0,240$ $m = 0,2465$
To + 9 h.	0,315 0,2515 $m = 0,2832$	0,2805	0,162 $0,159$ $m = 0,1605$
	0,0668/9h. = 0,0074/1h.	0,0132/9h. = 0,0014/1h.	0,1697/9h. = 0,0188/1h.

m = 0.0044/1h.


 $1 - m = 0.0144.10^{-3}$ môle $d'0_2/1./1h$.

Plancton/litre

	Nombre	Poids sec enles.
Copépodes	417	3702,9
Evadne	358	3365,2
Larves d'Echinodermes	395	1042,8
Oīkopleura	37	640,1
Oeufs de poissons	52	12545,5
Noctiluques	6603	17167,8
TOTAL		38464,3

On a donc $0.0144.10^{-3}$ môle $d'0_2/38.4643$ mg. de poids sec/h. = $14.4.10^{-6}$ môle $d'0_2/38.4643$ mg. de poids sec/h. = $0.3743.10^{-6}$ môle $d'0_2/mg$. de poids sec/h. = $8.985.10^{-6}$ môle $d'0_2/mg$. de poids sec/jour.

MO9, le 30.4

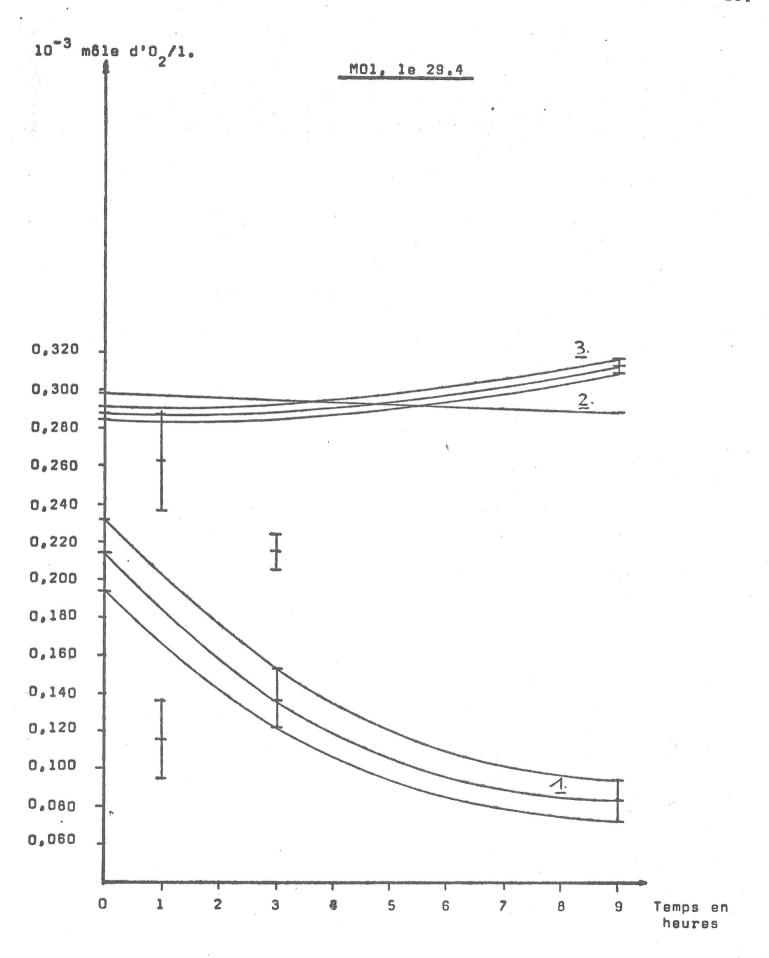
TABLEAU VII

MO1, le 29.4.74 To = 14h.00

Résultats en 10⁻³ môle d'0₂ /1.

	3	2	1
To	0,2915 0,284 $m = 0,2877$	0,2985	$ \begin{array}{c c} 0,196 \\ 0,2325 \end{array} $ $m = 0,2142$
To + 1 h.	0,2885) 0,237 } m = 0,2627		0,137 $0,0945$ $m = 0,1157$
To + 3 h.	0,223 $0,2075$ $m = 0,2152$		0,121 0,153 $m = 0,137$
To + 9 h.	0,315) 0,309 } m = 0,312	0,288	0,073 $0,093$ $m = 0,083$
	- 0,0243/9h. = - 0,0027/1h.	0,0105/9h. 0,0012/1h.	0,1312/9h. = 0,0146/1h.

m = 0,0015/1h.


 $1 - m = 0.0161.10^{-3}$ môle $d^{\circ}0_2/1./1h$.

Plancton/litre

	Nombre	Poids sec en la g.
Copépodes	4805	43068
Cténaires	93	13020
Cnidaires	56	1960
Spionidae	336	6968.6
Térébellidae	802	3288.2
Oeufs de poissons	37	8926,6
Noctiluques	5671	14744,6
TOTAL		92363,2

On a donc

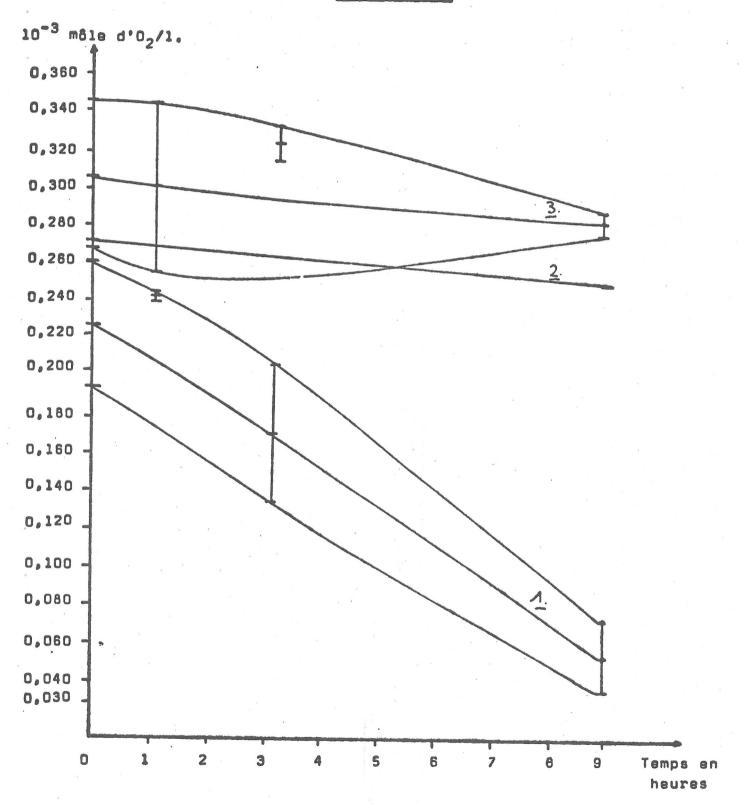
0,0161.10⁻³ môle d'0₂/92,3632 m g. de poids sec/lh. = 16,1.10⁻⁶ môle d'0₂/92,3632 m g. de poids sec/lh. = 0,174.10⁻⁶ môle d'0₂/1 mg. poids sec/lh. = 4,183.10⁻⁶ môle d'0₂/1 mg. poids sec/jour.

TABLEAU VIII

M55, le 30.4.74To = 10h.30

Résultats en 10⁻³ môle d'0₂/1.

	3	2	1
To	0.343 0.2695 $m = 0.3062$	0,2712	0,2605 $0,196$ $m = 0,2282$
To + 1 h.	0,3445 $0,2575$ $m = 0,301$		0,246 $0,2415$ $m = 0,2437$
To + 3 h.	0,3265 0,3445 $m = 0,3355$		0,143 $0,218$ $m = 0,1805$
To + 9 h.	0,278 0,290 m = 0,284	0,252	0,0385 $m = 0,0567$
	0,0222/9h. = 0,0025/1h.	0,0192/9h. = 0,0021/1h.	0,1715/9h. = 0,019/1h.


m = 0.0023/1h. $1 - m = 0.0167.10^{-3}$ male $d^{\circ}0_2/1./1h$.

Plancton/litre

	Nombre	Poids sec en Mg.
Copépodes	9215	61829,2
Cirripèdes	75	120
Larves d'Echinodermes	1641	4332,2
Spionidae	75	1555,5
Noctiluques	2910	7 566
TOTAL		95402,9

On a donc $0.0167.10^{-3}$ môle $d'0_2/95.402$ mg. de poids sec/lh. = $16.7.10^{-6}$ môle $d'0_2/95.4029$ mg. de poids sec/lh. = $0.175.10^{-6}$ môle $d'0_2/$ mg. de poids sec/lh. = $4.201.10^{-6}$ môle $d'0_2/$ mg. de poids sec/jour.

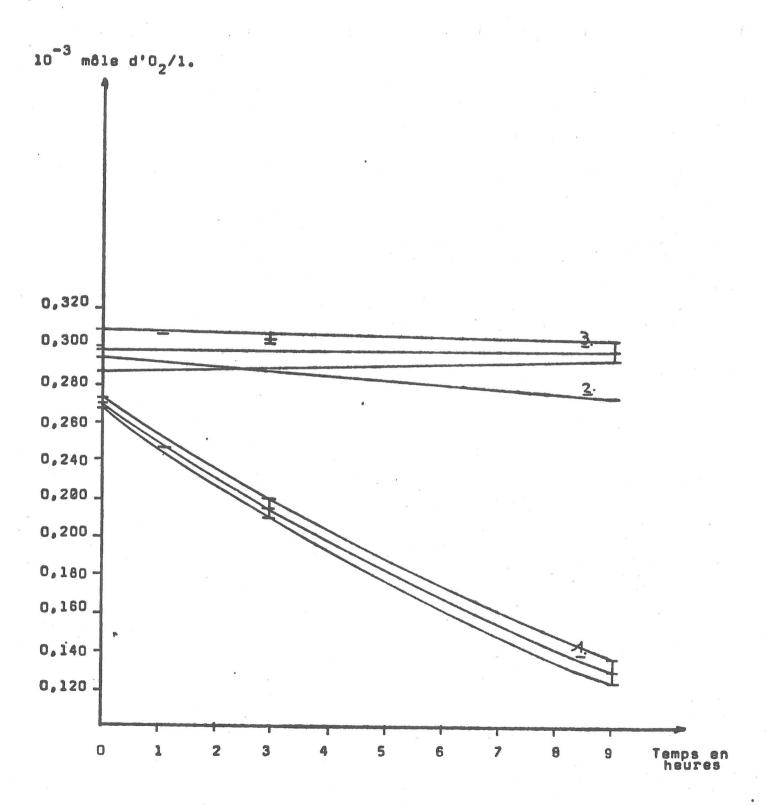
M55, le 30.4

M16, le 1.5.74 $T_0 = 17h.00$

Résultats en 10⁻³ môle d'0₂/1.

	1	4	
Commence	3	2	1
To	0,287 0,309 } m = 0,298	0,295	0,273
To + 1 h.	0,306 $m = 0,306$		0.246 $m = 0.246$
To + 3 h.	0,3015 0,306 $m = 0,3037$		0,221 $m = 0,2157$
To + 9 h.	0,293 $m = 0,298$ $0,303$	0,2755	0,123 $0,137$ $m = 0,130$
	0	0,0195/9h. = 0,0022/1h.	0,1405/9h. = 0,0156/1h.

m = 0,0011/1h. $1 - m = 0.0145.10^{-3}$ môle $d^{\circ}0_2/1./1h$.


Plancton/litre

	Nombre	Poids sec en Mg.
Copépodes	3806	33797,2
Podon	634	5959,6
Evadne	149	1400,6
Cnidaires	75	2625
Spionidae	75	1555,5
Larves d'Echinodermes	5522	14578
Oīkopleura	448	7750,4
-Pritlleria	298	5155,4
TOTAL		72821,7

On a donc

0,0145.10⁻³ môle d'0₂/72,821 mg. de poids sec/h.
= 14,5.10⁻⁶ môle d'0₂/72,821 mg. de poids sec/h.
= 0,199.10⁻⁶ môle d'0₂/ mg. de poids sec/h.
= 4,778.10⁻⁶ môle d'0₂/ mg. de poids sec/jour.

M16, le 1.5

TABLEAU X

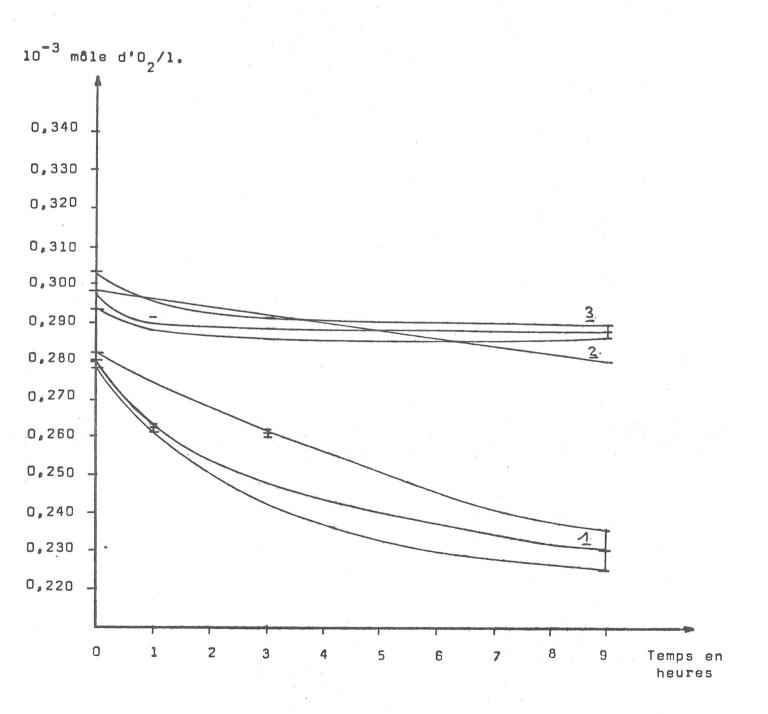
M20,1e 9.5.74 To = 16h.15

Résultats	en	10-3	môle	d'02/1.
Résultats	en	10	môle	d'02/1

To $\begin{pmatrix} 0,303 \\ 0,2945 \end{pmatrix}$ m = $\begin{pmatrix} 0,2987 \\ 0,2987 \end{pmatrix}$ 0,2987 $\begin{pmatrix} 0,2825 \\ 0,2795 \end{pmatrix}$ m = $\begin{pmatrix} 0,281 \\ 0,262 \\ 0,2635 \end{pmatrix}$ m = $\begin{pmatrix} 0,262 \\ 0,2635 \end{pmatrix}$ m = $\begin{pmatrix} 0,2627 \\ 0,2635 \end{pmatrix}$ m = $\begin{pmatrix} 0,2627 \\ 0,2635 \end{pmatrix}$ m = $\begin{pmatrix} 0,2627 \\ 0,2635 \end{pmatrix}$ m = $\begin{pmatrix} 0,2605 \\ 0,2605 \end{pmatrix}$ m = $\begin{pmatrix} 0,2605 \\ 0,261 \end{pmatrix}$ m = $\begin{pmatrix} 0,2617 \\ 0,287 \end{pmatrix}$ m = $\begin{pmatrix} 0,2802 \\ 0,287 \end{pmatrix}$ m = $\begin{pmatrix} 0,2885 \\ 0,287 \end{pmatrix}$ m = $\begin{pmatrix} 0,2885 \\ 0,285 \end{pmatrix}$ m = $\begin{pmatrix} 0,2805 \\ 0,285 \end{pmatrix}$ m =		3	2	1
To + 3 h. $0,287$ $0,2915$ $m = 0,2892$ $0,2605$ $0,60$ $m = 0,2610$ $0,287$ $m = 0,2885$ $0,280$ $0,285$ $m = 0,2885$ $m = 0,2800$ m	То	0,303 $m = 0,2987$	0,2987	0,2825 $m = 0,281$
To + 9 h. $0,290$ $0,287$ $m = 0,2885$ $0,280$ $0,2355$ $m = 0,2302$ $0,0102/9h$. $0,0102/9h$. $0,0187/9h$. $0,0508/9h$.	To + 1 h.	0,2885) 0,2915 } m = 0,290		0,262 0,2635 $m = 0,2627$
0,0102/9h. 0,0187/9h. 0,0508/9h.	To + 3 h.	0,287) 0,2915 } m = 0,2892		0,2605) 0,2605) m = 0,2612
	To + 9 h.	0,290) 0,287 } m = 0,2885	0,280	0,2355 $m = 0,2302$
		•	-	

m = 0,0016/1h.

 $1 - m = 0.004.10^{-5}$ môle $d^{\circ}0_2/1./1h$.


Plancton/litre

	Nombre	Poids sec en lug.
Copépodes	340	3019,2
Larves d'Echinodermes	1224	3.31,3
Oīkopieura	30	282
Fritillaria	101	949,4
Ceufs de poissons	26	6271,7
TOTAL		13791,6

On a done

 $0.004.10^{-3}$ môle $d^{1}0_{2}/13.7546$ mg. de poids sec/h. = 4.10^{-6} môle $d^{1}0_{2}/13.7546$ mg. de poids sec/h. = $0.291.10^{-6}$ môle $d^{1}0_{2}/13$ mg. de poids sec/h. = $6.979.10^{-6}$ môle $d^{1}0_{2}/13$ mg. de poids sec/jour.

M20, le 9.5

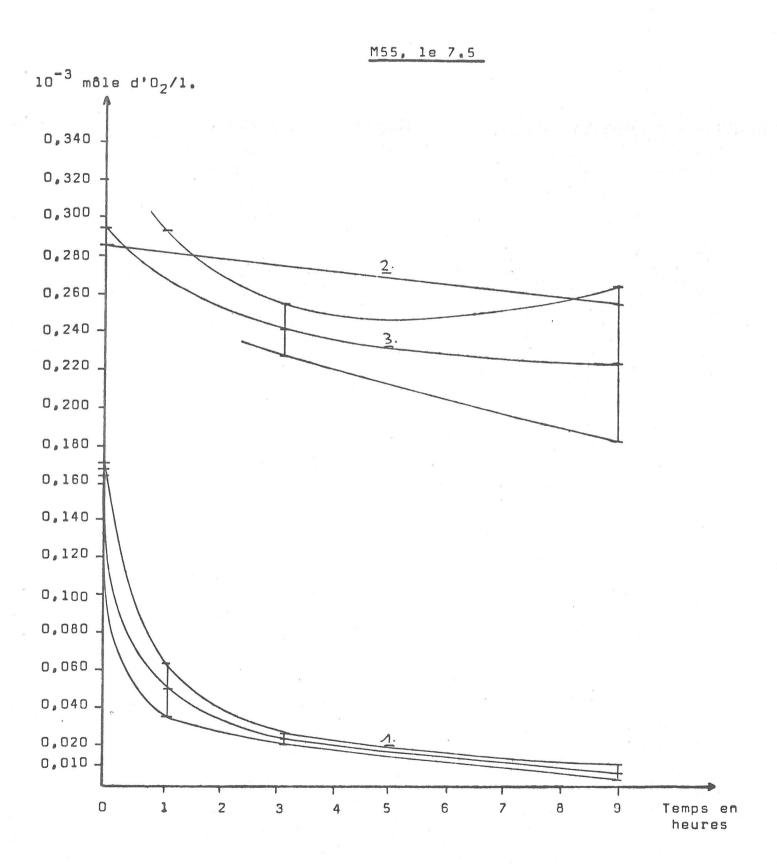
TABLEAU XI

M55, le 7.5.74 To = 13h.20

Résultats en 10⁻³ môle d'0₂/1.

\$ 18 m	3	2	<u>1</u>
То	0,296 $m = 0,236$	0,285	0,171
To + 1 h.	0,293 $m = 0,293$		0.065 0.037 $m = 0.051$
To + 3 h.	0,256 $0,2295$ $m = 0,2427$		0,0295 } m = 0,028
To + 9 h.	$ \begin{vmatrix} 0,184 \\ 0,2635 \end{vmatrix} m = 0,2237 $	0,255	0,006 $0,0105$ $m = 0,0082$
	0,0723/9h. = 0,008/1h.	0,030/9h. = 0,0033/1h.	0,1598/9h. = 0,0177/1h.

m = 0.0056/1h.


 $1 - m = 0,0121.10^{-3} d^{1}0_{2}/1./1h$

Plancton/litre

	Nombre	Poids sec en lug.
Copépodes	20893	185529,8
Podon	112	1052,8
Zoe	112	27921,6
Cirripèdes	74	118,4
Cténaires	37	5180
Larves de Spionid a e	298	6180,5
Térébellidae .	74	503,4
Larves d'Echinodermes	1940	5121,6
Larves d 9 Ophiures	37	97,6
TOTAL		231505,7

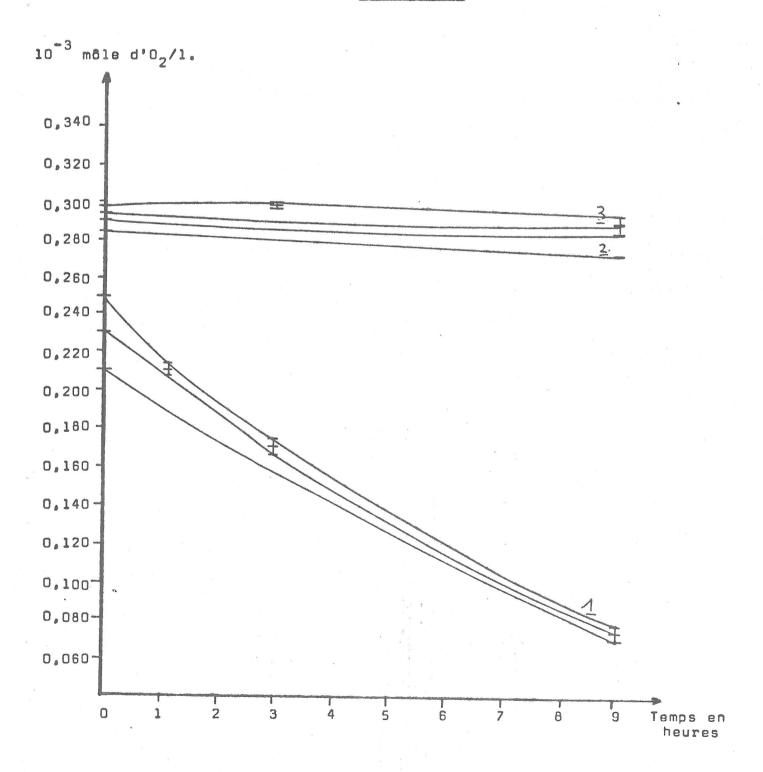
On a donc

0,0121.10⁻³ môle $d^{10}_{2}/231,5057$ mg. de poids sec/lh. = 12,1.10⁻⁶ môle $d^{10}_{2}/231,5057$ mg. de poids sec/lh. = 0,0522.10⁻⁶ môle d^{10}_{2}/mg . de poids sec/h. = 1,2544.10⁻⁶ môle d^{10}_{2}/mg . de poids sec/jour.

M16, le 9.5.74To =07h.00

Résultats en 10⁻³ môle d'0₂/1.

	3	2	1
То	$\begin{pmatrix} 0,2915 \\ 0,298 \end{pmatrix} m = 0,2947$	0,2862	0,212) $m = 0,231$
To + 1 h.	0,293 $m = 0,293$		0,209 $m = 0,212$
To + 3 h.	0,300 $0,298$ $m = 0,299$		0,1695 0,175 } m = 0,1722
To + 9 h.	0,293 $0,287$ $m = 0,290$	0,274	0,0695 $m = 0,0737$
	0,0047/9h. = 0,0005/1h.	0,0122/9h. = 0,0013/1h.	0,1573/9h. = 0,0174/1h.


m = 0.0009/lh. $1 - m = 0.0165 \cdot 10^{-3}$ môle $d \cdot 0.02/l$./lh.

Plancton/litre

	Nombre	Foids sec en lu;
Copépodes	9868	87627.8
Evadne	2033	19110,1
Oïkopleura	1287	22265.1
Fritillaria	75	1297,5
Larves d'Echinodermes	141.7	3740,8
Podon	914	8591,6
TOTAL		142633

On a donc $0.0165.10^{-3}$ mole d'02/142.633 mg. de poids sec/h. = $16.5.10^{-6}$ mole d'02/142.633 mg. de poids sec/h. = $0.115.10^{-6}$ mole d'02/mg. de poids sec/h. = $2.776.10^{-6}$ mole d'02/mg. de poids sec/jour.

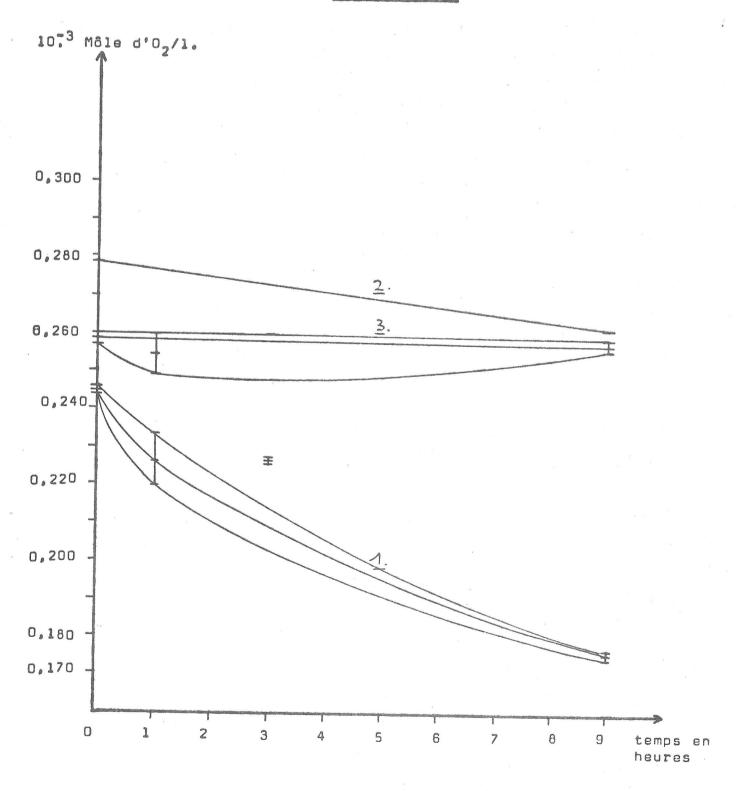
M16, le 9.5

M09, le 29.5.74 To = 14h.30

Résultats en 10^{-3} môle $d_0/1$.

William Control of the Control of th	3	2	1
To	0,2585) $0,260$ $m = 0,2592$	0,2791	0,246 $0,2445$ $m = 0,2452$
To + 1 h.	0,260 0,249 } m = 0,2545	, , , , , , , , , , , , , , , , , , ,	0,220 $0,234$ $m = 0,227$
To + 3 h.	0,260 $m = 0,260$		0,227 $m = 0,2265$
To + 9 h.	0,257 0,2585 } m = 0,2577	0,?62	0,1775 $m = 0,1769$
	0,0015/9h.	0,0171/9h.	0,069/9h.
, /2	= 0,00017/1h.	= 0,0019/1h.	= 0.0076/lh.

m = 0,001/1h.


 $1 - m = 0.0066.10^{-3}$ môle $d^{\circ}0_{2}/1./1h$.

Plancton/litre

	Wombre	Foids sec en les.
Copépodes	1246	11064,4
Podon	37	347,8
Oeufs de poissons	127	30640
Noctiluques	5708	14840,8
TOTAL		56093

 $0.0066.10^{-3}$ môle $d^{1}0_{2}/56.893$ mg. de poids sec/h. = $6.6.10^{-6}$ môle $d^{1}0_{2}/56.893$ mg. de poids sec/h. = $0.116.10^{-6}$ môle $d^{1}0_{2}/\text{ng}$. de poids sec/h. = $2.784.10^{-6}$ môle $d^{1}0_{2}/\text{ng}$. de poids sec/jour. On a donc

MO9, le 29.5

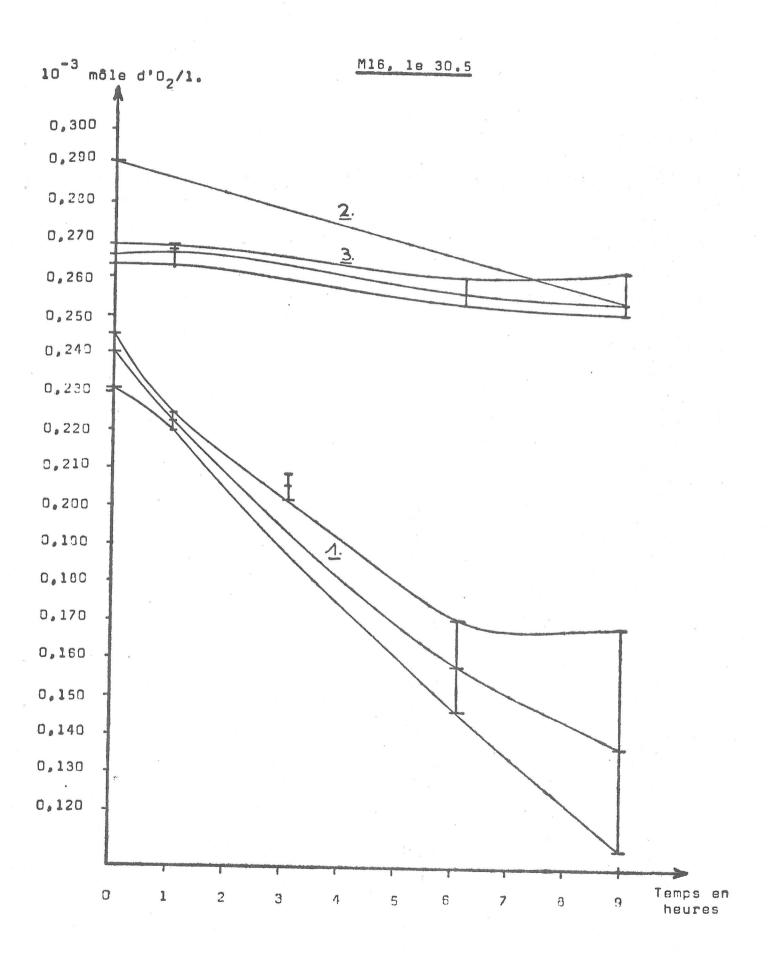
M16,1e 30.5.74

To = 12h.00

Résultats en 10⁻³ môle d'0₂/1.

(voir aussi HEYDEN, MOERMANS et BOSSICART, 1974)

	3	2	1
To	m = 0,2669	0;293	m = 0,241
To	m = 0,268		m = 0,223
To + 3 h.	m = 0,266		m = 0,2055
To + 6 h.	m = 0,2585		m = 0,1585
To + 9 h.	m = 0,255		m = 0,1375
	0,0119/9h. = 0,0013/1h.	0,0383/9h. = 0,0042/1h.	0,1037/9h. = 0,0115/1h.
	m = 0	0028/lh.	


 $1 - m = 0,0087.10^{-3}$ môle $d^{\circ}0_2/1./1h$.

Plancton/litre

	Nombre	Poids sec en lug.
Copépodes	2873	25512,2
Podon	1268	11919,2
Evadne	485	4559
Oîkopleura	783	13545.9
Oeufs de poissons	37	8926,6
Noctiluques	29400	79440
TO TAL		143903

On a done

 $0.0087.10^{-3}$ môle d.0.2/143.903 mg. de poids sec/h. = $8.7.10^{-6}$ môle d.0.2/143.903 mg. de poids sec/h. = $0.060.10^{-6}$ môle d.0.2/ mg. de poids sec/h. = $1.450.10^{-6}$ môle d.0.2/ mg. de poids sec/jour.

VII. RESUME DES RESULTATS.

	du 17.4 au 22.4	
Z II	MO4 le 19.4	4,534.10 môle d'O2/mg. de poids sec/jour
	MO9 le 17.4	9,505 (X)
Z I sud	M55 le 17.4	11,509 (XX)
	MO5 le 22.4	6,311
Z I nord		
	du 29.4 au 1.5	
z II	M09 le 30.4	8,985 (X)
Z I sud	MO1 le 29.4	4,183
	M55 le 30.4	4,201 (XX)
Z I nord	M16 le 1.5	4,778 (XXX)
	du 7.5 au 9.5	
Z II	M20 le 9.5	6,979
Z I sud	M55 le 7.5	1,254 (XX)
Z I nord	M16 le 9.5	2,776 (XXX)
•		
	du 29.5 au 30.5	
Z II	M09 le 29.5	2,784 (X)
Z I sud		
Z I nord	M16 le 30.5	1,450 (XXX)

VIII. CONCLUSIONS.

- 1°) L'analyse des résultats établis en fonction des dates et des zones de capture (tableau XV) amène les conclusions suivantes :
 - a) Vers le milieu du mois d'avril, le métabolisme du zooplancton est très élevé, surtout en zone I sud.
 - Des différences apparaissent entre 2 points distants d'une même zone, probablement en raison de conditions physico-chimiques différentes régnant dans les masses d'eau (exemples : en zone II, au point MO9, le 17.4, la respiration par poids sec est environ deux fois plus élevée que le 19.4 au point MO4, situé plus au sud. De même, au point M55 (zone IS), le 17.4, le taux de respiration est double de celui trouvé le 22.4 au point MO5, plus proche de l'estuaire de l'Escaut.

Nous ne disposons malheureusement pas de résultats pour la zone I Nord (échantillons trop riches en zooplancton).

- b) Une ou deux semaines plus tard, la situation a nettement évolué : dans tous les cas, on observe une diminution du taux respiratoire, peu marquée en zone II (point MO9 par exemple) mais particulièrement sensible en zone I sud:au point M55, le taux est devenu deux fois et demi plus petit en l'espace de 13 jours.
 - La valeur trouvée à cette époque en zone I Nord est légèrement plus élevée que celles trouvées en zone I sud, mais maintenant, c'est en zone II que le taux respiratoire est le plus élevé, environ deux fois plus que dans les deux autres zones.
- c) Une semaine plus tard, les valeurs ont diminué, peu en zone II, mais de façon très nette en zone I Nord, et surtout en zone I Sud : au point M55, le taux est trois fois plus faible qu'une semaine

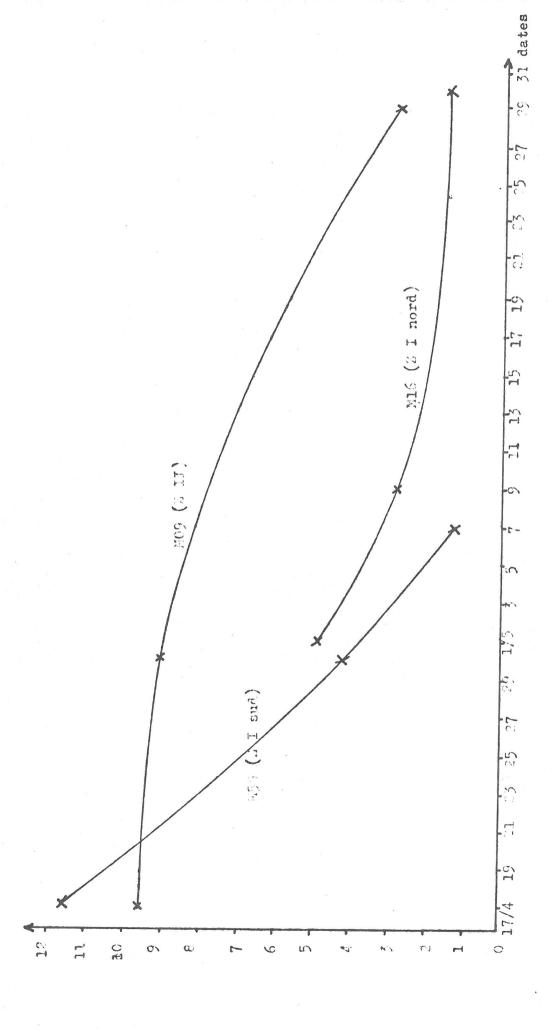
auparavant et environ 10 fois plus petit qu'au milieu du mois d'avril.

- Les valeurs pour la zone II sont maintenant de 5 à 6 fois plus élevées que celles en zone I sud et 2 à 3 fois plus élevées que celles en zone I nord.
- d) Enfin, entre le 29.5 et le 30.5 (c'est-à-dire environ 1 mois et demi après les premières expériences), la valeur trouvée pour la zone II est environ 3 fois et demi plus petite qu'au milieu du mois d'avril. Elle est double de celle de la zone I nord. Celle-ci est environ 3 fois plus petite que celle trouvée un mois auparavant, à la même station.

Il semble donc, qu'au milieu du mois de mai, on se trouvait à une époque de grande activité métabolique, en relation avec le grand bloom zooplanctonique de printemps.

Par après, l'activité métabolique diminue, moyennement dans les zones II et I nord, mais très nettement dans la zone I sud.

Cès diminutions sont très certainement en relation avec les changements physico-chimiques intervenus dans les masses d'eau et donc avec la fin du bloom du zooplancton.


Les différences entre les 3 zones apparaissent nettement dans le graphique de la page 38 où nous avons porté les valeurs du taux respiratoire pour un point caractéristique de chacune des 3 zones:

Zone II : point MO9 (X)

Zone I sud : point M55 (XX)

Zone I nord: point M16 (XXX).

10-6 mole d'02/mg.

- 2°) Dans le technical report suivant, nous analyserons les résultats de la campagne d'automne et nous les comparerons aux résultats de cette campagne de printemps 1974.
- 3°) Faute des données indispensables, nous n'avons pu renouveler la comparaison entre le taux respiratoire et le taux d'assimilation et entre le taux respiratoire et la production primaire qu'avait réalisée J.H.HECQ en 1973 (pages 15 et 17).

 Une telle comparaison serait souhaitable.

BIBLIOGRAPHIE

- HECQ (J.H.), 1973. Essais de dosage du taux respiratoire du zooplancton en Mer du Nord, Technical report 1973/Biol. synthèse O6.
- HEYDEN (D.), MOERMANS, (R.) et BOSSICART (M.), 1974.

 Observations sur la productibilité des mesures de respiration du zooplancton au bassin de chasse d'Ostende (Spuikom) et en mer et variabilité dans le comptage de 10 sous-échantillons de zooplancton, Technical report 1974/Biol. Ol.
- JOIRIS (C.) et VANTHOMME (E.), 1974. Communications personnelles.
- STRICKLAND ét PEARSONS, 1968. A practical handbook of seawater analysis, Fish Research Board of Canada, Bull. 167.