

Authors:

Mikkelsen, J.H., Dillen, J., Van Braeckel, A., Genouw, G. & Van den Bergh, E.

Research Institute for Nature and Forest (INBO)

The Research Institute for Nature and Forest (INBO) is the Flemish research and knowledge centre for nature and its sustainable management and use. INBO conducts research and supplies knowledge to all those who prepare or make the policies or are interested in them.

Adress:

INBO Brussel Kliniekstraat 25, 1070 Brussels www.inbo.be

e-mail:

Alexander.vanbraeckel@inbo.be

Citation:

Mikkelsen, J.H., Dillen, J., Genouw, G., Van Braeckel, A. & Van den Bergh, E. 2011. Tidal marsh and mudflat soils in the inner Scheldt Estuary: Technical Report. INBO Report 2011 (INBO.R.2011.46). Research Institute for Nature and Forest, Brussels, Belgium.

D/2011/3241/355 INBO.R.2011.46

Foto cover: Soil profile in Schor Ouden Doel by Jari Mikkelsen

Realisation:

This research is funded by the Ministeriy of the Flemish Authorities, Department of Mobility and Public Works, Maritime Access Division.

Results of this project are also based on INBO data gathered by order of W&Z department Zeeschelde.

Responsible Publisher:

Jurgen Tack

Tidal marsh & mudflat soils in the inner Scheldt Estuary: Technical Report

Site and soil description, analytical data & World Reference Base -classification

Mikkelsen, J.H., Dillen, J., Van Braeckel, A., Genouw, G. & Van den Bergh, E.

INBO.R.2011.46 D/2011/3241/355

1. Introduction	1
1.1 General introduction	1
1.2 World reference base; General comments	
1.3 Materials and methods	
1.3.1 Field survey	3
1.3.2 Laboratory analyses	3
1.3.3 Classification	4
1.3.4 Structure of the report	5
2 Soil profile discriptions	6
	,
Mesohaline zone: Schor Ouden Doel	
2.1 Profile 'P2': Schor van Ouden Doel	
2.1.1 Situation	
2.1.2.Profile description	
2.1.3 Analytical laboratory data	
2.1.4 World reference base (2007) classification	
.2 Profile 'P3': Schor van Ouden Doel	
2.2.1 Situation	
2.2.2 Profile description	
2.2.3 Analytical laboratory data	
2.2.4 World reference base (2007) classification	
2.3.2 Profile description	
2.3.3 Analytical laboratory data	
2.3.4 World reference base (2007) classification	
2.4 Profile 'P5': Schor van Ouden Doel	
2.4.1 Situation	
2.4.2 Profile description	
2.4.3 Analytical laboratory data	
2.4.4 World reference base (2007) classification	
2.5 Profile 'P6': Schor van Ouden Doel	
2.5.1 Situation	
2.5.2 Profile description	
2.5.3 Analytical laboratory data	
2.5.4 World reference base (2007) classification	
2.6 Profile 'P12': Schor van Ouden Doel	
2.6.1 Situation	
2.6.2 Profile description	
2.6.3 Analytical laboratory data	
2.6.4 World reference base (2007) classification	
2.7 Profile 'P13': Schor van Ouden Doel	
2.7.1 Situation	44
2.7.2 Profile description	45
2.7.3 Analytical laboratory data	48
2.7.4 World reference base (2007) classification	49
2.8 Profile 'P17': Schor van Ouden Doel	50
2.8.1 Situation	
2.8.2 Profile description	51
2.8.3 Analytical laboratory data	
2.8.4 World reference base (2007) classification	
2.9 Profile 'P18': Schor van Ouden Doel	
2.9.1 Situation	
2.9.2 Profile description	
2.9.3 Analytical laboratory data	
2.9.4 World reference base (2007) classification	59

2.10 Profile 'P19': Schor van Ouden Doel	
2.10.1 Situation	
2.10.2 Profile description	
2.10.3 Analytical laboratory data	
2.10.4 World reference base (2007) classification	65
Oligohaline zone: Notelaer	66
2.11 Profile 'P50': Notelaer	
2.11.1 Situation.	
2.11.2 Profile description	
2.11.3 Analytical laboratory data	
2.11.4 World reference base (2007) classification	
2.12 Profile 'P51': Notelaer	
2.12.1 Situation.	
2.12.2 Profile description	
2.12.3 Analytical laboratory data	
2.12.4 World reference base (2007) classification	
2.13 Profile 'P52': Notelaer	
2.13.1 Situation.	
2.13.2 Profile description	
2.13.3 Analytical laboratory data	
2.13.4 World reference base (2007) classification	
2.14 Profile 'P55': Notelaer	
2.14 Profile Post: Notelael.	
2.14.1 Situation	
·	
2.14.3 Analytical laboratory data	
2.15 Profile 'P57': Notelaer	
2.15.1 Situation	
2.15.2 Profile description	
2.15.3 Analytical laboratory data	
2.16 Profile 'P60': Notelaer	
2.16.1 Situation.	
2.16.2 Profile description	
2.16.3 Analytical laboratory data	
2.16.4 World reference base (2007) classification	
2.17 Profile 'P61': Notelaer	
2.17.2 Profile description	
2.17.3 Analytical laboratory data	
2.18 Profile 'P62': Notelaer	
2.18.2 Profile description	
Fresh water zone with long retetion time: Groot schoor van Hamme	102
2.19 Profile 'P30': Groot schor van Hamme	
2.19.1 Situation	
2.19.2 Profile description	
2.19.3 Analytical laboratory data	
2.19.4 World reference base (2007) classification	
2.20 Profile 'P31 and P31b': Groot schor van Hamme	
2.20.1 Situation	
2.21 Profile 'P32': Groot schor van Hamme	
2.21.1 Situation	
2.21.2 Profile description	109
2.22 Profile 'P33': Groot schor van Hamme	109

2.22.1 Situation	109
2.22.2 Profile description	110
2.22.3 Analytical laboratory data	112
2.22.4 World reference base (2007) classification	113
2.23 Profile 'P34': Groot schor van Hamme	114
2.23.1 Situation	114
2.23.2 Profile description	
2.23.3 Analytical laboratory data	
2.23.4 World reference base (2007) classification	
2.24 Profile 'P35': Groot schor van Hamme	
2.24.1 Situation	
2.24.2 Profile description	
2.24.3 Analytical laboratory data	
2.24.4 World reference base (2007) classification	
2.25 Profile 'P36': Groot schor van Hamme	
2.25.1 Situation	
2.25.2 Profile description	
2.25.3 Analytical laboratory data	
2.25.4 World reference base (2007) classification	
2.26 Profile 'P37': Groot schor van Hamme	
2.26.1 Situation	
2.26.2 Profile description	129
2.26.3 Analytical laboratory data	130
2.26.4 World reference base (2007) classification	131
2.27 Profile 'P38': Groot schor van Hamme	132
2.27.1 Situation	132
2.27.2 Profile description	133
2.27.3 Analytical laboratory data	
2.27.4 World reference base (2007) classification	
2.28 Profile 'P39': Groot schor van Hamme	
2.28.1 Situation	
2.28.2 Profile description	
2.28.3 Analytical laboratory data	
2.28.4 World reference base (2007) classification	
Fresh water zone with short retention time: Schor van Zele & Appels	140
2.29 Profile 'P70': Schor van Zele	140
2.29.1 Situation	
2.29.4 World reference base (2007) classification	
2.30 Profile 'P71': Schor van Zele	
2.30.1 Situation	
2.30.2 Profile description	
	14n
2.30.3 Analytical laboratory data	
2.30.4 World reference base (2007) classification	147
2.30.4 World reference base (2007) classification	147 148
2.30.4 World reference base (2007) classification	147 148 148
2.30.4 World reference base (2007) classification 2.31 Profile 'P72': Schor van Zele	147 148 148 149
2.30.4 World reference base (2007) classification 2.31 Profile 'P72': Schor van Zele	147 148 148 149 150
2.30.4 World reference base (2007) classification 2.31 Profile 'P72': Schor van Zele 2.31.1 Situation 2.31.2 Profile description 2.31.3 Analytical laboratory data 2.31.4 World reference base (2007) classification	147 148 148 149 150 151
2.30.4 World reference base (2007) classification 2.31 Profile 'P72': Schor van Zele 2.31.1 Situation 2.31.2 Profile description 2.31.3 Analytical laboratory data 2.31.4 World reference base (2007) classification 2.32 Profile 'P73': Schor van Zele	147 148 148 149 150 151
2.30.4 World reference base (2007) classification 2.31 Profile 'P72': Schor van Zele 2.31.1 Situation 2.31.2 Profile description 2.31.3 Analytical laboratory data. 2.31.4 World reference base (2007) classification 2.32 Profile 'P73': Schor van Zele 2.32.1 Situation.	147 148 149 150 151 152
2.30.4 World reference base (2007) classification 2.31 Profile 'P72': Schor van Zele 2.31.1 Situation 2.31.2 Profile description 2.31.3 Analytical laboratory data 2.31.4 World reference base (2007) classification 2.32 Profile 'P73': Schor van Zele	147 148 149 150 151 152
2.30.4 World reference base (2007) classification 2.31 Profile 'P72': Schor van Zele 2.31.1 Situation 2.31.2 Profile description 2.31.3 Analytical laboratory data. 2.31.4 World reference base (2007) classification 2.32 Profile 'P73': Schor van Zele 2.32.1 Situation.	147 148 149 150 151 152 152
2.30.4 World reference base (2007) classification 2.31 Profile 'P72': Schor van Zele	147 148 149 150 151 152 152 153
2.30.4 World reference base (2007) classification 2.31 Profile 'P72': Schor van Zele	147 148 149 150 151 152 152 153 154
2.30.4 World reference base (2007) classification 2.31 Profile 'P72': Schor van Zele. 2.31.1 Situation	147 148 149 150 151 152 153 154 155

List of references	16/
2.34.4 World reference base (2007) classification	163
2.34.3 Analytical laboratory data	
2.34.2 Profile description	
2.34.1 Situation	
2.34 Profile 'P80': Nieuw schor van Appels	160
2.33.4 World reference base (2007) classification	159
2.33.3 Analytical laboratory data	158

1. Introduction

1.1 General introduction

When the Soil map of Belgium before 1973 was constructed, soils of the estuarine part of the Scheldt were excluded. Since then little attempts have been made to classify soils of the tidal mudflats and tidal marshes of the Belgian part of the river Scheldt. Only one study by Van de Moortel & Deckers, 1997 has provided a series of augerings with the code according to the soil legend handled on the Belgian Soil Map. This study In de framework of the research project 'Inventory and Historical analyses of the Seaschelde environment', describes soil profiles of 4 tidal marshes and adjacent mudflats along the estuarine salinity gradient of this highly dynamic ecosystem. Based on the analytical data of these soils have been classified according to the international classification system for soil (World Reference Base).

1.2 World reference base; General comments

General comments that count for all soil profiles classified below:

Argic:

In the WRB classification system the presence of a diagnostic horizon, property or material is based on a set of diagnostic criteria. In addition to this some general information, field identifications additional characteristics and links with other diagnostics are provided. When classifying a soil the diagnostic criteria are in principle determining if an item is present or not. In reality though, some common sense is required and the information provided beside the diagnostic criteria should be consulted as well.

As an example soil profile P2 classified below is located on an estuarine tidal marsh where flooding is occurring bimonthly. The soil is very immature, unripe in depth and contains between 6-14% calcium carbonate including in the present day surface horizon. If testing this soil for the presence of an Argic horizon, it turns out that actually the clay increase between H1 and H3 (pipette texture data are not available from the thin transition horizon H2) fulfils all requirements for an argic. It is specified that clay increase merely the result of a lithologic discontinuity is insufficient, but if we test the soil further then a lithologic discontinuity requires some sort of evidence of a discontinuity such as an example presence/absence of stones, difference in mineralogy or an abrupt textural change. In this case only the abrupt textural change may work. If testing for abrupt textural change it turns out that an increase from with 10.4% to 39% is far too little to fulfil the diagnostic criteria for abrupt textural change and hereby excluding also the presence of a lithologic discontinuity. This implies that if only the diagnostic criteria listed for an Argic horizon are considered, then this Fluvisol located in an active sedimentary environment with more than enough chalk present to prevent any kind of clay migration do have an argic horizon. At this point common sense and expert judgement should take over, and per definition exclude the argic horizon for this particular soil because it is obvious that the clay increase entirely the result is of changes in the sedimentary environment. There are no evidences of any kind of pedogenetic process that potentially could have caused this clay increase. Probably in this case the more clayey horizon was deposited about 50 years ago when the soil was located centrally in the tidal marsh, and the less clayey upper horizon has sedimented afterwards during an erosive phase of the tidal marsh that has resulted in that the soil profile today is positioned at the edge between the tidal marsh and the tidal mud flat.

Calcic horizon: requires at least 5%-vol. secondary carbonate, which will not be met in any of the studied tidal soils. Almost the entire fraction of carbonate present has been deposited together with the sediment and is therefore primary carbonate.

Histic horizon, which consists of poorly aerated organic material, requires the presence of

at least 20% organic matter, which is not the case in for any of the analysed horizons discussed in the following.

Sodic: The qualifier sodic requires that 15% of the cations on the exchange complex compose of sodium and magnesium. Following formula applies (all data based on ammonium extractable cations):

Sodic%= (Na+Mg)*100/Na+Mg+Ca+K

For the specifiers no specifications are given, therefore will following be applied:

Hyper: more than 30% (instead of 15%)

Calcaric: requires 2% calcaric material in the upper 20-50 cm.

Hyper: for this report 10% weighted average between 0-50 cm is required for

hyper to apply

1.3 Materials and methods

1.3.1 Field survey

The soil profiles of 4 tidal marshes and adjacent mudflats were described and characterised according to guidelines adapted specifically to this type of soils (Mikkelsen et al. 2009). These guidelines are essentially based on the international field guidelines (FAO, 2006). Afterwards the soil have been classified according to the International World Reference Base for Soil Resources (IUSS Working Group WRB, 2007). The colours were measured using the Munsel colour code system (Munsell, 2000). All topographic measurements are in meters T.A.W. (Tweede Algemene Waterpassing -Belgian reference height)

1.3.2 Laboratory analyses

Laboratory analyses executed on soil samples taken in the profile pits dates from the period 2008 to 2009. The analytical methods follow partly the ISO standards and partly the standard methods of the Analytical laboratory of the Research Institute for Nature and Forest. An overview of the analytical methods is presented in Table 1 and Table 2.

Table 1: Overview of the analytical methods conducted on the samples taken from the horizons of the profile pits

Soil variable	Method	Remarks
Particle size distribution	Pipette method: ISO	Following fraction limits are
	11277	handled: 2, 10, 20, 50 and
		2000 μm.
CaCO₃	Acid – Base titration	
	method	
Total N	Modified Kjeldahl method	
Total N	Analyser	
Org. Carbon, TOC	Total Organic Carbon	The organic carbon analysed
	(TOC)	derives from decaying
		vegetation, bacterial growth,
		and metabolic activities of
		living organisms or
		chemicals.
Basic cations by NH₄OAc	NH₄OAc method	
CEC(NH₄OAc)	Titration	
Exchangeable elements,	ISO 11260 (1994) and	Triple BaCl ₂ extraction; Free
Free H^+ and	ISO 14254 (1994)	H ⁺ and exchangeable acidity
exchangeable acidity		by titration
CEC(MgSO ₄)	ISO 11260 (1994)	
	'Compulsive method'	
pH, 1:5, water	Potentiometric	Water soil relation 1:5;
•		weight based
pH, 1:5, CaCl ₂	Potentiometric	CaCl ₂ solution to soil relation
•		1:5; weight based
Aqua regia extractable		Microwave digestion
elements		Extraction with HCI: HNO ₃ of
		1:3
EC	Potentiometric	Measured concomitantly with
		pH

Table 1: Overview of the methods of the derived soil variables on the samples taken from the horizons of the profile pits

Derived/calculated	Description
soil variables	

BS % (Base saturation)	Percent of the basis cations with respect to the measured CEC
	by NH ₄ OAc. Values below detection limit are included for half
	of the their LOQ value.
CEC (sum)	CEC obtained by the sum of the basic cations and in principle
	including also the Al ³⁺ , Fe ³⁺ , Mn ²⁺ , Free H ⁺ cations (but due to
	the high pH their content is lower than the detection limit) by
	the BaCl ₂ compulsive method
BS by CEC(MgSO ₄) %	The base saturation expressed as the sum of the basic cations
	with respect to the CEC measured by the MgSO ₄ method.
	Values below detection limit are counted with for half of their
	LOQ value only.
Acidity (sum)	Sum of Al ³⁺ , Fe ³⁺ , Mn ²⁺ and Free H ⁺ determined on the triple
	BaCl ₂ extraction
C/N	C/N ratio's discussed in this report are based on either:
	[(%LOI/2)/%TotalN _{modified}] for the organic layers, or
	[%TOC/TotalN _{modified}] for the mineral horizons
ESP	A sodic soil, by definition, contains a high level of sodium
	relative to the other exchangeable cations (i.e. calcium,
	magnesium and potassium). A soil is considered 'sodic' when
	the Exchangeable Sodium Percentage (ESP) is 15% or greater.
	The exchangeable sodium percentage (ESP) is calculated as
	follows:
	$ESP = Exchangeable \{ (Na)/(Ca + Mg + K + Na) \} x 100$
SAR	Sodium adsorption ratio (SAR) is a measure of the sodicity of
	soil, as determined from analysis of water extracted from the
	soil.
	The formula for calculating sodium adsorption ratio is:
	$SAR = [Na+] / {([Ca2+] + [Mg2+]) / 2}1/2$

1.3.3 Classification

The soils are all classified according to World Reference Base for Soil Resources version 2007 (IUSS Working Group WRB, 2007).

The soils were classified on 2 levels. These are:

- 1. <u>Full classification name without specifiers</u>, here all prefix and suffix qualifiers present in the soil are listed.
- 2. <u>Full classification name with specifiers</u>. Due to the arbitrary nature of most specifiers (when is a certain characteristic weak, normal or strong developed?) this level requires some expert judgement.

Although fieldwork and selection of samples for further laboratory analyses were carried out with uppermost care, during the process of classification problem of insufficient data or information was faced. Where possible these data were collected (e.g. asking for additional laboratory data), consulting the digital photographic material etc. If the required data could not be achieved and an expert judgement did not solve the problem a particular qualifier was ignored and the classification continued.

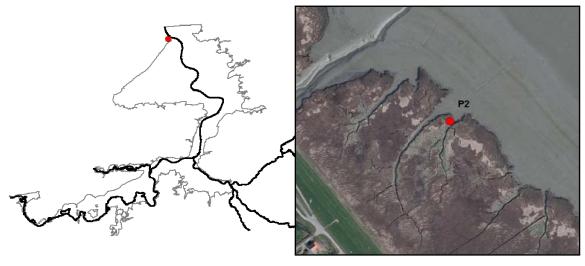
In the profile description the given depths take into account any variation of the horizon boundary. Indicated is the upper and lower limit of the begin and the end of the horizon limit, e.g. H3: 22/25-37/45 cm, means that the upper limit of H3 is found between 22 and 25 cm depth measured from the transition between horizon H2 and horizon H3. The lower limit of H3 is found between 37 and 45 cm.

In the tables of analytical data the indicated depths are simplified. Here the mean upper and lower horizon limits are presented. The mean has been obtained by estimating the mean from the profile sketches. A horizon boundary that as an example remains at 20 cm over 80% of the boundary and at the end dips to 30 cm will get the mean depth 22 cm

1.3.4 Structure of the report

In the following chapter each soil profile is described in a separate paragraph. Within each salinity zone each paragraph starts with 1) the site and profile description, followed by 2) the analytical laboratory data, and 3) the soil classification according to WRB 2007.

Photo: Soil description in the field at a creek edge in the 'schor of Ouden Doel'

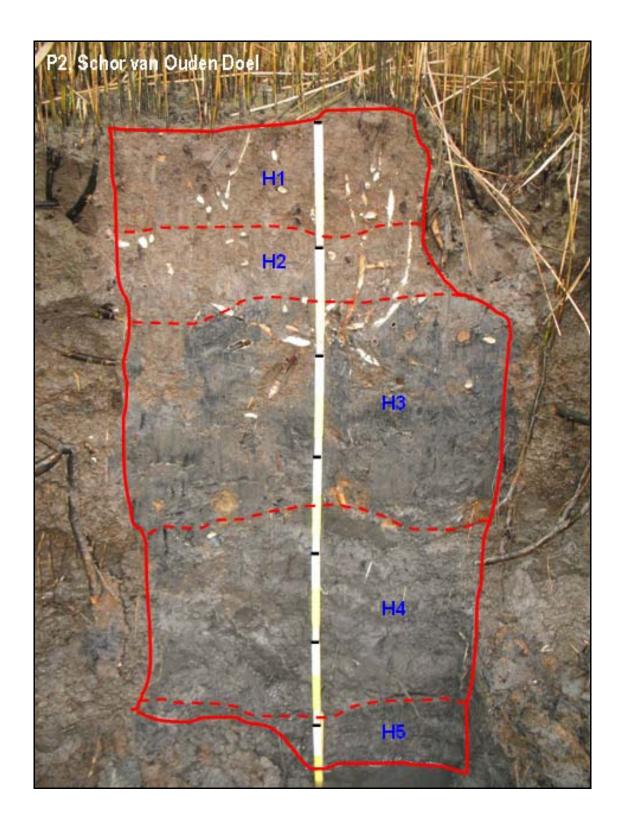

2 Soil profile descriptions

Mesohaline zone: Schor Ouden Doel

2.1 Profile 'P2': Schor van Ouden Doel

(Derived elevation: 5.20m TAW; La.t:51.350077, Long.: 4.231032)

2.1.1 Situation


Profile 'P2' is located in 'Schor van Ouden Doel', just over the Dutch border. It is an eroding tidal marsh lacking any artificial protection in the form of riprap. The tidal marsh is covered mainly by reed and grassland (*Elytrigia atherica*). The profile is excavated in the tidal marsh edge at the inflow of an important (1st order) creek.

2.1.2.Profile description

Profile P2	Schor van Ouden Doel	
1.3 Date and time:	14/11/2008. Profile description began at 11:30. Lowe tide at 10:18.	
1.4 Author:	Jari Hinsch Mikkelsen	
1.5 Location:	The Netherlands, Province of Zeeland, Hulst Municipality.	
	For a road description check description presented for profile P3. Drive	
	along the dike northwards for about 1.5 km.	
1.6 Profile coordinates:	Latitude, longitude: 51° 21′ 0.46″ N, 04° 14′ 4.19″ E	
	Lambert-72: 226708.986 N, 140404.329 E	
4.1 Elevation:	±5.2 m TAW (interpolated from nearby Trimble measurements)	
2.1 Atmospheric climate	Misty during the profile description	
and weather condition:	, , , ,	
Soil climate:	STR: Mesic	
	SMR: Udic	
2.2 Topography:	Macrotopography: Estuarium, tidal mouth of the Schelde River Mesotopography: Tidal marsh	
	Landscape position: on the bank where one of the major creeks reaches	
	the tidal mud flat	
	Slope form: complex	
	Slope gradient: -	
	Slope length: -	
	Slope orientation: -	
2.4 Tidal marsh cliff:	Tidal marsh cliff height: 95 cm	
	Tidal marsh cliff gradient: >80° (practically vertical)	
	Tidal marsh cliff form: incised 50-80 cm	
	Thickness dense root layer: 60 cm Tidal marsh cliff coarse fragments: none	
2.5 Land-use:	Tidal marsh Tidal marsh	
2.5 Land use.	Wildlife: Hunting probably not allowed	
	Grazing: No grazing, except for geese but here no signs	
2.6 Human influence:	No evidences of human impact	
Vegetation:	Reed vegetation (<i>Phragmites australis</i>), with algae on the soil surface	
2.7 Parent material:	unconsolidated deposits> marine and estuarine clays and silts>	
	quaternary clay and silt> Holocene Clay (5221)	
2.8 Drainage class:	Poorly drained	
2.9 External drainage:	Moderately rapid run-off	
2.10 Flooding	The horizontal surface of the soil is flooded during spring tides only. The	
	vertical exposed banks are flooded daily.	
2.11 Coarse surface frag.	None but at the base of the tidal marsh bank, large lumps of soil	
	material with a dense reed root system have accumulated, which	
	provides some protection from the wave impact. When the soil is	
	undermined with 60-90 cm the root-rich topsoil collapses. On a macro	
	scale the erosion is clearly visible on aerial photos by the retrieving	
	coastline.	
2.12 Erosion,	Marginal erosion of the creek walls during tides	
sedimentation:	That girlar drosion or the creak walls during dues	
2.13 Surface cracks:	Some wide (2-5 cm) cracks observed, which originates from	
2.13 Juliace Clacks.	destabilisation of the tidal marsh bank due to wave erosion	
2 14 Calter		
2.14 Salts:	None observed	

Prof	file P2		Schor van Ouden Doel					
Localisation factors profile: Vegetation: Reed vegetation, which is the most common vegetation at this location								
Geomorphology/topography: Located on the edge between the tidal mud flat and marsh								
Hydrology: No information from divers is available form the nearby are but the flooding regime is close to that of the tidal mud flat.								
Remarks: No rock fragments, cementations, compactions and nodules observed through the soil profile. No traces of carbonates.								
N		Horizon des	scription					
0.								
H1	Abi	0-20 cm; ver	y dark greyish brown 1.5Y 3/2 (M); olive brown to light olive brown 2.5Y					
		4.5/3 (D); no	reaction to aa-dipyridyl; very fine (2-5mm), weak granular; common					
		•	ery fine to fine, few medium and many coarse roots; large faunal population among					
			mud shrimps (<i>Corophium volutator</i>) and woodlice (<i>Isopoda</i>); clear smooth					
		boundary	,					
H2	Bbi	20-32 cm; very dark greyish brown 2.5Y 3/2 (M), dark greyish brown to greyish brown						
)); no reaction to αα-dipyridyl; massive; many very fine to fine, few					
		medium and many coarse roots; gradual wavy boundary						
H3	Crbi	32-77 cm; very dark grey 2.5Y 3/1 (M), greyish brown 2.5Y 5/2 (D); positive reaction						
		to aa-dipyridyl, throughout; reductimorphic colour pattern with oxidation along						
		fractures, pedfaces and root galleries; massive; stratification faintly visible; few very						
H4	Cr1	fine to fine, very few medium and common coarse roots; gradual smooth boundary 77-123 cm; very dark grey 5Y 3/1 (M), grey 2.5Y 5/1 (D); positive reaction to ad-						
	0.1	dipyridyl, throughout; reductimorphic colour pattern; massive; stratification faintly						
		visible; few very fine to medium and none coarse roots; diffuse smooth boundary						
H5	Cr2	123-140 cm; dark grey 2.5Y 4/1 (M), grey to greyish brown 2.5Y 5/1.5 (D); positive						
		reaction to a	a-dipyridyl, throughout; reductimorphic colour pattern, with slight					
			ng biogalleries; massive; stratification faintly visible; very few very fine to					
		fine roots						

2.1.3 Analytical laboratory data

Table A2	ele A2: Analytical data for P2, Schor van Ouden Doel Profile studied 14/11/2008 Profile analysed: March-Dec./2009								
P2	Horizon	Depth	Total N	Total N	C	arbon- TO		C	C/N
Horizon	symbols	Берин	analyser	Kjeldahl	тс	IC	ОС	Analyser	0/14
	Syllibols	cm	%	%	%	%	%	%	(TOO!(C.1)
nr.	Λ								(TOC/Kjel.)
H1	A	0-20	0.33	0.27	5.43	1.23	4.20	4.87	15
H2	C	20-32	0.40	0.35	6.35	0.71	5.64	5.70	16
H3	Cr1	32-77	0.39	0.33	7.00	1.64	5.36	6.44	16
H4	Cr2	77-123	0.39	0.25	6.36	2.02	4.34	5.81	17
H5	Cr3	123-140	0.19	0.14	4.12	2.07	2.05	3.57	14
Horizon				fraction on		-			
nr.	0.4-2	2-6	6-50	50-63	63-100	100-250	250-500	500-1000	1000-2000
114	4.4	7.4	40.5	0.4	40.0	447	2.5	4.0	0.0
H1	4.4	7.4	43.5	9.1	16.0	14.7	3.5	1.0	0.3
H2	4.6	8.7	44.3	8.3	15.4	13.4	3.3	1.5	0.5
H3	5.3	10.8 7.3	51.2	8.3	13.9	8.4	2.0	0.2	0.0
H4	4.0		41.9	8.5	16.5	18.5	3.1	0.1	0.0
H5	3.0	4.4 V+	32.8	11.5	26.2	19.3	2.8	0.1	0.0
Horizon	Na⁺	K⁺	Ca ²⁺	Mg ²⁺				n (µm; pip	
nr.	by I			method)	0-2	2-10	10-20	20-50	50-2000
114	40 =)/kg soil		00.0	46.4	%	05.0	47.0
H1	18.7	2.1	22.6	12.9	28.6	12.1	7.1	35.2	17.0
H2	24.5	2.4	21.5	13.6					
H3	24.0	3.0	24.1	11.0	39.0	23.4	11.6	19.4	6.5
H4	20.4	2.7	17.6	10.2	30.2	16.7	12.0	31.0	10.1
H5	12.9	1.8	11.5	6.0					
Horizon	CEC	CEC	BS by	Acidity	CaCO ₃	р		рН	EC
nr.	sum	measured	CEC-m	sum	titration	H ₂ O	CaCl ₂	CaCl2/H2O	dS/m
		(+)/kg	%	cmol(+)/kg	%	1:5	1:5		1:5
H1	56.4	36.7	>100	<	10.4	8.2	7.7	0.93	2.68
H2	62.0	38.5	>100	<	6.2	8.1	7.7	0.95	3.91
H3	62.2	31.6	>100	<	11.7	7.8	7.6	0.98	4.96
H4	50.9	27.0	>100	<	14.2	7.9	7.7	0.98	4.28
H5	32.2	16.0	>100	<	14.9	8.5	7.9	0.93	2.77
Horizon	Ca	K	Mg	Na	P	S	Al	As	Cd
nr.				А	qua Regia	1			
					mg/kg				
H1	28726	6945	6416	3711	3472	1484	30230.6	51.6	3.8
H2	21283	7680	8064	5292	2036	1975	30634	62.4	9.7
H3	45998	10909	8323	5437	1857	10858	41813.1	86.8	9.7
H4	54957	10248	8796	4751	685	12785	31513.8	46.8	7.5
H5	56050	6612	6453	2892	524	6608	21024	25.2	1.6
Horizon	Со	Cr	Cu	Fe Agus F	Mn	Ni	Pb	Zn	Lab
nr.				Aqua F mg/					
H1	14.3	89.5	151.7	46157	957	36.2	135.4	440	JM350
H2	14.3	97.9	231.0		318	41.0	160.8		
H2 H3	14.8 17.9	97.9 108.6	231.0	42706 45342	842	39.7	199.0	556 746	JM351 JM352
<u>пз</u> Н4	14.9	79.6	105.4	38091	605	30.8	157.7	647	JM353
H5	8.9	79.0 39.2	61.6	23740	356	18.1	80.9	339	JM354
Horizon	Na [†]	K ⁺	Ca ²⁺	Mg ²⁺	CEC	Na+Mg	ESP	SAR	UNIOUT
nr.		by NH4			sum	saturation		5 /111	
)/kg soil		cations	%	%		
H1	17.6	1.7	44.4	14.2	78	41	23	3.3	
H2	22.3	1.7	45.4	14.1	84	44	27	4.1	
H3	22.2	2.2	56.9	13.0	94	37	24	3.7	
H4	18.3	1.9	53.4	11.7	85	35	21	3.2	
H5	12.0	1.6	38.7	11.2	63	37	19	2.4	
	. = . 0		J J.1			٠.			

2.1.4 World reference base (2007) classification

Diagnostic horizon, properties, material:	Present in horizon:	Remarks:	
Albic	H5	Dry colours qualify for H5; the moist colours are too dark for the horizons above	
Cambic	-	H2 has the chroma 2 and H3 1, therefore is the requirement for alteration present, but H2 is thinner than the required 15 cm	
Mollic	-	The granular structure in H1 is described as weak, and below it is massive.	
Salic	-	The highest conductivity of 4.96 dS/m was measured in H4, but that is considerable less than the required 8 dS/m to qualify.	
Abrupt textural change	-	The changes in clay with depth are insufficient	
Gleyic colour pattern	H3-5	More than 90% reductimorphic mottles with in moist conditions a hue of 2.5-5Y	
Lithological discontinuity	-	No abrupt textural change, no rock fragments, no abrupt colour change (not pedogenetic) no abrupt change in mineralogy	
Reducing conditions	H3-5	Positive reaction to alpha-alpha dipyridyl	
Secondary carbonates	-	If secondary carbonate is present it is only in very limited quantities as it remain undiscovered during the fieldwork	
Calcaric material	H1-5	Analytical data confirm the presence of more than 2% calcium-carbonate throughout the soil	
Fluvic material	H1-5	Due to bioturbation any stratification is gone in H1-2. But the content of organic matter remains rather high and irregular through the soil what is considered an indication for Fluvic material and no other diagnostic horizons has been formed.	
Sulphidic material	-	The concentration of S is 10858 mg/kg or 1.09% in H3 and 12785, or 1.28% in H4. The content of calcium carbonate is 11.8 and 14.3% respectively. The content of calcium carbonate is sufficiently high that sulphidic material is not present.	

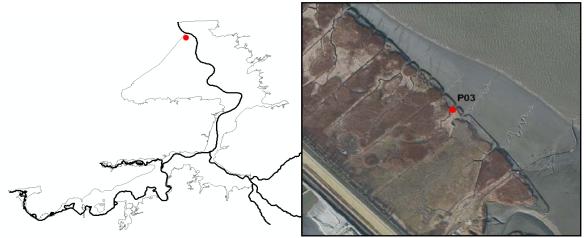
Following the chronological list of Reference Soil Groups the first to come are the Histosols, which concerns organic soils like bogs. Obvious not the case for this soil. The following soils are the Antrosols (man made soil through long term infield-outfield manuring system), Technosols (man made soil like mine waste and old waste dumps), Cryosols (with permafrost), Leptosols (very shallow soils on hard rock), Vertisols (very clayey soils with alternating wet and dry seasons) and finally Fluvisols. To key out in Fluvisols fluvic properties should start within the upper 25 cm and continuing to a depth of at least 50 cm. In this soil fluvic properties are present throughout, so more than fulfilling this requirement. Furthermore should no cambic, natric, petroplinthic or plinthic horizon be present, nor andic or vitric properties, which is not the case. Consequently the profile keys out as a Fluvisol.

Full classification name, without specifiers

(except where listed as such for prefix and suffix qualifiers):

Gleyic Tidalic Fluvisol (Calcaric, Humic, Hypersodic, Eutric, Siltic)

- Tidalic: flooded by tidewater but not covered by water at mean low tide
- Gleyic: oximorphic and reductimorphic colours and reduced conditions starting from 32 cm
- Calcaric: present throughout the soil profile
- Humic: the weighted average from 0-50 cm is 4.96% (>1% for humic; >5% for hyperhumic)
- Sodic: The required 15% sodium plus manganese cations on the exchange complex is present throughout the soil
- Eutric: The base saturation exceeds 100% throughout.
- Siltic: all 3 analysed horizons have a silty clay loam texture class (USDA)


Full classification name, with specifiers:

Gleyic Tidalic Fluvisol (Calcaric, Humic, Hypersodic, Hypereutric, Siltic)

- Calcaric: the lowest content on calcium carbonate at all analysed soil profiles is found in H2 of this profile. The weighted average for the upper 50 cm is 9.9%.
- Humic: the weighted average from 0-50 cm is 4.96%. The specifier Hyper requires 5%
- Hypersodic: The concentration of sodium plus manganese cations is 35-44%
- Hypereutric: The base saturation exceeds 100% throughout

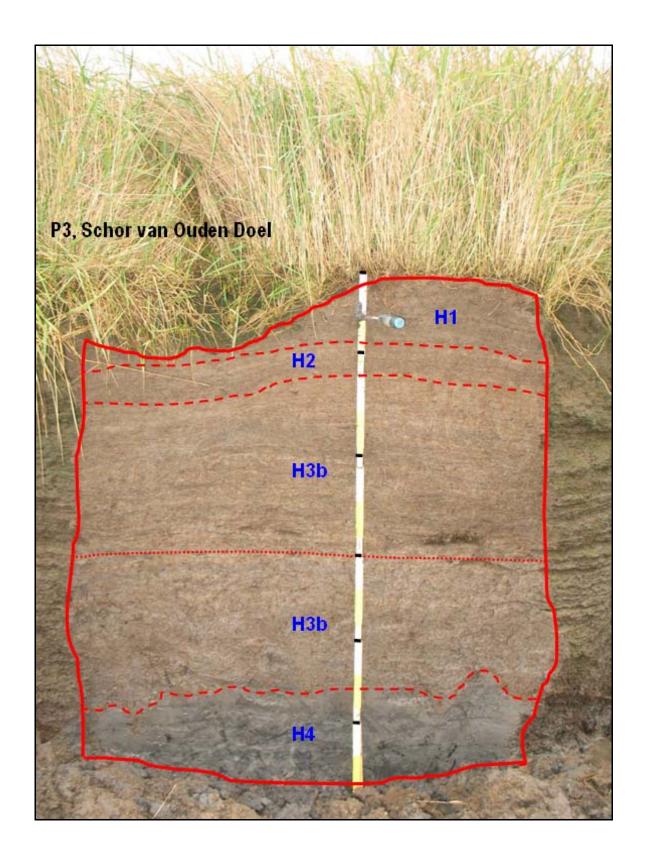
.2 Profile 'P3': Schor van Ouden Doel

(Derived elevation: 5.50m TAW; Lat.: 51.343688, Long.: 4.241676)

2.2.1 Situation

Profile 'P3' is located in 'Schor van Ouden Doel', on Flemish territory. The tidal marsh edge here is defended with riprap. The tidal marsh itself consists of reed vegetation north of the profile, and grassland-vegetation with *Elytrigia atherica* further south.

The profile is excavated in the tidal marsh edge near the inflow of a creek, in grassland vegetation. Due to the inflow of a creek there's a gap in the riprap. Therefore the location itself is rather undefended.



2.2.2 Profile description

Profile P3	Schor van Ouden Doel
1.3 Date and time:	14/11/2008. Profile description initiated at 14:20. Low tide at 10:18.
1.4 Author:	Jari Hinsch Mikkelsen
1.5 Location:	Belgium, Province of East Flanders, Beveren Municipality. From Kieldrecht take the road 'Dijk van Nieuw-Arenbergpolder at the first Y junction drive straight following the dike. When the road splits drive over the dike into The Netherlands. After about 500 m at the first junction, take the right road (NE direction). Follow this road passing the village Prosper on the right hand side to the end. Ones on the dike the Schor van Ouden doel is visible from the dike.
1.6 Profile coordinates:	Latitude, longitude: 51° 20′ 22.13″ N, 04° 14′ 50.06″ E Lambert-72: 225996.835 N, 141144.733 E
4.1 Elevation:	±5.5 m TAW (deduced from DTM data)
2.1 Atmospheric climate and weather condition:	Misty during the profile description
Soil climate:	STR: Mesic SMR: Udic
2.2 Topography:	Macrotopography: Estuarium, tidal mouth of the Schelde River Mesotopography: Tidal marsh Landscape position: on the wall of the one of the major creeks Slope form: complex Slope gradient: nearly level (0.5-1.0%) Slope length: - Slope orientation: -
2.4 Tidal marsh cliff:	Tidal marsh cliff height: 105 cm Tidal marsh cliff gradient: >80° (practically vertical) Tidal marsh cliff form: straight Thickness dense root layer: 10-20 cm Tidal marsh cliff coarse fragments: none
2.5 Land-use:	Tidal marsh Wildlife: Hunting probably not allowed Grazing: Grazing by cattle is in principle possible during the summer months but in practise the reed vegetation and the deep creeks seems to keep the cattle away from this part of the tidal marsh.
2.6 Human influence:	Ditches has been constructed with regular interval through the complete tidal marsh area. Today these ditches form the backbone in the creek system. Furthermore, the profile is located on about 10 m distance from the transition between the tidal marsh and the tidal mud flat, a transition that is characterised by a solid accumulation of mega boulders to protect the tidal marsh from wave impact and erosion.
Vegetation:	Grass vegetation composing of <i>Elymus athericus</i> , which is typical for brackish tidal marshes
2.7 Parent material:	unconsolidated deposits> marine and estuarine clays and silts> quaternary clay and silt> Holocene Clay (5221)
2.8 Drainage class:	Moderately well drained
2.9 External drainage:	Moderately rapid run-off
2.10 Flooding	Flooded during daily tides
2.11 Coarse surface frag.	None at the level of the soil profile, but at the creek mouth about 10 m from the soil profile boulder stones have been dumped
2.12 Erosion,	Marginal erosion of the creek walls during tides

Profile P3			Schor van Ouden Doel					
sedimentation:								
2.13	Surface cr	acks:	None observed					
2.14	Salts:		None observed					
Local	isation fac	ctors profile:	Vegetation: within the units of beach grass vegetation					
			Geomorphology/topography: Representative for the creek mouth soils					
			Hydrology: a diver has been placed in between P3 and P4					
Rema	rks:		No rock fragments through the soil					
N		Horizon des	scription					
Ο.								
H1	Α	•	y dark greyish brown to dark greyish brown 2.5Y 3.5/2 (M), greyish					
			5/2 (D); no reaction to ad-dipyridyl; weak very fine granular; friable; many					
			ts; mud shrimps (<i>Corophium volutator</i>); abrupt smooth boundary					
H2	AC		ark olive brown to olive brown 2.5Y 3.5/3 (M), light olive brown 2.5Y 5/3					
			n, fine, faint, clear rusty brown oximorphic mottles; no reaction to ad-					
			dipyridyl; massive, discontinuous original lamination faintly visible; very friable; many					
		very fine roots; abrupt smooth boundary						
H3	H3 CAg 23-90 cm; very dark greyish brown to dark greyish brown 2.5Y 3.5/2 (M), greyish							
	brown to light olive brown 2.5Y 5/2.5 (D); abundant, medium, distinct rusty brown oximorphic mottles, best visible in OM poor layers than in darker ones; no reaction to							
		aa-dipyridyl; massive, continuous lamination composing of organic poor beige to light						
			eyish layers and organic rich greyish layers; friable; common to very few very fine					
114		roots; abrupt wavy boundary						
H4	Cr	90-118 cm; dark greyish brown 2.5Y 3/2 (M), grey to greyish brown 2.5Y 5/1.5 (D);						
			rusty brown more or less continuous band on the transition between H3 and H4;					
<u> </u>		positive reaction to ad-dipyridyl; reductimorphic colour pattern; massive; no roots						

Colour measurements: M= Moist; MC= Moist-crushed; D= Dry; DC= Dry-crushed; W= Wet.

2.2.3 Analytical laboratory data

Table A3	3: Analytica	Il data for	P3, Schor	van Oude	n Doel			died 14/11/20	
Do	Hariman	Danth	Tatal N	TatalN	•			lysed: March-	
P3	Horizon	Depth	Total N	Total N		arbon- TO		C	C/N
Horizon	symbols		analyser		TC	IC 0/	OC	Analyser	
nr.		cm	%	%	%	%	%	%	(TOC/Kjel.)
H1	A	0-15	0.37	0.19	4.31	1.56	2.75	3.91	14
H2	AC	15-23	0.29	0.14	3.38	1.30	2.08	2.91	15
H3a	CAg	23-60	0.18	0.13	3.48	1.12	2.36	3.29	18
H3b	CAg	60-90	0.25	0.18	4.43	1.33	3.10	4.10	17
H4	Cr	90-118	0.32	0.25	6.45	1.83	4.61	5.86	18
Horizon	0.4.0					rial (fractio	-		4000 0000
nr.	0.4-2	2-6	6-50	50-63	63-100	100-250	250-500	500-1000	1000-2000
114	0.7	0.0	00.0	44.0	%	40.0	4.0	0.0	0.4
H1	2.7	3.8	33.0	11.6	24.8	18.9	4.0	8.0	0.4
H2	2.2	2.8	23.5	9.7	27.3	29.2	4.1	0.9	0.3
H3a	3.1	4.5	29.3	9.9	28.1	21.6	3.0	0.4	0.1
H3b	2.8	4.5	25.9	7.5	20.1	28.3	8.5	2.2	0.3
H4	3.3	5.8	30.9	7.4	16.2	23.1	9.4	3.7	0.4
Horizon	Na [⁺]	K⁺	Ca²⁺	Mg ²⁺		ticle size di			-
nr.	by M				0-2	2-10	10-20	20-50	50-2000
114		cmol(+)			40.0		%		40.0
H1	9.1	1.3	12.5	5.8	18.9	5.7	5.3	27.0	43.0
H2	10.6	1.3	13.7	6.4	00.4	5.0	4.0	04.0	44.5
H3a	9.8	1.2	11.6	5.5	20.1	5.8	4.8	24.9	44.5
H3b	18.3	2.0	17.8	9.8	20.4	44.0	- 0	24.0	45.0
H4	16.4	2.8	18.2	7.9	36.1	11.3	5.8	31.0	15.8
Horizon	CEC	CEC	BS by	Acidity	CaCO ₃	p⊦		рН	EC
nr.	sum	measured	CEC-m	sum	titration	H ₂ O	CaCl ₂	CaCl2/H2O	dS/m
		(+)/kg	%	cmol(+)/kg	%	1:5	1:5		1:5
H1	28.6	23.1	>100	<	10.4	8.2	7.7	0.94	1.23
H2	32.0	21.9	>100	<	9.8	8.6	7.7	0.90	1.48
H3a	28.0	21.1	>100	<	8.8	8.7	7.9	0.91	1.61
H3b	47.9	24.9	>100	<	12.5	8.5	8.0	0.94	2.40
H4	45.2	29.2	>100	<	13.4	8.1	7.9	0.97	3.07
Horizon	Ca	K	Mg	Na	P	S	Al	As	Cd
nr.						a			
					mg/kg				
H1	39891	6618	6273	2465	1917	2116	18641	22.9	1.8
H2	36131	4691	5935	2662	2109	1232	12005	31.8	2.7
НЗа	33413	6670	6175	2797	1075	853	20190	40.3	2.4
H3b	48214	7649	7747	3766	1118	1093	22332	42.9	2.9
H4	50081	8432	7968	3555	1081	5931	28641	58.6	11.6
Horizon	Со	Cr	Cu	Fe	Mn	Ni	Pb	Zn	Lab
nr.				-	Regia				
LI1	0.0	40.0	07.0	mg/	ū	22.0	GG 4	262	INAGEE
H1	9.6	42.6 52.7	87.6	29253	872	22.8	66.4	263	JM355
H2	9.5	52.7	90.5	28179	702 647	24.2	87.1	303	JM356
H3a	9.6	48.1	108.1	27300	647	20.7	92.7	337	JM357
H3b H4	11.7 16.7	66.3 86.8	91.8 111.1	30638 29687	613 760	24.8 31.3	125.1 183.2	484 755	JM358 JM359
Horizon	Na [⁺]	K [†]	Ca ²⁺	Mg ²⁺	CEC		ESP	SAR	บเทอออ
nr.	i Na	by NH40		wig	sum	Na+Mg saturation	ESF	SAR	
		_				%	%		
H1	8.4	1.0	42.5	7.5	59	27	14	1.7	
H2	8.4 8.4	0.9		7.5 6.9	59 57	27 27			
	8.4 8.1		40.5 42.8	6.9 6.1	57 58		15 14	1.7	
H3a H3b	13.1	0.9 1.2	42.8	8.6	67	24 33	20	1.6 2.6	
	13.1	1.4	4 3.7	0.0	U/	JJ	20	∠.∪	
H4	12.2	1.7	49.1	9.0	72	29	17	2.3	

2.2.4 World reference base (2007) classification

Diagnostic horizon, properties, material:	Present in horizon:	Remarks:
Albic		Colours far too dark in moist conditions
Cambic		Stratification is clearly visible through most of the soil and structure is not present, expect a bit of granular structure in the topsoil
Mollic		Colours are not dark enough and the structure is too incomplete
Salic		The highest conductivity is 3.07 dS/m
Abrupt textural change		Data are missing on the clay content for H2 and H4, but based on the data available it seems as the clay decreases towards the surface. Therefor most probably no abrupt change is present
Gleyic colour pattern	H2-3 H4	Oximorphic colour pattern Reductimorphic colour pattern
Lithological discontinuity		No abrupt textural change, no rock fragments, no abrupt colour change (not pedogenetic) no abrupt change in mineralogy
Reducing conditions	H4	Positive reaction to alpha-alpha dipyridyl
Secondary carbonates		No secondary carbonate observed
Calcaric material	H1-4	Analytical data confirm the presence of more than 2% calcium-carbonate throughout the soil
Fluvic material	H2-3 H4	Clearly stratified OC content increases irregular with depth from H1-4
Sulphidic material	-	Alkaline pH

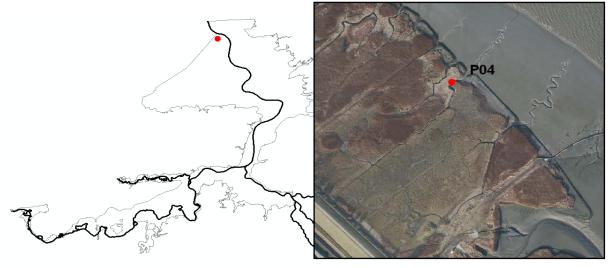
Passing through the diagnostic criteria's the first Reference Soil Group that applies are Fluvisols. P3 have fluvic properties from 15 cm and onwards, and no cambic, natric, petroplinthic or plinthic horizon nor andic or vitric properties are present. Consequently the profile keys out as a Fluvisol.

Full classification name, without specifiers

(except where listed as such for prefix and suffix qualifiers):

Tidalic Fluvisol (Calcaric, Humic, Sodic, Eutric)

- Tidalic: flooded by tidewater but not covered by water at mean low tide
- Gleyic: oximorphic and reductimorphic colours starts from 15 cm depth but the reduced conditions only from 90 cm, which is too deep to qualify
- Calcaric: present throughout the soil profile
- Humic: the content exceeds 1% throughout
- Sodic: The required 15% sodium plus manganese cations on the exchange complex is present throughout the soil
- Eutric: The base saturation exceeds 100% throughout
- Siltic: texture is too loamy


Full classification name, with specifiers:

Tidalic Fluvisol (Calcaric, Humic, Sodic, Hypereutric)

- Calcaric: a content between 9-13% was found, but the weighted average is 9.4%
- Sodic: The concentration of sodium plus manganese cations is not above 30%
- Hypereutric: The base saturation exceeds 100% throughout

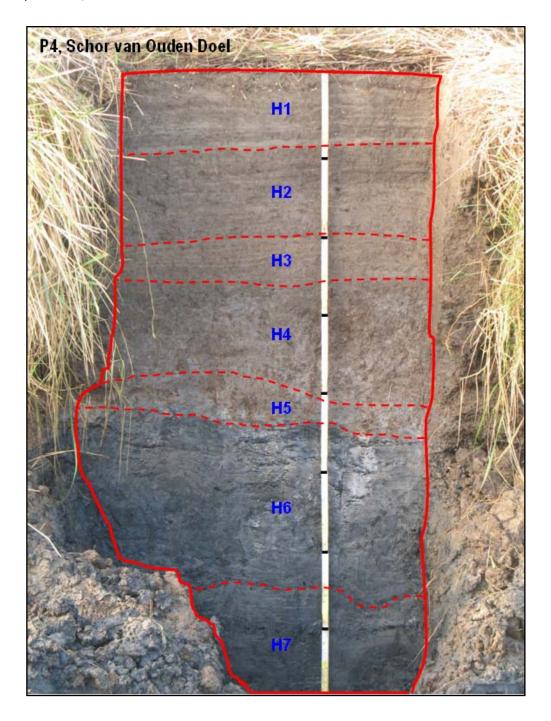
2.3 Profile 'P4': Schor van Ouden Doel

(Derived elevation: 5.65m TAW; Lat.: 51.343433, Long.: 4.241926)

2.3.1 Situation

Profile 'P4' is located in 'Schor van Ouden Doel', on Flemish territory. The tidal marsh edge here is defended with riprap. The tidal marsh itself consists of reed vegetation north of the profile, and grassland-vegetation further south.

The profile is excavated in a creek-wall, near the inflow of the creek, in grassland vegetation. It's situated in an outer curve of the creek, with erosion near the vegetation and sedimentation on the creek bed.



2.3.2 Profile description

Profile P4	Schor van Ouden Doel
1.3 Date and time:	17/12/2008. Profile description initiated at 15:00. Low tide at 13:17
1.4 Author:	Jari Hinsch Mikkelsen
1.5 Location:	Belgium, Province of East Flanders, Beveren Municipality.
	For a road description check description presented for profile P3.
1.6 Profile coordinates:	Latitude, longitude: 51° 20′ 20.60″ N, 04° 14′ 51.56″ E
	Lambert-72: 225968.419 N, 141162.049 E
4.1 Elevation:	±5.65 m TAW (deduced from DTM data)
2.1 Atmospheric climate	In the morning overcast, in the afternoon sunny
and weather condition:	
Soil climate:	STR: Mesic
	SMR: Udic
2.2 Topography:	Macrotopography: Estuarium, tidal mouth of the Schelde River
	Mesotopography: Tidal marsh
	Landscape position: on the wall of the one of the major creeks
	Slope form: complex
	Slope gradient: nearly level (0.5-1.0%)
	Slope length: -
0.4 = 1.1 1.15	Slope orientation: -
2.4 Tidal marsh cliff:	Tidal marsh cliff height: 200-220 cm
	Tidal marsh cliff gradient: Upper part >80°, lower part <45° Tidal marsh cliff form: Incised
	Thickness dense root layer: ±30cm
2.5 Land-use:	Tidal marsh cliff coarse fragments: None Tidal marsh
2.5 Lanu-use.	Wildlife: Hunting probably not allowed
	Grazing: Grazing by cattle is in principle possible during the summer
	months but in practise, the deep creeks and the reed vegetation on

Profile P4		P4	Schor van Ouden Doel					
			some distance seems to keep the cattle away from this part of the tidal					
			marsh.					
2.6 Human influence:			The major creeks have developed in former drainage ditches					
Vegetation:			Grass vegetation composing of <i>Elymus athericus</i> , which is typical for brackish tidal marshes					
2.7 P	arent m	naterial:	unconsolidated deposits> marine and estuarine clays and silts> quaternary clay and silt> Holocene Clay (5221)					
2 8 D	rainage	e class:	Moderately well drained					
		drainage:	Moderately rapid run-off					
	Floodin		Flooded during daily tides					
		surface frag.	None at the level of the soil profile					
	Erosion		Marginal erosion of the creek walls during tides					
	entatio		Trial girlar crossorr or the creek walls during dues					
		cracks:	None observed					
2.14		. Cruckor	None observed					
		factors profile:	Vegetation: within the units of beach grass vegetation					
Local	Sacion	ractors prome.	Geomorphology/topography: Representative for the creek mouth soils					
			Hydrology: a diver has been placed inbetween P3 and P4					
Rema	ırks		The profile is morphologically rather similar to P3.					
- Keirie	ii Koi		No rock fragments through the soil.					
N		Horizon descri						
0.								
H1	Ae	0-19 cm; dark greyish brown 2.5Y 4/2 (M), greyish brown 2.5Y 5/2 (D); locally very fine, weak granular structure, elsewhere stratified in form of continuous brown and beige sandy bands; friable; common very fine to fine and few medium roots; very abrupt smooth boundary						
H2	Ве	19-40 cm; very of greyish brown 2	dark greyish brown 2.5Y 3/2 (M), very dark greyish brown 2.5Y 3/2 (M), .5Y 5/2 (D); massive and stratified composing of continuous brown and ids; friable; few very fine roots; very abrupt smooth boundary					
H3	Be g	40-53 cm; very dark greyish brown 2.5Y 3/2 (M), greyish brown to light olive brown 2.5Y 5/2.5 (D); common, fine, faint, clear, rusty brown mottles; no reaction to aa-dipyridyl; massive and stratified composing of continuous brown and beige sandy bands; friable; few very fine roots; very abrupt smooth boundary						
H4	B g1	53-80 cm; very dark greyish brown to dark greyish brown 2.5Y 3.5/2 (M), light olive brown 2.5Y 5/3 (D); common, fine, faint, clear, rusty brown oximorphic mottles; no reaction to aa-dipyridyl; medium, moderate developed, angular blocky; sticky; very few very fine roots; clear smooth boundary						
H5	B g2	80-90 cm; very dark greyish brown 2.5Y 3/2 (M), light olive brown 2.5Y 5/3 (D); many, fine to medium, distinct, diffuse, rusty brown oximorphic mottles; no reaction to addipyridyl; massive; sticky, very plastic; very few very fine roots; effective rooting depth 90cm; abrupt smooth boundary						
H6	Cr	90-128 cm; very dark greyish brown 2.5Y 3/2 (M), grey to greyish brown 2.5Y 5/1.5 (D);						
	1	faint positive rea	faint positive reaction to ad-dipyridyl; reductimorphic colour pattern; massive, some wavy					
			on with organic rich (roots) bands and mineral bands; slightly sticky and slightly					
		· · · · · · · · · · · · · · · · · · ·	ots observed; diffuse smooth boundary					
H7	Cr 2	128-160 cm; very dark greyish brown 2.5Y 3/2 (M), grey to greyish brown 2.5Y 5/1.5 (D); faint positive reaction to aa-dipyridyl; reductimorphic colour pattern; massive; slightly sticky and slightly plastic; no roots observed						

Extra subordinate symbols: 'bi' biological activity clearly evidences (fauna and flora), and more than what can be expected according to type of soil, position, time of year etc. 'e' original stratification visible. Colour measurements: M= Moist; MC= Moist-crushed; D= Dry; DC= Dry-crushed; W= Wet.

2.3.3 Analytical laboratory data

Table A4	: Analytica	I data for F	4, Schor va	an Ouden Do	el			died 14/11/20	
P4	Horizon	Donth	Total N	Total N		Carbon- TOC		lysed: March-	
Horizon	symbols	Depth	analyser	Total N Kjeldahl	тс	IC	ОС	Analyser	C/N
nr.	·,	cm	%	%	%	%	%	%	(TOC/Kjel.)
H1	Ae	0-19	0.23	0.18	3.40	2.01	1.39	3.60	8
H2	Ве	19-40	0.32	0.20	4.35	1.62	2.72	4.95	14
H3	Beg	40-53	0.20	0.15	2.92	1.31	1.61	3.10	11
H4 H5	Bg1 Bg2	53-80 80-90	0.28 0.33	0.26 0.24	5.44 5.56	1.49 1.83	3.95 3.72	4.93 4.92	15 16
H6	Cr1	90-128	0.33	0.20	5.28	1.92	3.36	4.83	17
H7	Cr2	128-160	0.35	0.23	6.15	1.63	4.52	5.88	19
Horizon						ial (fractions			
nr.	0.4-2	2-6	6-50	50-63	63-100	100-250	250-500	500-1000	1000-2000
H1	2.1	2.7	20.9	9.5	% 29.0	29.4	4.6	1.3	0.6
H2	2.9	4.4	29.6	9.6	24.0	24.3	4.0	0.9	0.0
H3	2.1	2.9	20.5	7.2	23.2	32.9	8.3	2.5	0.4
H4	4.2	7.7	38.1	7.3	14.0	18.0	8.1	2.3	0.3
H5	3.8	6.6	36.5	8.9	19.0	18.6	4.7	1.6	0.5
H6 H7	2.8 3.7	4.5 6.4	26.9 35.9	7.6 9.3	20.2 21.5	26.0 19.3	9.1 3.2	2.5 0.6	0.3 0.2
Horizon	Na ⁺	0.4 K ⁺	Ca ²⁺	Mg ²⁺		rticle size dis			
nr.			mpulsive n	_	0-2	2-10	10-20	20-50	50-2000
			+)/kg soil				%		
H1	7.6	1.2	13.0	5.6	16.0	5.4	2.6	28.6	47.4
H2	12.4	1.6	16.5	7.3					
H3 H4	11.1 19.2	1.2 2.2	12.9 21.2	5.9 10.9	40.3	14.9	23.9	11.4	9.6
H5	17.3	2.2	22.4	9.8	40.3	14.9	23.9	11.4	9.0
H6	11.7	2.0	13.7	6.8	24.0	8.8	7.2	24.7	35.3
H7	16.4	2.5	15.6	8.3					
Horizon	CEC	CEC	BS by	Acidity	CaCO ₃	pł	1	pН	EC
nr.	sum	measured	CEC-m	sum	titration		CaCl ₂	CaCl2/H2O	dS/m
		(+)/kg	%	cmol(+)/kg	%	1:5	1:5		1:5
H1	27.4	22.5	>100	< <	12.3	8.8	7.8	0.88	0.98
H2 H3	37.9 31.2	24.3 23.5	>100 >100	<	10.5 9.3	8.5 8.6	7.7 7.8	0.91 0.90	1.57 1.46
H4	53.5	37.5	>100	<	10.6	8.3	7.8	0.94	2.54
H5	51.5	34.0	>100	<	11.7	8.2	7.8	0.95	2.68
H6	34.2	22.8	>100	<	13.6	8.1	7.7	0.94	2.15
H7	42.9	26.6	>100	< N-	14.1 P	8.2	7.9	0.96	2.75
Horizon nr.	Ca	K 	Mg 	Na Δ	r qua Regia	S 	AI	As	Cd
					mg/kg	• 			
H1	46530	2795	4086	1865	1307	1620	7195	15.0	2.0
H2	41667	4736	5836	3194	2600	2671	17344	31.5	3.9
H3	30781	3416	4103	2258	1315	976	11944	29.8	3.7
H4	37638	5037	6273	3797	1407	1174	22545	46.8	5.6
H5 H6	42485 50070	4394 4234	6026 5567	3885 3105	2022 1278	1637 7776	17360 14976	56.3 44.9	9.4 8.0
H7	44560	4442	6043	3740	1281	7473	15595	59.8	6.2
Horizon	Со	Cr	Cu	Fe	Mn	Ni	Pb	Zn	Lab
nr.				Aqua R					
114	7.4	00.0		mg/k	0	40.0	40.4	004	11.1000
H1 H2	7.1 12.6	29.0 71.3	52 123	19051 35045	621 1095	16.2 34.3	48.1 106.6	224 408	JM368 JM369
H3	8.1	40.9	101	23218	486	34.3 20.4	72.5	287	JM370
H4	14.9	88.6	111	36817	1070	33.6	176.9	611	JM371
H5	11.5	90.8	238	38148	667	28.2	154.1	623	JM372
H6	10.4	68.7	144	29896	973	24.7	119.5	538	JM373
H7 Horizon	11.8	81.5 K ⁺	125 Ca ²⁺	30794 Ma ²⁺	1179 CEC	26.4 Na+Mg	153.9 ESP	563 SAR	JM374
nr.	Na ⁺		- Са 4ОАс	Mg ²⁺ 	sum	saturation	LOF	JAR	
		•	+)/kg soil		cations	%	%		
H1	5.8	0.8	45.0	6.5	58	21.2	9.9	1.1	
H2	9.3	1.0	43.3	8.3	62	28.4	15.0	1.8	
H3	8.7	0.8	41.9	6.7	58	26.4	14.9	1.8	
H4 H5	15.0 14.3	1.4 1.3	47.3 45.9	10.6 10.4	74 72	34.4 34.4	20.1 19.9	2.8 2.7	
по Н6	10.2	1.4	45.9	8.2	65	34.4 28.4	19.9 15.8	2.7	
H7	13.4	1.7	45.4	10.0	71	33.2	19.0	2.5	

2.3.4 World reference base (2007) classification

Diagnostic horizon, properties, material:	Present in horizon:	Remarks:
Albic	H1	The surface horizon qualifies with 4/2 in moist conditions
Cambic		Stratification is clearly visible through most of the soil and structure is not present, expect a bit of granular structure in the topsoil
Mollic		Colours are not dark enough and the structure is too incomplete
Salic		The highest conductivity is 2,68 dS/m
Abrupt textural change	H3 to H4	Data on the texture is missing for H3 but this horizon belongs to the stratified upper group of horizons, where H4 has a structure development and is rather clayey. This might be an old surface horizon and dating from a period of characterised by a more calm sedimentation environment.
Gleyic colour pattern	H3-5	Oximorphic colour pattern
	H6-7	Reductimorphic colour pattern
Lithological discontinuity	H3 to H4	Abrupt textural change linked with a change in sedimentation environment
Reducing conditions	H6-7	Positive reaction to alpha-alpha dipyridyl
Secondary carbonates		No secondary carbonate observed
Calcaric material	H1-7	Analytical data confirm the presence of more than 2% calcium-carbonate throughout the soil
Fluvic material	H1-3	Clearly stratified
	H1-7	OC content increases irregular with depth
Sulphidic material	-	Alkaline pH

Passing through the diagnostic criteria's the first Reference Soil Group that applies are Fluvisols. P4 have fluvic properties from the surface on, and no cambic, natric, petroplinthic or plinthic horizon nor andic or vitric properties are present. Consequently the profile keys out as a Fluvisol.

Full classification name, without specifiers

(except where listed as such for prefix and suffix qualifiers):

Tidalic Fluvisol (Calcaric, Humic, Sodic, Eutric, Siltic)

- Tidalic: flooded by tidewater but not covered by water at mean low tide
- Gleyic: oximorphic and reductimorphic colours starts from 15 cm depth but the reduced conditions only from 90 cm, which is too deep to qualify
- Calcaric: present throughout the soil profile
- Humic: the content exceeds 1% throughout
- Sodic: The required 15% sodium plus manganese cations on the exchange complex is present throughout the soil
- Eutric: The base saturation exceeds 100% throughout
- Siltic: H3 qualifies with a silty clay texture but is only 27 cm thick, instead of the required 30 cm. Most probably H5 will contain enough silt that this horizon applies as well. By expert judgement siltic is considered present

Full classification name, with specifiers:

Tidalic Fluvisol (Hypercalcaric, Humic, Sodic, Hypereutric)

- Hypercalcaric: a content between 9-12% was found, and the weighted average is 10,94%
- Humic: all horizons have less than 5% OC
- Sodic: The concentration of sodium plus manganese cations is less than 30%
- Hypereutric: The base saturation exceeds 100% throughout

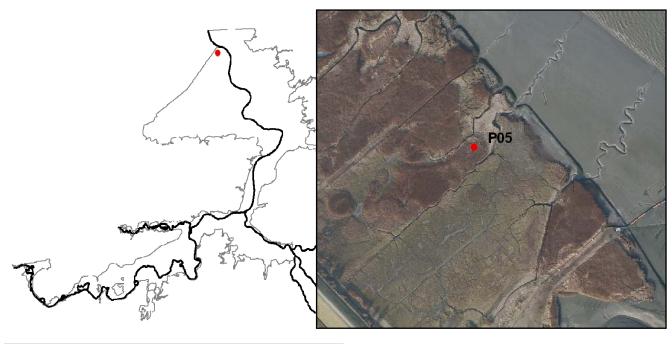


Photo Creek edge in the 'schor of Ouden Doel'

2.4 Profile 'P5': Schor van Ouden Doel

(Derived elevation: 5.50m TAW; Lat.: 51.343071, Long.: 4.241504)

2.4.1 Situation

Profile 'P5' is located in 'Schor van Ouden Doel', on Flemish territory. The tidal marsh edge here is defended with riprap. The tidal marsh itself consists of reed vegetation north of the profile, and grassland-vegetation further south. The profile is excavated in the tidal marsh soil, in reed vegetation.


2.4.2 Profile description

Profile P5	Schor van Ouden Doel		
1.3 Date and time:	17/12/2009. Profile description began at 11:45. Lowe tide at 13:17.		
1.4 Author:	Jari Hinsch Mikkelsen		
1.5 Location:	Belgium, Province of East Flanders, Beveren Municipality.		
	For a road description check description presented for profile P3.		
	The profile is located inbetween two main creeks, in a dense reed		
	vegetated area.		
1.6 Profile coordinates:	Latitude, longitude: 51° 20′ 18.43″ N, 04° 14′ 49.02″ E		
	Lambert-72: 225928.200 N, 141132.608 E		
4.1 Elevation:	±5.5 m TAW (interpolation from detailed trimble measurements of the		
	area)		
2.1 Atmospheric climate	Overcast		
and weather condition:			
Soil climate:	STR: Mesic		
	SMR: Udic		
2.2 Topography:	Macrotopography: Estuarium, tidal mouth of the Schelde River		
	Mesotopography: Tidal marsh		
	Landscape position: Central part of the tidal marsh in a slight depression		
	position. Slope form: -		
	Slope gradient: -		
	Slope length: -		
	Slope orientation: -		
2.5 Land-use:	Tidal marsh		
	Wildlife: Hunting probably not allowed		
	Grazing: Grazing by cattle is possible during the summer period, but to		
	traces found that the cattle effectively access this part of the tidal marsh		
2.6 Human influence:	No human influence traced		
Vegetation:	Dense reed vegetation (Phragmites australis)		
2.7 Parent material:	unconsolidated deposits> marine and estuarine clays and silts>		
2.0 Duning as along	quaternary clay and silt> Holocene Clay (5221)		
2.8 Drainage class:	Poorly drained		
2.9 External drainage:	Slow run-off		
2.10 Flooding	The location of the soil profile is flooded during spring tides. Between		
	spring tides periods water slowly drains towards the creeks.		
2.11 Coarse surface frag.	None		
2.12 Erosion,	Possible very slow sedimentation related to bimonthly floodings		
sedimentation:			
2.13 Surface cracks:	None		
2.14 Salts:	None		
Localisation factors profile:	Vegetation: the profile represents the extensive areas covered by reed		
	vegetation.		
	Geomorphology/topography: The profile was located in the central part		
	of the tidal marsh in a somewhat lower landscape position.		
	Hydrology: Diver data are available from a location nearby. The profile		
	was located to assure good link with diver data.		
Remarks:	No rock fragments, cementations, compactions and nodules observed		
	through the soil profile. No traces of secondary carbonates.		
N Horizon de	scription		

Pro	file P5	Schor van Ouden Doel					
ο.							
H1	Abi	0-20 cm; very dark greyish brown 2.5Y 3/2 (M), light olive brown 2.5Y 5/3 (D);					
		massive; sticky, very plastic; high porosity; common very fine to fine, very few					
		medium and few coarse roots; clear smooth boundary					
H2	Cg	20-42 cm; very dark greyish brown 2.5Y 3/2 (M), olive brown to light olive brown 2.5Y					
		4.5/3 (D); common, fine to medium, distinct, diffuse, rusty brown, oximorphic mottles;					
		massive; sticky, very plastic; high porosity; many very fine, common fine, very few					
		medium and few coarse roots; abrupt smooth boundary					
H3	Cr	42-60 cm; very dark greyish brown 2.5Y 3/2 (M), dark greyish brown to greyish brown					
		2.5Y 4.5/2 (D); faint reaction to ad-dipyridyl; reductimorphic colour pattern; massive;					
		sticky, very plastic; medium porosity; very few very fine to fine, few medium and very					
		few coarse roots; effective rooting depth is 60 cm (as observed when the profile was					
		digged out)					

Extra subordinate symbols: 'bi' biological activity clearly evidences (fauna and flora), and more than what can be expected according to type of soil, position, time of year etc.

Colour measurements: M= Moist; MC= Moist-crushed; D= Dry; DC= Dry-crushed; W= Wet.

2.4.3 Analytical laboratory data

Table A5	: Analytica	l data for l	P5, Schor	van Ouden	Doel		Profile stud	lied 14/11/200)8
	×I				_			lysed: March-	
P5	Horizon	Depth	Total N			Carbon- TO		С	C/N
Horizon	symbols		analyser	•	TC	IC	OC	Analyser	
nr.		cm	%	%	%	%	%	%	(TOC/Kjel.)
H1	Abi	0-20	0.45	0.33	6.13	2.14	3.99	5.42	12
H2	Cg	20-42	0.60	0.34	6.37	1.05	5.32	8.22	16
H3	Cr	42-60	0.37	0.29	6.85	1.41	5.44	5.82	19
Horizon						rial (fractio			
nr.	0.4-2	2-6	6-50	50-63	63-100			500-1000	1000-2000
H1	4.4	7.8	41.0		17.7	17.9	2.4	0.1	0.0
H2	3.9	7.1	38.1	7.3	14.0	17.2	7.7	4.0	8.0
H3	5.1	9.5	42.8	8.1		13.8	2.8	0.4	0.0
Horizon		K ⁺	Ca²⁺			ticle size d	listributio	n (µm; pip	ette)
nr.		MgSO ₄ (cor				2-10	10-20	20-50	50-2000
		cmol(+))/kg soil				%		
H1	17.8	2.5	23.1	13.1					
H2	23.0	2.6	27.5	13.2	41.0	19.7	9.0	23.1	7.3
H3	19.2	2.6	11.2	12.4					
Horizon	CEC	CEC	BS by	Acidity	CaCO ₃	p	Н	рН	EC
nr.	sum	measured	CEC-m	sum	titration	H ₂ O	CaCl ₂	CaCl2/H2O	dS/m
	cmol((+)/kg	%	cmol(+)/kc	%	1:5	1:5		1:5
H1	56.5	40.7	>100	<	12.8	8.3	7.8	0.93	2.04
H2	66.2	42.5	>100	<	11.6	8.1	7.7	0.95	3.13
H3	45.4	39.8	>100	<	11.5	8.3	7.9	0.95	2.48
Horizon	Ca	K	Mg	Na	Р	S	Al	As	Cd
nr.						a			
					mg/kg				
H1	46962	5226	6819	3554	2490	2495	21037.5	27.6	3.9
H2	35328	10258	8570	5182	3696	1728	36315.7	58.2	10.2
H3	40371	8906	7424	3930	2142	1815	36483.1	60.0	8.6
Horizon	Со	Cr	Cu	Fe	Mn	Ni	Pb	Zn	Lab
nr.				-					
				mg/l	kg				
H1	14.7	69.9	115.1	40346	1279	34.6	104.1	438	JM375
H2	15.5	117.5	191.1	45471	929	45.5	173.1	602	JM376
H3	15.5	85.0	218.7	42900	670	37.4	149.3	614	JM377
Horizon	Na⁺	K⁺	Ca ²⁺	Mg ²⁺	CEC	Na+Mg	ESP	SAR	
nr.		by NH4	OAc		sum	saturation			
		cmol(+))/kg soil		cations	%	%		
H1	14.8	1.7	47.3	14.6	78	38	19	2.7	
H2	20.0	1.8	46.4	13.9	82	41	24	3.6	
H3	17.4	1.9	50.2	12.4	82	36	21	3.1	

2.4.4 World reference base (2007) classification

Diagnostic horizon,	Present	Remarks:
properties, material:	in horizon:	
Albic		Colours are too dark in moist conditions
Cambic		Colour changes insufficient and no structure
Mollic		Structure is too incomplete
Salic		The highest conductivity is 3,13 dS/m
Abrupt textural change		Data on the texture-pipette is partly missing, based on texture-laser; most probably no abrupt changes are present. This soil has for a long time been a depression soil.
	H2	Oximorphic colour pattern
	H3	Reductimorphic colour pattern
Lithological discontinuity		
Reducing conditions	H3	Positive reaction to alpha-alpha dipyridyl
Secondary carbonates		No secondary carbonate observed
Calcaric material		Analytical data confirm the presence of more than 2%
		calcium-carbonate throughout the soil
Fluvic material		OC content increases irregular with depth
Sulphidic material	-	Alkaline pH

The profile keys out as a Fluvisol.

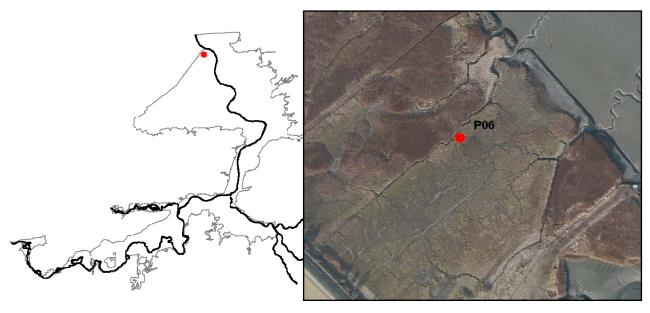
Full classification name, without specifiers

(except where listed as such for prefix and suffix qualifiers):

Gleyic Tidalic Fluvisol (Calcaric, Humic, Sodic, Eutric, Siltic)

- Tidalic: flooded by tidewater but not covered by water at mean low tide
- Gleyic: oximorphic and reductimorphic colours start from 20 cm and 42 cm respectively. The reduced conditions also from 42 cm depth.
- Calcaric: present throughout the soil profile
- Humic: the content exceeds 1% throughout
- Sodic: The required 15% sodium plus manganese cations on the exchange complex is present throughout the soil
- Eutric: The base saturation exceeds 100% throughout
- Siltic: H2 qualifies with a silty clay texture but is only 22 cm thick, instead of the required 30 cm. Most probably H1 or H3 will contain enough silt that this horizon applies as well. By expert judgement siltic is considered present

Full classification name, with specifiers:


Epigleyic Tidalic Fluvisol (Hypercalcaric, Humic, Hypersodic, Hypereutric, Siltic)

- Epigleyic: the reduced conditions appear already within the upper 50 cm
- Hypercalcaric: a content between 11-12% was found, and the weighted average is above 10%
- Humic: the weighted average is 4,81%
- Hypersodic: The concentration of sodium plus manganese cations exceeds 30% throughout
- Hypereutric: The base saturation exceeds 100% throughout

2.5 Profile 'P6': Schor van Ouden Doel

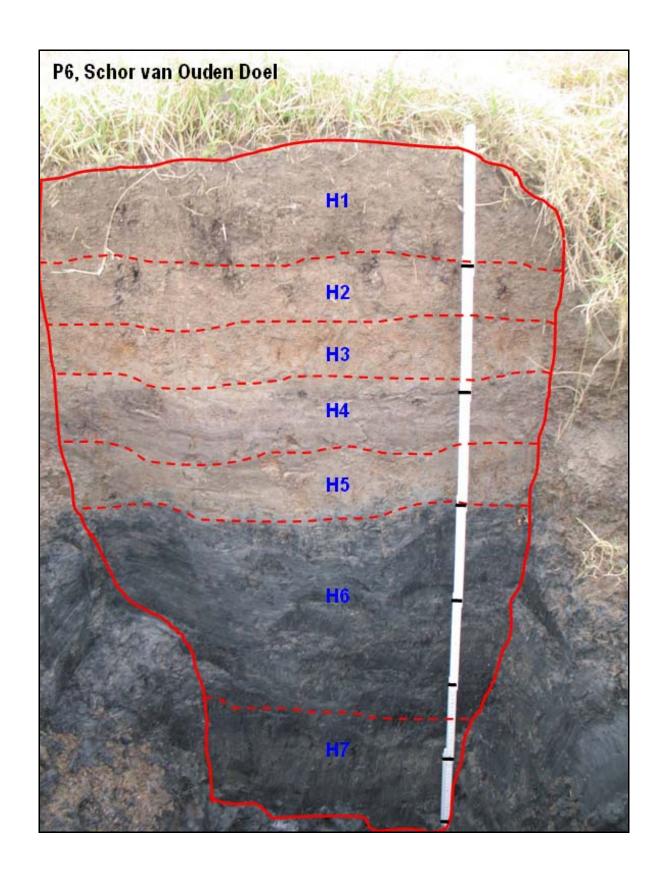
(Derived elevation: 5.60m TAW; Lat.: 51.342653, Long.: 4.241386)

2.5.1 Situation

Profile 'P6' is located in 'Schor van Ouden Doel', on Flemish territory. The tidal marsh edge here is defended with riprap.

The tidal marsh itself consists of reed vegetation north of the profile, and grassland-vegetation further south.

The profile is excavated in the creek-wall of a smaller second-order creek, in grassland vegetation.


2.5.2 Profile description

Profile P6	Schor van Ouden Doel
1.3 Date and time:	25/2/2009. Profile description began at 12h. Lowe tide at 10:20.
1.4 Author:	Jari Hinsch Mikkelsen
1.5 Location:	Belgium, Province of East Flanders, Beveren Municipality.
	For a road description check description presented for profile P3.
1.6 Profile coordinates:	Latitude, longitude: 51° 20′ 15.92″ N, 04° 14′ 48.32″ E
	Lambert72: 225881.698 N, 141124.299 E
4.1 Elevation:	±5.6 m TAW (deduced from DTM data)
2.1 Atmospheric climate	Overcast. In the weeks prior to the fieldwork the weather was
and weather condition:	extraordinary overcast and rainy. (The month of February was the least sunny February ever recorded in Belgium)
Soil climate:	STR: Mesic
	SMR: Udic
2.2 Topography:	Macrotopography: Estuarium, tidal mouth of the Scheldt River
	Mesotopography: Tidal marsh
	Landscape position: Central part of the tidal marsh in a very gently
	sloping landscape position. The soil profile was studied in a side-creek. Slope form: straight, convex (SV)
	Slope gradient: Level (0.2-0.5%)
	Slope length: <10m
	Slope orientation: NW
2.5 Land-use:	Tidal marsh
	Wildlife: Hunting probably not allowed
	Grazing: Grazing by cattle during the summer months
2.6 Human influence:	Vegetation moderate to strongly disturbed as result of cattle grazing.
	Partly due to puddling hereby compacting the soil and destroying the
	vegetation, partly due to a selective eating pattern of the cattle.
Vegetation:	Salt marsh grassland with which is a vegetation type composing of a
	variety of grasses in a landscape position influenced by (regular)
2.7 Damant markavials	flooding by saline or brackish water
2.7 Parent material:	unconsolidated deposits> marine and estuarine clays and silts>
2.8 Drainage class:	quaternary clay and silt> Holocene Clay (5221) Somewhat poorly drained
2.9 External drainage:	Slow run-off
2.10 Flooding	Where the soil profile was studied the creek is flooded twice daily. The
2.10 Flooding	surface of the soil profile is flooded around periods of spring tides
2.11 Coarse surface frag	None
2.11 Coarse surface frag.	
2.12 Erosion,	In the creek erosion and sedimentation are active process. On top of the
sedimentation:	soil possible some slow sedimentation takes place. Where the soil is
2.12.6::::	facing puddling and trampling the soil rather faces a phase of erosion.
2.13 Surface cracks:	None
2.14 Salts:	None
Localisation factors profile:	Vegetation: the profile represents the brackish grassland with Puccinelia
	maritime present in a relatively small area of Schor van Ouden Doel.
	Within the grassland the profile was located where there were no traces
	of erosion, like close to the tidal mud flat (wave erosion) or as a result of
	puddling (cattle grazing). To assure a minimum of disturbance to the
	environment the soil was studied on the wall of a side creek cutting into
	the grassland.

Pro	file P6		Schor van Ouden Doel
Rema	ırks:		Geomorphology/topography: The profile was located in the central part of the tidal marsh. Hydrology: Information are available from one diver that was placed in the grassland about 30-40 meters closer to the Scheldt River No rock fragments, cementations, compactions and nodules observed
N		Horizon des	through the soil profile. No traces of carbonates.
0.		110112011 des	Cription
H1	Abi1	fine, strong	very dark greyish brown 10YR 3/2 (M); no reaction to aa-dipyridyl; very granular; very friable; high porosity; many very fine, common fine, very roots; clear smooth boundary
H2	Abi2	dipyridyl; ver	dark greyish brown to brown 10YR 4/2.5 (M); no reaction to ad- y fine, strong granular; friable; high porosity; common very fine and fine, lium roots; clear smooth boundary
H3	Bg1	mottles; no re	own 10YR 4/3 (M); many, medium, distinct, very diffuse, 7.5YR 3/6 (M) eaction to aa-dipyridyl; oximorphic colour pattern; very fine, weak ky, very plastic; medium porosity; few very fine, very few fine roots; th boundary
H4	Bg2	37-50/53 cm; mottles; no re	very dark greyish brown 10YR 3/2 (M); few, fine, faint, diffuse, 10YR 4/6 eaction to aa-dipyridyl; massive, none laminated; sticky, very plastic; sity; very few very fine roots; clear smooth boundary
H5	Bg3	50/53-61 cm; common, med dipyridyl; oxir	very dark greyish brown to dark greyish brown 10YR 3.5/2 (W); dium, faint, very diffuse 10YR 5/8 (W) mottles; no reaction to admorphic colour pattern; massive, none laminated; sticky, plastic; medium refew very fine roots; abrupt smooth boundary
H6	Cr1	61-110 cm; b reductimorph	lack 5Y 2.5/1 (W); positive reaction to aa-dipyridyl, throughout; ic colour pattern; massive; sticky, very plastic; medium porosity; no roots ckish colour of the matrix is due to very fine organic matter; gradual
Н7	Cr2	throughout; r plastic; mediu fine and med	

Extra subordinate symbols: 'bi' biological activity clearly evidences (fauna and flora), and more than what can be expected according to type of soil, position, time of year etc.

Colour measurements: M= Moist; MC= Moist-crushed; D= Dry; DC= Dry-crushed; W= Wet.

2.5.3 Analytical laboratory data

l able A6	: Analytica	l data for	P6, Schor	van Ouden	Doel			ied 14/11/200	
P6	Horizon	Depth	Total N	Total N	(Carbon- TO		ysed: March- C	C/N
Horizon	symbols	Берин	analyser	Kjeldahl	тс	IC	ос	Analyser	0/14
nr.		cm	%	%	%	%	%	%	(TOC/Kjel.)
H1	Abi1	0-16	0.37	0.29	5.99	2.15	3.84	5.28	13
H2	Abi2	16-29	0.33	0.37	6.42	1.54	4.88	4.73	13
H3	Bg1	29-38	0.36	0.34	5.35	0.97	4.38	4.87	13
H4	Bg2	38-51	0.47	0.42	9.23	0.69	8.54	8.13	20
H5 H6	Bg3 Cr1	51-61 61-110	0.42	0.35 0.37	7.52 7.97	1.54 2.01	5.97 5.96	6.36 7.81	17 16
H7	Cr2	110-140	0.39	0.32	6.60	2.00	4.59	6.17	14
Horizon						erial (fractio			
nr.	0.4-2	2-6	6-50	50-63	63-100	100-250	250-500	500-1000	1000-2000
					%				
H1	2.9	4.8	31.5	8.3	18.1	22.1	7.6	3.9	8.0
H2	3.3	6.0	30.6	5.2	9.7	17.4	14.4	12.0	1.5
H3 H4	3.7 6.3	6.7 12.2	35.5 46.5	7.6 6.4	16.0 12.1	20.4 13.3	5.3 3.0	0.2	0.0
H5	5.5	10.5	46.4	7.4	14.1	13.6	2.4	0.2	0.0
H6	4.0	7.6	39.5	7.1	13.8	19.0	6.0	2.5	0.5
H7	5.8	11.1	44.1	5.8	11.3	16.8	4.1	0.8	0.2
Horizon	Na⁺	K⁺	Ca²⁺	Mg ²⁺	Pai	rticle size di	stributio	n (µm; pip	ette)
nr.	by N			method)	0-2	2-10	10-20	20-50	50-2000
114	4.5 :	,)/kg soil			46.5	%	~ ~ -	
H1	10.4	2.1	12.1	11.8	31.4	13.8	9.4	27.9	17.4
H2 H3	15.2 14.9	2.8 2.4	16.5 13.6	13.3 11.7					
H4	20.9	2.5	21.7	11.7	54.2	19.7	12.8	12.0	1.3
H5	19.4	2.6	21.9	11.1	0				
H6	19.0	3.3	20.7	10.3	42.7	14.8	11.9	23.1	7.5
H7	22.9	1.6	18.9	11.4					
Horizon	CEC	CEC	BS by	Acidity	CaCO ₃	p⊦	1	рН	EC
nr.	sum	measured	CEC-m	sum	titration	_	CaCl ₂	CaCl2/H2O	dS/m
		(+)/kg	%	cmol(+)/kg	%	1:5	1:5		1:5
H1	36.4	32.5	>100	<	13.1	8.6	7.9	0.92	1.11
H2 H3	47.7 42.7	44.6 39.2	>100 >100	< <	9.3 7.3	8.5 8.3	7.8 7.8	0.92 0.94	1.52 1.55
H4	56.7	49.7	>100	<	10.6	8.5	7.9	0.93	2.54
H5	55.0	40.1	>100	<	10.7	8.2	7.8	0.95	2.60
H6	53.3	38.8	>100	<	12.3	8.4	7.9	0.95	3.23
H7	54.8	34.5	>100	<	17.4	8.2	8.0	0.98	3.55
Horizon	Ca	K	Mg	Na	P	. S	Al	As	Cd
nr.				<i>F</i>	Aqua Reg	ıa			
H1	48857	8670	7535	2682	mg/kg 1904	2611	29317.2	27.8	2.9
H2	31515	5118	6746	3106	3452	2660	16639.6	47.3	3.3
H3	24708	10939	8322	3574	2716	1312	36080.7	61.0	3.2
H4	28083	12951	9873	5101	1599	1920	45531.1	48.0	5.8
H5	28966	11185	8382	4560	2537	1784	41792	62.1	9.3
H6	45775	9898	8215	4203	1134	11395	38936.4	54.6	5.6
					4040	E0E4			
H7	58539	7307	7734	4899 E o	1342	5351	23228.7	59.5	3.9
Horizon	58539 Co		7734 Cu	Fe	Mn	5351 Ni	Pb	2n	Lab
		7307		Fe Aqua l	Mn Regia				
Horizon		7307		Fe	Mn Regia				
Horizon nr.	14.3 17.4	7307 Cr	Cu 105 149	Fe Aqua I mg/ 39927 45559	Mn Regia /kg 1134 1311	Ni	Pb 87.4 151.2	Zn 	Lab
Horizon nr. H1 H2 H3	14.3 17.4 14.3	7307 Cr 	105 149 206	Fe Aqua I mg/ 39927 45559 41942	Mn Regia /kg 1134 1311 683	29.3 38.1 34.4	87.4 151.2 161.4	Zn 369 491 445	JM378 JM379 JM380
Horizon nr. H1 H2 H3 H4	14.3 17.4 14.3 15.7	7307 Cr 57.7 115.2 101.4 104.3	105 149 206 205	Fe Aqua I mg/ 39927 45559 41942 45054	Mn Regia 'kg 1134 1311 683 362	29.3 38.1 34.4 43.9	87.4 151.2 161.4 180.6	369 491 445 640	JM378 JM379 JM380 JM381
Horizon nr. H1 H2 H3 H4 H5	14.3 17.4 14.3 15.7 15.5	7307 Cr 57.7 115.2 101.4 104.3 133.3	105 149 206 205 345	FeAqua Img/ 39927 45559 41942 45054 46262	Mn Regia /kg 1134 1311 683 362 635	29.3 38.1 34.4 43.9 39.5	87.4 151.2 161.4 180.6 217.6	369 491 445 640 774	JM378 JM379 JM380 JM381 JM382
H1 H2 H3 H4 H5	14.3 17.4 14.3 15.7 15.5 16.8	7307 Cr 57.7 115.2 101.4 104.3 133.3 91.1	105 149 206 205 345 119	FeAqua Img/ 39927 45559 41942 45054 46262 39434	Mn Regia !kg 1134 1311 683 362 635 1229	29.3 38.1 34.4 43.9 39.5 34.4	87.4 151.2 161.4 180.6 217.6 163.7	369 491 445 640 774 672	JM378 JM379 JM380 JM381 JM382 JM383
Horizon nr. H1 H2 H3 H4 H5	14.3 17.4 14.3 15.7 15.5	7307 Cr 57.7 115.2 101.4 104.3 133.3	105 149 206 205 345	FeAqua Img/ 39927 45559 41942 45054 46262	Mn Regia /kg 1134 1311 683 362 635 1229 1672	29.3 38.1 34.4 43.9 39.5	87.4 151.2 161.4 180.6 217.6	369 491 445 640 774	JM378 JM379 JM380 JM381 JM382
H1 H2 H3 H4 H5 H6 H7	14.3 17.4 14.3 15.7 15.5 16.8 16.4	7307 Cr 57.7 115.2 101.4 104.3 133.3 91.1 93.9	105 149 206 205 345 119 96 Ca ²⁺	FeAqua I 39927 45559 41942 45054 46262 39434 41766	Mn Regia !kg 1134 1311 683 362 635 1229	29.3 38.1 34.4 43.9 39.5 34.4 32.5	87.4 151.2 161.4 180.6 217.6 163.7 195.2	369 491 445 640 774 672 595	JM378 JM379 JM380 JM381 JM382 JM383
Horizon nr. H1 H2 H3 H4 H5 H6 H7 Horizon	14.3 17.4 14.3 15.7 15.5 16.8 16.4	7307 Cr 57.7 115.2 101.4 104.3 133.3 91.1 93.9 K*	105 149 206 205 345 119 96 Ca ²⁺	FeAqua I 39927 45559 41942 45054 46262 39434 41766	Mn Regia /kg 1134 1311 683 362 635 1229 1672 CEC	29.3 38.1 34.4 43.9 39.5 34.4 32.5 Na+Mg	87.4 151.2 161.4 180.6 217.6 163.7 195.2	369 491 445 640 774 672 595	JM378 JM379 JM380 JM381 JM382 JM383
Horizon nr. H1 H2 H3 H4 H5 H6 H7 Horizon nr.	14.3 17.4 14.3 15.7 15.5 16.8 16.4 Na*	7307 Cr 57.7 115.2 101.4 104.3 133.3 91.1 93.9 K* 	105 149 206 205 345 119 96 Ca ²⁺ OAc	FeAqua I	Mn Regia (kg 1134 1311 683 362 635 1229 1672 CEC sum cations 69	29.3 38.1 34.4 43.9 39.5 34.4 32.5 Na+Mg saturation %	87.4 151.2 161.4 180.6 217.6 163.7 195.2 ESP	369 491 445 640 774 672 595 SAR	JM378 JM379 JM380 JM381 JM382 JM383
Horizon nr. H1 H2 H3 H4 H5 H6 H7 Horizon nr.	14.3 17.4 14.3 15.7 15.5 16.8 16.4 Na ⁺	7307 Cr 57.7 115.2 101.4 104.3 133.3 91.1 93.9 K'	105 149 206 205 345 119 96 Ca ²⁺ OAc	Fe	Mn Regia 'kg 1134 1311 683 362 635 1229 1672 CEC cut cations 69 70	29.3 38.1 34.4 43.9 39.5 34.4 32.5 Na+Mg saturation % 29 36	87.4 151.2 161.4 180.6 217.6 163.7 195.2 ESP % 12	369 491 445 640 774 672 595 SAR	JM378 JM379 JM380 JM381 JM382 JM383
Horizon nr. H1 H2 H3 H4 H5 H6 H7 Horizon nr. H1 H2 H3	14.3 17.4 14.3 15.7 15.5 16.8 16.4 Na*	7307 Cr 57.7 115.2 101.4 104.3 133.3 91.1 93.9 K*by NH4cmol(+ 1.6 2.0 1.7	105 149 206 205 345 119 96 Ca ²⁺ OAc 47.3 42.9 41.9	Fe ——Aqua I ———————————————————————————————————	Mn Regia 'kg 1134 1311 683 362 635 1229 1672 CEC sum cations 69 70 67	29.3 38.1 34.4 43.9 39.5 34.4 32.5 Na+Mg saturation % 29 36 35	87.4 151.2 161.4 180.6 217.6 163.7 195.2 ESP % 12 17 18	369 491 445 640 774 672 595 SAR	JM378 JM379 JM380 JM381 JM382 JM383
Horizon nr. H1 H2 H3 H4 H5 H6 H7 Horizon nr. H1 H2 H3 H4 H4 H5 H6 H7	14.3 17.4 14.3 15.7 15.5 16.8 16.4 Na* 	7307 Cr 57.7 115.2 101.4 104.3 133.3 91.1 93.9 K'by NH4cmol(+ 1.6 2.0 1.7 2.7	Cu 105 149 206 205 345 119 96 Ca ²⁺ OAc 47.3 42.9 41.9 38.3	Fe	Mn Regia 'kg 1134 1311 683 362 635 1229 1672 CEC sum cations 69 70 67	29.3 38.1 34.4 43.9 39.5 34.4 32.5 Na+Mg saturation % 29 36 35 43	87.4 151.2 161.4 180.6 217.6 163.7 195.2 ESP % 12 17 18	369 491 445 640 774 672 595 SAR	JM378 JM379 JM380 JM381 JM382 JM383
Horizon nr. H1 H2 H3 H4 H5 H6 H7 Horizon nr. H1 H2 H3 H4 H5	14.3 17.4 14.3 15.7 15.5 16.8 16.4 Na* 	7307 Cr 57.7 115.2 101.4 104.3 133.3 91.1 93.9 K*by NH4 1.6 2.0 1.7 2.7 2.3	105 149 206 205 345 119 96 Ca ²⁺ OAc	Fe	Mn Regia 'kg 1134 1311 683 362 635 1229 1672 CEC sum cations 69 70 67 72 71	29.3 38.1 34.4 43.9 39.5 34.4 32.5 Na+Mg saturation % 29 36 35 43 38	87.4 151.2 161.4 180.6 217.6 163.7 195.2 ESP % 12 17 18 27 22	369 491 445 640 774 672 595 SAR 1.6 2.3 2.3 3.8 3.0	JM378 JM379 JM380 JM381 JM382 JM383
Horizon nr. H1 H2 H3 H4 H5 H6 H7 Horizon nr. H1 H2 H3 H4	14.3 17.4 14.3 15.7 15.5 16.8 16.4 Na* 	7307 Cr 57.7 115.2 101.4 104.3 133.3 91.1 93.9 K'by NH4cmol(+ 1.6 2.0 1.7 2.7	Cu 105 149 206 205 345 119 96 Ca ²⁺ OAc 47.3 42.9 41.9 38.3	Fe	Mn Regia 'kg 1134 1311 683 362 635 1229 1672 CEC sum cations 69 70 67	29.3 38.1 34.4 43.9 39.5 34.4 32.5 Na+Mg saturation % 29 36 35 43	87.4 151.2 161.4 180.6 217.6 163.7 195.2 ESP % 12 17 18	369 491 445 640 774 672 595 SAR	JM378 JM379 JM380 JM381 JM382 JM383

2.5.4 World reference base (2007) classification

Diagnostic horizon, properties, material:	Present in horizon:	Remarks:	
Albic		Colours are too dark in moist conditions	
Cambic	H2-3	H3: Texture fine enough. Granular structure present and no traces of stratification. Calcium carbonate content is lower IN H2-3 than below and structure is present. The chroma is 2.5 in H2 and 3.0 in H3, which is higher than the 2.0 found in H4.	
Mollic		H1 fulfil all requirements except the thickness	
Salic		The highest conductivity is 3,55 dS/m	
Abrupt textural change	H3-4	Data on the texture-pipette is partly missing. In H4 the clay-pipette is 54.2%. Based on morphological characteristics and texture-laser data it is by expert judgement decided that an abrupt change is present between H3 and H4	
	H3-5	Oximorphic colour pattern	
	H6-7	Reductimorphic colour pattern	
Lithological discontinuity	H3-4		
Reducing conditions	H6-7	Positive reaction to alpha-alpha dipyridyl	
Secondary carbonates		No secondary carbonate observed	
Calcaric material	H1-7	Analytical data confirm the presence of more than 2% calcium-carbonate throughout the soil	
Fluvic material	H4-6	Below the cambic horizon the soil composes of fluvic material. OC content increases irregular with depth	
Sulphidic material		Alkaline pH	

The profile will not key out in Fluvisol. Fluvic material is present because of an irregular content of organic matter and remaining above 0.2% to a depth of 100 cm. But at the same time H2-3 is sufficiently developed that a Cambic horizon has developed. The soil is therefore no Fluvisol.

The reduced condition starts at 61 cm from the surface, and that is too deep for the Gleysols. Because of the presence of a cambic horizon the soil keys out as a Cambisol.

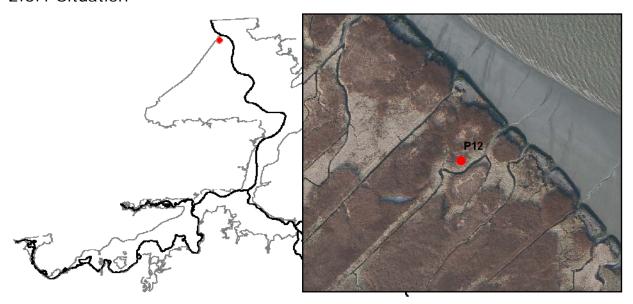
Full classification name, without specifiers

(except where listed as such for prefix and suffix qualifiers):

Endogleyic Fluvic Cambisol (Calcaric, Sodic, Humic, Eutric, Ruptic, Siltic)

- Fluvic: fluvic material present from 38 cm and onwards
- Endogleyic: oximorphic and reductimorphic colours start from 29 cm and 61 cm respectively. The reduced conditions also from 61 cm depth
- · Calcaric: present throughout the soil profile
- Sodic: The required 15% sodium plus manganese cations on the exchange complex is present throughout the soil
- Alcalic: the pH is more than 8.5 in H1-2 but not in H3
- Humic: organic carbon content remains higher than 1%
- Eutric: The base saturation exceeds 100% throughout
- Ruptic: A lithologic discontinuity is present between H3-4 although this is entirely linked to a fluviatile sedimentation environment.
- Siltic: H4 and H6 qualify with a silty clay texture.

Full classification name, with specifiers:


Endogleyic Fluvic Cambisol (Calcaric, Sodic, Hyperhumic, Hypereutric, Ruptic, Siltic)

- Calcaric: a content between 7-13% was found, and the weighted average is below 10%
- Sodic: The concentration of sodium plus manganese cations is less than 30%
- Hyperhumic: the weighted average is 5,18%
- Hypereutric: The base saturation exceeds 100% throughout

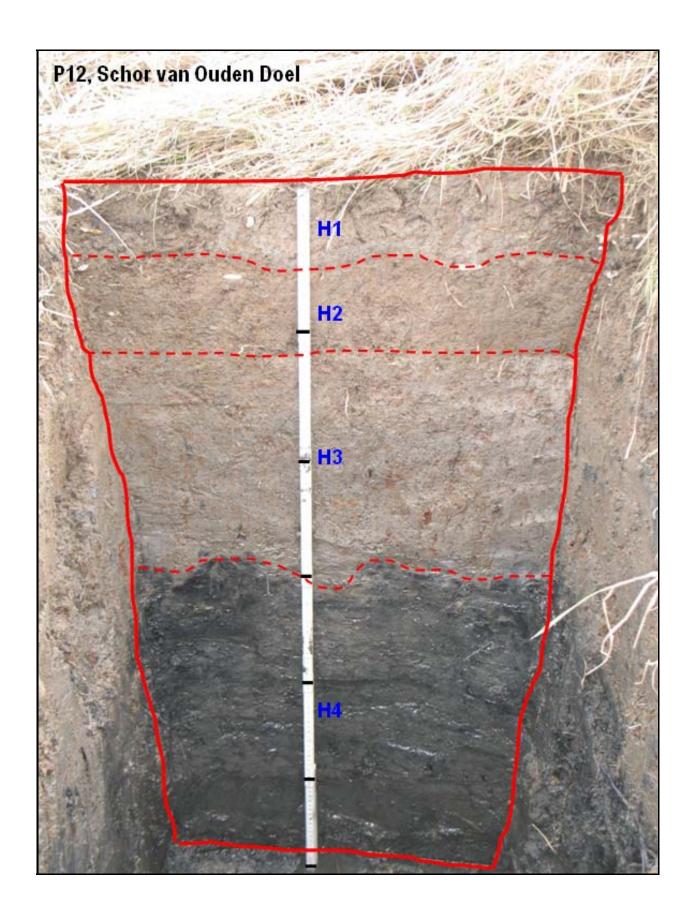
2.6 Profile 'P12': Schor van Ouden Doel

(Derived elevation: 5.80m TAW; Lat.: 51.344558, Long.: 4.239659)

2.6.1 Situation

Profile 'P12' is located in 'Schor van Ouden Doel', on Flemish territory. The tidal marsh edge here is defended with riprap.

The tidal marsh itself consists of reed vegetation and see couch (Scirpus maritimus).


The profile is excavated in the tidal marsh soil, in a reed and see couch transition zone.

2.6.2 Profile description

Profile P12	Schor van Ouden Doel
1.3 Date and time:	26/2/2009. Profile description initiated at 14h. Low tide at 10:56.
1.4 Author:	Jari Hinsch Mikkelsen
1.5 Location:	Belgium, Province of East Flanders, Beveren Municipality.
	For a road description check description presented for profile P3.
1.6 Profile coordinates:	Latitude, longitude: 51° 20′ 27.35″ N, 04° 14′ 37.95″ E
	Lambert-72: 226093.925 N, 141004.323 E
4.1 Elevation:	±5.8 m TAW (deduced from DTM data)
2.1 Atmospheric climate	Overcast during the profile description. In the weeks prior, overcast or
and weather condition:	rainy weather dominated.
Soil climate:	STR: Mesic
	SMR: Udic
2.2 Topography:	Macrotopography: Estuarium, tidal mouth of the Schelde River
	Mesotopography: Tidal marsh
	Landscape position: bottom (edge of depression)
	Slope form: straight, straight (SS)
	Slope gradient: nearly level (0.5-1.0%)
	Slope length: 7-10m
25.	Slope orientation: SE
2.5 Land-use:	Tidal marsh
	Wildlife: Hunting probably not allowed
	Grazing: Grazing by cattle is in principle possible during the summer
	months but in practise, the reed vegetation seems to keep the cattle
2.6.11	away.
2.6 Human influence:	No influence observed
Vegetation:	Dominated by Scirpus maritimus

Pro	file P1	2	Schor van Ouden Doel					
2.7 Parent material:			unconsolidated deposits> marine and estuarine clays and silts>					
			quaternary clay and silt> Holocene Clay (5221)					
	rainage cla		Poorly drained					
	cternal dra	inage:	Ponded					
	looding		Flooded during spring tides					
	Coarse sur	face frag.	None					
	Erosion,		Slight active sheet sedimentation and erosion					
	entation:							
	Surface cra	icks:	None observed					
2.14 9			None observed					
Locali	sation fact	ors profile:	Vegetation: On the transition between Scirpus maritimus and Elymus athericus					
			Geomorphology/topography: Profile located at the edge of a shallow					
			landscape depression with free standing water.					
			Hydrology: a diver has been placed close by, providing information					
_	<u> </u>		about the tidal cycle					
Rema	rks:		Reed roots grow horizontally only (colonising stage).					
			H4 was sampled in the upper (H4a) and the lower part (H4b)					
		11	No rock fragments through the soil.					
N o.		Horizon des	scription					
H1	Α	0-10 cm; ver	y dark greyish brown to dark greyish brown 10YR 3.5/2 (M); horizon					
		composing of	f relative young sediment with greyish and rusty colours; common,					
		medium, fair	nt, diffuse mottles; no reaction to aa-dipyridyl; oximorphic colour pattern;					
		clay; very fin	e, weak developed, subangular blocky and granular; sticky, very plastic;					
		medium porc	osity; few very fine, very few fine to coarse roots; abrupt smooth					
		boundary						
H2	bA	10-25 cm; ve	ery dark greyish brown 2.5Y 3/2 (W); more soil development than in					
		overlying hor	rizon; abundant, medium, faint, very diffuse mottles; no reaction to aa-					
		dipyridyl; oxi	imorphic colour pattern; clay; very fine, moderate developed granular;					
sticky, very r			plastic; high porosity; few very fine, very few fine and few medium to					
coarse roots;			; clear smooth boundary					
Н3	Cg	25-56 cm; ve	ery dark grey to dark grey 2.5Y 3.5/1 (W); many, medium, faint, diffuse,					
2.5Y 3.5/1 (\			W) mottles; no reaction to aa-dipyridyl; oximorphic colour pattern; clay;					
strong, colur			mnar; sticky, very plastic; high porosity; few very fine, very few fine to					
			s; abrupt smooth boundary					
H4	Cr	56-120 cm; g	greenish black 2.5/10Y (W); positive reaction to aa-dipyridyl, throughout;					
			nic colour pattern; faint petrochemical odour; clay; massive; sticky, very					
			um porosity; very few, very fine roots					

Extra subordinate symbols: 'bi' biological activity clearly evidences (fauna and flora), and more than what can be expected according to type of soil, position, time of year etc. Colour measurements: M= Moist; MC= Moist-crushed; D= Dry; DC= Dry-crushed; W= Wet.

2.6.3 Analytical laboratory data

Table A7	: Analytica	l data for	P12. Scho	r van Oud	en Doel		Profile stud	ied 14/11/20	08
	,		, , , , , , , , ,					ysed: March	
P12	Horizon	Depth	Total N	Total N	С	arbon- TO		С	C/N
Horizon	symbols		analyser	Kjeldahl	TC	IC	OC	Analyser	
nr.		cm	%	%	%	%	%	%	(TOC/Kjel.)
H1	Α	0-10	0.54	0.41	7.27	1.82	5.46	6.32	13
H2	bA	10-25	0.43	0.37	6.62	1.60	5.02	6.35	13
H3	Cg	25-56	0.47	0.36	6.83	1.43	5.40	5.94	15
H4a	Cr	56-87	0.43	0.34	7.32	1.79	5.54	6.48	16
H4b	Cr	87-120	0.37	0.27	6.61	1.58		6.06	18
Horizon						erial (fraction			
nr.	0.4-2	2-6	6-50	50-63	63-100	100-250 		500-1000	1000-2000
H1	3.0	5.2	30.6	6.9	15.1	22.1	11.6	5.0	0.5
H2	3.3	6.0	29.9	5.4	11.5	20.2	12.8	9.8	1.2
H3	4.4	8.2	36.9	6.6	13.9	20.5	6.3	2.4	0.8
H4a	5.7	11.5	45.3	5.8	10.9	14.9	4.1	1.4	0.4
H4b	4.5	8.6	45.4	7.8	14.9	13.9	3.3	1.3	0.3
Horizon	Na⁺	K ⁺	Ca ²⁺	Mg ²⁺		ticle size d			
nr.		lgSO₄ (con		_		2-10	10-20	20-50	50-2000
		cmol(+)					%		
H1	14.6	2.5	23.2	11.3	34.1	12.5	8.8	31.1	13.5
H2	18.1	2.6	23.3	11.1					
H3	19.4	2.6	21.6	9.9	46.8	21.1	10.3	19.0	2.8
H4a	26.2	1.6	20.6	11.2					
H4b	24.5	3.1	19.5	9.8	44.6	22.5	12.2	16.4	4.3
Horizon	CEC	CEC		Acidity	CaCO ₃	pl		pН	EC
nr.	sum	measured		sum	titration	H ₂ O	CaCl ₂	CaCl2/H2O	dS/m
		(+)/kg	%	cmol(+)/kç		1:5	1:5		1:5
H1	51.6	39.8	>100	<	11.8	8.4	7.8	0.93	1.63
H2	55.0	45.0	>100	<	11.7	8.3	7.9	0.95	2.20
H3	53.4	38.9	>100	<	9.9	8.4	7.8	0.94	2.29
H4a	59.6	32.9	>100	<	11.6	8.1	7.9	0.98	4.54
H4b	56.9	27.3 K	>100	< Na	13.4 P	7.7 S	7.5 Al	0.97	4.52
Horizon	Ca	n.	Mg			ာ ia		As	Cd
nr.									
H1	44478	8009	7417	3330	2298	1686	27584.6	27.6	3.4
H2	26909	9365	7792	4005	3938	1920	35666.6	60.4	9.5
H3	36880	10567	8175	4228	2597	1511	38318.6	79.3	8.9
H4a	45252	10939	8574	5549	995	8950	37441.7		5.7
H4b	49247	8236	7607	4965	669	15460	28597	71.7	13.3
Horizon	Со	Cr	Cu	Fe	Mn	Ni	Pb	Zn	Lab
nr.				Aqua					
114	4 4 4		40-	mg/	-				11.100=
H1	14.4	62.9	105	43557	1002	30.9	93.4	403	JM385
H2	19.5	112.1	201	50687	1653	52.6	177.7	659	JM386
H3	15.6	115.6	310	45527	621	40.9	202.9 192.0	712	JM387
H4a H4b	19.0 18.2	95.2 98.6	126 111	45673 44710	1009 637	37.9 36.4	213.0	710 857	JM388 JM389
Horizon	Na ⁺	90.0 K ⁺	Ca ²⁺	Mg ²⁺	CEC	Na+Mg	ESP	SAR	JIVIOUS
nr.					sum	saturation	LOI	OAIN	
			/kg soil		cations	%	%		
H1	13.6	1.9	43.5	12.6	72	37	19	2.6	
H2	11.4	1.3	40.0	7.8	60	32	19	2.3	
H3	14.5	2.0	36.9	12.8	66	41	22	2.9	
H4a	17.9	2.0	46.0	14.0	80	40	22	3.3	
H4b	20.4	2.3	45.5	10.7	79	39	26	3.8	
H4b	20.4	2.3	45.5	10.7	79	39	26	3.8	

2.6.4 World reference base (2007) classification

Diagnostic horizon, properties, material:	Present in	Remarks:
	horizon:	
Albic		Colours are too dark in moist conditions
Cambic		Colour changes insufficient
Mollic		Structure is too incomplete
Salic		The highest conductivity is 5,54 dS/m
Abrupt textural change		Data on the texture-pipette is partly missing, based on
		texture-laser, most probably no abrupt changes are
		present
	H3	Oximorphic colour pattern
	H4	Reductimorphic colour pattern
Lithological		
discontinuity		
Reducing conditions	H4	Positive reaction to alpha-alpha dipyridyl
Secondary carbonates		No secondary carbonate observed
Calcaric material		Analytical data confirm the presence of more than 2%
		calcium-carbonate throughout the soil
Fluvic material		OC content remains above 5% throughout
Sulphidic material	-	Alkaline pH

The profile keys out as a Fluvisol.

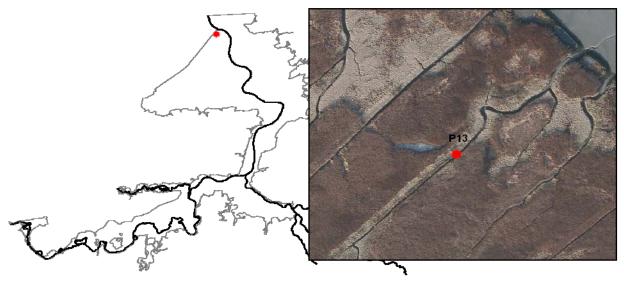
Full classification name, without specifiers

(except where listed as such for prefix and suffix qualifiers):

Tidalic Fluvisol (Calcaric, Humic, Sodic, Eutric, Siltic)

- Tidalic: flooded by tidewater but not covered by water at mean low tide
- Gleyic: oximorphic and reductimorphic colours start from 20 cm and 56 cm respectively. The reduced conditions from 56 cm depth only- should start within the upper 50 cm
- Calcaric: present throughout the soil profile
- Humic: the content exceeds 1% throughout
- Sodic: The required 15% sodium plus manganese cations on the exchange complex is present throughout the soil
- Eutric: The base saturation exceeds 100% throughout
- Siltic: Both H3-4 have a silty clay texture

Full classification name, with specifiers:


Tidalic Fluvisol (Hypercalcaric, Hyperhumic, Hypersodic, Hypereutric, Siltic)

- Epigleyic: the reduced conditions appear already within the upper 50 cm
- Hypercalcaric: lowest content is 9.9%, and the weighted average is above 10%
- Hyperhumic: the content newer goes below 5%
- Hypersodic: The concentration of sodium plus manganese cations exceeds 30% throughout
- Hypereutric: The base saturation exceeds 100% throughout

2.7 Profile 'P13': Schor van Ouden Doel

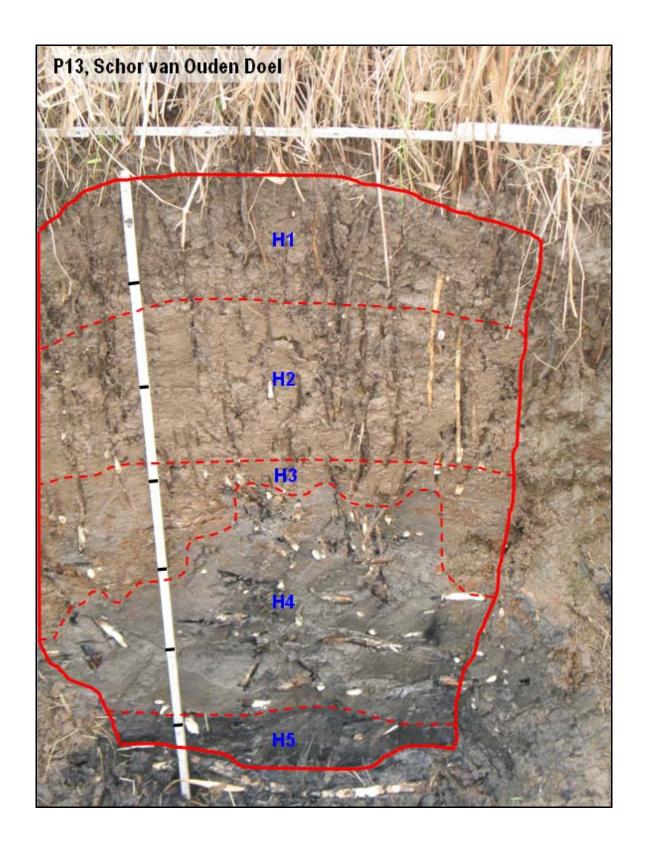
(Derived elevation: 6.00m TAW; Lat.: 51.344101, Long.: 4.23904)

2.7.1 Situation

Profile 'P13' is located in 'Schor van Ouden Doel', on Flemish territory. The tidal marsh edge here is defended with riprap.

The tidal marsh itself consists of reed vegetation and see couch (Scirpus maritimus).

The profile is excavated in a creek-wall, in reed vegetation.


2.7.2 Profile description

Profile P	13	Schor van Ouden Doel				
1.3 Date and	time:	26/2/2009. Started profile description at 10:20. Low tide at 10:56				
1.4 Author:		Jari Hinsch Mikkelsen				
1.5 Location:		Belgium, Province of East Flanders, Beveren Municipality.				
		For a road description check description for profile P3				
1.6 Profile cod	ordinates:	Latitude, longitude: 51° 20′ 24.61″ N, 04° 14′ 34.24″ E				
		Lambert-72: 226043.155 N, 140961.079 E				
4.1 Elevation:	4.1 Elevation: ±6.0 m TAW (deduced from DTM data)					
2.1 Atmosphe	ric climate	Overcast, like most other days in the weeks prior to fieldwork.				
and weather	condition:					
Soil climat	e:	STR: Mesic				
		SMR: Udic				
2.2 Topograp	hy:	Macrotopography: Estuarium, tidal mouth of the Schelde River				
		Mesotopography: Tidal marsh				
		Landscape position: Central in the tidal marsh, in a higher landscape position				
		Slope form: -				
		Slope gradient: level (0.2-0.5%)				
		Slope length: -				
		Slope orientation: -				
2.5 Land-use:		Tidal marsh				
		Wildlife: Hunting probably not allowed				
	Grazing: Grazing by cattle is in principle possible during the summer					
		months but in practise, the reed vegetation and the deep creek wherein the profile was made are factors that keep the cattle away.				
2.6 Human in	fluence	No influence observed				
Vegetation		Reed				
2.7 Parent ma		unconsolidated deposits> marine and estuarine clays and silts>				
2.7 Tarche inc	icciai.	quaternary clay and silt> Holocene Clay (5221)				
2.8 Drainage	class:	Poorly drained				
2.9 External c		Slow run-off				
2.10 Flooding		Twice a day for the creek, and during the spring tides for the surface of				
J		the soil profile				
2.11 Coarse s	urface frag.	None				
2.12 Erosion,		Erosion and sedimentation in the creek and probably slow sedimentation				
sedimentation	1:	on top of the soil profile related to the bimonthly flooding				
2.13 Surface	cracks:	None				
2.14 Salts:		None				
Localisation fa	actors profile:	Vegetation: The profile is located centrally in a large area covered with				
	·	reed vegetation.				
		Geomorphology/topography: In order to observe to what extend the				
		landscape position has an influence on the soil genesis and				
		development, this profile is located on a slightly higher topographical				
		position				
Remarks:		No rock fragments observed throughout the soil				
N	Horizon de	scription				
О.						
H1 Abi1	0-24 cm; ve	ry dark greyish brown 2.5Y 3/2 (W); no reaction to aa-dipyridyl; strong				
developed very fine granular, locally coarse angular blocky; sticky, very plastic; dirty						

Pro	file P1	Schor van Ouden Doel						
		clay coatings along ped faces; common, very fine, few fine to medium and common						
		coarse roots; gradual, smooth boundary						
H2	Abi2	24-62 cm; very dark greyish brown to dark greyish brown 2.5Y 3.5/2 (W); no reaction						
		to aa-dipyridyl; silty clay loam (finger test); coarse, moderate developed, angular						
		blocky; sticky, very plastic; dirty clay coatings along fractures and on pedfaces;						
		common very fine, very few fine to medium and common coarse roots; clear, smooth						
		boundary						
Н3	Bg	62-68/85 cm; dark greenish grey 4/10Y (W); many, medium, distinct, diffuse dark						
		yellowish brown (10YR 4/4, W) mottles; no reaction to aa-dipyridyl; oximorphic colour						
		pattern; massive; sticky, very plastic; high porosity; few very fine, very few fine to						
		medium and common coarse roots; clear, wavy boundary						
H4	Cr1	68/85-120 cm; very dark greenish grey to dark greenish grey 3.5/10Y (W); positive						
		reaction to aa-dipyridyl, throughout; reductimorphic colour pattern; massive; sticky,						
		very plastic; medium porosity; few very fine, very few fine to medium and common						
		coarse roots; abrupt, smooth boundary						
H5	Cr2	120 cm; greenish black 2.5/10Y (W); positive reaction to aa-dipyridyl, throughout;						
		reductimorphic colour pattern; petrochemical odour; massive with visible stratification;						
		sticky, very plastic; medium porosity; very few very fine and few coarse roots						

Extra subordinate symbols: 'bi' biological activity clearly evidences (fauna and flora), and more than what can be expected according to type of soil, position, time of year etc.

Colour measurements: M= Moist; MC= Moist-crushed; D= Dry; DC= Dry-crushed; W= Wet.

2.7.3 Analytical laboratory data

Table A8	Table A8: Analytical data for P13, Schor van Ouden Doel Profile studied 14/11/2008								
	, , , , , , , , , , , , , , , , , , , ,		,					lysed: March-	
P13	Horizon	Depth	Total N	Total N	С	arbon- TO	С	С	C/N
Horizon	symbols		analyser	•	TC	IC	ОС	Analyser	
nr.		cm	%	%	%	%	%	%	(TOC/Kjel.)
H1	Abi1	0-24	0.425	0.295	5.82	2.25	3.57	5.26	12
H2	Abi2	24-62	0.219	0.180	4.99	1.80	3.19	3.78	18
H3	Bg C=1	62-68/85	0.277	0.233	4.41	1.88	2.53	4.31	11
H4 H5	Cr1 Cr2	68/85-120	0.348 0.306	0.230 0.255	5.03 5.46	1.78 1.88	3.25 3.57	4.77 5.57	14 14
Horizon	CIZ	120-140				erial (fraction			14
nr.	0.4-2	2-6	6-50	50-63	63-100	-	-	500-1000 ·	1000-2000
					%				
H1	3.0	4.8	30.1	8.0	17.8	23.1	8.5	4.1	0.6
H2	3.0	4.4	30.8	10.5	26.0	22.2	2.9	0.2	0.0
H3	3.5	5.5	37.5	10.3	20.2	18.4	3.4	0.8	0.3
H4	3.4	5.5	35.9	10.0	22.8	19.6	2.7	0.2	0.0
H5	3.1	5.5	27.7	6.0	13.9	22.6	13.9	6.8	0.5
Horizon	Na⁺	K⁺	Ca ²⁺	Mg ²⁺		ticle size d		n (µm; pip	ette)
nr.	by N	IgSO₄ (cor	-		0-2	2-10	10-20	20-50	50-2000
		. ,	/kg soil				%		
H1	10.7	2.0	14.4	10.4					
H2	8.9	1.5	12.6	7.7	38.8	14.3	6.1	21.2	19.6
H3	14.2	2.4	16.8	8.8	20.4	44.4	0.4	20.4	22.0
H4 H5	17.2 19.5	2.6 2.9	14.6 15.8	8.2 9.5	29.4	11.4	8.1	29.1	22.0
					CaCO ₃			11	F0
Horizon	CEC	CEC	BS by	Acidity		pl		рН	EC
nr.	sum	measured	CEC-m	sum	titration %	H ₂ O	CaCl₂ 1:5	CaCl2/H2O	dS/m 1:5
H1	37.5	(+)/kg	>100	cmol(+)/kg	14.4	1:5 8.7	8.0	0.01	
H2	30.7	30.4 25.6	>100	<	13.5	8.7	7.9	0.91 0.91	1.18 1.25
H3	42.2	30.5	>100	<	11.7	8.5	7.9 7.9	0.93	1.86
H4	42.6	30.8	>100	<u> </u>	13.0	8.3	7.8	0.94	2.64
H5	47.7	31.0	>100	<	11.7	8.4	8.0	0.96	3.31
Horizon	Ca	K	Mg	Na	Р	S	Al	As	Cd
nr.					Aqua Regi	ia			
					mg/kg				
H1	52898	8232	7427	2812	1723	2504	23637.2	22.9	2.6
H2	47670	5279	5849	2192	1716	1989	14949.5	23.9	1.9
H3	46332	7779	6787	2968	2104	2644	25844.9	27.1	3.1
H4	47947	8125	7223	3828	2683	3655	27883.5	35.7	5.6
H5	47010	9292	7672	4562	1454	4584	32904.4	62.4	5.9
Horizon	Со	Cr	Cu	Fe	Mn Regia	Ni	Pb	Zn	Lab
nr.				Aqua mg/	_				
H1	12.6	47.0	02		1052	25.7	72.3	320	JM390
H2	12.6 11.5	47.0 44.1	92 81	32973 29767	815	25.7 24.3	72.3 73.4	320 296	JM390 JM391
H3	11.3	60.0	113	39686	602	29.0	85.2	349	JM392
H4	14.3	82.7	137	42707	928	38.1	113.7	458	JM393
H5	15.4	92.3	147	39763	672	33.3	194.2	610	JM394
Horizon	Na⁺	K⁺	Ca ²⁺	Mg ²⁺	CEC	Na+Mg	ESP	SAR	
nr.		by NH40			sum	saturation			
		cmol(+)	/kg soil		cations	%	%		
H1	8.3	1.5	35.6	11.8	57	35	15	1.7	
H2	7.1	1.1	33.6	8.7	51	31	14	1.5	
H3	9.9	1.6	36.2	8.9	56	33	17	2.1	
H4	14.0 16.3	1.9 2.0	38.0 37.8	9.7 9.5	64 66	37 39	22 25	2.9 3.4	
H5									

2.7.4 World reference base (2007) classification

Diagnostic horizon,	Present	Remarks:
properties, material:	in	
	horizon:	
Albic	H2	Hue of H2 (2.5Y) is redder than for H3 (10Y)
Cambic	H2	Texture is fine enough. Blocky structure in H2,
		massive in H3. Colour value slightly higher than for H1
		and redder than H3.
Mollic		H1 fulfil all requirements except the thickness. H2 has a too high value
Salic		The highest conductivity is 3,31 dS/m
Abrupt textural change	H3-4	Data on the texture-pipette is partly missing. By
		expert judgement and based on morphology and
		texture-laser it is decided that no abrupt change is
		present
	H3	Oximorphic colour pattern
	H4-5	Reductimorphic colour pattern
Lithological		
discontinuity		
Reducing conditions	H4-5	Positive reaction to alpha-alpha dipyridyl
Secondary carbonates		No secondary carbonate observed
Calcaric material	H1-7	Analytical data confirm the presence of more than 2%
		calcium-carbonate throughout the soil
Fluvic material	H4-6	Below the cambic horizon fluvic material prevails
Sulphidic material		Alkaline pH

The profile will not key out in Fluvisol. Fluvic material is present because of an irregular content of organic matter and remaining above 0.2% to a depth of 100 cm. But from 24-62 cm depth a cambic horizon has developed. This excludes that fluvic material is present starting within the upper 25 cm depth as required for this RSG.

The reduced conditions start at 68 cm from the surface, and that is too deep for the Gleysols. Because of the presence of a cambic horizon the soil keys out as a Cambisol.

Full classification name, without specifiers

(except where listed as such for prefix and suffix qualifiers):

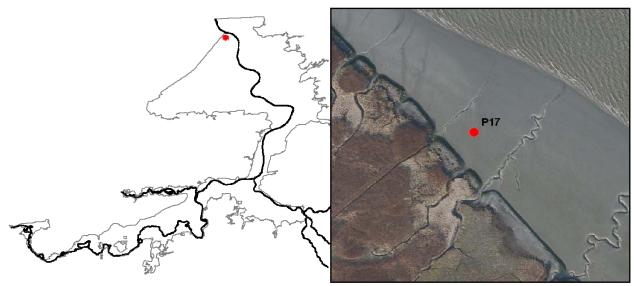
Endogleyic Fluvic Cambisol (Calcaric, Sodic, Humic, Eutric, Siltic)

- Fluvic: fluvic material present from 62 cm and onwards
- Endogleyic: oximorphic and reductimorphic colours start from 62 cm and 68/85 cm respectively. The reduced conditions also from 68/85 cm depth
- Calcaric: present throughout the soil profile
- Sodic: The required 15% sodium plus manganese cations on the exchange complex is present throughout the soil
- Alcalic: the pH remains above 8.5 in H1-3

www.inbo.be

- Humic: organic carbon content remains higher than 1%
- Eutric: The base saturation exceeds 100% throughout
- Siltic: both H2 qualify with a silty clay texture.

Full classification name, with specifiers:


Endogleyic Endofluvic Cambisol (Hypercalcaric, Hypersodic, Humic, Hypereutric, Siltic)

- Endofluvic: the fluvic material is only present at 68 cm depth
- Hypercalcaric: a content between 11-14% was found, and the weighted average is above 10%
- Hypersodic: The concentration of sodium plus manganese cations exceeds 30% throughout
- Humic: the weighted average is less than 5%
- Hypereutric: The base saturation exceeds 100% throughout

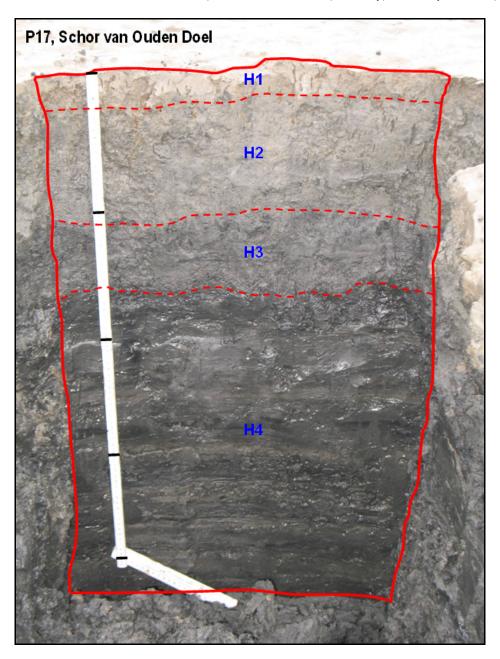
2.8 Profile 'P17': Schor van Ouden Doel

(Derived elevation: 2.40m TAW; Lat.: 51.344152, Long.: 4.242183)

2.8.1 Situation

Profile 'P17' is a mudflat-profile, located near 'Schor van Ouden Doel', on Flemish territory.

It is situated at 30 meters from the tidal marsh edge riprap, in the higher zone of the mudflat.


2.8.2 Profile description

Pro	file P1	7	Schor van Ouden Doel				
1.3 D	ate and tin	ne:	27/2/2009. Profile description began at 10:40. Low tide at 11:33				
1.4 A	uthor:		Jari Hinsch Mikkelsen				
1.5 Lo	ocation:		Belgium, Province of East Flanders, Beveren Municipality.				
			For a road description check description for profile P3.				
1.6 P	rofile coord	dinates:	Latitude, longitude: 51° 20′ 24.91″ N, 04° 14′ 53.10″ E				
			Lambert-72: 226048.450 N, 141180.133 E				
4.1 E	levation:		±2.4 m TAW (topo-bathymetry data 2001)				
2.1 A	tmospheric	climate	Overcast, close to light rain.				
and v	veather co	ndition:					
So	oil climate:		STR: Mesic				
			SMR: Peraquic				
2.2 T	opography	:	Macrotopography: Estuarium, tidal mouth of the Schelde River				
			Mesotopography: Tidal mud flat				
			Landscape position: Upper part of tidal mud flat, where the surface is characterised by micro ripple formations				
			Slope form: convex, straight (V, S)				
			Slope gradient: gently sloping (2-5%)				
			Slope length: about 300m				
			Slope orientation: SW				
2.3 T	idal mud fl	at	Heterogeneous rippled covering >80% of the surface. The ripples are 2-				
morp	hology		5 cm tall, less than 10 cm wide, and 5-10 cm long. No rills observed.				
2.5 La	and-use:		Tidal mud flat				
			Wildlife: No hunting				
			Grazing: -				
	uman influ	ence:	No influence				
	egetation:		No vegetation				
2.7 P	arent mate	erial:	unconsolidated deposits> marine and estuarine clays and silts>				
200			quaternary clay and silt> Holocene Silt (5222)				
	rainage cla		Very poorly drained				
	xternal dra	inage:	Slow run-off				
	Flooding		Twice daily				
	Coarse sur	face frag.	None				
	Erosion,		Sheet erosion and sedimentation				
	nentation:		N.				
	Surface cra	acks:	None				
2.14		C1	None				
Local	isation fact	ors profile:	Vegetation: -				
			Geomorphology/topography: Representative for the upper part of the				
			tidal mud flat, where the slope towards the Schelde has a more gentle				
			character.				
N o.		Horizon de	scription				
H1	Α	0-4 cm; arev	rish brown 2.5Y 5/2 (M), light greyish brown 2.5Y 6/2 (D); few, very fine,				
			r, rusty mottles, present around vertical biogalleries; no reaction to αα-				
		-	ripe; high porosity; no roots; calcareous matrix, primary; abrupt smooth				
boundary		F-, 5 F-:					
H2	Cr1		rk greyish brown 2.5Y 4/2 (M), greyish brown 2.5Y 5/2 (D); positive				
			ia-dipyridyl, throughout; reductimorphic colour pattern; unripe; no roots;				
	1	reaction to du-dipyridyi, throughout; reductimorphic colour pattern; unripe; no roots;					

Pro	file P17	Schor van Ouden Doel			
		calcareous matrix, primary; abrupt smooth boundary			
НЗ	Cr2	21-31 cm; olive grey 5Y 4/2 (M) olive grey to light olive grey 5Y 5.5/2; positive reaction to aa-dipyridyl, throughout; reductimorphic colour pattern; unripe; no roots; calcareous matrix, primary; clear smooth boundary			
H4	Cr3	31-80 cm; greenish black 2.5/10Y (W); positive reaction to aa-dipyridyl, throughout; reductimorphic colour pattern; unripe; horizon composes of continuous stratified sediment; no roots; calcareous matrix, primary			

Extra subordinate symbols: 'bi' biological activity clearly evidences (fauna and flora), and more than what can be expected according to type of soil, position, time of year etc.

Colour measurements: M= Moist; MC= Moist-crushed; D= Dry; DC= Dry-crushed; W= Wet.

2.8.3 Analytical laboratory data

Table A9	: Analytica	l data for	P17, Scho	r van Oud	en Doel			died 14/11/200	
P17	Horizon	Depth	Total N	Total N		arbon- TO		alysed: March-	C/N
Horizon	***	Бериі		Kjeldahl	тс	IC	oc	Analyser	C/IN
nr.	Symbolo	cm	%	%	%	%	%	%	(TOC/Kjel.)
H1	С	0-4	0.133	<0.10	2.94	2.41	0.54	2.74	~11
H2	Cr1	4-21	0.152	<0.10	1.92	2.27	<0.10	2.51	
H3	Cr2	21-31	0.147	<0.10	2.35	2.00	0.35	2.31	~7
H4a	Cr3	31-60	0.307	0.185	4.56	1.88	2.68	4.64	14
H4b	Cr3	60-80	0.224	0.144	3.79	2.31	1.48	3.82	10
Horizon			Laser diff	raction on	soil mate	erial (fractio	ons in µr	n)	
nr.	0.4-2	2-6	6-50	50-63	63-100	•		500-1000	1000-2000
					%				
H1	1.6	1.9	19.6	9.0	27.5	31.4	6.1	2.3	0.6
H2	1.7	2.0	17.6	9.1	30.2	34.5	4.8	0.2	0.0
H3	1.7	1.6	17.9	10.1	32.8	33.1	2.6	0.2	0.0
H4a	3.4	5.6	42.0	10.4	19.4	17.4	1.8	0.0	0.0
H4b	2.0	2.7	25.0	8.5	20.3	25.8	10.3	4.8	0.5
Horizon	Na⁺	K⁺	Ca ²⁺	Mg ²⁺		ticle size d	istributi	on (µm; pip	ette)
nr.	by N	lgSO4 (cor	npulsive ı	method)	0-2	2-10	10-20	20-50	50-2000
		cmol(+)	/kg soil				%		
H1	6.9	0.9	7.5	4.5					
H2	5.8	1.3	5.8	3.2	16.0	8.0	1.0	18.6	63.6
H3	6.7	1.1	5.8	3.5					
H4a	14.9	2.4	12.3	10.0	21.9	9.5	9.0	40.5	19.2
H4b	16.1	2.0	12.3	8.8					
Horizon	CEC	CEC	BS by	Acidity	CaCO ₃	рŀ	ł	pН	EC
nr.	sum	measured	CEC-m	sum	titration	H ₂ O	CaCl ₂	CaCl2/H2O	dS/m
	cmol	(+)/kg	%	cmol(+)/kç	%	1:5	1:5		1:5
H1	19.9	14.8	>100	<	14.7	8.7	8.1	0.93	1.16
H2	16.1	11.3	>100	<	13.1	8.8	8.2	0.94	1.24
H3	17.1	24.3	70	<	12.9	8.6	8.2	0.95	1.52
H4a	39.8	22.5	>100	<	15.0	8.3	7.9	0.96	2.95
H4b	39.3	18.1	>100	<	13.7	8.2	8.2	1.00	2.68
Horizon	Ca	K	Mg	Na	Р	S	Al	As	Cd
nr.						ıia			
					mg/kg				
H1	50517	4288	4591	1832	953	1756	11760	11.7	1.1
H2	52009	5637	5467	2533	793	1770	9708	9.4	1.1
H3	41779	7865	9175	4542	720	2301	9403	9.2	1.3
H4a	31279 55735	3985	4218 7831	2009	2199	7283 5700	16769	26.6	5.1
H4b		7989		4154	1982	5709	18443	25.4	6.3
Horizon	Со	Cr	Cu	Fe	Mn Bogio	Ni	Pb	Zn	Lab
nr.				Aqua					
Ш1	F 0	16.6	4F 2	mg	_	11 5	20.2	1.1.1	IM20E
H1 H2	5.9 5.6	16.6 15.4	45.2 41.0	20363 18104	357 247	11.5 11.1	28.3 26.4	141 128	JM395 JM396
H3	5.6 4.9	15.4 15.9	41.0 41.7	15818	247 249	10.1	26.4 26.8	128	JM396 JM397
H4a	10.7	59.4	89.7	36040	>	26.8	75.6	333	JM398
H4b	9.3	59. 4 57.6	98.3	28304	827	25.8	74.9	333	JM399
Horizon	Na [⁺]	K ⁺	Ca ²⁺	Mg ²⁺	CEC	Na+Mg	ESP	SAR	0111000
nr.	.14	by NH40			sum	saturation	LUI	OAI	
			/kg soil		cations	%	%		
H1	5.0	0.6	39.0	5.6	50	21	10	1.1	
H2	5.4	0.0	37.8	5.2	49	21	11	1.1	
H3	6.1	0.8	37.9	5.1	50	23	12	1.3	
H4a	13.2	1.7	38.5	10.9	64	38	21	2.7	
H4b	11.2	1.3	36.6	8.2	57	34	19	2.4	
	11.4	1.0	00.0	U.Z	01	∪ ⊤		∠ .⊤	

2.8.4 World reference base (2007) classification

Diagnostic horizon,	Present	Remarks:
properties, material:	in	
	horizon:	
Salic		The highest conductivity is 2.95 dS/m
Abrupt textural change		Data on the texture-pipette is partly missing, based on
		texture-laser, most probably no abrupt change is
		present
	H1	Oximorphic colour pattern
	H2-4	Reductimorphic colour pattern
Lithological		
discontinuity		
Reducing conditions	H2-4	Positive reaction to alpha-alpha dipyridyl
Calcaric material		Analytical data confirm the presence of more than 2%
		calcium-carbonate throughout the soil
Fluvic material		Stratified and flooded twice a day
Sulphidic material	-	Alkaline pH

The profile keys out as a Fluvisol.

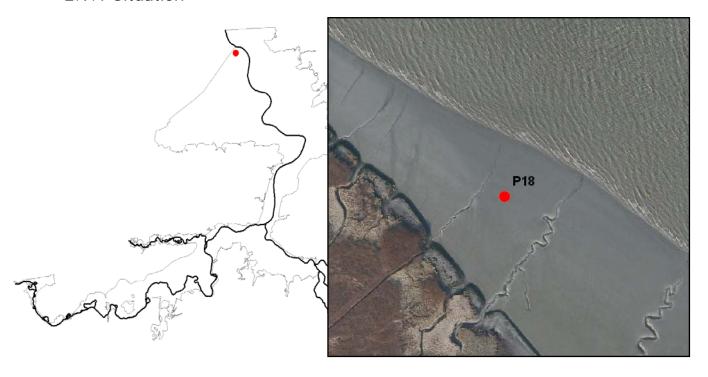
Full classification name, without specifiers

(except where listed as such for prefix and suffix qualifiers):

Gleyic Tidalic Fluvisol (Calcaric, Humic, Sodic, Eutric, Siltic)

- Tidalic: flooded by tidewater but not covered by water at mean low tide
- Gleyic: oximorphic and reductimorphic colours start from 0 cm and 4 cm respectively. The reduced conditions from 4 cm depth.
- Calcaric: present throughout the soil profile
- Humic: the weighted average is 1.15%
- Sodic: The required 15% sodium plus manganese cations on the exchange complex is present throughout the soil
- Eutric: The base saturation exceeds 100% throughout
- Siltic: H4 has a silt loam texture

Full classification name, with specifiers:


Hyperepigleyic Tidalic Fluvisol (Hypercalcaric, Humic, Sodic, Hypereutric, Siltic)

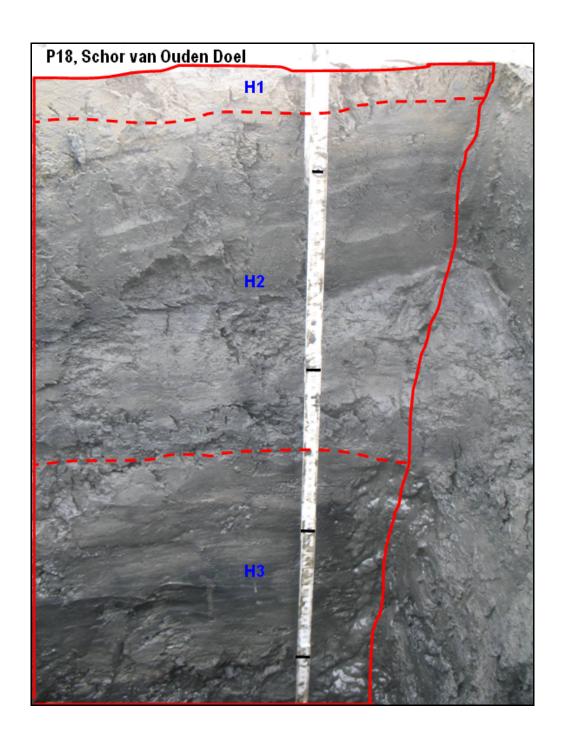
- Hyperepigleyic: the reduced conditions appear from 4 cm only
- Hypercalcaric: lowest content is 12.9%, implying that the weighted average exceeds 10%
- Sodic: The concentration of sodium plus manganese cations is less than 30%
- Hypereutric: The base saturation is less than 100% in H3, but seems rather a lab error

2.9 Profile 'P18': Schor van Ouden Doel

(Derived elevation: 1.65m TAW; Lat.: 51.34447, Long.: 4.242538)

2.9.1 Situation

Profile 'P18' is a mudflat-profile, located near 'Schor van Ouden Doel', on Flemish territory. It is situated at 70 meters from the tidal marsh edge riprap, in the mid-high zone of the mudflat.



2.9.2 Profile description

Pro	file P18	8	Schor van Ouden Doel				
1.3 D	ate and tin	ne:	27/2/2009. Profile description began at 14h. Low tide at 11:33				
1.4 A	uthor:		Jari Hinsch Mikkelsen				
1.5 Location:			Belgium, Province of East Flanders, Beveren Municipality.				
			For a road description check description for profile P3.				
1.6 Pr	ofile coord	dinates:	Latitude, longitude: 51° 20′ 26.82″ N, 04° 14′ 55.23″ E				
			Lambert72: 226083.780 N, 141204.945 E				
4.1 El	evation:		±1.65 m TAW (topo bathymetry data 2001)				
2.1 At	mospheric	climate	Overcast, close to light rain.				
and w	eather cor	ndition:					
Sc	oil climate:		STR: Mesic				
2 2 T	nogranhy		SMR: Peraquic Macrotopography: Estuarium, tidal mouth of the Schelde River				
Z.Z I(opography	•	Mesotopography: Tidal mud flat				
			Landscape position: Intermediate part of tidal mud flat				
			Slope form: straight, straight (S, S)				
			Slope gradient: gently sloping (2-5%)				
			Slope length: about 300m				
			Slope orientation: SW				
	dal mud fl	at	Heterogeneous surface composing of ripples and small depressions.				
	nology		Depth of depressions <5cm, diameter <20cm. No rills observed.				
2.5 La	and-use:		Tidal mud flat				
			Wildlife: No hunting Grazing: -				
2 6 H	uman influ	ence.	No influence				
	egetation:	Cricci	No vegetation				
	arent mate	rial:	unconsolidated deposits> marine and estuarine clays and silts>				
	ai Ci ic i i i acc		quaternary clay and silt> Holocene Silt (5222)				
2.8 D	rainage cla	nss:	Very poorly drained				
	cternal dra		Slow run-off				
	Flooding		Twice daily				
	Coarse sur	face frag.	None				
2.12	Frosion,		Sheet erosion and sedimentation				
	entation:						
2.13 9	Surface cra	acks:	None				
2.14 9	Salts:		None				
		ors profile:	Vegetation: -				
		•	Geomorphology/topography: Representative for the intermediate part of				
			the tidal mud flat, where the slope towards the Schelde shows a long				
			straight piece.				
Remarks:			Due to instability of the soil the period for profile description was very				
			short.				
N		Horizon des	scription				
Ο.							
H1	Α	0-4 cm; 2.5Y	; 2.5Y 4/2 (M), greyish brown 2.5Y 5/2 (D); no reaction to aa-dipyridyl; unripe;				
			roots; calcareous matrix, primary; clear smooth boundary				
H2	Cr1	4-40 cm; 2.5	Y 4/2 (M), greyish brown to olive grey 3.5Y 5/2 (D); positive reaction to				
		aa-dipyridyl,	throughout; reductimorphic colour pattern; unripe; no roots; calcareous				
		matrix, prima	ary; clear smooth boundary				

Profile P18		3	Schor van Ouden Doel			
H3	Cr2	_	eyish brown to olive grey 3.5Y 5/2 (D); positive reaction to aa-dipyridyl, eductimorphic colour pattern; unripe; horizon composes of continuous			
			stratified sediment; no roots; calcareous matrix			

Colour measurements: M= Moist; MC= Moist-crushed; D= Dry; DC= Dry-crushed; W= Wet.

2.9.3 Analytical laboratory data

Table A1	0: Analytic	al data for	P18, Scho	or van Oud	en Doel			died 14/11/20	
P18	Horizon	Depth	Total N	Total N		arbon- TOC		alysed: March	C/N
Horizon		Бериі	analyser		тс	IC	OC	Analyser	C/N
nr.	Symbols	cm	%	%	%	%	%	%	(TOC/Kjel.)
H1	С	0-4	0.105	<0,10		2.08	0.46	2.63	>9
H2a	Cr1	4-25	0.103	0.097	2.50	1.78	0.71	3.25	7
H2b	011	25-40	0.102	0.007	2.00	1.70	0.7 1	0.20	,
H3a	Cr2	40-65	0.341	0.181	4.33	2.35	1.98	6.32	11
H3b	0.2	65-80	0.011	0.101	4.00	2.00	1.00	0.02	
Horizon			aser diffra	action on s	soil mater	ial (fraction	s in um	1	
nr.	0.4-2	2-6	6-50	50-63	63-100			, 500-1000 [,]	1000-2000
H1	1.5	1.6	16.4	8.0	27.3	37.3	5.6	2.0	0.5
H2a	1.6	1.9	17.7	7.5	24.6	37.5	7.3	1.3	0.5
H2b									
Н3а	2.9	4.7	31.5	8.6	16.9	19.3	9.5	5.8	0.8
H3b									
Horizon	Na⁺	K⁺	Ca²⁺	Mg ²⁺	Part	icle size dis	stributio	n (µm; pip	ette)
nr.	by N	/lgSO₄ (cor	npulsive n			2-10	10-20	20-50	50-2000
							%		
H1	6.1	0.9	7.2	4.0					
H2a	7.1	1.5	7.5	4.9	13.2	3.6	1.1	16.6	65.5
H2b									
Н3а	14.0	2.3	10.7	9.4	27.7	15.3	8.4	32.5	16.2
H3b									
Horizon	CEC	CEC	BS by	Acidity	CaCO ₃	рH	1	рН	EC
nr.	sum	measured	CEC-m	sum	titration	H ₂ O	CaCl₂	CaCl ₂ /H ₂ O	dS/m
		(+)/kg	%	cmol(+)/kg		1:5	1:5	000121120	1:5
H1	18.2	10.5	>100	<	13.5	8.7	8.1	0.93	1.19
H2a	21.0	10.6	>100	<	13.9	8.7	8.0	0.92	1.69
H2b	21.0	10.0	100		10.0	0.7	0.0	0.02	1.00
НЗа	36.4	20.5	>100	<	14.9	8.4	7.9	0.94	2.79
H3b									
Horizon	Ca	K	Mg	Na	Р	S	Al	As	Cd
nr.				A	qua Regia	a			
					mg/kg				
H1	37186	4044	3520	1286	794	1529	9272	9.5	1.0
H2a	44482	3950	3843	1639	864	2236	11348	10.7	1.3
H2b									
Н3а	42252	3596	3836	1772	2258	8077	26595	27.1	4.6
H3b									
Horizon	Со	Cr	Cu	Fe	Mn	Ni	Pb	Zn	Lab
nr.					Regia				
				mg/l					
H1	5.3	14.5	38.2	16734	293	10.2	24.1	119	JM400
H2a	6.3	20.1	47.6	17864	302	12.6	31.4	148	JM401
H2b									JM402
НЗа	11.5	60.6	102.4	39972	782	25.9	80.4	338	JM403
H3b			_ ^-	^-					JM404
Horizon	Na⁺	K⁺	Ca ²⁺	Mg²⁺	CEC	Na+Mg	ESP	SAR	
nr.		•	OAc		sum	saturation			
			/kg soil		cations	%	%		
H1	4.7	0.6	37.1	5.1	47	21	10	1.0	
H2a	7.2	1.0	39.1	6.0	53	25	13	1.5	
H2b	40.0	4 7	25.0	0.5	60	20		2.0	
H3a H3b	13.9	1.7	35.2	9.5	60	39	23	3.0	
30									

2.9.4 World reference base (2007) classification

Diagnostic horizon,	Present	Remarks:
properties, material:	in	
	horizon:	
Salic		The highest conductivity is 2.79 dS/m
Abrupt textural change	H2-3	Clay increase from 13.2-27.7%
	H1	Oximorphic colour pattern
	H2-3	Reductimorphic colour pattern
Lithological	H2-3	
discontinuity		
Reducing conditions	H2-3	Positive reaction to alpha-alpha dipyridyl
Calcaric material		Analytical data confirm the presence of more than 2%
		calcium-carbonate throughout the soil
Fluvic material		Stratified and flooded twice a day
Sulphidic material	-	Alkaline pH

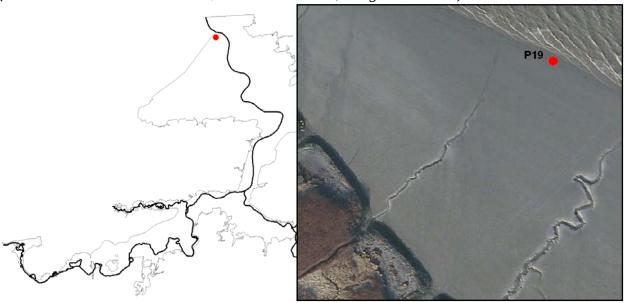
The profile keys out as a Fluvisol.

Full classification name, without specifiers

(except where listed as such for prefix and suffix qualifiers):

Gleyic Tidalic Fluvisol (Calcaric, Sodic, Eutric, Siltic)

- Tidalic: flooded by tidewater but not covered by water at mean low tide
- Gleyic: oximorphic and reductimorphic colours start from 0 cm and 4 cm respectively. The reduced conditions from 4 cm depth.
- Calcaric: present throughout the soil profile
- Humic: the weighted average is 0.94%
- Sodic: The required 15% sodium plus manganese cations on the exchange complex is present throughout the soil
- Eutric: The base saturation exceeds 100% throughout
- Siltic: H4 has a silty clay loam texture


Full classification name, with specifiers:

Hyperepigleyic Tidalic Fluvisol (Hypercalcaric, Sodic, Hypereutric, Siltic)

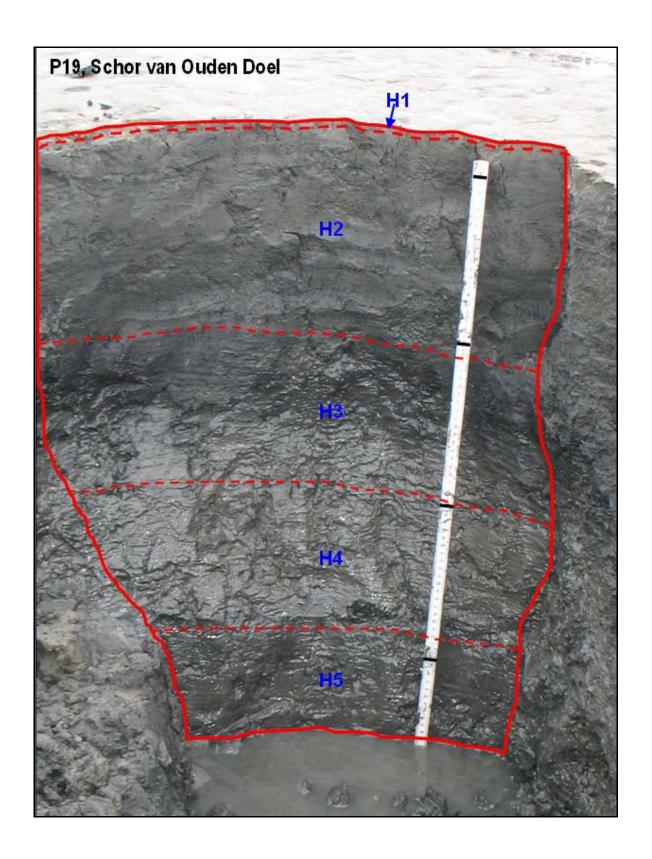
- Hyperepigleyic: the reduced conditions appear from 4 cm only
- Hypercalcaric: lowest content is 13.5%, implying that the weighted average exceeds 10%
- Sodic: The concentration of sodium plus manganese cations is less than 30%
- Hypereutric: The base saturation is more than 100%

2.10 Profile 'P19': Schor van Ouden Doel

(Derived elevation: 1.50m TAW; Lat.: 51.344832, Long.: 4.242871)

2.10.1 Situation

Profile 'P19' is a mudflat-profile, located near 'Schor van Ouden Doel', on Flemish territory. It is situated at 115 meters from the tidal marsh edge riprap, in the lower zone of the mudflat.



2.10.2 Profile description

Pro	file P19	9	Schor van Ouden Doel			
1.3 D	ate and tin	ne:	27/2/2009. Profile description began at 13h. Low tide at 11:33			
1.4 Author:			Jari Hinsch Mikkelsen			
1.5 Lo	ocation:		Belgium, Province of East Flanders, Beveren Municipality.			
			For a road description check description for profile P3.			
1.6 Pr	ofile coord	linates:	Latitude, longitude: 51° 20′ 28.99″ N, 04° 14′ 57.23″ E			
			Lambert72: 226124.028 N, 141228.200 E			
4.1 El	evation:		±1.5 m TAW (bathymetry data 2001)			
2.1 At	tmospheric	climate	Overcast, close to light rain.			
and w	eather cor	ndition:				
Sc	oil climate:		STR: Mesic			
			SMR: Peraquic			
2.2 To	opography	:	Macrotopography: Estuarium, tidal mouth of the Schelde River			
			Mesotopography: Tidal mud flat			
			Landscape position: Lower part of tidal mud flat			
			Slope form: straight, straight (S, S)			
			Slope gradient: gently sloping (2-5%)			
			Slope length: about 300m Slope orientation: SW			
2 3 Ti	dal mud fla	at	From some distance the tidal mud flat surface appears rather smooth.			
_	hology	uc	When closely examined shallow ripple structures are present. The ripples			
Погрі	lology		are homogeneous, covering more than 80% of the surface, less than 10			
			cm wide and more than 20 cm long.			
2.5 La	and-use:		Tidal mud flat			
			Wildlife: No hunting			
			Grazing: -			
2.6 H	uman influ	ence:	No influence			
Ve	egetation:		No vegetation			
2.7 Pa	arent mate	rial:	unconsolidated deposits> marine and estuarine clays and silts>			
			quaternary clay and silt> Holocene Silt (5222)			
2.8 D	rainage cla	iss:	Very poorly drained			
	kternal dra	inage:	Slow run-off			
2.10 F	Flooding		Twice daily			
2.11 (Coarse surf	face frag.	None			
2.12 [Frosion,		Sheet erosion and sedimentation			
sedim	entation:					
2.13 9	Surface cra	ncks:	None			
2.14 9	Salts:		None			
Locali	sation fact	ors profile:	Vegetation: -			
		•	Geomorphology/topography:. Representative for the lower part of the			
			tidal mud flat, close to the Schelde at low tide, flooded during			
			intermediate and high tide.			
N		Horizon des				
0.						
H1	Α	0-1 cm; grev	ish brown 2.5Y 5/2 (M), light greyish brown 2.5Y 5.5/2 (D); no reaction to			
			unripe; no roots; calcareous matrix, primary; abrupt smooth boundary			
H2	Cr1		k greyish brown 2.5Y 4/2 (M); light brownish grey to light olive grey 3.5Y			
		-	ive reaction to aa-dipyridyl, throughout; unripe; no roots; calcareous			
			ary; abrupt smooth boundary			
madiny primaryy abrape smooth boundary						

Pro	file P1	9	Schor van Ouden Doel				
Н3	Cr2		rk greyish horizon with alternation of organic rich and poor layers; dark				
			n 2.5Y 4/2 (M); greyish brown 2.5Y 5/2 (D); continuous lateral water				
			reaction to aa-dipyridyl, throughout; reductimorphic colour pattern;				
		unripe; no roots; calcareous matrix, primary; diffuse smooth boundary					
H4	Cr3	42-56 cm; da	rk greyish brown to olive grey 3.5Y 4/2 (M); greyish brown to light				
		brownish grey 2.5Y 5.5/2; positive reaction to aa-dipyridyl, throughout; reductimorphic					
		colour patteri	colour pattern; unripe; no roots; calcareous matrix, primary; diffuse smooth boundary				
H5	Cr4	56-80 cm; dark grey 5Y 4/1 (M); olive grey 5Y 5/2 (D); positive reaction to aa-					
		dipyridyl, throughout; reductimorphic colour pattern; unripe; no roots; calcareous					
		matrix, prima	ry				

Colour measurements: M= Moist; MC= Moist-crushed; D= Dry; DC= Dry-crushed; W= Wet.

2.10.3 Analytical laboratory data

Table A1	1: Analytic	al data for	P19, Sch	or van Oud	len Doel			lysed: March-	
D40	Haring Books, Table Table					Profile studied 14/11/2008			
P19 Horizon	Horizon	Depth	Total N	Total N Kjeldahl		arbon- TO		C	C/N
nr.	symbols	cm	analyser %	%	TC %	IC %	oc %	Analyser %	(TOC/Kjel.)
H1	С	0-1	0.125	<0,10	1.85	1.72	0.13	2.32	>3
H2	Cr1	1-25	0.123	<0,10	2.00	1.72	0.13	2.16	>5 >5
H3	Cr2	25-42	0.120	0.102	2.54	1.75	0.79	2.36	8
H4a	Cr3	42-56	0.155	0.085	2.74	2.30	0.44	2.72	5
H4b	Cr4	56-80	0.174	0.127	3.87	2.09	1.78	2.98	14
Horizon				raction on					
nr.	0.4-2	2-6	6-50	50-63	63-100			, 500-1000	1000-2000
					%				
H1	1.5	1.7	14.7	5.5	19.7	49.1	4.4	2.5	0.9
H2	1.7	1.6	16.3	7.2	22.9	45.5	4.7	0.2	0.0
H3	1.5	1.6	18.3	6.8	18.9	38.8	7.6	4.8	1.6
H4a	2.8	4.0	27.3	7.8	23.3	32.3	2.3	0.1	0.0
H4b	2.1	3.0	22.5	7.7	20.7	33.0	7.0	3.1	0.9
Horizon	Na⁺	K⁺	Ca ²⁺	Mg ²⁺	Part			n (µm; pip	ette)
nr.	by N	/lgSO ₄ (cor	npulsive r	nethod)	0-2	2-10	10-20	20-50	50-2000
		cmol(+)					%		
H1	5.1	0.8	5.2	2.8					
H2	6.6	1.1	4.6	2.5	5.6	1.4	3.5	12.2	77.3
H3	8.5	1.1	7.1	3.8					
H4a	9.4	1.2	7.0	4.1	12.6	4.9	3.5	14.0	65.0
H4b	12.4	1.4	9.6	6.1					
Horizon	CEC	CEC	BS by	Acidity	CaCO ₃	pl	Н	рН	EC
nr.	sum	measured	CEC-m	sum	titration	H₂O .	CaCl ₂	CaCl2/H2O	dS/m
	cmol	(+)/kg	%	cmol(+)/kg	%	1:5	1:5		1:5
H1	13.8	8.9	>100	<	11.6	8.9	8.1	0.91	0.81
H2	14.7	8.8	>100	<	10.8	8.8	8.2	0.94	1.34
H3	20.5	7.2	>100	<	12.3	8.5	8.1	0.95	2.08
H4a	21.8	10.4	>100	<	13.0	8.6	8.1	0.94	1.72
H4b	29.5	16.8	>100	<	14.0	8.3	8.0	0.96	2.39
Horizon	Ca	K	Mg	Na	Р	S	Al	As	Cd
nr.	·								
H1	56911	6824	8299	3964	657	1525	12053.7		<
H2	43990	5729	5497	2833	775	2938	11125.4	10.1	1.2
H3	43114	4382	4460	2504	1042	2184	15676.8	11.8	1.2
H4a	52697	5162	4756	2554	1632	5616	7970.37	19.7	3.2
H4b	50546	3314	4703	3103	738	1678	10721.3	8.9	< <u> </u>
Horizon	Со	Cr	Cu	Fe	Mn	Ni	Pb	Zn	Lab
nr.				Aqua F					
114	F 4	20.2	47.0	mg/		0.5	20.0	444	INAAOE
H1	5.1	26.2	47.2	18651	288	9.5	30.6	111	JM405
H2	5.3 6.6	15.6	41.5 51.9	18196	349 508	10.2	28.5	133	JM406
H3 H4a	6.6 7.7	18.5	51.8 58.6	22579	508	13.0 17.1	32.1 54.9	154 235	JM407
H4b	7.7 4.9	37.6 12.5	58.6 39.2	23397 17693	624 233	9.3	54.9 23.4	235 113	JM408 JM409
Horizon	Na [⁺]	K ⁺	Ca ²⁺	Mg ²⁺	CEC	Na+Mg	ESP	SAR	CIVITUU
nr.	.14	by NH4			sum	saturation	_5,	- Orait	
)/kg soil		cations	%	%		
H1	4.1	0.5	36.4	4.4	46	19	9	0.9	
				4.3	47	21	12	1.3	
		0.7	360	4.7					
H2	5.7	0.7 0.9	36.0 39.2						
H2 H3	5.7 8.4	0.9	39.2	5.7	54	26	16	1.8	
H2	5.7								

2.10.4 World reference base (2007) classification

Diagnostic horizon,	Present	Remarks:
properties, material:	in	
	horizon:	
Salic		The highest conductivity is 2.39 dS/m
Abrupt textural change		Data on the texture-pipette is partly missing, probably
		no abrupt change is present
	H1	Oximorphic colour pattern
	H2-4	Reductimorphic colour pattern
Lithological		
discontinuity		
Reducing conditions	H2-4	Positive reaction to alpha-alpha dipyridyl
Calcaric material		Analytical data confirm the presence of more than 2%
		calcium-carbonate throughout the soil
Fluvic material		Stratified and flooded twice a day
Sulphidic material	-	Alkaline pH

The profile keys out as a Fluvisol.

Full classification name, without specifiers

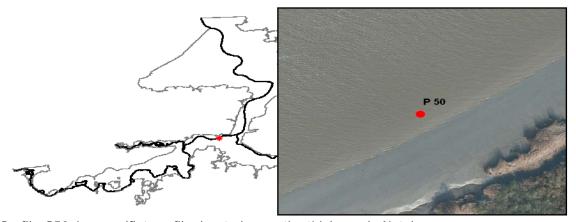
(except where listed as such for prefix and suffix qualifiers):

Gleyic Tidalic Fluvisol (Calcaric, Sodic, Eutric, Arenic)

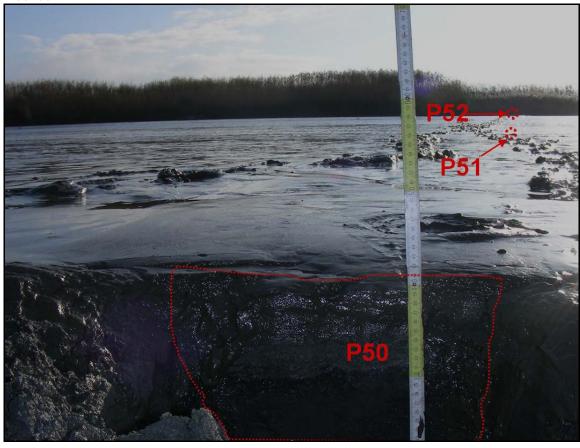
- Tidalic: flooded by tidewater but not covered by water at mean low tide
- Gleyic: oximorphic and reductimorphic colours start from 0 cm and 4 cm respectively. The reduced conditions from 4 cm depth.
- Calcaric: present throughout the soil profile
- Humic: the OC concentration remains below 1% in the upper 50 cm
- Sodic: The required 15% sodium plus manganese cations on the exchange complex is present throughout the soil
- Eutric: The base saturation exceeds 100% throughout
- Arenic: H2-3 have a loamy sand texture

Full classification name, with specifiers:

Hyperepigleyic Tidalic Fluvisol (Hypercalcaric, Sodic, Hypereutric, Arenic)


- Hyperepigleyic: the reduced conditions appear from 4 cm only
- Hypercalcaric: lowest content is 10.8%, implying that the weighted average exceeds 10%
- Sodic: The concentration of sodium plus manganese cations is less than 30%
- Hypereutric: The base saturation is more than 100%

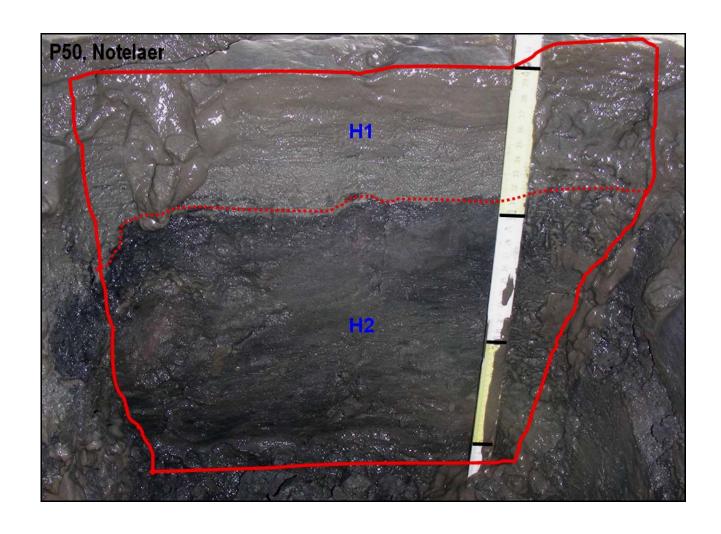
Oligohaline zone: Notelaer


2.11 Profile 'P50': Notelaer

(Derived elevation: 0.20m; Lat.: 51.117298, Long.: 4.265206)

2.11.1 Situation

Profile 'P50' is a mudflat-profile, located near the tidal marsh 'Notelaer'. It is situated at 75 meters from the unprotected tidal marsh-cliff, in the lower zone of the mudflat.



2.11.2 Profile description

Pro	Profile P50		De Notelaer		
1.3 D	ate and tin	ne:	13/11/2008. Profile description initiated at 10:45. Low tide at 10:43		
1.4 A	uthor:		Jari Hinsch Mikkelsen		
1.5 Location:			Belgium, Province of Antwerp, Bornem Municipality		
			For a road description check out P57		
1.6 Pı	rofile coord	dinates:	Latitude, longitude: 51° 07′ 02.35″ N, 04° 15′ 55.80″ E		
			Lambert72: 200807.295N, 142749.404263 E		
4.1 El	levation:		±0.2 m TAW (Bathymetry data 2001)		
2.1 At	tmospheric	climate	Sunny		
	veather cor		· ·		
Sc	oil climate:		STR: Mesic		
			SMR: Aquic		
2.2 To	opography	:	Macrotopography: Estuarium, tidal mouth of the Scheldt river		
			Mesotopography: Tidal mud flat		
			Landscape position: Lowest part of the tidal mud flat, on a few meters		
			distance from the Scheldt river at low tide		
			Slope form: straight, straight (SS)		
			Slope gradient: -		
			Slope length: -		
261			Slope orientation: -		
2.6 La	and-use:		No land use		
2 7 H	uman influ	ionco:	Grazing: No grazing No influence. Anyhow any influence is rapidly erased by the impact of		
2.7 11	ulliali illilu	ence.	the daily floodings		
Ve	egetation:		None		
	arent mate	rial·	Unconsolidated deposits> marine and estuarine clays and silts>		
2.010	archic mate	ariar.	quaternary clay and silt> Holocene Clay (5221)		
2.9 D	rainage cla	nss:	Very poorly drained		
	External dr		Slow runoff		
	Flooding	amager	Unflodded only for a few hours each day		
	Coarse sur	face frag	None		
	Erosion,	race rrag.	Active erosion sedimentation in function of changes of the current		
	nentation:		regime of the Scheldt		
	Surface cra	acks:	None observed		
		icks.	None observed		
	2.15 Salts:				
Locali	Localisation factors profile:		This profile represents the lowest part of the tidal mud flat and is located within the focus zone of this tidal research area		
Remarks:			Within the focus zone of this tidal research area		
		corintion			
		Horizon des	scription		
0.	^	0.10 cm, lutum with condulaces, continuous stratifications reates about any attacks			
H1	Α		um with sand; loose; continuous stratified; no roots; abrupt smooth		
112	boundary		disable and is a large and the many marking was able to the second of th		
		eductimorphic colour pattern; positive reaction to aa-dipyridyl; more			
clayey and denser than horizon above; massive; continuous stratified; no roots;					

Extra subordinate symbols: 'bi' biological activity clearly evidences (fauna and flora), and more than what can be expected according to type of soil, position, time of year etc.

Colour measurements: M= Moist; MC= Moist-crushed; D= Dry; DC= Dry-crushed; W= Wet.

2.11.3 Analytical laboratory data

Table A1	2: Analyti	cal data fo	r P50, 51 e	n 52, De	Notelaer		Profile studied	14/11/2008	
							Profile analys	ed: March-Dec	:./2009
P50-52	Horizon	Horizon	Depth	Total N	LOI	TOC	C/N	CaCO ₃	EC
Horizon	nr.	symbols	•	Kjeldahl	OM	ОС		titration	dS/m
nr.			cm	%	%	%	(TOC/Kjel.)	%	1:5
P50	H1	С	0-9		11.0	6.84		9.1	0.37
	H2	Cr	9-35		10.3	6.42		12.9	0.77
P51	H1	С	0-11						
	H2	Cr1	11-40		9.1	3.28		11.4	0.30
	H3	Cr2	40-50		8.9	4.70		8.7	0.28
P52	H1	С	0-8		10.6	6.53		8.0	0.31
	H2	Cr	8-38		11.4	6.51		6.6	0.89
Horizon		re- pipette				Na⁺	K⁺	Ca ²⁺	Mg ²⁺
nr.	0-2	2-10	10-20	20-50	50-2000	by	MgSO ₄ (con		
DEOLIA	05.0		%	00.4	0.4	4.0	•	+)/kg soil	
P50H1 P50H2	35.8	20.9	10.9	29.4	3.1	1.2	0.3	43.4	3.5 3.0
P50H2 P51H1						1.2	0.6	34.9	3.0
P51H1	29.7	17.2	6.2	38.2	8.7	0.6	0.8	30.5	3.4
P51H3	29.1	17.2	0.2	30.2	0.7	0.0	0.8	34.5	3.4
P52H1						0.8	0.9	37.3	3.7
P52H2						0.0	0.5	07.0	5.1
Horizon	Depth	CEC	CEC	BS by	Aci	idity	р	Н	рН
nr.	•	sum	measured	CEC-m	sum	titrated	H₂O	KCI	KCI/H2O
	cm	cmol	(+)/kg	%	cmol	(+)/kg	1:5	1:5	
P50H1	0-9	48.4	42.4				7.6	7.2	0.95
P50H2	9-35	39.6	35.2				7.4	7.1	0.96
P51H1	0-11								
P51H2	11-40	35.3	32.4				7.6	7.2	0.94
P51H3	40-50	39.4	35.8				7.6	7.2	0.94
P52H1	8-0	42.8	40.5				7.5	7.1	0.95
P52H2	8-38						7.2	6.9	0.97
Horizon	S	As	Cd	Cr	Cu	Ni	Pb	Zn	Lab
nr.					Aqua Re	_			
5-6114					mg/kg				
P50H1	2431	77	21.5	274	191	69 74	233	1021	JM330
P50H2	4673	118	37.2	308	206	74	309	1129	JM331
P51H1	2767	20	5 7	110	04	22	102	E40	JM332
P51H2 P51H3	2767 2009	29 32	5.7 6.5	110 130	81 95	33 38	103 133	549 634	JM333 JM334
P52H1	1951	41	7.4	139	103	41	141	662	JM335
P52H1	9790	38	7. 4 9.0	167	103	41 45	173	790	JM336
1 72112	3130	30	9.0	101	123	70	173	1 30	JIVIJJU

2.11.4 World reference base (2007) classification

www.inbo.be

Diagnostic horizon,	Present	Remarks:
properties, material:	in	
	horizon:	

Abrupt textural change		Data on the texture-pipette is partly missing, based on
		the soil morphology it is most unlikely that H2 contains
		20% less clay
	H1	Oximorphic colour pattern
	H2	Reductimorphic colour pattern
Lithological		
discontinuity		
Reducing conditions	H2	Positive reaction to alpha-alpha dipyridyl
Calcaric material		Analytical data confirm the presence of more than 2%
		calcium-carbonate throughout the soil
Fluvic material		Stratified and flooded twice a day

The profile keys out as a Fluvisol.

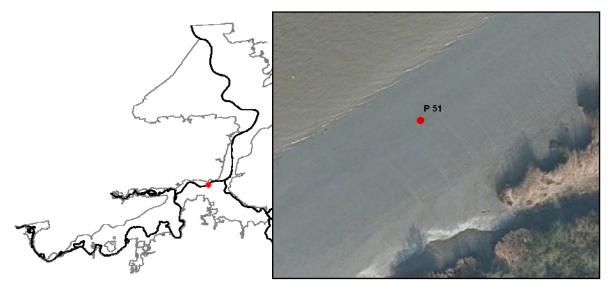
Full classification name, without specifiers

(except where listed as such for prefix and suffix qualifiers):

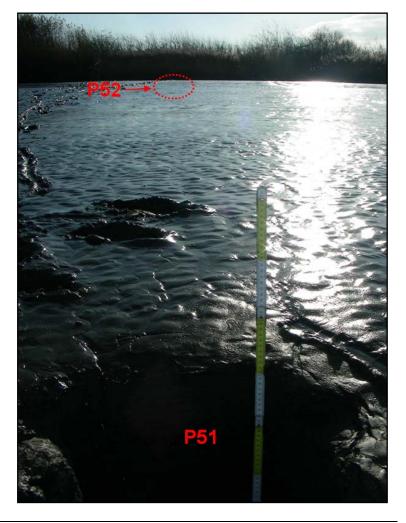
Gleyic Tidalic Fluvisol (Calcaric, Humic, Eutric, Siltic)

- Tidalic: flooded by tidewater but not covered by water at mean low tide
- Gleyic: oximorphic and reductimorphic colours start from 0 cm and 10 cm respectively. The reduced conditions from 10 cm depth.
- Calcaric: present throughout the soil profile
- Humic: the weighted average is more than 6%, but data is only available to 35 cm depth
- Sodic: Data on ammonium acetate extractable cations are missing, based on magnesium sulphate extractable cations that the concentration of sodium and magnesium is too low to qualify
- Eutric: The base saturation exceeds 100% throughout
- Siltic: H1 has a silty clay loam. Below the data are missing but most probably the texture is more
 or less similar in H2

Full classification name, with specifiers:


Hyperepigleyic Tidalic Fluvisol (Hypercalcaric, Hyperhumic, Hypereutric, Siltic)

- Hyperepigleyic: the reduced conditions appear from 10 cm
- Hypercalcaric: The weighted average of the profile going to 35 cm depth is 12%
- Hyperhumic: the concentration exceeds 6%
- Hypereutric: The base saturation exceeds 100%


2.12 Profile 'P51': Notelaer

(Derived elevation: 1.10m TAW; Lat.: 51.117046, Long.: 4.265486)

2.12.1 Situation

Profile 'P51' is a mudflatprofile, located near the tidal marsh 'Notelaer'. It is situated at 40 meters from the unprotected tidal marsh-cliff, in the mid-high zone of the mudflat.

2.12.2 Profile description

Pro	file P5	1	De Notelaer		
1.3 Da	ate and tin	ne:	13/11/2008. Profile description initiated at 11:30. Low tide at 10:43		
1.4 Au	uthor:		Jari Hinsch Mikkelsen		
1.5 Location:			Belgium, Province of Antwerp, Bornem Municipality		
			For a road description check out P57		
1.6 Pr	ofile coord	dinates:	Latitude, longitude: 51° 20′ 27.35″ N, 04° 14′ 37.95″ E		
			Lambert72: 226093.925 N, 141004.323 E		
4.1 El	evation:		±1.1 m TAW (Bathymetry data 2001)		
2.1 At	mospheric	climate	Sunny		
and w	eather co	ndition:			
So	il climate:		STR: Mesic		
			SMR: Aquic		
2.2 To	opography	:	Macrotopography: Estuarium, tidal mouth of the Scheldt river		
			Mesotopography: Tidal mud flat		
			Landscape position: Central part of the tidal mud flat		
			Slope form: straight, convex (SV)		
			Slope gradient: -		
			Slope length: -		
261-			Slope orientation: -		
2.6 La	and-use:		No land use		
274	uman influ	onco.	Grazing: No grazing		
2.7 🗆	uman mnu	ence:	No influence. The profile is located in an active estuarine environment, so any human impact is fast erased.		
\/e	egetation:		None		
	arent mate	rial·	Unconsolidated deposits> marine and estuarine clays and silts>		
2.016	ir Circ iriate	ilai.	quaternary clay and silt> Holocene Clay (5221)		
2.9 Di	rainage cla	ass:	Very poorly drained		
	External dr		Slow runoff		
	looding		Unflodded only for some hours each day		
	Coarse sur	face frag.	None		
	Frosion,	iace iragi	Active erosion sedimentation in function of changes of the current		
	entation:		regime of the Scheldt		
	Surface cra	acks:	None observed		
2.15			None observed		
		ors profile:	This profile represents the central part of the tidal mud flat and is		
Locali	oacion race	ors promer	located within the focus zone of this tidal research area		
N		Horizon description missing colour info			
0.		. IOI IZOII GO	ionzon description missing colour mio		
H1	Α	0-10 cm; lutum with sand; loose; no roots; abrupt smooth boundary			
H2	C1		0-40 cm; reductimorphic colour pattern; positive reaction to aa-dipyridyl; more clayey		
		and denser than horizon above; massive; continuously stratified; no roots; abrupt			
	smooth boundary				
H3	C2		ductimorphic colour pattern; positive reaction to aa-dipyridyl; sandy;		
5		massive; continuously stratified; no roots			
	ļ		initiation, of defined, no roots		

Extra subordinate symbols: 'bi' biological activity clearly evidences (fauna and flora), and more than what can be expected according to type of soil, position, time of year etc.

Colour measurements: M= Moist; MC= Moist-crushed; D= Dry; DC= Dry-crushed; W= Wet.

2.12.3 Analytical laboratory data

See table 2.11.3

2.12.4 World reference base (2007) classification

Diagnostic horizon,	Present	Remarks:
properties, material:	in	
	horizon:	
Abrupt textural change		Data on the texture-pipette is partly missing, based on
		the soil morphology it is most unlikely that H1 or 3
		contains 20% less or more clay than H2
	H1	Oximorphic colour pattern
	H2-3	Reductimorphic colour pattern
Lithological		
discontinuity		
Reducing conditions	H2-3	Positive reaction to alpha-alpha dipyridyl
Calcaric material		Analytical data confirm the presence of more than 2%
		calcium-carbonate throughout the soil
Fluvic material		Stratified and flooded twice a day

The profile keys out as a Fluvisol.

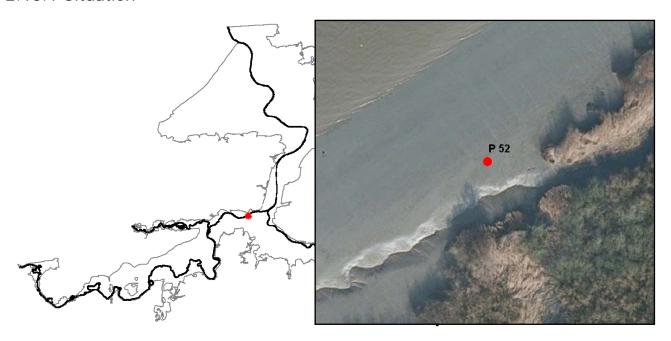
Full classification name, without specifiers

(except where listed as such for prefix and suffix qualifiers):

Gleyic Tidalic Fluvisol (Calcaric, Humic, Eutric, Siltic)

- Tidalic: flooded by tidewater but not covered by water at mean low tide
- Gleyic: oximorphic and reductimorphic colours start from 0 cm and 11 cm respectively. The reduced conditions from 11 cm depth.
- Calcaric: present throughout the soil profile
- Humic: the weighted average is more than 1%
- Sodic: Data on ammonium acetate extractable cations are missing, based on magnesium sulphate extractable cations that the concentration of sodium and magnesium is too low to qualify
- Eutric: The base saturation exceeds 100% throughout
- Siltic: H2 has a silty clay loam. Below the data are missing but most probably the texture is more or less similar as in H2

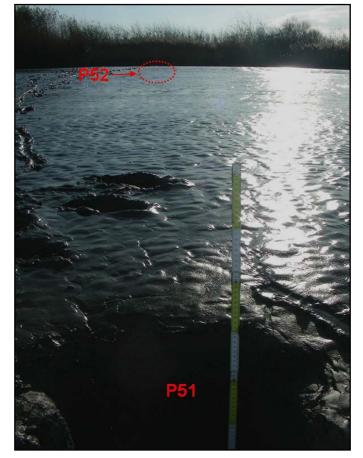
Full classification name, with specifiers:


Hyperepigleyic Tidalic Fluvisol (Hypercalcaric, Humic, Hypereutric, Siltic)

- Hyperepigleyic: the reduced conditions appear from 11 cm
- Hypercalcaric: The weighted average of the profile will probably exceed 10%, but data are missing 7from H1
- Hypereutric: The base saturation exceeds 100%

2.13 Profile 'P52': Notelaer

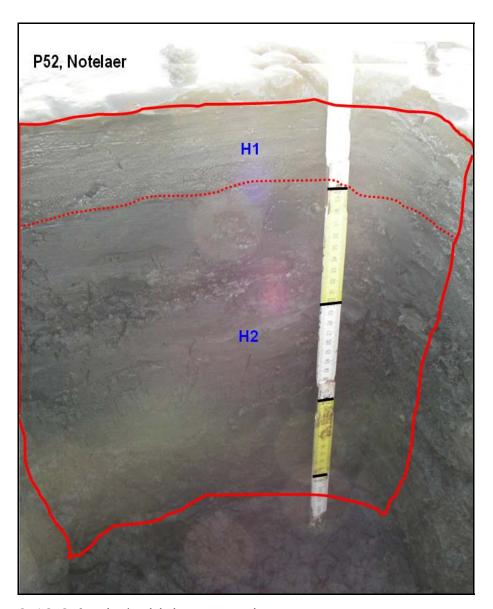
(Derived elevation: 3.40m TAW; Lat.: 51.116761, Long.: 4.26557)


2.13.1 Situation

Profile 'P52' is a mudflat-profile, located near the tidal marsh 'Notelaer'.

It is situated near the outlet of an major tidal marsh-creek, in the

high zone of the mudflat.


2.13.2 Profile description

Prof	ile P52	2 De Notelaer				
1.3 Da	te and tin	ne:	13/11/2008. Profile description initiated at 11:30. Low tide at 10:43			
1.4 Au	thor:		Jari Hinsch Mikkelsen			
1.5 Loc	cation:		Belgium, Province of Antwerp, Bornem Municipality			
			For a road description check out P57			
1.6 Pro	ofile coord	linates:	Latitude, longitude: 51° 07′ 00.40″ N, 04° 15′ 56.66″ E			
			Lambert72: 200747.498 N, 142774.822 E			
4.1 Ele	vation:		±3.4 m TAW (topo-bathymetry data 2001)			
2.1 Atr	nospheric	climate	Sunny			
and we	eather cor	ndition:				
Soi	l climate:		STR: Mesic			
			SMR: Aquic			
2.2 To	pography	:	Macrotopography: Estuarium, tidal mouth of the Scheldt river			
			Mesotopography: Tidal mud flat			
			Landscape position: Highest part of the tidal mud flat, on a few tens of			
			meters distance from the tidal harsh cliff river at low tide			
			Slope form: straight, convex (SV) Slope gradient: -			
			Slope length: -			
			Slope orientation: -			
2.6 Lar	nd-use:		No land use			
			Grazing: No grazing			
2.7 Hu	2.7 Human influence:		No influence. Anyhow any influence is rapidly erased by the impact of			
			the daily floodings			
	getation:		None			
2.8 Pai	rent mate	rial:	Unconsolidated deposits> marine and estuarine clays and silts> quaternary clay and silt> Holocene Clay (5221)			
2.9 Dra	ainage cla	SS:	Very poorly drained			
2.10 Ex	xternal dr	ainage:	Slow runoff			
2.11 Fl	ooding		Daily			
2.12 C	oarse surf	ace frag.	None			
	2.13 Erosion,		Active erosion sedimentation in function of changes of the current			
sedime	sedimentation:		regime of the Scheldt			
2.14 Surface cracks:		cks:	None observed			
2.15 Salts:			None observed			
Localisation factors profile:		ors profile:	This profile represents the highest part of the tidal mud flat and is			
·		•	located within the focus zone of this tidal research area			
N	N Horizon des		scription			
О.		•				
H1	Α	0-8 cm; lutum and sand; loose; continuous stratified; no roots;				
H2	С	8-44 cm; red	luctimorphic colour pattern; positive reaction to aa-dipyridyl; more clayey			
		and denser than horizon above; massive; continuous stratified; no roots;				

Extra subordinate symbols: 'bi' biological activity clearly evidences (fauna and flora), and more than what can be expected according to type of soil, position, time of year etc.

Colour measurements: M= Moist; MC= Moist-crushed; D= Dry; DC= Dry-crushed; W= Wet.

www.inbo.be

2.13.3 Analytical laboratory data

See table 2.11.3

2.13.4 World reference base (2007) classification

Diagnostic horizon,	Present	Remarks:
properties, material:	in	
	horizon:	
Abrupt textural change		No textural data are available
	H1	Oximorphic colour pattern
	H2	Reductimorphic colour pattern
Lithological		
discontinuity		
Reducing conditions	H2	Positive reaction to alpha-alpha dipyridyl
Calcaric material		Analytical data confirm the presence of more than 2%
		calcium-carbonate throughout the soil
Fluvic material		Stratified and flooded twice a day

The profile keys out as a Fluvisol.

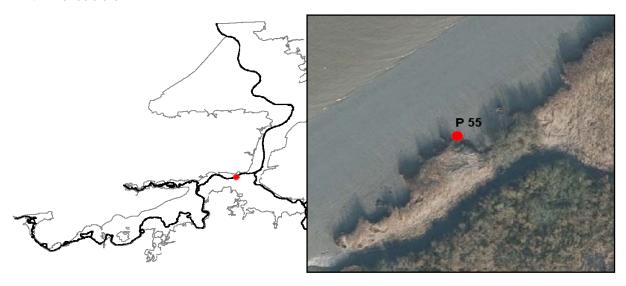
Ful	l classifica	tion name,	without	specifiers
-----	--------------	------------	---------	------------

(except where listed as such for prefix and suffix qualifiers):

Gleyic Tidalic Fluvisol (Calcaric, Humic, Eutric)

- Tidalic: flooded by tidewater but not covered by water at mean low tide
- Gleyic: oximorphic and reductimorphic colours start from 0 cm and 8 cm respectively. The reduced conditions from 8 cm depth.
- Calcaric: present throughout the soil profile
- Humic: the weighted average is 6.5%
- Sodic: Data on ammonium acetate extractable cations are missing, based on magnesium sulphate extractable cations that the concentration of sodium and magnesium is too low to qualify
- Eutric: The base saturation exceeds 100%

Full classification name, with specifiers:


Hyperepigleyic Tidalic Fluvisol (Calcaric, Hyperhumic, Hypereutric)

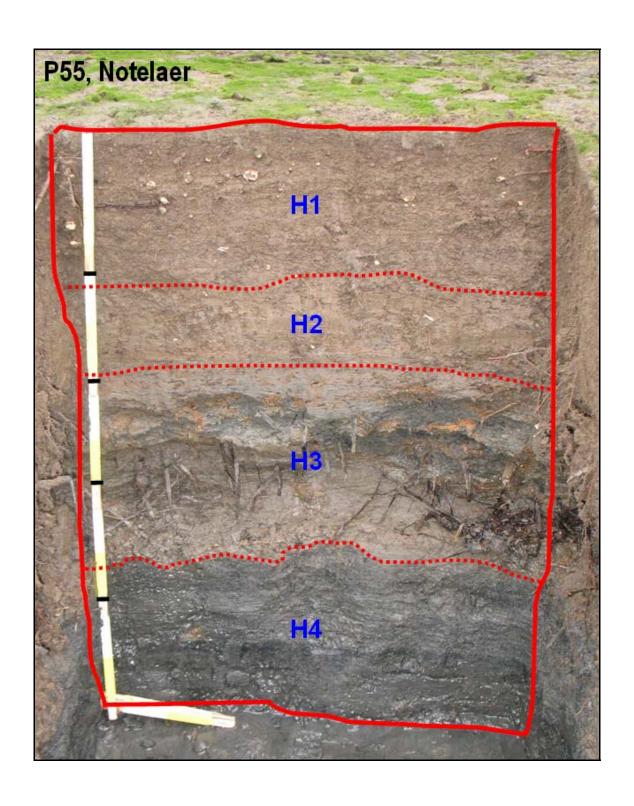
- Hyperepigleyic: the reduced conditions appear from 11 cm
- Hypercalcaric: The weighted average of the profile is less than 10%
- Hypereutric: The base saturation exceeds 100%

2.14 Profile 'P55': Notelaer

(Derived elevation: 3.90m TAW; Lat.: 51.070217, Long.: 4.160011)

2.14.1 Situation

Profile 'P55' is excavated in the tidal marsh edge of the tidal marsh 'Notelaer'. Further upstream the tidal marsh consists of reed. At the location itself willow threes and shrubs have colonised the marsh edge.


2.14.2 Profile description

Profile P55	De Notelaer
1.3 Date and time:	16/12/2008. Profile description initiated at 11:45. Low tide at 12:30
1.4 Author:	Jari Hinsch Mikkelsen
1.5 Location:	Belgium, Province of Antwerp, Bornem Municipality.
	For a road description check out P57
1.6 Profile coordinates:	Latitude, longitude: 51° 07′ 02.34″ N, 04° 16′ 00.09″ E
	Lambert72: 200804.503 N, 142853.079 E
4.1 Elevation:	±3.9 m (Topo -bathymetry data 2001)
2.1 Atmospheric climate	Overcast and slightly misty
and weather condition:	
Soil climate:	STR: Mesic
	SMR: Udic
2.2 Topography:	Macrotopography: Estuarium, tidal mouth of the Scheldt river
	Mesotopography: Tidal marsh
	Landscape position: Tidal marsh ridge facing the tidal mud flat
	Slope form: convex, convex (VV)
	Slope gradient: -
	Slope length: 3-4m
	Slope orientation: -
2.6 Land-use:	No land use
	Grazing: No grazing
2.7 Human influence:	No influence observed in the immediate surroundings of the profile,

Profile P5	55	De Notelaer		
		although on top and embedded in the soil debris is commonly scattered, mostly of plastic fabric.		
Vegetation:		Below willow bushes, with a ground vegetation composing only of some mosses. Next to the willows the tidal marsh is dominated by reed.		
2.8 Parent mat	erial:	unconsolidated deposits> marine and estuarine clays and silts> quaternary clay and silt> Holocene Clay (5221)		
2.9 Drainage c	lass:	Somewhat poorly drained		
2.10 External of	drainage:	Moderately rapid runoff		
2.11 Flooding		Flooded daily at least to a certain level of the tidal marsh cliff. Flodding until the top of the soil is restricted to spring tides only.		
2.12 Coarse su	ırface frag.	Some larger plastic debris and bottles was found in the immediate surroundings of the profile. Roots and branches (alive and decaying) provide some protection from the wave impact.		
2.13 Erosion,		The soil is primarily eroded in a zone of about 20-25 cm just above the		
sedimentation:		tidal mud flat. At this level an incision of more than 50 cm was		
		measured. In fact on the soil photo the incision is still visible. Obviously		
		the erosion is active at present.		
2.14 Surface c	racks:	None observed		
2.15 Salts:		None observed		
Localisation fac	ctors profile:	This profile together with profile P57 are located in an area dominated		
		by willow. Where profile P57 is situated very close to the dike in on of		
		the oldest parts of the Notelaer tidal marsh, P55 is located on the tidal		
		marsh cliff so on the transition between the tidal marsh and the tidal		
		mud flat. This part of the tidal marsh is furthermore one of the youngest sediments of the Notelaer.		
N	Horizon de	scription		
0.				
H1 Abi		ry dark greyish brown 2.5Y 3/2 (M), olive brown to light olive brown 2.5Y		
	, , ,	ery fine, strong granular; very friable; common very fine, few fine and very		
		to coarse roots; clear smooth boundary		
H2 B	-	ery dark greyish brown 2.5Y 3/2 (M), greyish brown to light olive brown		
		D); massive, locally very fine, weak granular; friable; common very fine,		
	few fine and very few medium to coarse roots; clear smooth boundary			
H3 BCb	38-73 cm; dark olive grey 5Y 3/2 (M), dark greyish brown to greyish brown 2.5Y 4.5/2			
	n, medium, distinct, diffuse rusty mottles; oximorphic colours; massive;			
	-	very few very fine roots; rooting depth is about 40 cm; abrupt smooth		
114	boundary			
H4 Cr	-	ery dark grey to dark grey 2.5Y 3.5/1 (M), dark grey to dark greyish brown		
	2.5Y 4/1.5 (D); reductimorphic colours; positive reaction to aa-dipyridyl; massiv			
		tratification of light and dark greyish material; very friable;		

Extra subordinate symbols: 'bi' biological activity clearly evidences (fauna and flora), and more than what can be expected according to type of soil, position, time of year etc.

Colour measurements: M= Moist; MC= Moist-crushed; D= Dry; DC= Dry-crushed; W= Wet.

2.14.3 Analytical laboratory data

Table A1	3: Analytic	cal data for	P55, De	Notelaer				lysed: March-	
DEE	Hari-an	Danth	TatalN	TatalN		anh an TO		lied 16/12/200	
P55	Horizon	Depth	Total N	Total N Kjeldahl		arbon- TO		C	C/N
Horizon	symbols	om	%	Kjeidani %	TC %	IC %	oc %	Analyser %	(TOO!(C:-1)
nr.	Λ h: 4	cm							(TOC/Kjel.)
H1	Abi1 Abi2	0-24 24-38	0.421 0.465	0.350 0.359	4.95	0.63	4.33	4.63	12 15
H2 H3		24-36 38-73	0.465	0.359	5.97 4.65	0.43 0.62	5.54 4.03	5.54 4.44	15 15
H4	Bg Cr1	73	0.415	0.267	4.34	1.55	2.79	4.4 4 4.45	18
Horizon	OFF					rial (fracti			10
nr.	0.4-2	2-6	6-50	50-63	63-100				1000-2000
1111.	0.4-2	2-0	U-30 						1000-2000
H1	1.9	2.7	21.6	7.6	19.9	31.3	11.3	3.2	0.5
H2	5.8	11.0	43.7	6.6	12.8	15.9	2.9	1.0	0.4
H3	3.9	7.3	33.6	6.4	13.3	17.1	9.5	7.8	1.1
H4	2.3	3.3	23.4	7.7	24.5	33.2	4.8	0.6	0.2
Horizon	Na ⁺	5.5 K ⁺	Ca ²⁺	Mg ²⁺				n (µm; pip	
nr.		lgSO₄ (con		_			10-20	ιι (μιιι, μιρ 20-50	
		cmol(+)			U-Z		%		
H1	0.8	0.4	31.5	2.1	25.6	9.2	5.6	34.7	24.9
H2	1.4	1.0	39.7	3.3	25.0	9.2	3.0	J 4 .1	24.0
H3	1.2	1.4	32.2	2.8	39.5	13.5	7.8	24.5	14.6
H4	0.8	0.7	24.2	2.1	00.0	10.0	7.0	21.0	11.0
Horizon	CEC	CEC	BS by		CaCO ₃	р	Ц	рН	EC
			CEC-m	sum	titration	H₂O	CaCl₂	CaCl2/H2O	dS/m
nr.	sum	measured (+)/kg	%	cmol(+)/kc		1:5	1:5	CaCIZ/112O	1:5
H1	34.7	36.8	94	< / // CITIOI(1)/ KE	6.9	7.8	7.3	0.93	0.27
H2	45.3	49.6	91	<	4.4	7.8 7.8	7.3 7.1	0.93	0.27
H3	37.5	36.2	104	<	6.4	7.4	7.1	0.98	1.13
H4	27.8	20.1	138	<	11.4	7.6	7.5	0.98	1.19
Horizon	Ca	K	Mg	Na	Р	S	Al	As	Cd
nr.						_			
• • • •									
H1	25091	6850	5892	446	3469	1443	25902.3		4.9
H2	18784	10732	8449	753	4772		54915.5	127.4	27.4
H3					4117	2089	049100		
	24987					2089 5378			
	24987 47209	9769	7691	644	2574	5378	44117.6	65.3	24.9
H4	47209		7691 4715						24.9 8.7
H4 Horizon		9769 4810	7691	644 456 Fe	2574 1460 Mn	5378 6496	44117.6 18668.9	65.3 67.3	24.9
H4	47209	9769 4810	7691 4715	644 456	2574 1460 Mn Regia	5378 6496	44117.6 18668.9	65.3 67.3	24.9 8.7
H4 Horizon	47209	9769 4810	7691 4715	644 456 Fe Aqua	2574 1460 Mn Regia	5378 6496	44117.6 18668.9	65.3 67.3	24.9 8.7
H4 Horizon nr.	47209 Co	9769 4810 Cr	7691 4715 Cu	644 456 Fe Aqua mg	2574 1460 Mn Regia /kg	5378 6496 Ni	44117.6 18668.9 Pb	65.3 67.3 Zn	24.9 8.7 Lab
H4 Horizon nr.	47209 Co 	9769 4810 Cr	7691 4715 Cu 	644 456 Fe Mqua 39995	2574 1460 Mn Regia /kg	5378 6496 Ni 35.3	44117.6 18668.9 Pb	65.3 67.3 Zn 429	24.9 8.7 Lab JM360
H4 Horizon nr. H1 H2	47209 Co 14.9 25.7 17.2 9.9	9769 4810 Cr 107.9 198.1 147.2 81.2	7691 4715 Cu 146.9 341.1 401.7 118.1	644 456 Fe mg. 39995 66095 45501 30451	2574 1460 Mn Regia /kg 957 757 377 427	5378 6496 Ni 35.3 68.8	44117.6 18668.9 Pb 151.8 301.4	65.3 67.3 Zn 429 998	24.9 8.7 Lab JM360 JM361
H4 Horizon nr. H1 H2 H3	47209 Co 14.9 25.7 17.2	9769 4810 Cr 107.9 198.1 147.2	7691 4715 Cu 146.9 341.1 401.7	644 456 Fe mg. 39995 66095 45501	2574 1460 Mn Regia /kg 957 757 377	5378 6496 Ni 35.3 68.8 58.0 23.6 Na+Mg	44117.6 18668.9 Pb 151.8 301.4 211.6	65.3 67.3 Zn 429 998 1116	24.9 8.7 Lab JM360 JM361 JM362
H4 Horizon nr. H1 H2 H3 H4	47209 Co 14.9 25.7 17.2 9.9	9769 4810 Cr 107.9 198.1 147.2 81.2 K ⁺	7691 4715 Cu 	644 456 Fe mg, 39995 66095 45501 30451 Mg ²⁺	2574 1460 Mn Regia /kg 957 757 377 427 CEC sum	5378 6496 Ni 35.3 68.8 58.0 23.6	44117.6 18668.9 Pb 151.8 301.4 211.6 137.9	65.3 67.3 Zn 429 998 1116 635	24.9 8.7 Lab JM360 JM361 JM362
H4 Horizon nr. H1 H2 H3 H4 Horizon	47209 Co 14.9 25.7 17.2 9.9	9769 4810 Cr 107.9 198.1 147.2 81.2 K ⁺	7691 4715 Cu 	644 456 Fe mg, 3995 66095 45501 30451 Mg ²⁺	2574 1460 Mn Regia /kg 957 757 377 427 CEC sum	5378 6496 Ni 35.3 68.8 58.0 23.6 Na+Mg	44117.6 18668.9 Pb 151.8 301.4 211.6 137.9	65.3 67.3 Zn 429 998 1116 635	24.9 8.7 Lab JM360 JM361 JM362
H4 Horizon nr. H1 H2 H3 H4 Horizon	47209 Co 14.9 25.7 17.2 9.9	9769 4810 Cr 107.9 198.1 147.2 81.2 K ⁺	7691 4715 Cu 	644 456 Fe mg, 39995 66095 45501 30451 Mg ²⁺	2574 1460 Mn Regia /kg 957 757 377 427 CEC sum	5378 6496 Ni 35.3 68.8 58.0 23.6 Na+Mg saturation	44117.6 18668.9 Pb 151.8 301.4 211.6 137.9 ESP	65.3 67.3 Zn 429 998 1116 635	24.9 8.7 Lab JM360 JM361 JM362
H4 Horizon nr. H1 H2 H3 H4 Horizon nr.	47209 Co 14.9 25.7 17.2 9.9 Na ⁺	9769 4810 Cr 107.9 198.1 147.2 81.2 K ⁺ by NH 40	7691 4715 Cu 	644 456 Fe mg. 39995 66095 45501 30451 Mg ²⁺	2574 1460 Mn Regia /kg 957 757 377 427 CEC sum cations	5378 6496 Ni 35.3 68.8 58.0 23.6 Na+Mg saturation % 7	44117.6 18668.9 Pb 151.8 301.4 211.6 137.9 ESP	65.3 67.3 Zn 429 998 1116 635 SAR	24.9 8.7 Lab JM360 JM361 JM362
H4 Horizon nr. H1 H2 H3 H4 Horizon nr.	47209 Co 14.9 25.7 17.2 9.9 Na ⁺ 	9769 4810 Cr 107.9 198.1 147.2 81.2 K ⁺ by NH ₄ (cmol(+) 0.3	7691 4715 Cu 	644 456 Fe mg. 39995 66095 45501 30451 Mg ²⁺ 3.0	2574 1460 Mn Regia /kg 957 757 377 427 CEC sum cations	5378 6496 Ni 35.3 68.8 58.0 23.6 Na+Mg saturation %	44117.6 18668.9 Pb 151.8 301.4 211.6 137.9 ESP %	65.3 67.3 Zn 429 998 1116 635 SAR	24.9 8.7 Lab JM360 JM361 JM362

2.14.4 World reference base (2007) classification

Diagnostic horizon, properties, material:	Present in	Remarks:
	horizon:	
Albic		Colours too dark in moist conditions
Cambic		Structure and colour insufficient
Mollic		H1 qualifies but is too thin, H2 qualifies the colours but
		is lacking structure
Abrupt textural change		The clay content is decreasing with depth
Gleyic colour pattern	H3	Oximorphic colour pattern
	H4	Reductimorphic colour pattern
Lithological		No abrupt textural change, no rock fragments, no
discontinuity		abrupt colour change (not pedogenetic) no abrupt
		change in mineralogy
Reducing conditions	H4	Positive reaction to alpha-alpha dipyridyl
Secondary carbonates		No secondary carbonate observed
Calcaric material	H1-4	Analytical data confirm the presence of more than 2%
		calcium-carbonate throughout the soil
Fluvic material	H2-4	A trace of sedimentation is only visible from H3. The
		content of OC remains high throughout.
Sulphidic material	-	Alkaline pH

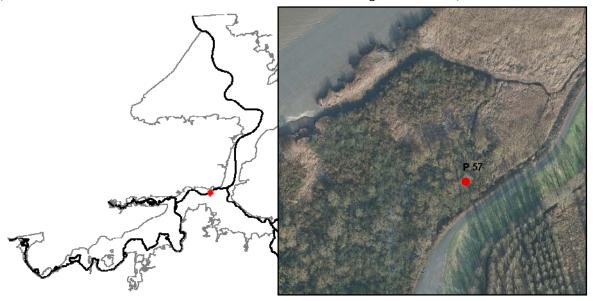
Mollic is present in H1 but is this horizon is insufficient thick. At the same time fluvic properties can't co-inside with a diagnostic horizon. This implies that fluvic properties starts from 24 cm depth and the soil will key out as a Fluvisol. If H1 had been 25 cm thick instead of 24 cm, then a Mollic horizon was present and the soil would have keyed out in the Phaeozems.

Full classification name, without specifiers

(except where listed as such for prefix and suffix qualifiers):

Gleyic Tidalic Fluvisol (Calcaric, Humic, Eutric, Siltic)

- Tidalic: flooded by tidewater but not covered by water at mean low tide
- Gleyic: oximorphic and reductimorphic colours starts from 38 cm depth and the reduced conditions from 73 cm
- Calcaric: present throughout the soil profile
- Humic: the content exceeds 1% throughout, with a weighted average of 4.6%
- Sodic: The required 15% sodium plus manganese cations on the exchange complex is not present
- Eutric: The base saturation is at least 91%
- Siltic: H3 qualifies and has a silty clay loam texture


Full classification name, with specifiers:

Gleyic Tidalic Fluvisol (Calcaric, Humic, Hypereutric, Siltic)

- Calcaric: a content between 4-11% was found, but the weighted average is below 10%
- Hypereutric: The base saturation remains above 91%

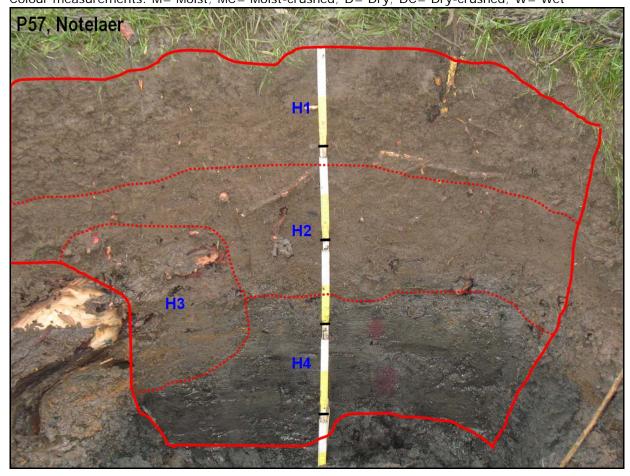
2.15 Profile 'P57': Notelaer

(Derived elevation: 5.50m TAW; Lat.: 51.065807, Long.: 4.160390)

2.15.1 Situation

Profile 'P57' is excavated in the creek-wall of a secondary creek in the tidal marsh 'Notelaer'

The tidal marsh here consists of open willow forest with little low vegetation dominated by *Poa trivialis*. The location has been tidal marsh at least since 1944, which makes it the oldest tidal marsh-soil in the study area.


2.15.2 Profile description

Profile P57	De Notelaer
1.3 Date and time:	16/12/2008. Profile description initiated at 14:30. Low tide at 12:30
1.4 Author:	Jari Hinsch Mikkelsen
1.5 Location:	Belgium, Province of Antwerp, Bornem Municipality. From the express road N16 follow the signs for Hingene along Hingenesteenweg. Within the village border the road change name to Frans van Haelenstraat. At the centre of the village turn in northern direction along Edmond Vleminckxstraat, which after about 500 m in a right turn becomes Louis de Baerdemaekerstraat. In the junction with Pieter Coomansstraat drive in northern direction and follow this cobble stoned road until it ends on the dike road. The Notelaer is located between the Scheldt and the dike.
1.6 Profile coordinates:	Latitude, longitude: 51° 06′ 58.33″ N, 04° 16′ 02.93″ E Lambert72: 200667.969 N, 142931.320 E
4.1 Elevation:	±5.5 m TAW (deduced from DTM)
2.1 Atmospheric climate and weather condition:	Overcast
Soil climate:	STR: Mesic SMR: Udic
2.2 Topography:	Macrotopography: Estuarium, tidal mouth of the Scheldt river Mesotopography: Tidal marsh Landscape position: higher part, about 20 m from the dike. The profile is located on the edge of a creek that has a meandering form. The right banc is gently sloping, the left banc more steep. The profile is situated on the left banc. Slope form: convex, straight (VS) Slope gradient: - Slope length: - Slope orientation: -
2.6 Land-use:	No land use Grazing: No grazing
2.7 Human influence:	No influence observed in the immediate surroundings of the profile, closer to the dike the human impact is increasingly more evident
Vegetation:	In a willow forest, with a ground vegetation composing of grasses, nettles, and sporadic presence of reed. The grass vegetation is best developed on the left banc where the profile is located. A slightly higher topography here together with a slight more open canopy may explain why the grass is better developed.
2.8 Parent material:	unconsolidated deposits> marine and estuarine clays and silts> quaternary clay and silt> Holocene Clay (5221)
2.9 Drainage class:	Somewhat poorly drained
2.10 External drainage:	Slow runoff
2.11 Flooding	Flooded daily in the creek
2.12 Coarse surface frag.	No stones, but plenty of woody fragments
2.13 Erosion,	Active erosion sedimentation in the creek
sedimentation:	
2.14 Surface cracks:	None observed
2.15 Salts:	None observed
Localisation factors profile:	Studying this profile had a dual purpose. Firstly, it is located below some of the oldest and best developed poplar and willow trees. Secondly, this

Profile P57	De Notelaer
	area of the tidal marsh is one of the oldest.
Remarks:	The height difference between the grass cover and the bottom of the
	creek where the profile was studied is 75 cm.

N		Horizon description
Ο.		
H1	Abi1	0-27 cm; very dark greyish brown 2.5Y 3/2 (M), greyish brown to light olive brown
		2.5Y 5/2.5 (D); very fine, strong granular; common very fine, very few fine to medium
		and few coarse roots; smooth gradual boundary
H2	Abi2	27-53 cm; very dark greyish brown 2.5Y 3/2 (M), greyish brown to light olive brown
		2.5Y 5/2.5 (D); very fine, strong granular; common very fine and very few fine to
		coarse roots; smooth clear boundary
Н3	Bg	Pocket; light olive brown 2.5Y 5/3.5 (D); very few, medium, distinct, very diffuse rusty
		mottles; oximorphic colours; few very fine and very few fine to coarse roots;
H4	Cr	53 cm; very dark grey 2.5Y 3/1 (M), dark greyish brown 2.5Y 4/2 (D);
		reductimorphic colours; positive reaction to aa-dipyridyl; massive; very few very fine
		roots; rooting depth until about 75 cm;

Extra subordinate symbols: 'bi' biological activity clearly evidences (fauna and flora), and more than what can be expected according to type of soil, position, time of year etc. Colour measurements: M= Moist; MC= Moist-crushed; D= Dry; DC= Dry-crushed; W= Wet

2.15.3 Analytical laboratory data

Table A1	4: Analytic	al data for	r P57, De I	Notelaer			Profile anal	ysed: March	-Dec./2009
								ied 16/12/20	
P57	Horizon	Depth	Total N	Total N		arbon- TC		С	C/N
Horizon	symbols	om	analyser %	Kjeldahl %	TC %	IC %	oc %	Analyser %	(TOO(K:-1.)
nr. H1	Abi1	cm 0-27	0.636	0.466	6.96	1.54	5.42	6.75	(TOC/Kjel.)
H2	Abi 1 Abi 2	27-53	0.588	0.458	7.04	1.16	5.42	7.01	13
H3	Bg	pocket	0.000	0.100	7.01	1.10	0.01	7.01	10
H4	Cr1	53	0.581	0.426	8.38	1.25	7.13	7.84	17
Horizon			Laser diff	raction on	soil mate	rial (fracti	ons in µm)	
nr.	0.4-2	2-6	6-50	50-63	63-100	100-250	250-500	500-1000	1000-2000
					%				
H1	5.1	9.6	45.1	6.4	12.3	18.0	3.4	0.2	0.0
H2	5.4	9.8	48.1	7.8	14.3	11.8	2.6	0.2	0.0
H3	- 4	0.0	47.0	- 4	40.4	440	0.5	0.0	0.0
H4 Horizon	5.1 Na ⁺	9.8 K ⁺	47.2 Ca ²⁺	7.1 Mg ²⁺	13.4	14.8	2.5 distributio	0.2	0.0
nr.		K⁻ IgSO₄ (con		•		icie size d 2-10	istributioi 10-20	n (µm; pıp 20-50	ette) 50-2000
111.	-	cmol(+)	-	•	U-Z 	2-10	%		30-2000
H1	1.1	1.3	31.9	3.2	46.1	17.8	14.9	19.9	1.5
H2	1.3	1.0	47.1	3.6	70.1	17.0	14.0	10.0	1.0
H3				0.0					
H4	1.2	1.4	35.6	2.8					
Horizon	CEC	CEC	BS by	Acidity	CaCO ₃	р	Н	рН	EC
nr.	sum	measured	CEC-m	sum	titration	H₂O .	CaCl ₂	CaCl ₂ /H ₂ O	dS/m
	cmol	(+)/kg	%	cmol(+)/kç	%	1:5	1:5		1:5
H1	37.4	49.3	76	<	11.3	7.9	7.4	0.94	0.31
H2	52.9	52.3	101	<	9.8	7.8	7.2	0.93	0.30
H3									
H4	40.9	37.0	111	<	10.1 P	7.6 S	7.4	0.97	1.30
Horizon	Ca	K	Mg	Na	-	_	Al	As	Cd
nr.				<i>-</i>					
H1	45151	8757	7635	592	4068	3034	39186.6	36.7	7.1
H2	35828	7994	6684	554	6799	2422	35906.9	74.5	24.0
H3	00020	7001	0001	001	0100		00000.0	7 1.0	21.0
H4	41534	10649	7102	741	3122	10495	45562.4	180.9	20.1
Horizon	Со	Cr	Cu	Fe	Mn	Ni	Pb	Zn	Lab
nr.					Regia				
				mg/					
H1	21.0	112.3	153.5	53137	1586	44.2	154.3	731	JM364
H2	24.2	226.7	313.2	55545	1916	79.1	316.9	1190	JM365
H3 H4	21.9	225.9	303.7	50086	890	54.9	386.8	1520	JM366 JM367
Horizon	Depth	225.9 Na ⁺	K ⁺	Ca ²⁺	Mg ²⁺	CEC	Na+Mg	ESP	SAR
nr.	Doptii			OAc	g	sum	saturation		OAIN
						Jann	Jacaracion		
	cm)/kg soil		cations	%		
H1	cm 0-27	1.0			5.4	cations 65	% 10	%	0.2
H1 H2		1.0	cmol(+)/kg soil					0.2 0.2
	0-27		cmol(+))/kg soil 57.5	5.4	65	10	% 2	

2.15.4 World reference base (2007) classification

Diagnostic horizon,	Present	Remarks:
properties, material:	in	
	horizon:	
Albic		Colours too dark in moist conditions
Cambic	H2	Structure and colour requirements are meet, thickness
		is enough
Mollic		H1-2 qualifies for the colour, structure and organic
		material; but the content of the parent material should
		be at least 0.6% less and instead it is 2% more
Abrupt textural change		Most likely not present
Gleyic colour pattern	pocket	Oximorphic colour pattern
	H4	Reductimorphic colour pattern
Lithological		
discontinuity		
Reducing conditions	H4	Positive reaction to alpha-alpha dipyridyl
Secondary carbonates		No secondary carbonate observed
Calcaric material	H1-4	Analytical data confirm the presence of more than 2%
		calcium-carbonate throughout the soil
Fluvic material	H3-4	Traces of sedimentation are only visible from H3. The
		content of OC remains high throughout.

A cambic horizon is present between 27-53 cm. This implies that the fluvic material only is present from 53 cm depth. Also the reduced conditions are only present below half a meter. The soil therefore keys out as a Cambisol.

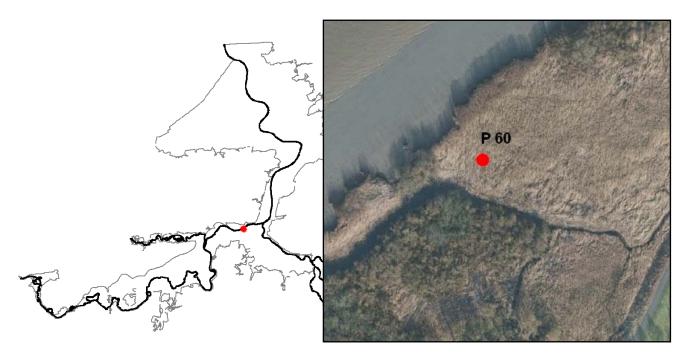
Full classification name, without specifiers

(except where listed as such for prefix and suffix qualifiers):

Endogleyic Fluvic Cambisol (Calcaric, Humic, Eutric, Siltic)

- Fluvic: fluvic material present from 53 cm and onwards
- Endogleyic: reductimorphic and reduced conditions starts at 53 cm
- Calcaric: present throughout the soil profile
- Humic: organic carbon content remains higher than 1%
- Eutric: The base saturation exceeds 76% throughout
- Siltic: H1 has a silty clay texture probably the texture is similar silty below

Full classification name, with specifiers:


Endogleyic Endofluvic Cambisol (Hypercalcaric, Hyperhumic, Hypereutric, Siltic)

- Endofluvic: the fluvic material is only present at 68 cm depth
- Hypercalcaric: a content between 10-11% was found, and the weighted average is above 10%
- Hyperhumic: the weighted average is more than 5%
- Hypereutric: The base saturation exceeds 100% in H2-4 and 76% in H1

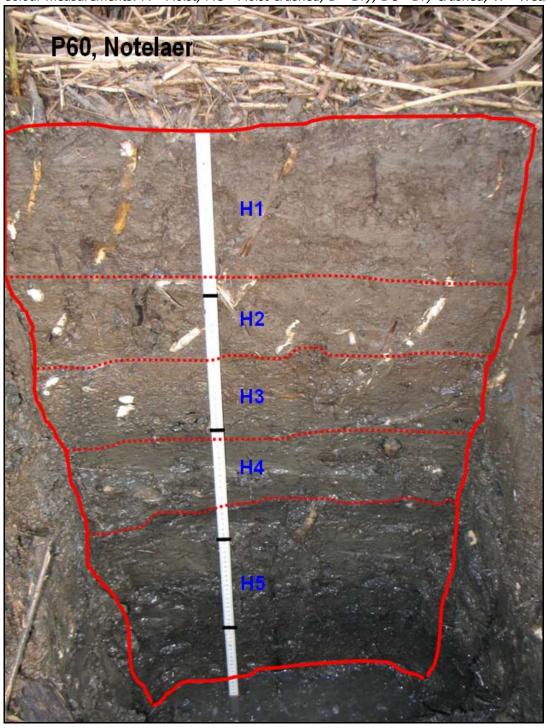
2.16 Profile 'P60': Notelaer

(Derived elevation: 5.60m TAW; Lat.: 51.070240, Long.: 4.160333)

2.16.1 Situation

Profile 'P60' is excavated in the tidal marsh-soil of the area 'Notelaer'.

The tidal marsh consists of reed. The location has been tidal marsh since 1965, and would be encroached by willow shrubs and forest if chopping didn't occured.


2.16.2 Profile description

Pro	file P6	0	De Notelaer				
1.3 D	ate and tin	ne:	11/3/2009. Profile description initiated at 9:30. Low tide at 11:30				
1.4 A	uthor:		Jari Hinsch Mikkelsen				
1.5 L	ocation:		Belgium, Province of Antwerp, Bornem Municipality.				
			For a road description check out description for P57				
1.6 P	rofile coord	dinates:	Latitude, longitude: 51° 07′ 02.24″ N, 04° 16′ 03.23″ E				
			Lambert72: 200810.526699 N, 142918.040 E				
4.1 E	levation:		±5.6 m TAW (deduced from DTM)				
2.1 A	tmospheric	climate	Sunny				
and v	weather co	ndition:					
S	oil climate:		STR: Mesic SMR: Udic				
2.2 T	opography	:	Macrotopography: Estuarium, tidal mouth of the Scheldt river				
			Mesotopography: Tidal marsh Landscape position: Within the tidal marsh in a intermediate position				
			Slope form: -				
			Slope gradient: -				
			Slope length: -				
			Slope orientation: -				
2.6 L	and-use:		No land use				
			Grazing: No grazing				
	luman influ	ience:	No influence observed in the immediate surroundings of the profile				
	egetation:		Reed vegetation with nettles imbedded				
2.8 P	arent mate	erial:	unconsolidated deposits> marine and estuarine clays and silts>				
200	voinna a ala		quaternary clay and silt> Holocene Clay (5221)				
	rainage cla		Poorly drained Neither receiving per shedding water				
	External dr	amage:	Neither receiving nor shedding water				
	Flooding	f f	Flooded montly during spring tide periods				
	Coarse sur	race rrag.	None				
	Erosion,		No traces of erosion				
	nentation:	a alca i	None chaoryad				
	Surface cra	acks:	None observed				
	Salts:	CI	None observed				
Local	isation ract	ors profile:	The profile is located on about 6-7m distance from diver 43 towards the				
			Scheldt, and on about 10-15m distance from the mega creek.				
			The profile is situated between two subcreeks, which are faintly visible				
N.		Harizan da	as the height difference is <50cm and this over a wideness of 1.5-2m.				
N		Horizon de	SCHPHUH				
0.	Λ1	0-19 cm vo	ry dark gravich brown 10VP 3/2 (M); incomplete cubangular blocky locally				
'''			ery dark greyish brown 10YR 3/2 (M); incomplete subangular blocky, locally				
			friable; common very fine to fine, very few medium and common coarse				
Н2	Δ2	roots; small earthworms; gradual smooth boundary					
112	-		ark greyish brown 2.5Y 4/2 (M); massive; sticky and plastic; common very				
		boundary	few medium and common coarse roots; snail 5-5 mm in dia.; clear smooth				
H3	AC		ery dark greyish brown 2.5Y 3/2 (W); horizon forms the transition between				
113	AC	-					
			and reduced parts of the soil; high content of organic matter; massive; sticky; very fine to fine, few medium and common large roots; clear smooth				
		boundary	, the to fine, few mediani and common large roots, clear smooth				

Profile P60		כ	De Notelaer		
H4	CAr	44-54 cm; da	rk grey 2.5Y 4/1 (W); reductimorphic colour pattern; positive reaction to		
		aa-dipyridyl;	aa-dipyridyl; massive; sticky; common dead roots; smooth gradual boundary		
H5	Cr	reaction to a common larg	rery dark greenish grey 3/10Y (W); reductimorphic colour pattern; positive a-dipyridyl; massive; stratified, where not disturbed by roots; sticky; e roots; common dead roots; very high content of organic matter, partly bris and fragments		

Extra subordinate symbols: 'bi' biological activity clearly evidences (fauna and flora), and more than what can be expected according to type of soil, position, time of year etc.

Colour measurements: M= Moist; MC= Moist-crushed; D= Dry; DC= Dry-crushed; W= Wet.

2.16.3 Analytical laboratory data

Table A15: Analytical data for P60, De Notelaer

P60	Horizon	Depth	LOI	тос	EC	CaCO ₃	Lab
Horizon	symbols		OM	OC	dS/m		
nr.		cm	%	%	1:5	%	
H1	A1	0-18	5,70	2,08	1,20	8,9	JM410
H2	A2	18-31	2,67	1,21	0,76	7,7	JM411
H3	AC	31-44		3,02	3,43		JM412
H4	CAr	44-54	•	0,90	1,93	10,9	JM413
H5	Cr	54-100	5,24	2,18	2,56	11,7	JM414
Textu	ure- pipette	e method (fractions	in µm)	ı	Н	рН
0-2	2-10	10-20	20-50	50-2000	H ₂ O	KCI	KCI/H ₂ O
		%			1:5	1:5	
					7,3	7,2	0,99
6,5	2,1	2,0	11,7	77,8	7,4	7,3	0,99
26,0	13,3	7,2	19,3	34,2	8,1	7,9	0,97
					8,6	8,4	0,98
19,7	7,1	2,5	11,0	59,6	8,2	7,9	0,97
Horizon	Depth	Na⁺	K⁺	Ca ²⁺	Mg ²⁺	CEC	CEC
nr.		by M	gSO ₄ (con	npulsive me	thod)	- sum	measured
	cm		cmol(+	-)/kg soil		- cmol	(+)/kg
H1	0-18	0,6	0,2	21,8	1,0	23,6	17,3
H2	18-31	0,2				13,0	11,8
H3	31-44						
H4	44-54						
H5	54-100						
S	As	Cd	_	Cu		Pb	Zn
			Aqua	a Regia			
			r	ıg/kg			
4489	19,8	5,5	164	121	26	104	638
2472	13,3	3,5	125	73	18	82	538
3080	21,8	2,1	81	37	21	70	506
2569	14,1	1 1	51	23	15	44	350

2.16.4 World reference base (2007) classification

Diagnostic horizon,	Present	Remarks:
properties, material:	in	
	horizon:	
Albic		Colours too dark in moist conditions
Cambic		Structure requirement is not meet
Mollic		Lack of structure
Abrupt textural change	H2-3	Change from 6.5 to 26% clay
Gleyic colour pattern	-	Oximorphic colour pattern
	H4	Reductimorphic colour pattern
Lithological		
discontinuity		
Reducing conditions	H4	Positive reaction to alpha-alpha dipyridyl
Calcaric material	H1-4	Analytical data confirm the presence of more than 2%
		calcium-carbonate throughout the soil
Fluvic material	H1-5	No traces of sedimentation was found, but irregular
		content of organic carbon remaining above 0.2% is
		found through the soil

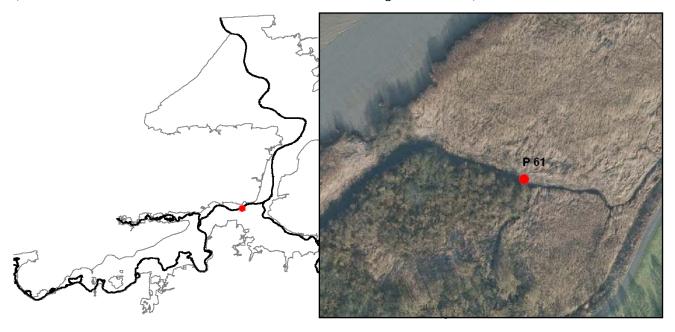
The soil keys out in Fluvisols.

Full classification name, without specifiers

(except where listed as such for prefix and suffix qualifiers):

Gleyic Tidalic Fluvisol (Calcaric, Humic, Eutric, Siltic)

- Tidalic: flooded by tidewater but not covered by water at mean low tide
- Gleyic: reductimorphic colours and reduced conditions starts from 44 cm depth
- Calcaric: present throughout the soil profile
- Humic: the content exceeds 1% throughout, with a weighted average of 1.96%
- Eutric: The base saturation exceeds 100% in de analysed horizons
- Arenic: H3 has a silty clay loam texture and qualifies for Arenic, but the horizon is too thin.


Full classification name, with specifiers:

Epigleyic Tidalic Fluvisol (Calcaric, Humic, Hypereutric, Siltic)

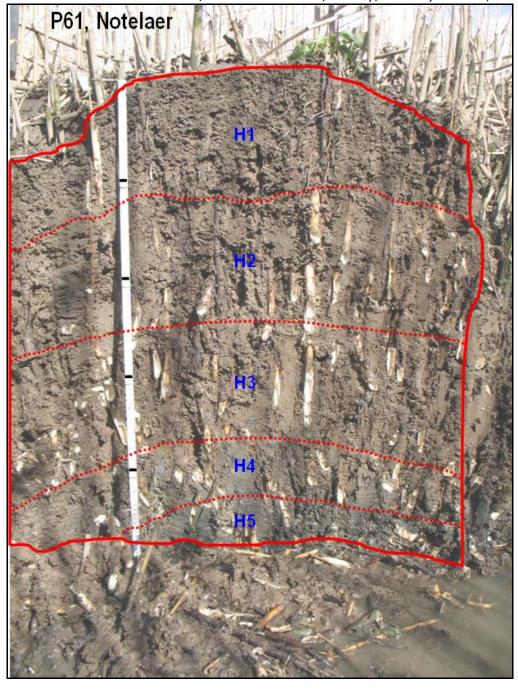
- Calcaric: a content between 8-13% was found, but the weighted average does not exceeds 10%
- Hypereutric: The base saturation remains above 100% for the analysed horizons

2.17 Profile 'P61': Notelaer

(Derived elevation: 5.00m TAW; Lat.: 51.070122, Long.: 4.160529)

2.17.1 Situation

Profile 'P61' is excavated in the wall of a major creek in the area 'Notelaer'. The tidal marsh consists of reed on the north side of the creek, and willow forest further south. The profile is excavated in the creek-wall grown with reed.


2.17.2 Profile description

Pro	file P6	1	De Notelaer				
1.3 Da	ate and tin	ne:	11/3/2009. Profile description initiated at 11:45. Low tide at 11:30				
1.4 Au	uthor:		Jari Hinsch Mikkelsen				
1.5 Lc	cation:		Belgium, Province of Antwerp, Bornem Municipality.				
			For a road description check out description for P57				
1.6 Pr	ofile coord	linates:	Latitude, longitude: 51° 07′ 01.21″ N, 04° 16′ 05.17″ E				
			Lambert72: 200774.401 N, 142954.833 E				
4.1 El	evation:		±5.0 m TAW (deduced from trimble measurements from the area)				
2.1 At	mospheric	climate	Sunny				
and w	eather cor	ndition:					
So	il climate:		STR: Mesic				
			SMR: Udic				
2.2 To	pography		Macrotopography: Estuarium, tidal mouth of the Scheldt river				
			Mesotopography: Tidal marsh				
			Landscape position: Centrally within the tidal marsh along the bank of				
			the mega creek				
			Slope form: - Slope gradient: -				
			Slope length: - Slope orientation: -				
2.6 La	nd-use:		No land use				
			Grazing: No grazing				
2.7 Hı	uman influ	ence:	No influence observed in the immediate surroundings of the profile				
Ve	getation:		Reed vegetation				
2.8 Pa	arent mate	rial:	unconsolidated deposits> marine and estuarine clays and silts>				
			quaternary clay and silt> Holocene Clay (5221)				
2.9 Dr	rainage cla	ss:	Somewhat poorly drained				
2.10 E	External dr	ainage:	Moderately rapid run-off				
2.11 F	looding		Creek flooded daily; top of soil flooded during spring tides only				
2.12 (Coarse surf	ace frag.	None				
2.13 E	Frosion,		No traces of erosion				
sedim	entation:						
2.14 9	Surface cra	cks:	None observed				
2.15 9	Salts:		None observed				
Locali	sation fact	ors profile:	The profile is part of the profile sequence P60-P63, which were studied				
		•	to provide with a better insight in the lateral variation along the mega				
			creek.				
N		Horizon de	scription				
0.			·				
H1	Abi	0-20 cm; da	rk grey 10YR 4/1 (M); weak blocky; friable; very few very fine, common				
	· · · · · · · · · · · · · · · · · · ·		ium and few coarse roots; many plant fragments embedded in the soil,				
			ncing platy structure; smooth gradual boundary				
H2	A2		ery dark greyish brown to dark brown 10YR 3/2.5 (M); massive; slightly				
		-	few very fine, common fine and few medium to coarse roots; common				
			embedded; smooth diffuse boundary				
H3	Bg	•	ark greyish brown to brown 10YR 4/2.5 (W); massive; slightly sticky; very				
	- 3	-	e, common fine and few medium to coarse roots; smooth clear boundary				
H4	Cg	•	ery dark grey to very dark greyish brown 2.5Y 3/1.5 (W); positive reaction				
' ' '	ر ح	-	lyl; faint petrochemical odour; massive; sticky; no very fine, common fine				
J	j	1 to do dipyric	The second contention of the second content				

Profile P61			e Notelaer	
		and few medium to coarse roots; many plant fragments embedded; clear smooth		
		boundary		
H5	Cr	95-100 cm; greenish black 2.5/10Y (W); positive reaction to aa-dipyridyl; no very fine,		
		common fine, few medium and common coarse roots;		

Extra subordinate symbols: 'bi' biological activity clearly evidences (fauna and flora), and more than what can be expected according to type of soil, position, time of year etc.

Colour measurements: M= Moist; MC= Moist-crushed; D= Dry; DC= Dry-crushed; W= Wet.

2.17.3 Analytical laboratory data

Table A16: Analytical data for P61, De Notelaer

P61 Horizon	Horizon symbols	Depth	LOI OM	TOC OC	EC dS/m	CaCO ₃	Lab
nr.	Symbols	cm	%	%	1:5	%	
H1	Abi	0-20	5,5	2,77	2,55	14,7	JM415
H2	Α	20-53	6,4	2,92	2,68	12,5	JM416
H3	Bg	53-80	10,3	6,26	0,28	9,5	JM417
H4	Cg	80-95	10,1	5,97	0,29	10,2	JM418
Textu	ıre- pipette	e method (fractions	in µm)	ı	Н	рН
0-2	2-10	10-20	20-50	50-2000	H ₂ O	KCI	KCI/H2O
		%			1:5	1:5	
					8,3	8,0	0,96
29,2	8,3 17,2	5,3	13,9		8,2	7,9	0,97
42,5	17,2	11,3	26,6	2,4	7,6	7,1	0,94
					7,6	7,1	0,93
Horizon	Depth	Na⁺	K⁺	Ca ²⁺	Mg ²⁺	CEC	CEC
nr.			•	npulsive me	•		measured
	cm		cmol(+	-)/kg soil		- cmol((+)/kg
H1	0-20						
H2	20-53						
H3	53-80	0,8	0,8	35,1	4,3	41,0	37,4
H4	80-95	1,1	0,6	39,2	4,1	45,0	41,5
S	As	Cd	Cr	Cu	Ni	Pb	Zn
			-	_			
mg/kg							
3133	17,4	1,4	59	29	17	51	421
2562	25,9	5,6	126	85	35	111	607

2.17.4 World reference base (2007) classification

Diagnostic horizon,	Present	Remarks:
properties, material:	in	
	horizon:	
Albic		Dry colours missing but probably no albic present
Cambic		Structure requirement is not meet
Mollic		Lack of structure
Abrupt textural change		Data partly missing; though based on the available information the absence of an abrupt textural change
		seems evident
Gleyic colour pattern	-	Oximorphic colour pattern
	H4-5	Reductimorphic colour pattern
Lithological discontinuity		
Reducing conditions	H4-5	Positive reaction to alpha-alpha dipyridyl
Calcaric material	H1-5	Analytical data confirm the presence of more than 2% calcium-carbonate throughout the soil
Fluvic material	H1-5	No traces of sedimentation was found due to the bioturbation caused by the reed roots, but irregular content of organic carbon remaining above 0.2% is found through the soil

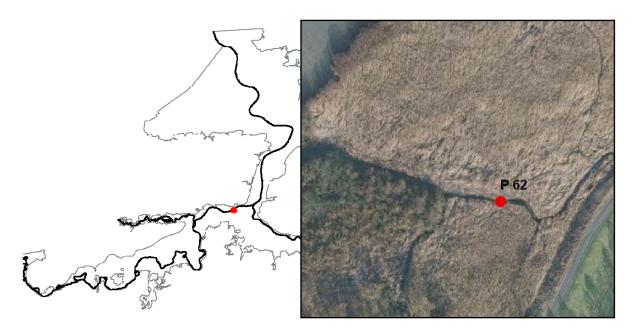
The soil keys out in Fluvisols.

Full classification name, without specifiers

(except where listed as such for prefix and suffix qualifiers):

Tidalic Fluvisol (Calcaric, Humic, Eutric, Siltic)

- Tidalic: flooded by tidewater but not covered by water at mean low tide
- Gleyic: reductimorphic colours and reduced conditions starts from 80 cm depth, which is too deep as a reduced layer, at least 25 cm thick, should be present within the upper 100 cm
- Calcaric: present throughout the soil profile
- Humic: the content exceeds 1% throughout, with a weighted average of 2.86% (0-50 cm)
- Eutric: The base saturation exceeds 100% in de analysed horizons
- Siltic: H3 has a silty clay texture


Full classification name, with specifiers:

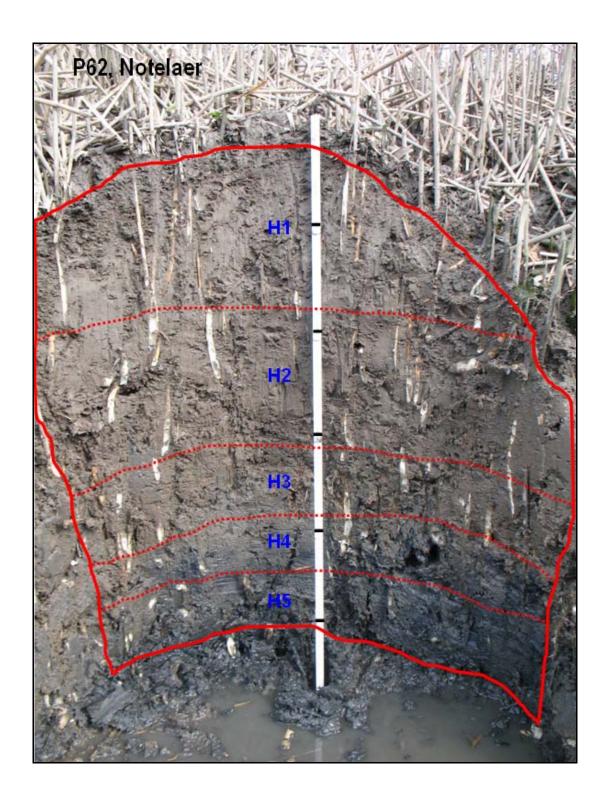
Tidalic Fluvisol (Hypercalcaric, Humic, Hypereutric, Siltic)

- Hypercalcaric: a content in the upper 50 cm between 12.5-14.7% was found, so the weighted average exceeds 10%
- Hypereutric: The base saturation remains above 100% for the analysed horizons

2.18 Profile 'P62': Notelaer

(Derived elevation: 5.00m TAW; Lat.: 51.070097, Long.: 4.160677) 2.18.1 Situation

Profile 'P62' is excavated in the wall of a major creek in the area 'Notelaer'.

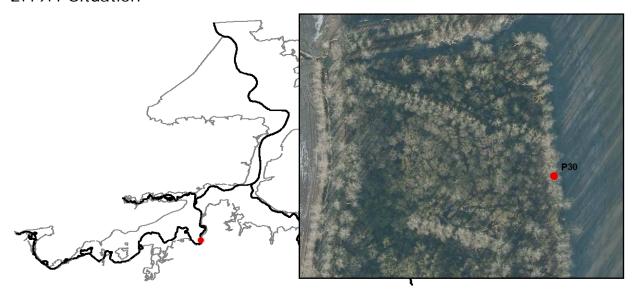

2.18.2 Profile description

Profile P62		2	De Notelaer		
1.3 Date and time:		me:	11/3/2009. Profile description initiated at 13:30. Low tide at 11:30		
1.4 A	uthor:		Jari Hinsch Mikkelsen		
1.5 Lo	ocation:		Belgium, Province of Antwerp, Bornem Municipality.		
			For a road description check out description for P57		
1.6 P	rofile coord	dinates:	Latitude, longitude: 51° 07′ 00.97″ N, 04° 16′ 06.81″ E		
			Lambert72: 200767.225 N, 142986.350 E		
4.1 E	levation:		±5.0 m TAW (deduced from trimble measurements from the area)		
2.1 A	tmospheric	c climate	Partly cloudy		
and v	veather co	ndition:	, ,		
So	oil climate:		STR: Mesic		
			SMR: Udic		
2.2 T	opography	′ :	Macrotopography: Estuarium, tidal mouth of the Scheldt river		
			Mesotopography: Tidal marsh		
			Landscape position: Centrally within the tidal marsh along the bank of		
			the mega creek, about 75 meter further upstream than P61		
			Slope form: convex, convex (VV)		
			Slope gradient: -		
			Slope length: - Slope orientation: -		
261	and-use:		No land use		
2.0 L	ana usc.		Grazing: No grazing		
2.7 H	luman influ	jence:	No influence observed in the immediate surroundings of the profile		
	egetation:		Reed vegetation, some ground vegetation starts to grow (similar as for		
,	990000000000000000000000000000000000000		P61)		
2.8 P	2.8 Parent material:		unconsolidated deposits> marine and estuarine clays and silts> quaternary clay and silt> Holocene Clay (5221)		
2.9 D	rainage cla	ass:	Somewhat poorly drained		
	External di		Moderately rapid run-off		
	Flooding		Creek flooded daily; top of soil flooded during spring tides only		
	Coarse sur	face frag.	None		
	Erosion,		No traces of erosion		
	nentation:				
	Surface cra	acks:	None observed		
	Salts:		None observed		
		tors profile:	The profile is part of the profile sequence P60-P63, which were studied		
Local	isation rac	tors prome:	to provide with a better insight in the lateral variation along the mega		
			creek.		
N Horizon description					
O.		Tionzon description			
H1	A1	0-32 cm; dark greyish brown 2.5Y 4/2 (W); locally faint oxido reduction along			
111	/ \1		massive, unripe; sticky, very plastic; very few very fine to fine, no medium		
			n coarse roots; few small earthworms observed; plenty of organic matter		
			bedded; smooth diffuse boundary		
H2	A2	32-64 cm; dark greyish brown 2.5Y 4/2 (W); locally faint oxido reduction along			
114	biogalleries; massive; sticky; few very fine to fine, very few medium and comm				
		_			
⊔o	coarse roots; smooth clear boundary		•		
Н3	BCg 64-77 cm; olive grey 5Y 4/2 (W); common, medium, distinct, clear, rusty brown				
(strong brown /.5YR 4/6 [w]), oximorphic mottles; Fe precip		vn 7.5YR 4/6 [w]), oximorphic mottles; Fe precipitation around macro			

Profile P62		2	De Notelaer		
		pores; massive; sticky; many very fine to fine, very few medium and common coarse			
		roots; smooth clear boundary			
H4	CBg	77-86 cm; olive grey 5Y 4/2 (W); reductimorphic colour pattern; positive reaction to			
		aa-dipyridyl; massive; sticky; no very fine and medium, very few fine and common			
		coarse roots, many very fine and fine decomposing roots; plastic piece found at 86 cm			
		depth; smooth clear boundary			
H5	Cr	86-114 cm; very dark grey 5Y 3/1 (W); reductimorphic colour pattern; posit			
		to aa-dipyridyl; massive; sticky; no very fine to medium and common coarse roots;			
		plastic piece at 110 cm depth			

Extra subordinate symbols: 'bi' biological activity clearly evidences (fauna and flora), and more than what can be expected according to type of soil, position, time of year etc.

Colour measurements: M= Moist; MC= Moist-crushed; D= Dry; DC= Dry-crushed; W= Wet.

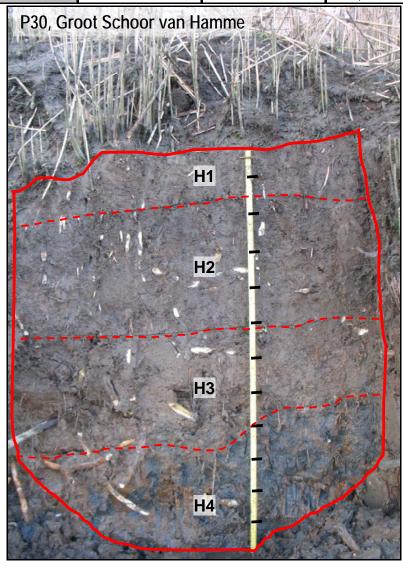

101

Fresh water zone: Groot schoor van Hamme

2.19 Profile 'P30': Groot schor van Hamme

(Derived elevation: 5.50m TAW; Lat.: 51.021672, Long.: 4.111985)

2.19.1 Situation


Profile P30 is excavated in the north-eastern edge of the tidal marsh 'Groot schor van Hamme'.

The location used to be a summer dike. Later it was planted with poplar trees. Because of erosion, starting in the fifties, <u>it now has become the tidal marsh edge.</u>

2.19.2 Profile description

-		H1	H2	H3	H4
	Horizon symbol	A1	A2	Cg	Cr
	depth	0-15	15-51	51-78	78-120
Colour	Colour Wet				
	Colour Moist	2.5Y 3/2	5Y 2.5/2	5Y 2.5/1	2.5/10Y
	Mottles abundance				
	colour		rusty brown	rusty brown	rusty brown
Mottles	size		pedfaces	pedfaces	pedfaces
	contrast		faint	faint	prominent
	boundary				
	Reducing conditions	αα no	αα no	αα no	αα yes
	Odour				faint sulphurous
	Structure	granular, weak developed	granular, weak developed		pressure faces
_	Stratification				
Consis-	ConsistanceMoist				
tence	Sticky				
	Plastic				
	Ripening				
	Porosity			medium	
	Roots	many very fine	many very fine	many very fine	common coarse
	Other bio	, in the second		snails; small earthworms	snails

2.19.3 Analytical laboratory data

Table A1	7: Analytic	cal data fo	r P30, Gro	oot Schoor	van Ham	me		
	200	Danth	1.01	0.	anh and TC	\C	Nitragan	C/N
	P30	Depth	LOI		arbon- TO		Nitrogen	C/N
	rizon		OM	TC	IC	OC	Kjeldahl	
nr.	symbols	cm	%	%	%	%	%	(TOC/Kjel.)
H1	A1	0-15	9.0			4.04		
H2	A2	15-51	13.2			7.16		
H3	Cg	51-78	7.9			1.86		
H4	Cr	78-120	8.0			2.08		
Horizon	Depth	Text	ure- pipet	te method	(fractions	in µm)	CaCO₃	Lab
nr.	•	0-2	2-10	10-20	20-50	50-2000	calculated	
	cm			%			. %	
H1	0-15						5.3	JM535
H2	15-51						4.3	JM536
H3	51-78						3.9	JM537a
H4	78-120						5.3	JM537b
Horizon	Texture-	laser Cou	Iter (fraction	ons in µm)	ŗ	Н	рН	EC
nr.	0.4-2	2-6	6-50	50-2000	H ₂ O	KCI	KCI/H2O	dS/m
		9	/ ₀		1:5	1:5		1:5
H1					7.9	7.4	0.93	0.20
H2					7.9	7.3	0.92	0.26
H3					8.1	7.5	0.92	0.22
H4					8.0	7.4	0.93	0.44

2.19.4 World reference base (2007) classification

Diagnostic horizon,	Present	Remarks:
properties, material:	in	
	horizon:	
Albic		Moist colours are too dark
Cambic		Structure requirement is not meet
Mollic		Lack of structure
Abrupt textural change		No data, but the soil composes of heavy clay
		throughout
Gleyic colour pattern	H3	Oximorphic colour pattern
	H4	Reductimorphic colour pattern
Lithological		
discontinuity		
Reducing conditions	H4	Positive reaction to alpha-alpha dipyridyl
Calcaric material	H1-4	Analytical data confirm the presence of more than 2%
		calcium-carbonate throughout the soil
Fluvic material	H1-4	No traces of sedimentation was found due to the
		bioturbation caused by the reed roots, but irregular
		content of organic carbon remaining above 0.2% is
		found through the soil

The soil keys out in Fluvisols.

Full classification name, without specifiers

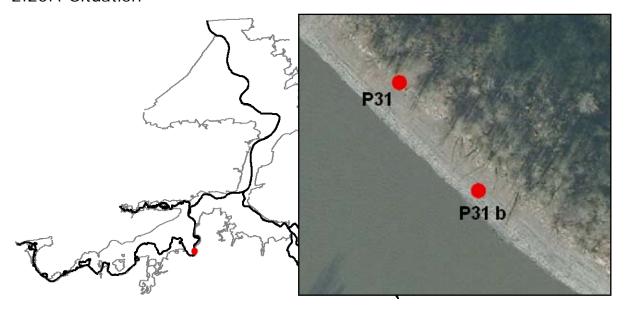
(except where listed as such for prefix and suffix qualifiers):

Tidalic Fluvisol (Calcaric, Humic, Eutric)

- Tidalic: flooded by tidewater but not covered by water at mean low tide
- Gleyic: reductimorphic colours and reduced conditions starts from 78 cm depth, which is too deep as a reduced layer, at least 25 cm thick, should be present within the upper 100 cm
- Calcaric: present throughout the soil profile
- Humic: the content exceeds 1% throughout, with a weighted average of 6.24% (0-50 cm)
- Eutric: No data available on the base saturation, but considering the high content of calcium carbonate present through the soil the content must exceed 100%
- Siltic: Not data available

Full classification name, with specifiers:

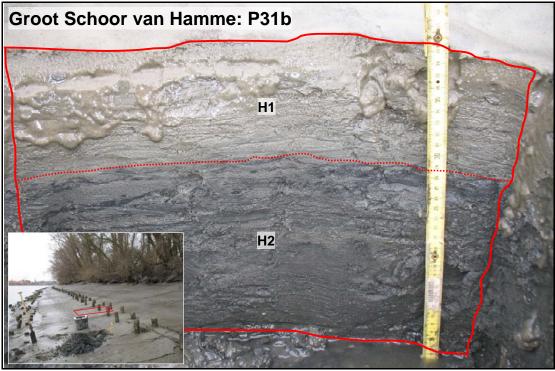
Tidalic Fluvisol (Calcaric, Hyperhumic, Hypereutric)


- Calcaric: All measurements are lower than 6%
- Hyperhumic: the weighted average exceeds 5%
- Hypereutric: The base saturation will considering the free carbonate exceed 100%

2.20 Profile 'P31 and P31b': Groot schor van Hamme

(Derived elevation: 5.00m TAW; Lat.: 51.020291, Long.: 4.102643) P31 (Derived elevation: 1.70m TAW; Lat.: 51.020176, Long.: 4.102801) P31b

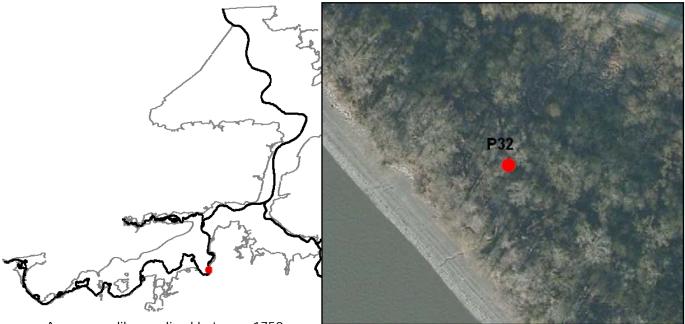
2.20.1 Situation



P31 is excavated in the tidal marsh edge. P31b is located in the mudflat, at about 50 meters stream down from P31.

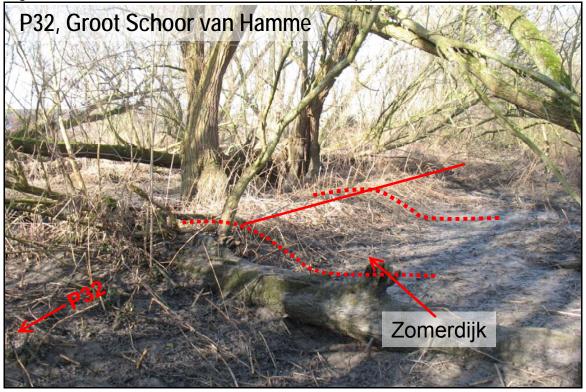
In 1944 P31 used to be on the inner side of a summer dike, which now has disappeared because of erosion. Poplar trees have been planted upon the tidal marsh.

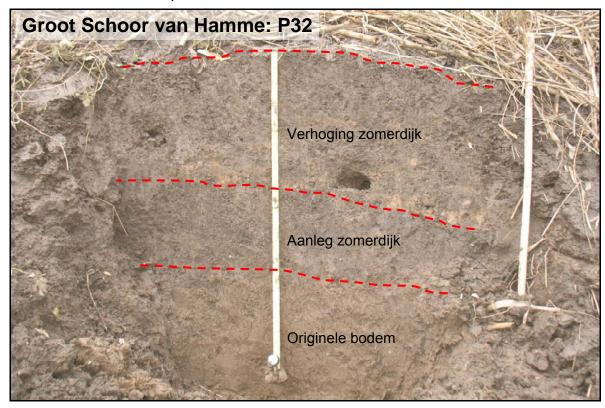
In 1944 P31b also used to be tidal marsh, planted with poplar trees. Because of erosion it has now turned into a mudflat.



2.21 Profile 'P32': Groot schor van Hamme

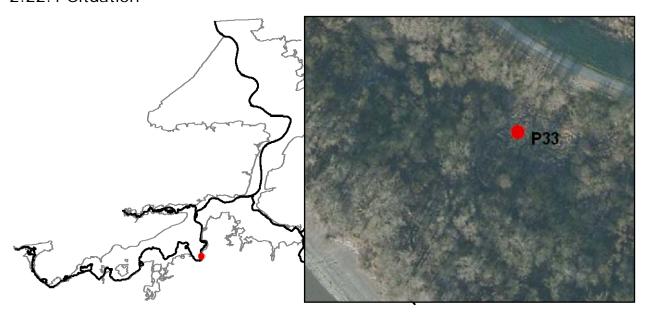
(Derived elevation: 5.40m TAW; Lat.: 51.020640, Long.: 4.102417)


2.21.1 Situation


A summer dike, realised between 1750 and 1850, got broken through. A creek started to develop. Thus, a transect through the summer dike got exposed.

On this location, P32 was excavated. At least for now, the summer dike is not more then 60 cm higher then the tidal marsh itself.

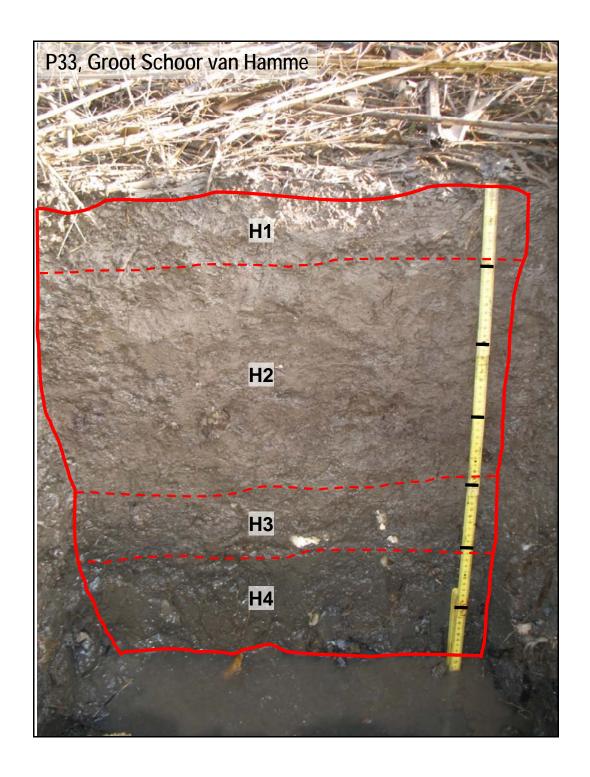
Vegetation on the tidal marsh here consists of willow and poplar trees.


2.21.2 Profile description

2.22 Profile 'P33': Groot schor van Hamme

(Elevation: 5.72m; Lat.: 51.036108, Long.: 4.172492)

2.22.1 Situation


P33 is located in tidal marsh, near a winter dike which is already present since at least 1750.

The location used to be cultivated as a summerpolder, until is turned into tidal marsh in the sixties. Due to succession it turned over into reed land, and in the vicinity willow shrubs and trees are encroaching the tidal marsh.

2.22.2 Profile description

		H1	H2	H3	H4
	symbol	A1	A2	Ag	2Agb
	depth	0-9	9-38	38-51	51-69
Colour	Wet				
	Moist	2.5Y 3/2	2.5Y 3/2	2.5Y 3/2	
	abundance				many
	colour				rusty brown
Mottles	size				pedfaces
	contrast				
	boundary				
	Reducing conditions	αα no	αα no	αα no	αα faint
	Odour				
	Structure	weak granular	weak angular blocky	granular	granular
	Stratification	-	-	-	-
Con-	Moist	not possible	not possible	not possible	friable
sistance	Sticky	very sticky	sticky	sticky	sticky
	Plastic	not possible	plastic	very plastic	very plastic
	Ripening	ripe	ripe	nearly ripe	half ripe
	Porosity	to wet	medium	medium	medium
	Roots	none	none	many very fine	many very fine
	bio	none	snails; common earthworms; many OM frag.	many OM frag.	many OM frag.

2.22.3 Analytical laboratory data

	233	Depth	LOI	<u>C</u> ,	arbon- T(1 C	Nitrogen	C/N
	rizon	Depth	OM	TC	IC	OC OC	Kjeldahl	C/N
nr.	symbols	cm	%	%	%	%	%	(TOC/Kjel.)
H1	A1	0-9	17.7	70	70	7.1	70	(100/1gci.)
H2	A2	9-38	16.0			6.9		
H3	Ag	38-51	16.2			6.9		
H4	2År	51-69	13.8			6.4		
Horizon	Depth	Text	ure- pipet	te method	(fractions	in µm)	CaCO ₃	Lab
nr.		0-2	2-10	10-20	20-50	• •	calculated	
	cm			%			. %	
H1	0-9	42.5	22.7	11.7	22.1	1.0	6.8	JM538
H2	9-38	52.5	17.3	15.8	13.9	0.4	2.4	JM539
H3	38-51	49.2	22.4	7.1	20.5	0.7	3.0	JM540
H4	51-69	25.0	8.0	27.0	31.7	8.3	7.8	JM541
Horizon	Texture-	laser Cou	Iter (fracti	ons in µm)	ļ.	Н	рН	EC
nr.	0.4-2	2-6	6-50	50-2000	H ₂ O	KCI	KCI/H2O	dS/m
		9	%		1:5	1:5		1:5
H1	21.6	26.9	49.5	2.0	7.7	7.1	0.92	0.40
H2	23.7	29.8	45.6	1.0	7.6	7.0	0.92	0.37
H3	24.7	30.3	42.8	2.2	7.5	6.9	0.93	0.33
H4	19.0	25.7	44.3	11.0	7.6	7.2	0.94	0.31
Horizon	Na⁺	K⁺	Ca ²⁺	•	CEC		CEC/clay	
nr.	by Mg			nethod)				CEC-m
				cmol(+)/kg				- %
H1								
H2								
H3								
H4			•			• • • • • • • • • • • • • • • • • • • •		
Р	S	As	Cd	Cr	Cu	Ni	Pb	Zn
				Aqua Regia	3			
	0074	40.0		mg/kg	0.7	00	445	000
2552		19.9	6.2	125	87	36	115	638
3559	3271				140	16		
4682	2974	28.0	10.1	220	143	46	168	954
					143 233 208	46 62 42		

2.22.4 World reference base (2007) classification

Diagnostic horizon,	Present	Remarks:
properties, material:	in	
	horizon:	
Albic		Moist colours are too dark
Cambic		Colour requirements are not meet
Mollic		Lack of structure
Abrupt textural change		A very sharp decrease in clay content is found between
		H3 and H4, buy abrupt textural change concerns an
		increase only
Gleyic colour pattern	H3	Oximorphic colour pattern
	H4	Reductimorphic colour pattern
Lithological	H3-4	Abrupt change in texture not due to pedogenesis
discontinuity		
Reducing conditions	H4	Positive reaction to alpha-alpha dipyridyl
Calcaric material	H1-4	Analytical data confirm the presence of more than 2%
		calcium-carbonate throughout the soil
Fluvic material	H1-4	In H3 the structure is best developed, but since then
		the soil has been buried with new fluviatile material. In
		de new material the soil development is insufficient so
		that it has fluvic material to the surface. The organic
		carbon remains above 0.2% i through the soil

The soil keys out in Fluvisols. The buried soil present in H3 is not expressed in the classification name.

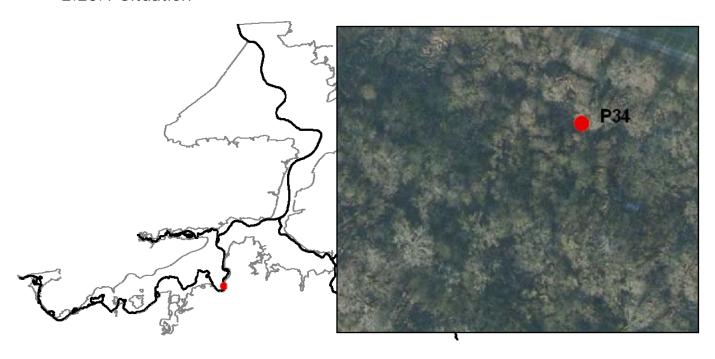
Full classification name, without specifiers

(except where listed as such for prefix and suffix qualifiers):

Gleyic Tidalic Fluvisol (Calcaric, Humic, Eutric, Siltic)

- Tidalic: flooded by tidewater but not covered by water at mean low tide
- Gleyic: reductimorphic colours and reduced conditions starts from 51 cm depth
- Calcaric: present throughout the soil profile
- Humic: the content exceeds 1% throughout, with a weighted average of 6.95% (0-50 cm)
- Eutric: No data available on the base saturation, but considering the high content of calcium carbonate present through the soil the content must exceed 100%
- Siltic: texture class for H1-3 is silty clay

Full classification name, with specifiers:


Endogleyic Tidalic Fluvisol (Calcaric, Hyperhumic, Hypereutric, Siltic)

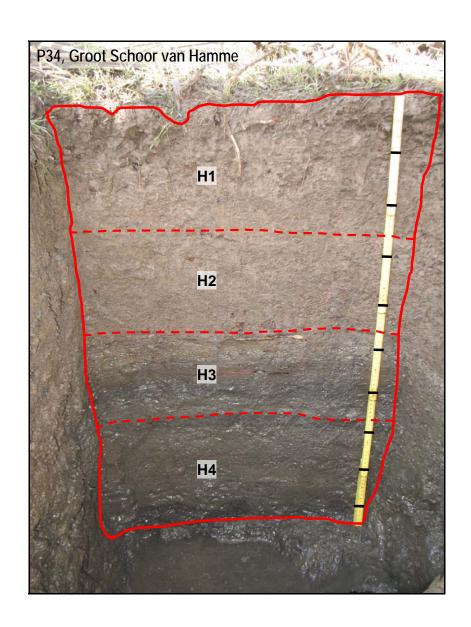
- Calcaric: measurements are partly below partly above 6%; weighted average is less than 6%
- Hyperhumic: the weighted average exceeds 5%
- Hypereutric: The base saturation will considering the free carbonate exceed 100%

2.23 Profile 'P34': Groot schor van Hamme

(Elevation: 5.60m TAW; Lat.: 51.035811, Long.: 4.173639)

2.23.1 Situation

The situation of profile P34 is very comparable with P33.


It differs in dryer, better drained soil. Willow trees have overgrown this location of the tidal marsh.

2.23.2 Profile description

		H1	H2	H3	H4
	symbol	A1	A2	Ag	2Cr
_	depth	0-26	26-48	48-67	67-95
Colour	Wet			5Y 2.5/2	5Y 2.5/1
	Moist	2.5Y 3/2	2.5Y 3/2	2.5Y 2.5/1	5Y 2.5/1
	abundance				
	colour				
Mottles	size				
	contrast				
	boundary				
	Reducing conditions	αα no	αα no	αα yes	αα yes
	Odour			faint petrochemical	
	Structure	angular blocky, 4-5 cm	massive, locally granular	granular, well developed	
	Stratification	-	-	OM and clay stratification	stratified
Con-	Moist	friable	very friable	friable	very friable
sistance	Sticky	slightly	sticky	sticky	slightly
	Plastic	plastic	very plastic	very plastic	none plastic
	Ripening	ripe	nearly ripe	half ripe	half ripe
	Porosity	low	high	medium	high
	Roots	few very fine and fine	none	very few very fine	none
	bio	snails; large earthworm	-	ı	-

www.inbo.be

2.23.3 Analytical laboratory data

Table A1	9: Analytic	cal data fo	r P34, Gro	oot Schoor	van Ham	me		
F	P34	Depth	LOI	Ca	arbon- TO	OC	Nitrogen	C/N
Но	rizon		OM	TC	IC	OC	Kjeldahl	
nr.	symbols	cm	%	%	%	%	%	(TOC/Kjel.)
H1	A1	0-26	14.0			4.74		
H2	A2	26-48	14.5			5.49		
H3	Ag	48-67	21.7			10.40		
H4	2Cr	67-95	7.5			2.55		
Horizon	Depth	Text	ure- pipet	te method (fractions	in µm)	CaCO ₃	Lab
nr.		0-2	2-10	10-20	20-50	50-2000	calculated	
	cm			%			. %	
H1	0-26	40.1	25.6	2.8	27.9	3.7	5.1	JM542
H2	26-48	38.4	16.6	14.8	24.6	5.5	4.9	JM543
H3	48-67	52.4	28.6	1.4	15.8	1.8	2.0	JM544
H4	67-95	16.7	1.3	7.1	16.3	58.6	7.9	JM545
Horizon	Texture-	laser Cou	Iter (fracti	ons in µm)	ŗ	Н	рН	EC
nr.	0.4-2	2-6	6-50	50-2000	H ₂ O	KCI	KCI/H2O	dS/m
		9,	/ ₀		1:5	1:5		1:5
H1	19.9	22.9	50.7	6.6	7.6	7.0	0.92	0.29
H2	20.4	24.0	46.7	8.9	7.5	7.0	0.93	0.29
H3	25.1	39.2	35.8	0.0	7.4	7.0	0.95	0.80
H4	8.6	12.2	20.2	59.0	7.8	7.4	0.95	0.26
Horizon	Na⁺	K ⁺	Ca ²⁺	Mg ²⁺	CEC	CEC	CEC/clay	BS by
nr.	by Mg	-	-	ethod) cmol(+)/kg		measured		CEC-m %
H1	0.9	0.7	38.4	4.0	44.0	47.2	77	93
H2	1.1	0.7	42.1	3.3	47.2	47.6	75	99
H3	1.0	1.2	49.9	3.2	55.2	48.8	25	>100
H4	0.3	0.5	23.4	1.5	25.8	25.4	99	>100
Р	S	As	Cd	Cr	Cu	Ni	Pb	Zn
				Aqua Regia	1			
				mg/kg				
3771	2199	21.3	7.3	153	97	34	124	711
6210	2440	43.5	22.6	534	199	63	255	1735
7603	4635	87.9	38.5	939	269	76	352	2726
1796	1557	35.1	11.7	272	88	23	158	1009

2.23.4 World reference base (2007) classification

Diagnostic horizon, properties, material:	Present in horizon:	Remarks:
Albic		Moist colours are too dark
Cambic		Colour and/or structure requirements are not meet
Mollic		Lack of structure
Abrupt textural change		A very sharp decrease in clay content is found between H3 and H4 (drop from 52% to 17%), buy abrupt textural change concerns an increase with depth only
Gleyic colour pattern	H3 H4	Oximorphic colour pattern Reductimorphic colour pattern
Lithological discontinuity	H3-4	Abrupt change in texture not due to pedogenesis
Reducing conditions	H3	Positive reaction to alpha-alpha dipyridyl
Calcaric material	H1-4	Analytical data confirm the presence of more than 2% calcium-carbonate throughout the soil
Fluvic material	H1-4	No traces of sedimentation was found due to the bioturbation, but irregular content of organic carbon remaining above 0.2% is found through the soil

The soil keys out in Fluvisols.

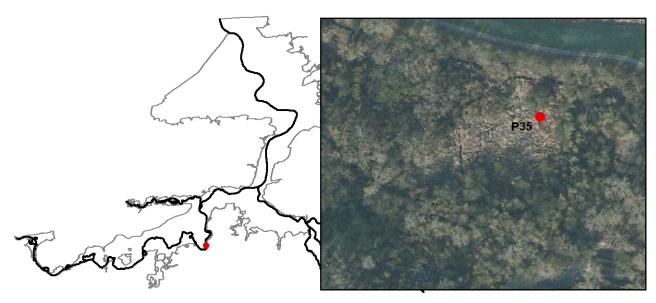
Full classification name, without specifiers

(except where listed as such for prefix and suffix qualifiers):

Gleyic Tidalic Fluvisol (Calcaric, Humic, Eutric, Siltic)

- Tidalic: flooded by tidewater but not covered by water at mean low tide
- Gleyic: reductimorphic colours and reduced conditions starts from 67 cm depth
- Calcaric: present throughout the soil profile
- Humic: the content exceeds 1% throughout, with a weighted average of 5.10% (0-50 cm)
- Eutric: The lowest base saturation is 93%
- Siltic: H1 and H3 have a silty clay texture and H2 a silty clay loam.

Full classification name, with specifiers:

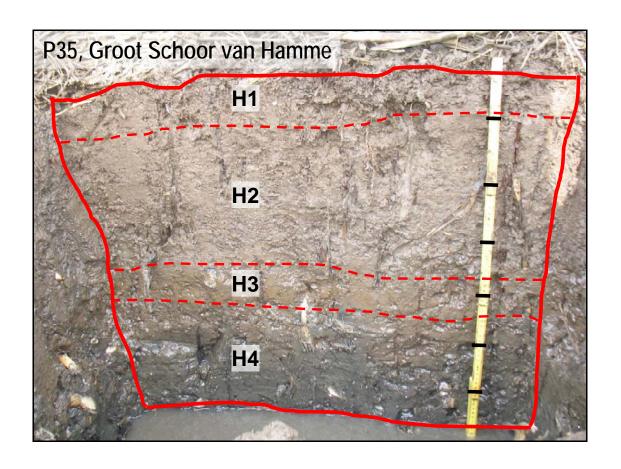

Endogleyic Tidalic Fluvisol (Calcaric, Hyperhumic, Hypereutric, Siltic)

- Calcaric: measurements remains lower than 6%
- Hyperhumic: the weighted average exceeds 5%
- Hypereutric: The base saturation exceeds throughout the profile 80%

2.24 Profile 'P35': Groot schor van Hamme

(Elevation: 5.66m TAW; Lat.: 51.035472, Long.: 4.175295)

2.24.1 Situation


The situation of P35 is very much comparable with P34 an P33.Yet, it is the most wet and least accessible site of the three.

Therefore, this location has never been cultivated. The knotting of trees may have had place on the location until the early sixties.

2.24.2 Profile description

	_	H1	H2	H3	H4
	symbol	Abi	Α	Cg	Cr
	depth	0-9	9-35	35-46	46-80
Colour	Wet	10YR 3/2	3.5Y 3/2	2.5Y 3/2	5Y 3/1
	Moist	10YR 3/2	2.5Y 3.5/2	1.5Y 4/2	3.5Y 3/1
	abundance				
Mottles	colour			rusty brown	
	size			pedfaces	
	contrast				
	boundary				
	Reducing conditions	αα no	αα no	αα faint	αα yes
	Odour				distinct petrochemical
	Structure	granular	locally granular		massive
	Stratification	-	-	stratified	stratified OM & clay
Con-	Moist	not possible	not possible	not possible	not possible
sistance	Sticky	Sticky	slightly	Sticky	very sticky
	Plastic	very plastic	very plastic	not possible	not possible
	Ripening	ripe	ripe	nearly ripe	half ripe
	Porosity	high	medium	medium	medium
	Roots	common very fine and fine; many coarse	common very fine; many coarse	few very fine; many coarse	common very fine; many coarse
	bio	-	snails; decaying reed roots	snails	-

2.24.3 Analytical laboratory data

	P35	Depth	LOI	Ca	arbon- To	OC	Nitrogen	C/N
Но	rizon	•	OM	TC	IC	ОС	Kjeldahl	
nr.	symbols	cm	%	%	%	%	%	(TOC/Kjel.
H1	Abi	0-9	21.2			9.86		
H2	Α	9-35	15.2			6.20		
H3	Cg	35-46	14.3			5.69		
H4	Cr	46-80	12.7			4.88		
Horizon	Depth	Text	re- pipet	te method	fractions	in µm)	CaCO ₃	Lab
nr.		0-2	2-10	10-20	20-50	50-2000	calculated	
	cm			%			. %	
H1	0-9	41.6	20.1	0.9	36.7	0.7	5.9	JM546
H2	9-35	39.5	20.0	17.3	20.9	2.2	4.9	JM547
H3	35-46	45.9	22.7	12.0	18.1	1.3	3.1	JM548
H4	46-80	38.0	19.1	2.9	33.1	6.9	4.4	JM549
Horizon	Texture-	laser Coul	ter (fracti	ons in µm)	ı	Н	рН	EC
nr.	0.4-2	2-6	6-50	50-2000	H ₂ O	KCI	KCI/H2O	dS/m
		9	6		1:5	1:5		1:5
H1	19.4	23.2	56.0	1.4	7.7	7.1	0.93	0.45
H2	19.3	24.3	49.4	7.1	7.7	7.1	0.93	0.27
H3	21.0	33.6	42.4		7.5	7.0	0.94	0.33
H4	19.3	29.0	43.1		7.6	7.3	0.96	0.54
Horizon	Na⁺	K⁺	Ca ^{2⁺}	Mg ²⁺	CEC	CEC	CEC/clay	BS by
nr.	by Mo			nethod)				CEC-m
				cmol(+)/kg				- %
H1								
H2								
H3								
H4								
Р	S	As	Cd	Cr	Cu	Ni	Pb	Zn
				Aqua Regia	1			
				mg/kg				
	3090	20.1	7.8	153	102	39	125	753
3565				007	204	E0	242	1100
5471	2781	34.1	16.8	287	201	58	213	1180
		34.1 100.8 44.4	16.8 35.1 24.4	437 891	201 246 181	62 47	317 274	1513 1929

2.24.4 World reference base (2007) classification

Diagnostic horizon, properties, material:	Present in horizon:	Remarks:
Albic		Moist colours are too dark
Cambic		In principle H1 could qualify for the colours and structure, but the horizon is a surface horizon and it is too thin
Mollic		H1 qualifies for structure and moist colour- dry colours are missing. Again the horizon is too thin.
Abrupt textural change		Clay content remains rather uniform between 38-46%
Gleyic colour pattern	H3 H4	Oximorphic colour pattern Reductimorphic colour pattern
Lithological discontinuity		Treadetime pine colodi pattern
Reducing conditions	H3	Faint reaction to alpha-alpha dipyridyl in H3 and clear reaction in H4
Calcaric material	H1-4	Analytical data confirm the presence of more than 2% calcium-carbonate throughout the soil
Fluvic material	H1-4	No traces of sedimentation was found due to the bioturbation caused by roots and the fauna, but irregular content of organic carbon remaining above 0.2% is found through the soil

The soil keys out in Fluvisols.

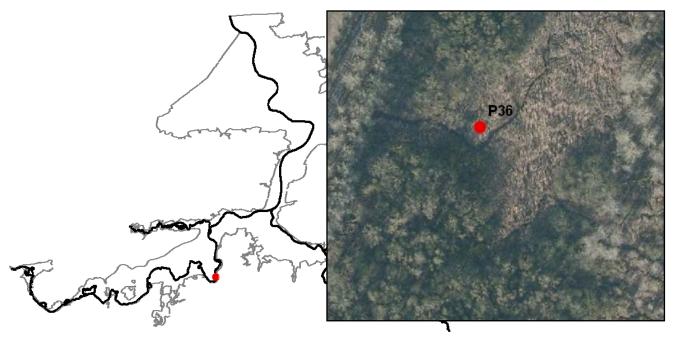
Full classification name, without specifiers

(except where listed as such for prefix and suffix qualifiers):

Gleyic Tidalic Fluvisol (Calcaric, Humic, Eutric, Siltic)

- Tidalic: flooded by tidewater but not covered by water at mean low tide
- Gleyic: reductimorphic colours and reduced conditions starts from 46 cm depth
- Calcaric: present throughout the soil profile
- Humic: the content exceeds 1% throughout, with a weighted average of 6.64% (0-50 cm)
- Eutric: No data are available, but considering the presence of carbonate in the matrix, most likely the base saturation is close to 100%
- Siltic: H1 and H3 have a silty clay texture and H2 and H4 a silty clay loam.

Full classification name, with specifiers:


Epigleyic Tidalic Fluvisol (Calcaric, Hyperhumic, Hypereutric, Siltic)

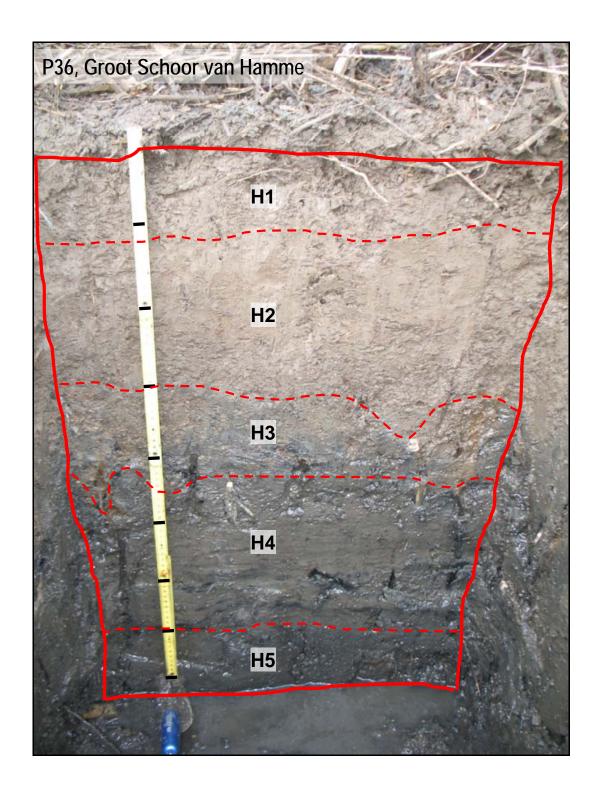
- Calcaric: measurements remains lower than 6%
- Hyperhumic: the weighted average exceeds 5%
- Hypereutric: The base saturation probably exceeds throughout the profile 80%

2.25 Profile 'P36': Groot schor van Hamme

(Elevation: 5.54m TAW; Lat.: 51.036615, Long.: 4.185575)

2.25.1 Situation

Profile 'P36' is located in the eastern part of the tidal marsh 'Groot schor van Hamme'. Until the second world war, the tidal marsh used to be cultivated. Since then, it has been left aside.


Reed has colonised the tidal marsh, and willow trees are encroaching in the proximity.

2.25.2 Profile description

		H1	H2	H3
	symbol	Α	Abi	Ag
	depth	0-11	11-30	30-45
Colour	Wet			5Y 3/1
	Moist	2.5Y 3/2	2.5Y 3/2	5Y 2.5/2
	abundance			common
	colour			rusty brown
Mottles	size			irregular
	contrast			distinct
	boundary			diffuse
	Reducing conditions	αα no	αα no	αα no
	Odour			
	Structure	granular, weak developed	granular	granular
	Stratification	-	-	-
Con-	Moist	very friable	very friable	very friable
sistance	Sticky	slightly	sticky	sticky
	Plastic	plastic	very plastic	plastic
	Ripening	ripe	nearly ripe	half ripe
	Porosity		high	high
	Roots	common very fine, fine and coarse	few very fine; common coarse	common very fine, few fine and many coarse
	bio	snails; small earthworms	small earthworms	-

		H4	H5
	symbol	Cr1	Cr2
	depth	45-71	71-85
Colour	Wet	5Y 2.5/1	5Y 2/1
	Moist	5Y 3/2	2.5/10Y
	abundance		
	colour		
Mottles	size		
	contrast		
	boundary		
	Reducing conditions	αα yes	αα yes
	Odour		petrochemical
	Structure	massive	massive
	Stratification	possible?	-
Con-	Moist	not possible	not possible
sistance	Sticky	sticky	very sticky
	Plastic	very plastic	plastic
	Ripening	half ripe	half ripe
	Porosity	medium	low
	Roots	few very fine; common coarse	ery few very fine; common coars
	bio	-	-

2.25.3 Analytical laboratory data

ŀ	P36	Depth	LOI	Ca	arbon- TO	C	Nitrogen	C/N
Но	rizon		OM	TC	IC	ОС	Kjeldahl	
nr.	symbols	cm	%	%	%	%	%	(TOC/Kjel.
H1	A	0-11	15.5			5.63		
H2	Abi	11-30	15.7			5.84		
H3	Ag	30-45	15.8			6.32		
H4	Cr1	45-71	14.2			6.01		
H5	Cr2	71-85	15.9			8.22		
Horizon	Depth	Text	ure- pipet	te method	(fractions	in µm)	CaCO ₃	Lab
nr.		0-2	2-10	10-20	20-50	50-2000	calculated	
	cm			%			- %	
H1	0-11	38.6	27.1	2.1	29.5	2.8	5.7	JM550
H2	11-30	46.2	15.3	28.0		1.3		JM551
H3	30-45	42.7	12.2	13.8	28.1	3.3	4.3	JM552
H4	45-71	46.7	19.3	12.8	18.0	3.1	3.0	JM553
H5	71-85						2.9	JM554
Horizon	Texture-	· laser Cou	Iter (fracti	ons in µm)	ŗ	Н	рН	EC
nr.				50-2000	H ₂ O	KCI	KCI/H2O	dS/m
		9	%		1:5	1:5		1:5
H1	17.3	24.4	51.9	6.4	7.6	7.1	0.93	0.35
H2	20.3		47.8		7.5	7.0	0.93	0.33
H3	19.6	27.0	46.6	6.8	7.3	7.0	0.96	0.64
H4	21.3	34.6	40.0	4.1	7.4	7.1	0.96	0.73
H5						7.1	0.97	1.19
Horizon	Na⁺		Ca ²⁺	•			CEC/clay	
nr.		_	-	nethod)				CEC-m
				cmol(+)/kg	•			%
H1	0.8	1.0						93
H2	1.2		40.3		45.5		59.9	95
H3	1.0	0.8	37.7	2.8	42.3	42.0	47.5	>100
	0.7	1.2	32.3	2.2	36.5	38.4	38.0	95
H5		_						
Р	S	As	Cd	Cr	Cu	Ni	Pb	Zn
				-Aqua Regia	3			
2240	2500	04.7	C 4	mg/kg	00	25	444	600
3349	2599	21.7 26.9	6.4 8.9	130	89 125	35	114	638
		/h 4	8.9	204	135	43	160	849
5243 6209	2074 3372	32.1	12.8	314	222	48	207	1087

2.25.4 World reference base (2007) classification

Diagnostic horizon,	Present	Remarks:
properties, material:	in	
	horizon:	
Albic		Moist colours are too dark
Cambic		Evidences of alteration not sufficiently clear
Mollic		The structure in H1 is insufficient developed and for H2
		the dry colours are missing
Abrupt textural change		Clay content remains rather uniform between 39-47%
Gleyic colour pattern	H3	Oximorphic colour pattern
	H4	Reductimorphic colour pattern
Lithological		
discontinuity		
Reducing conditions	H4-5	Clear reaction to alpha-alpha dipyridyl
Calcaric material	H1-5	Analytical data confirm the presence of more than 2%
		calcium-carbonate throughout the soil
Fluvic material	H1-5	No traces of sedimentation was found due to the
		bioturbation caused by reed roots and the fauna, but
		irregular content of organic carbon remaining above
		0.2% is found through the soil

The soil keys out in Fluvisols.

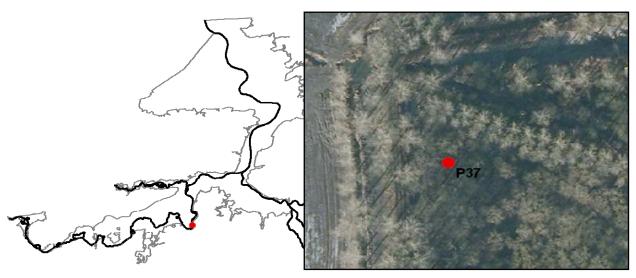
Full classification name, without specifiers

(except where listed as such for prefix and suffix qualifiers):

Gleyic Tidalic Fluvisol (Calcaric, Humic, Eutric, Siltic)

- Tidalic: flooded by tidewater but not covered by water at mean low tide
- Gleyic: reductimorphic colours and reduced conditions starts from 45 cm depth
- Calcaric: present throughout the soil profile
- Humic: the content exceeds 1% throughout, with a weighted average of 5.95% (0-50 cm)
- Eutric: The base saturation is 95% or more
- Siltic: H1 has a silty clay loam texture, H2-5 are silty clayey

Full classification name, with specifiers:


Epigleyic Tidalic Fluvisol (Calcaric, Hyperhumic, Hypereutric, Siltic)

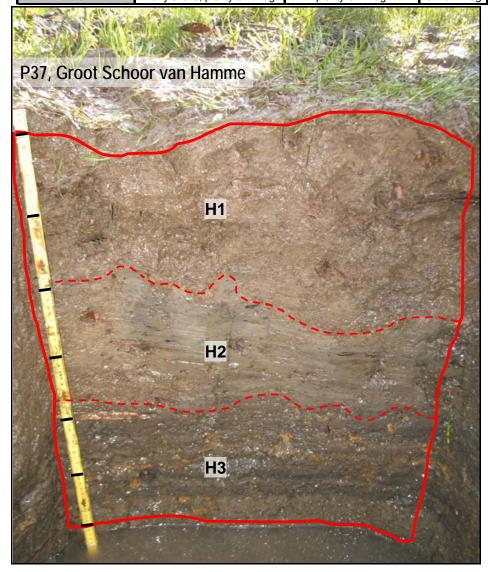
- Calcaric: measurements remains lower than 6%
- Hyperhumic: the weighted average exceeds 5%
- Hypereutric: The base saturation exceeds throughout the profile 80%

2.26 Profile 'P37': Groot schor van Hamme

(Derived elevation: 5.70m TAW; Lat.: 51.021826, Long.: 4.111231)

2.26.1 Situation

Profile 'P37' is located in the eastern part of the tidal marsh 'Groot schor van Hamme', near the winter dike.


The profile is excavated centrally in a poplar forest, where grass (*Poa trivialis*) and bush vegetation cover the tidal marsh soil.

Lack of developed creek system and high presence of humus and clay in the soil result in poorly drained, wet conditions.

2.26.2 Profile description

		H1	H2	Н3
	symbol	Abi	Cg	Cr
	depth	0-23	23-44	44-65
Colour	Wet	5Y 2.5/2	2.5/10Y	2.5/10Y
	Moist	10YR 3/2	5Y 2.5/2	5Y 2.5/1
	abundance		common	
	colour		rusty brown	10YR 5/8
Mottles	size			coatings
	contrast		prominent	
	boundary			
	Reducing conditions	αα no	αα yes	αα yes
	Odour			
	Structure	granular	massive	
	Stratification	OM is horizontal stratified	OM is horizontal stratified	Stratified
Con-	Moist			
sistance	Sticky	slightly	very sticky	sticky
	Plastic	slightly plastic	plastic	plastic
	Ripening			
	Porosity		high	
	Roots	common very fine		
	bio	many snails; plenty OM frag.	plenty OM frag.	few OM frag.

2.26.3 Analytical laboratory data

Table A2	2: Analytic	cal data fo	r P37, Gro	oot Schoor	van Ham	me		
F	237	Depth	LOI	Ca	arbon- To	C	Nitrogen	C/N
Но	rizon	-	OM	TC	IC	ОС	Kjeldahl	
nr.	symbols	cm	%	%	%	%	%	(TOC/Kjel.)
H1	Abi	0-23	19.6			8.41	0.64	13
H2	Cg	23-44	16.0			6.67	0.42	16
H3	Cr	44-65	14.6			7.06	0.40	17
Horizon	Depth	Text	ure- pipet	te method	(fractions	in µm)	CaCO ₃	Lab
nr.		0-2	2-10	10-20	20-50	50-2000	calculated	
	cm			%			- %	
H1	0-23	44.6	19.5	13.6	20.6	1.8	4.4	JM516
H2	23-44	48.0	16.9	8.7	23.1	3.3	3.1	JM517
H3	44-65	35.8	18.9	19.9	21.8	3.6	5.9	JM518
Horizon	Texture- laser Coulter (fractions in μm) pH				Н	рН	EC	
nr.	0.4-2	2-6	6-50	50-2000	H ₂ O	KCI	KCI/H2O	dS/m
		9	6		1:5	1:5		1:5
H1	22.0	33.4	43.4	1.1	7.6	7.08	0.93	0.34
H2	21.3	31.8	41.3	5.7	7.54	7.12	0.94	0.48
H3	19.3	27.1		7.9	7.71	7.26	0.94	0.43
Horizon	Na⁺	K⁺	Ca ²⁺	Mg ²⁺	CEC	CEC	CEC/clay	•
nr.	by Mg		-	ethod)		measured		CEC-m
				cmol(+)/kg				%
H1	1.0	1.0	45.8	4.5	52.3	50.7	48.9	>100
H2	1.0	1.5	41.0	3.0	46.4	49.0	54.2	95
H3	<	1.2	32.6	2.5	36.3	40.2	44.5	90
Р	S	As	Cd	Cr	Cu	Ni	Pb	Zn
				Aqua Regia				
				mg/kg				
4252	2739	28.1	13.7	218	142	52	166	997
6500	4171	70.7	30.4	746	248	57	316	2137
5300	2574	91.1	24.2	827	197	41	353	1948

2.26.4 World reference base (2007) classification

Diagnostic horizon,	Present	Remarks:
properties, material:	in horizon:	
Albic	110112011.	Moist colours are too dark
Cambic		Evidences of alteration not sufficiently clear
Mollic		The structure in H1 is insufficient developed and H2 is massive
Abrupt textural change		Clay content remains relatively uniform between 36-48%
Gleyic colour pattern	H2 H3	Oximorphic colour pattern Reductimorphic colour pattern
Lithological discontinuity		
Reducing conditions	H2-3	Clear reaction to alpha-alpha dipyridyl
Calcaric material	H1-3	Analytical data confirm the presence of more than 2% calcium-carbonate throughout the soil
Fluvic material	H1-3	Stratification visible almost to the surface. The content of organic carbon is irregular and remains above 0.2% through the soil

The soil keys out in Fluvisols.

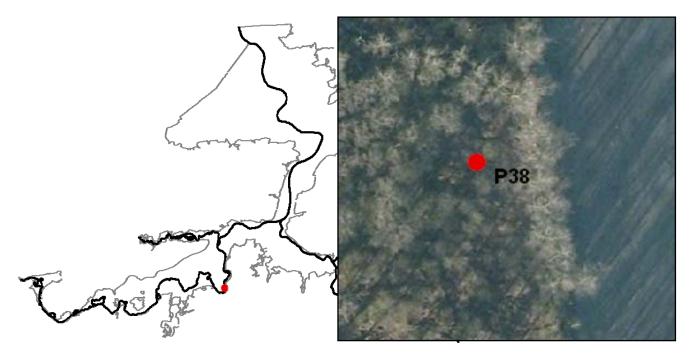
Full classification name, without specifiers

(except where listed as such for prefix and suffix qualifiers):

Gleyic Tidalic Fluvisol (Calcaric, Humic, Eutric, Siltic)

- Tidalic: flooded by tidewater but not covered by water at mean low tide
- Gleyic: reductimorphic colours and reduced conditions starts from 23 cm depth
- Calcaric: present throughout the soil profile
- Humic: the content exceeds 1% throughout, with a weighted average of 7.52% (0-50 cm)
- Eutric: The base saturation is 90% or more
- Siltic: H1-2 have a silty clay texture and H3 a silty clay loam

Full classification name, with specifiers:

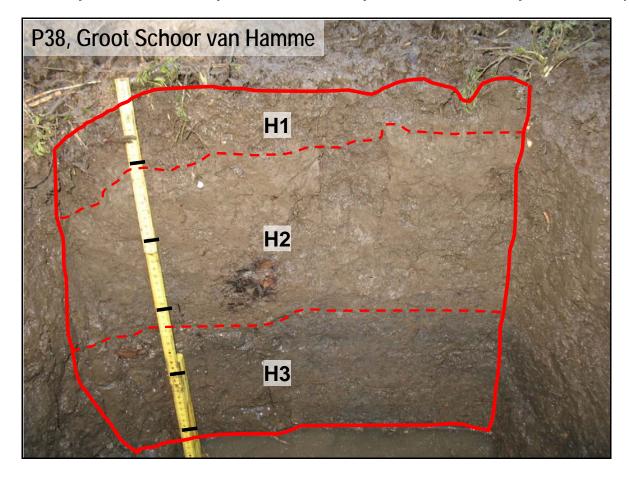

Epigleyic Tidalic Fluvisol (Calcaric, Hyperhumic, Hypereutric, Siltic)

- Calcaric: measurements remains lower than 6%
- Hyperhumic: the weighted average exceeds 5%
- Hypereutric: The base saturation exceeds throughout the profile 80%

2.27 Profile 'P38': Groot schor van Hamme

(Derived elevation: 5.90m TAW; Lat.: 51.021713, Long.: 4.111880)

2.27.1 Situation


Profile 'P38' is located at about 100 m from profile 'P37', in comparable, somewhat less wet conditions.

Until world war 2, the tidal marsh was cultivated, and protected by a summer dike. Since then it was planted with poplar trees, and left aside.

2.27.2 Profile description

		H1	H2	H3
	symbol	Abi	Α	Cg
	depth	0-7	7-32	32-60
Colour	Wet	2.5Y 3/2	2.5Y 3.5/2	5Y 2.5/1
	Moist	10YR 3/1	1.5Y 3.5/2	2.5Y 3/2
	abundance			
	colour			
Mottles	size			
	contrast			
	boundary			
-	Reducing conditions	αα no	αα no	αα yes
	Odour			
	Structure	granular, well developed	granular, weak developed	massive
	Stratification	-	-	-
Con-	Moist	very friable	very friable	firm
sistance	Sticky	sticky		
	Plastic	plastic		
	Ripening	ripe	ripe	ripe
	Porosity	high	high	medium
	Roots	few very fine	none	none
	bio	snails	-	-

2.27.3 Analytical laboratory data

F	P38	Depth	LOI	С	arbon- To	C	Nitrogen	C/N
Но	rizon		OM	TC	IC	OC	Kjeldahl	
nr.	symbols	cm	%	%	%	%	%	(TOC/Kjel.
H1	Abi	0-7	16.19			7.31	0.56	13
H2	Α	7-32	12.50			3.93	0.38	10
H3	Cr	32-60	10.59			4.80	0.26	18
Horizon	Depth	Text	ure- pipet	te method	(fractions	in µm)	CaCO ₃	Lab
nr.		0-2	2-10	10-20	20-50	50-2000	calculated	
	cm			%			- %	
H1	0-7	34.1	14.8	18.7	24.0	8.4	4.7	JM558
H2	7-32	32.5	11.6	5.1	39.8	11.1	5.4	JM559
H3	32-60	28.7	12.1	11.0	29.5	18.6	5.9	JM560
Horizon	Texture-	laser Cou	Iter (fraction	ons in µm)	ı	Н	рН	EC
nr.	0.4-2	_	6-50		H ₂ O	KCI	KCI/H2O	dS/m
		o	%		1:5	1:5		1:5
H1	18.5		44.6		7.59	7.08	0.93	0.29
H2	18.0	0	44.8	15.2	7.47	6.92	0.93	0.19
H3	16.0	21.6	39.5	22.9	7.68	7.14	0.93	0.19
Horizon	Na⁺	K⁺	Ca ²⁺	Mg ²⁺	CEC	CEC	CEC/clay	_
nr.	by Mg	gSO ₄ (com	=			measured		CEC-m
				cmol(+)/k				%
H1	1.0	1.3	36.0	4.2	42.5	46.6	63.0	91
H2	1.0	0.7	35.2	3.1	40.0	43.1	91.0	93
H3	0.5	0.6		2.4		34.0	60.7	91
Р	S	As	Cd	Cr	Cu	Ni	Pb	Zn
Aqua Regia								
3713	2663	19.2	7.2	118	83	31	103	685
3713 5143 5038								685 1047 1027

2.27.4 World reference base (2007) classification

Diagnostic horizon,	Present	Remarks:
properties, material:	in	
	horizon:	
Albic		Moist colours are too dark
Cambic		Evidences of alteration not sufficiently clear
Mollic		Possible H1 will qualify but the dry colours are missing
		and the horizon is too thin
Abrupt textural change		Clay content remains relatively uniform between 29-
		34%
Gleyic colour pattern	H3	Oximorphic colour pattern
Lithological		
discontinuity		
Reducing conditions	H3	Clear reaction to alpha-alpha dipyridyl
Calcaric material	H1-3	Analytical data confirm the presence of more than 2%
		calcium-carbonate throughout the soil
Fluvic material	H2-3	The content of organic carbon is irregular and remains
		above 0.2% through the soil. Stratification visible in
		H3
The self-leave sub-Elevised		НЗ

The soil keys out Fluvisols.

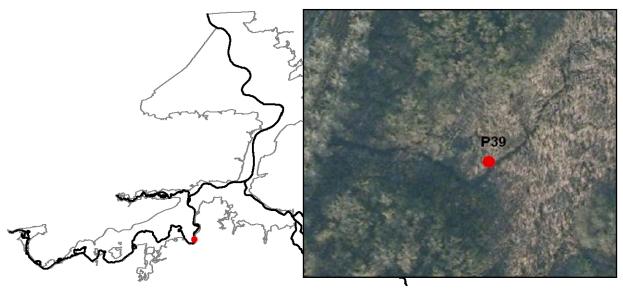
Full classification name, without specifiers

(except where listed as such for prefix and suffix qualifiers):

Gleyic Tidalic Fluvisol (Calcaric, Humic, Eutric, Siltic)

- Tidalic: flooded by tidewater but not covered by water at mean low tide
- Gleyic: oximorphic colours and reduced conditions starts from 32 cm depth
- Calcaric: present throughout the soil profile
- Humic: the content exceeds 1% throughout, with a weighted average of 4.72% (0-50 cm)
- Eutric: The base saturation is 91-93%
- Siltic: silty clay loam throughout the soil

Full classification name, with specifiers:


Epigleyic Tidalic Fluvisol (Calcaric, Humic, Hypereutric, Siltic)

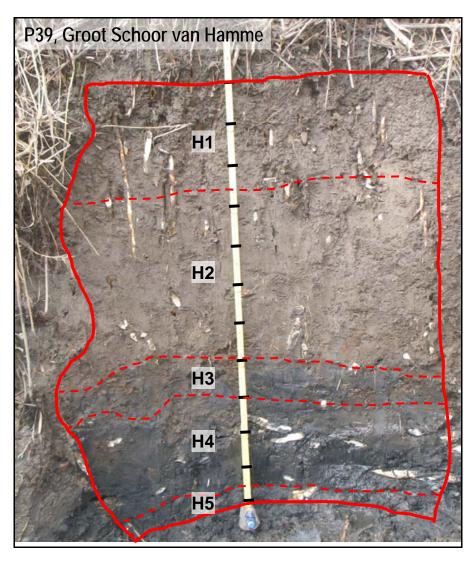
- Calcaric: measurements remains lower than 6%
- Hyperhumic: the weighted average is slightly less than 5%
- Hypereutric: The base saturation exceeds throughout the profile 80%

2.28 Profile 'P39': Groot schor van Hamme

(Elevation: 5.40m TAW; Lat.: 51.036601, Long.: 4.185648)

2.28.1 Situation

Profile 'P39' is located in the eastern part of the tidal marsh 'Groot schor van Hamme'. Until the second world war, the tidal marsh used to be cultivated. Since then, it has been left aside.


Reed has colonised the tidal marsh, and willow trees are encroaching in the proximity.

It is situated in the direct proximity of profile 'P36', excavated in a second order creek wall.

2.28.2 Profile description

		H1	H2	H3	H4	H5
	symbol	Abi	Α	Cg	Cr1	Cr2
	depth	0-27	27-70	70-81	81-105	105-125
Colour	Wet					
	Moist	2.5Y 3/2	2.5Y 3.5/2	2.5Y 3/2	5Y 2.5/1	2.5/N
	abundance					
	colour				rusty brown	
Mottles	size				on pedfaces	
	contrast				prominent	
	boundary				irregular	
-	Reducing conditions	αα no	αα faint	αα yes	αα yes	αα yes
	Odour					
	Structure	granular			massive	massive
	Stratification					
Con-	Moist					
sistance	Sticky					
	Plastic					
	Ripening	nearly ripe	nearly ripe	nearly ripe	half ripe	half ripe
	Porosity	high		high		
	Roots	common very fine,	many very fine and fine,	common coarse	few very fine to medium,	very few very fine to fine,
		fine and coarse	common coarse		common coarse	common coarse

2.28.3 Analytical laboratory data

Table A2	24: Analytic	cal data for	P39, Gro	oot Schoor	van Ham	me		
F	239	Depth	LOI	Ca	arbon- TC	OC .	Nitrogen	C/N
	rizon	_ ~ P	OM	TC	IC	ОС	Kjeldahl	· · · ·
nr.	symbols	cm	%	%	%	%	%	(TOC/Kjel.)
H1	Abi	0-27	13.98	,,	, ,	5.73	,,,	(100/1gon)
H2	A	27-70	13.37			5.40		
H3	Cg	70-81	16.44			6.53		
H4	Cr1	81-105	17.77			9.20		
H5	Cr2	105-125	11.38			5.72		
Horizon	Depth	Textu	re- pipet	te method (fractions	in um)	CaCO ₃	Lab
nr.		0-2	2-10	10-20	20-50	50-2000	calculated	
	cm			%				
H1	0-27						6.7	JM561
H2	27-70						4.8	JM562
H3	70-81	37.4	25.2	5.5	25.5	6.3	4.0	JM563
H4	81-105	38.0	29.1	12.6	18.1	2.1	3.8	JM564
H5	105-125	31.2	23.8	3.4	33.5	8.1	5.3	JM565
Horizon	Texture-	laser Coul	ter (fracti	ons in µm)	p	Н	рН	EC
nr.	0.4-2	2-6	6-50	50-2000	H ₂ O	KCI	KCI/H2O	dS/m
		%)		1:5	1:5		1:5
H1					7.87	7.25	0.92	0.28
H2					7.73	7.18	0.93	0.32
H3	20.4	27.6	42.0	9.9	7.65	7.1	0.93	0.31
H4	20.2	36.8	42.5	0.4	7.42	7.09	0.96	0.78
H5	16.6	28.6	44.7	10.2	7.42	7.07	0.95	1.01
Horizon	Na⁺	K⁺	Ca ²⁺	Mg ²⁺	CEC	CEC	CEC/clay	BS by
nr.	~	gSO4 (comp		-	sum	measured		CEC-m
				cmol(+)/kg				%
H1								
H2		• -					• / -	
H3	1.2	0.6	46.2	3.5	51.4	53.0	81.7	97
H4	1.0	0.9	37.1	3.1	42.1	45.9	37.4	92
H5	0.6	0.9	27.2	2.5	31.2	30.0	33.1	>100
Р	S	As	Cd	Cr	Cu	Ni	Pb	Zn
				Aqua Regia				
				mg/kg				
		00.0	24.4	647	193	58	258	1801
7914	1905	92.8	21.1	0 1 /	195	50	230	1001
7914 6673	1905 9568	92.8 108.7	36.8	956	231	55	405	2732

2.28.4 World reference base (2007) classification

Diagnostic horizon,	Present	Remarks:
properties, material:	in	
	horizon:	
Albic		Moist colours are too dark
Cambic		Insufficient evidences of alteration
Mollic	(H1)	Possible H1 will qualify but the dry colours are missing,
		and often that is the parameter that turns down the
		presence of Mollic horizons
Abrupt textural change		Clay content remains relatively uniform between 31-
		38%
Gleyic colour pattern	H3	Oximorphic colour pattern
	H4-5	Reductimorphic colour pattern
Lithological		
discontinuity		
Reducing conditions	H3	Clear reaction to alpha-alpha dipyridyl
Calcaric material	H1-3	Analytical data confirm the presence of more than 2%
		calcium-carbonate throughout the soil
Fluvic material	H2-3	The content of organic carbon is irregular and remains
		above 0.2% through the soil. Stratification is not
		visible due to the impact of the reed roots.

H1 may qualify for Mollic (5/10 odds) and the horizon has the structure, content of organic matter etc. If anyhow the presence of a Mollic horizon is accepted, then fluvic material will anyhow prevail through the soil as irregular presence of organic matter is sufficient to qualify in absence of any SUBSURFACE diagnostic horizon. The result is that the soil keys out in Fluvisols.

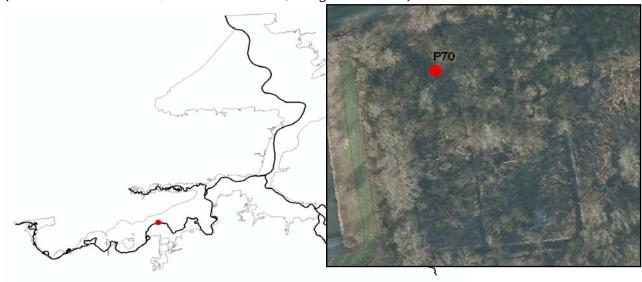
Full classification name, without specifiers

(except where listed as such for prefix and suffix qualifiers):

(Mollic), Gleyic Tidalic Fluvisol (Calcaric, Humic, Eutric, Siltic)

- Tidalic: flooded by tidewater but not covered by water at mean low tide
- Gleyic: oximorphic colours and reduced conditions starts from 70 cm depth
- Mollic: if the dry colour values does not exceed 5, then H1 qualifies for Mollic
- Calcaric: present throughout the soil profile
- Humic: the content exceeds 1% throughout, with a weighted average of 5.58% (0-50 cm)
- Eutric: The lowest base saturation is 92%
- Siltic: silty clay loam throughout the soil

Full classification name, with specifiers:


(Mollic) Endogleyic Tidalic Fluvisol (Calcaric, Hyperhumic, Hypereutric, Siltic)

- Calcaric: measurements remains lower than 6%
- Hyperhumic: the weighted average is slightly less than 5%
- Hypereutric: The base saturation exceeds throughout the profile 80%

Fresh water zone: Schor van Zele & Appels

2.29 Profile 'P70': Schor van Zele

(Elevation: 5.16m TAW; Lat.: 51.051444, Long.: 4.067787)

2.29.1 Situation


Profile 'P70' is located in the tidalmarsh 'Schor van Zele', near the winter dike. The profile is situated in a poorly drained depression.

Vegetation consists of grass and bush, but willow trees are colonising the direct proximity.

2.29.2 Profile description

		H1	H2	H3	H4	H5
	symbol	A1	A2	Abr1	Abr2	Cr
	depth	0-18	18-38	38-52	52-75	75-85
Colour	Wet		5Y 3.5/2	5Y 2.5/1	5Y 2.5/2	2.5/N
	Moist	2.5Y 3/2	2.5Y 3.5/2	5Y 2.5/1	5Y 2.5/1.5	5Y 2.5/1
	abundance				few	very few
	colour				rusty brown	rusty brown
Mottles	size				fine	irregular
	contrast				prominent	prominent
	boundary				sharp	along biogalleries
	Reducing conditions	αα no	αα no	αα no	αα no	αα yes
	Odour					
	Structure	locally granular; elsewhere massive	massive	massive	granular?	granular?
	Stratification	-	-	-	i	-
Consis-	Moist	friable	friable	very friable	friable	friable
tence	Sticky	slightly	slightly	slightly	slightly	sticky
	Plastic	plastic	plastic	plastic	slightly plastic	plastic
	Ripening	ripe	ripe	ripe	nearly ripe	nearly ripe
	Porosity	medium	medium	high	high	medium
	Roots	common very fine	very few very fine	none	none	none
	bio	snails		More OM fragments than in H4	many decomposing roots	snails

ı	P70	Depth	LOI	Ca	arbon- To	C	Nitrogen	C/N
Но	rizon	•	ОМ	TC	IC	ОС	Kjeldahl	
nr.	symbols	cm	%	%	%	%	%	(TOC/Kjel.)
H1	A1	0-18	14.6	5.73	0.49	5.24	0.49	11
H2	A2	18-38	14.0	5.71	0.62	5.10	0.40	13
H3	Abr1	38-52	16.3	8.77	0.32	8.45	0.47	18
H4	Abr2	52-75	12.1	7.69	0.48	7.21	0.36	20
H5	Cr	75-85	12.9	8.30	1.89	6.41	0.40	16
Horizon	Depth	Text	ure- pipet	te method (fractions	in µm)	CaCO₃	Lab
nr.		0-2	2-10	10-20	20-50	50-2000	calculated	
	cm			%			- %	
H1	0-18	45.0	18.8	4.1	30.9	1.1	4.1	JM516
H2	18-38	46.7	16.7	16.6	18.9	1.1	6.0	JM517
H3	38-52	47.7	16.1	15.3	18.8	2.1	2.7	JM518
H4	52-75	34.8	13.5	9.4	15.0	27.3	4.0	JM519
H5	75-85	37.4	15.3	10.5	34.6	2.2	3.9	JM520
Horizon	Texture-	· laser Cou	Iter (fracti	ons in µm)	ı	Н	рН	EC
nr.	0.4-2	2-6	6-50	50-2000	H ₂ O	KCI	KCI/H2O	dS/m
		9	/ ₀		1:5	1:5		1:5
H1	22.1	23.1	46.5	8.4	7.6	6.9	0.91	0.29
H2	25.2	28.4	43.6	2.9	7.5	6.9	0.92	0.25
H3	23.5	27.6	43.3	5.6	7.6	7.1	0.92	0.27
H4	17.9	19.0	44.5	18.6	7.8	7.1	0.91	0.23
H5	18.6	20.4	47.0	14.0	7.8	7.2	0.93	0.38
Horizon	Na⁺	K⁺	Ca ²⁺	Mg ²⁺	CEC	CEC	CEC/clay	BS by
nr.				ethod)	sum	measured		CEC-m
				cmol(+)/kg				%
H1	0.9	8.0	38.0	3.5	43.2	49.6	70.0	87
H2	0.9	0.8	42.6	3.4	47.6	49.9	69.3	95
							20.2	99
H3	8.0	8.0	42.6	3.1	47.2	47.8	39.2	
H3 H4	0.8 0.5	8.0	28.4	2.4	32.0	38.2	38.5	84
H3 H4 H5	0.8 0.5 0.5	0.8 1.0	28.4 28.1	2.4 2.3	32.0 31.8	38.2 39.0	38.5 45.4	84 81
H3 H4	0.8 0.5	8.0	28.4	2.4 2.3 Cr	32.0 31.8 Cu	38.2	38.5	84
H3 H4 H5	0.8 0.5 0.5	0.8 1.0	28.4 28.1	2.4 2.3 Cr Aqua Reg	32.0 31.8 Cu	38.2 39.0	38.5 45.4	84 81
H3 H4 H5 P	0.8 0.5 0.5 S	0.8 1.0 As	28.4 28.1 Cd	2.4 2.3 Cr -Aqua Reg i mg/kg	32.0 31.8 Cu ia	38.2 39.0 Ni	38.5 45.4 Pb	84 81 Zn
H3 H4 H5 P 	0.8 0.5 0.5 S	0.8 1.0 As	28.4 28.1 Cd	2.4 2.3 Cr -Aqua Reg mg/kg 222	32.0 31.8 Cu ia	38.2 39.0 Ni 39.3	38.5 45.4 Pb	84 81 Zn 846
H3 H4 H5 P 3827 7759	0.8 0.5 0.5 S 2097 3087	0.8 1.0 As 17.6 45.8	28.4 28.1 Cd 7.6 25.9	2.4 2.3 Cr mg/kg 222 738	32.0 31.8 Cu ia 117 221	38.2 39.0 Ni 39.3 57.1	38.5 45.4 Pb 142 314	84 81 Zn 8 846 2248
H3 H4 H5 P 3827 7759 7153	0.8 0.5 0.5 S 2097 3087 2035	0.8 1.0 As 17.6 45.8 81.8	28.4 28.1 Cd 7.6 25.9 31.5	2.4 2.3 Cr Aqua Reg mg/kg 222 738 428	32.0 31.8 Cu ia	38.2 39.0 Ni 39.3 57.1 53.3	38.5 45.4 Pb 142 314 414	84 81 Zn 846 2248 2632
H3 H4 H5 P 3827 7759	0.8 0.5 0.5 S 2097 3087	0.8 1.0 As 17.6 45.8	28.4 28.1 Cd 7.6 25.9	2.4 2.3 Cr mg/kg 222 738	32.0 31.8 Cu ia 117 221	38.2 39.0 Ni 39.3 57.1	38.5 45.4 Pb 142 314	84 81 Zn 8 846 2248

2.29.4 World reference base (2007) classification

Diagnostic horizon,	Present	Remarks:
properties, material:	in horizon:	
Albic	1101120111	Moist colours are too dark
Cambic		Evidences of alteration not sufficiently clear
Mollic		Structure insufficient developed
Abrupt textural change		Clay content remains relatively uniform between 35-
		48%
Gleyic colour pattern	H3	Reductimorphic colour pattern
Lithological		
discontinuity		
Reducing conditions	H3	Reaction to alpha-alpha dipyridyl
Calcaric material	H1-2; H4-	Analytical data confirm the presence of more than 2%
	5	calcium-carbonate in all horizons but H3
Fluvic material	H2-3	The content of organic carbon is irregular and remains
		above 0.2% through the soil

The soil keys out in Fluvisols.

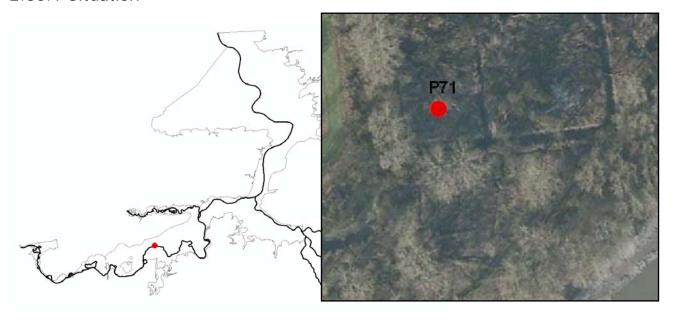
Full classification name, without specifiers

(except where listed as such for prefix and suffix qualifiers):

Gleyic Tidalic Fluvisol (Humic, Eutric, Siltic)

- Tidalic: flooded by tidewater but not covered by water at mean low tide
- Gleyic: reductimorphic colours and reduced conditions starts from 38 cm depth
- Calcaric: should contain at least 2% between 20-50 cm. Considering that the analyser method measure about 40% to little carbonate, H3 with 2.7% has less than 2% and as this horizon is present between 38-52 cm depth Calcaric is not present
- Humic: the content exceeds 1% throughout, with a weighted average of 5.95% (0-50 cm)
- Eutric: The base saturation ranges between 81% and 99%
- Siltic: H1-3 have a silty clay and H5 a silty clay loam

Full classification name, with specifiers:

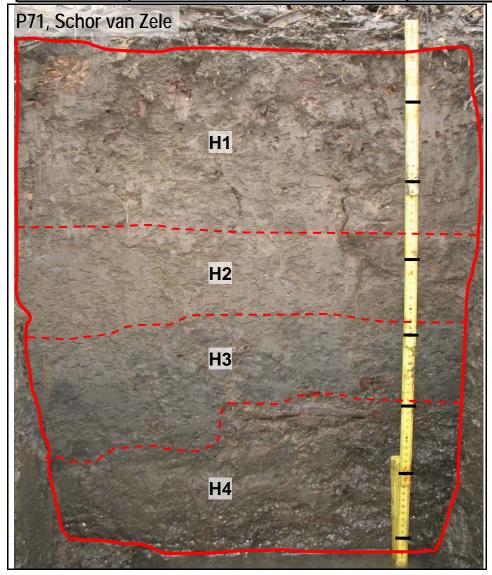

Epigleyic Tidalic Fluvisol (Hyperhumic, Hypereutric, Siltic)

- Hyperhumic: the weighted average is more than 5%
- Hypereutric: The base saturation exceeds throughout the profile 80%

2.30 Profile 'P71': Schor van Zele

(Elevation: 5.39m TAW; Lat.: 51.05071, Long.: 4.067873)

2.30.1 Situation


Profile 'P71' is located in comparable conditions as profile P70.

The relative proximity of 2 second order creeks result in a slightly better drainage.

2.30.2 Profile description

_		H1	H2	H3	H4
	symbol	A1	A2	Abr1	Abr2
	depth	0-23	23-36	36-47	47-69
Colour	Wet	2.5Y 3/2	2.5Y 3.5/2	5Y 2.5/1	5Y 2.5/2
	Moist	2.5Y 3/2	2.5Y 3/2	2.5Y 3/1	2.5Y 3/1
	abundance				
	colour				
Mottles	size				
	contrast				
	boundary				
	Reducing conditions	αα no	αα no	αα no	αα no
	Odour				
	Structure	granular, weak developed	massive	granular+ massive	granular
	Stratification	possible?	-	-	-
Con-	Moist	friable	friable	very friable	very friable
sistance	Sticky	slightly	sticky	sticky	sticky
	Plastic	plastic	very plastic	very plastic	very plastic
	Ripening	ripe	nearly ripe	nearly ripe	nearly ripe
	Porosity	medium	high	high	high
	Roots	few very fine	few very fine	none	none
	bio	snails; plastic fragments; plenty OM debris	-	common OM tissues	-

2.30.3 Analytical laboratory data

Nitrogen	C/N
Millogen	(*/NI
Kjeldahl	C/IN
%	(TOC/Kjel.)
	(TOC/NJel.)
	Lab
J	
-	
	JM521
	JM522
	JM523
	JM524
	EC
-	dS/m
100/1120	1:5
0.92	0.26
	0.23
	0.18
	0.20
•	CEC-m
	- %
Pb	Zn
133	800
224	1467
289	2051
315	1404
	133 224 289

2.30.4 World reference base (2007) classification

Diagnostic horizon,	Present	Remarks:
properties, material:	in	
	horizon:	
Albic		Moist colours are too dark
Cambic		Evidences of alteration not sufficiently clear
Mollic		Structure insufficient developed
Abrupt textural change		Clay content remains relatively uniform between 35-
		48%
Gleyic colour pattern	H3	Reductimorphic colour pattern
Lithological		
discontinuity		
Reducing conditions	H3	Reaction to alpha-alpha dipyridyl
Calcaric material	H1-2; H4-	Analytical data confirm the presence of more than 2%
	5	calcium-carbonate in all horizons but H3
Fluvic material	H2-3	The content of organic carbon is irregular and remains
		above 0.2% through the soil

Probably in the past a soil like this one had a Mollic epipedon, but after the burial by new sediment and the drainage of the soil stopped the soil has become wet and this prevents a good structure from developing. The soil remains a Fluvisols.

Full classification name, without specifiers

(except where listed as such for prefix and suffix qualifiers):

Gleyic Tidalic Fluvisol (Calcaric, Humic, Eutric, Siltic)

- Tidalic: flooded by tidewater but not covered by water at mean low tide
- Gleyic: reductimorphic colours and reduced conditions starts from 36 cm depth
- Calcaric: should contain at least 2% between 20-50 cm. considering that the analyser method measure about 40% to little carbonate, all horizons qualify.
- Humic: the content exceeds 1% throughout, with a weighted average of 5.18% (0-50 cm)
- Eutric: The base saturation has not been measured but as free carbonate is present through the soil most probably the saturation exceeds 80%
- Siltic: H1-2 have a silty clay and H3-4 have a silty clay loam

Full classification name, with specifiers:

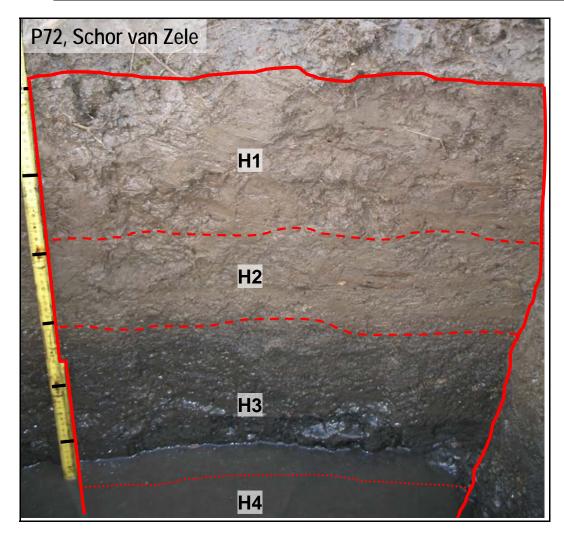
Epigleyic Tidalic Fluvisol (Calcaric, Hyperhumic, Hypereutric, Siltic)

- Hyperhumic: the weighted average is more than 5%
- Hypereutric: The base saturation probably exceeds 80% throughout the profile

2.31 Profile 'P72': Schor van Zele

(Elevation: 5.24m TAW; Lat.: 51.05008, Long.: 4.067799)

2.31.1 Situation


Profile 'P72' is located further south, towards the river Scheldt on the tidal marsh 'Schor van Zele'.

After a period as meadowland, the tidal marsh got planted with poplar trees. The old ditch network has disappeared, but a spontaneous development of a creek network has not occurred.

2.31.2 Profile description

		H1	H2	Н3	H4
	symbol	A1	A2	Abr	Cr
	depth	0-20	20-40	40-75	70-80
Colour	Wet	10YR 3.5/2	2.5Y 3.5/2	5Y 2.5/1	2.5/N
	Moist	1.5Y 3/2	2.5Y 3/2	5Y 2.5/1	5Y 2.5/1
	abundance				
	colour				
Mottles	size				
	contrast				
	boundary				
	Reducing conditions	αα no	αα no	αα yes	αα yes
	Odour			faint petrochemical	
	Structure	granular+ massive	massive, locally granular	granular	massive
	Stratification	-	yes, more sandy layers	possible?	-
Con-	Moist	friable	very friable	very friable	very friable
sistance	Sticky	sticky	sticky	sticky	sticky
	Plastic	plastic	plastic	none plastic	slightly plastic
	Ripening	ripe	nearly ripe	half ripe	half ripe
	Porosity	medium	medium	high	medium
	Roots	few very fine	few very fine	none	common decaying roots
	bio	snails; common OM debris	snails; plenty OM debris	plenty OM debris e.g. decaying roots	snails

2.31.3 Analytical laboratory data

Table A2	7: Analytic	cal data fo	r P72, Sch	nor van Zele)			
	772	Depth	LOI	- 04	arbon- TO	20	Nitrogen	C/N
	rizon	Depth	OM	TC	IC	OC OC	Nitrogen Kjeldahl	C/N
nr.	symbols	cm	%	%	%	%	%	(TOC/Kjel.)
H1	A1	0-20	14.7	70	70	5.61	0.50	(100/igel.)
H2	A2	20-40	12.3			5.40	0.34	
H3	Abr	40-75	10.4			5.15	0.30	
H4	Cr	70-80	11.5			7.05	0.33	
Horizon	Depth			te method (fractions		CaCO ₃	Lab
nr.	•	0-2	2-10	10-20	20-50	50-2000	calculated	
	cm			%			%	
H1	0-20	44.8	13.0	15.7	25.4	1.1	0.8	JM525
H2	20-40	34.6	8.6	12.2	22.6	22.0	4.1	JM526
H3	40-75	22.6	11.6	7.3	19.3	39.2	6.4	JM527
H4	70-80	23.9	12.2	13.9	22.1	28.0	4.6	JM528
Horizon	Texture-	laser Cou	Iter (fraction	ons in µm)	ŗ	Н	рН	EC
nr.	0.4-2	2-6	6-50	50-2000	H ₂ O	KCI	KCI/H2O	dS/m
		ç	%		1:5	1:5		1:5
H1	20.6	21.5	50.7	7.2	7.7	7.1	0.92	0.26
H2	18.2	19.0	38.9	24.1	7.7	7.1	0.92	0.21
H3	15.4	20.4	33.8	30.5	7.7	7.0	0.92	0.65
H4	12.5	19.1	40.7	27.7	7.8	7.4	0.95	0.54
Horizon	Na⁺	K⁺	Ca ²⁺	Mg ²⁺	CEC	CEC	CEC/clay	BS by
nr.	by Mg	gSO ₄ (com	=	ethod)	sum	measured		CEC-m
				cmol(+)/kg				%
H1	8.0	8.0	37.7	3.7	43.1	46.1	60	93
H2	0.7	0.7	33.5	2.8	37.8	42.9	70	88
H3	0.5	0.8	25.6	2.0	28.9	29.7	53	97
H4	0.4	0.7	26.7	1.5	29.3	23.8		>100
Р	S	As	Cd	Cr	Cu	Ni	Pb	Zn
				Aqua Regia	1			
2700	4004	47.0	7 7	mg/kg	110	40	1.40	004
3739	1921	17.8	7.7	220	119	40	140	864
4960 3326	2300 3738	34.4 56.0	20.2 13.1	518 545	146 120	28	226 241	1937 1244
2127	3738 2662	69.6	7.6	345 317	120	28 27	24 i 246	1244
2121	2002	09.0	1.0	31 <i>1</i>	141	۷1	240	1202

2.31.4 World reference base (2007) classification

Diagnostic horizon,	Present	Remarks:
properties, material:	in	
	horizon:	
Albic		Moist colours are too dark
Cambic		Evidences of alteration not sufficiently clear
Mollic		Structure insufficient developed
Abrupt textural change		Clay content decreases with depth
Gleyic colour pattern	H3-4	Reductimorphic colour pattern
Lithological		Decrease in clay is not abrupt (H1: 45%; H2: 35%;
discontinuity		H3: 23%)
Reducing conditions	H3-4	Reaction to alpha-alpha dipyridyl
Calcaric material	H2-4	Analytical data confirm the presence of more than 2%
		calcium-carbonate in all horizons but H1
Fluvic material	H2-3	The content of organic carbon is irregular and remains
		above 0.2% through the soil

The soil keys out in the Fluvisols.

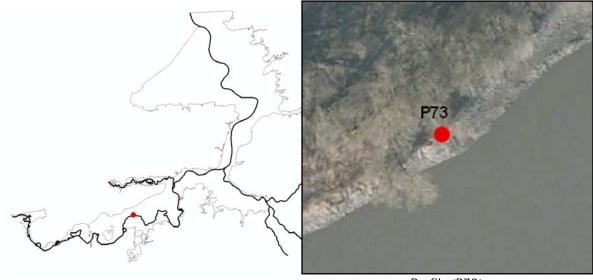
Full classification name, without specifiers

(except where listed as such for prefix and suffix qualifiers):

Gleyic Tidalic Fluvisol (Calcaric, Humic, Eutric)

- Tidalic: flooded by tidewater but not covered by water at mean low tide
- Gleyic: reductimorphic colours and reduced conditions starts from 40 cm depth
- Calcaric: should contain at least 2% between 20-50 cm. Considering that the analyser method measure about 40% to little carbonate, all horizons except H1 qualify. H1 is found between 0-20 cm depth.
- Humic: the content exceeds 1% throughout, with a weighted average of 5.43% (0-50 cm)
- Eutric: The base saturation is 87% or more
- Siltic: H1 has a silty clay texture but is only 20 cm thick

Full classification name, with specifiers:


Epigleyic Tidalic Fluvisol (Calcaric, Hyperhumic, Hypereutric)

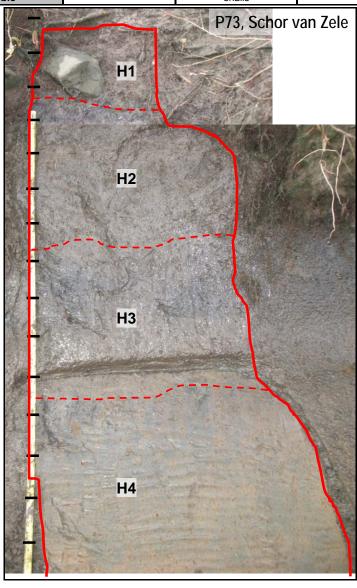
- Hyperhumic: the weighted average is more than 5%
- Hypereutric: The base saturation probably exceeds 80% throughout the profile

2.32 Profile 'P73': Schor van Zele

(Elevation: 3.70m TAW; Lat.: 51.050023, Long.: 4.068494)

2.32.1 Situation

Profile 'P73'


initially used to be in the same tidal marsh as P72 and P74. It has been a meadowland that later got planted with poplar trees.

Because of continuous erosion, the location turned into the tidal marsh edge somewhere between 1976 and 1987.

2.32.2 Profile description

		H1	H2	H3	H4
	symbol	Abi	Α	Ar	Br
	depth	0-24	24-67	67-106	106-150
Colour	Wet	2.5Y 3/2	5Y 2.5/1	2.5/N	2.5/10Y
	Moist	2.5Y 3/2	5Y 2.5/2	5Y 2.5/1	2.5Y 3.5/2
	abundance				
	colour			rusty brown	rusty brown
Mottles	size			in pores	in pores
	contrast			prominent	prominent
	boundary				
	Reducing conditions	αα no	αα no	αα yes	αα yes
	Odour				
	Structure	granular	massive, locally granular	granular	fine angular blocky, well developed
	Stratification	-	Stratified	Stratified	-
Con-	Moist	very friable	friable	very friable	friable
sistance	Sticky	slightly	slightly	slightly	slightly
	Plastic	plastic	none plastic	plastic	plastic
	Ripening	ripe	ripe	nearly ripe	ripe
	Porosity	high	medium	medium	high
	Roots	many very fine and fine	many very fine and fine	very few very fine	none
	bio	-	snails	-	snails

2.32.3 Analytical laboratory data

Table A2	8: Analytic	cal data for	P73, Sc	hor van Zele	•			
F	273	Depth	LOI	Ca	rbon- T	C	Nitrogen	C/N
Но	rizon	•	OM	TC	IC	ОС	Kjeldahl	
nr.	symbols	cm	%	%	%	%	%	(TOC/Kjel.)
H1	Abi	0-24	9.5			2.33		
H2	Α	24-67	6.8			3.68		
H3	Ar	67-106	13.1			7.98		
H4	Br	106-150	6.7			1.18		
Horizon	Depth	Textu	re- pipet	te method (fractions	in µm)	CaCO ₃	Lab
nr.	·	0-2	2-10	10-20	20-50		calculated	
	cm			%			. %	
H1	0-24						4.5	JM529
H2	24-67						5.0	JM530
H3	67-106	31.3	12.8	11.7	30.8	13.4	3.6	JM531
H4	106-150	35.4	19.1	0.4	30.3	14.7	1.9	JM532
Horizon	Texture-	laser Coult	t er (fracti	ons in µm)	ı	Н	рН	EC
nr.	0.4-2	2-6	6-50	50-2000	H₂O	KCI	KCI/H2O	dS/m
		%)		1:5	1:5		1:5
H1					7.8	7.3	0.94	0.24
H2					8.0	7.4	0.93	0.21
H3	16.4	20.3	46.8	16.5	7.8	7.3	0.93	0.42
H4	13.9	17.5	50.2	18.4	8.1	7.4	0.91	0.29
Horizon	Na⁺	K⁺	Ca ²⁺	Mg ²⁺	CEC	CEC	CEC/clay	BS by
nr.	by Mg	gSO ₄ (comp	ulsive m	nethod)	sum	measured		CEC-m
				cmol(+)/kg				%
H1	0.3	0.8	29.1	2.1	32.3	26.7		
H2								
H3								
H4								
Р	S	As	Cd	Cr	Cu	Ni	Pb	Zn
				Aqua Regia				
				mg/kg				
571	745	10.1	1.1	56	26	25	46	95
<u> </u>			•••					

2.32.4 World reference base (2007) classification

Diagnostic horizon,	Present	Remarks:
properties, material:	in	
	horizon:	
Albic		Moist colours are too dark
Cambic		Evidences of alteration not sufficiently clear
Mollic		Structure insufficient developed
Abrupt textural change		Clay content only available from H3-4 but for an abrupt change to be present that implies that in H2 the clay content should be at most 15.65%, which is most unlikely
Gleyic colour pattern	H3-4	Reductimorphic colour pattern
Lithological discontinuity		
Reducing conditions	H3-4	Reaction to alpha-alpha dipyridyl
Calcaric material	H1-3	Analytical data confirm the presence of more than 2% calcium-carbonate in all horizons but H4
Fluvic material	H1-4	The content of organic carbon is irregular and remains above 0.2% through the soil

The soil keys out as a Fluvisols.

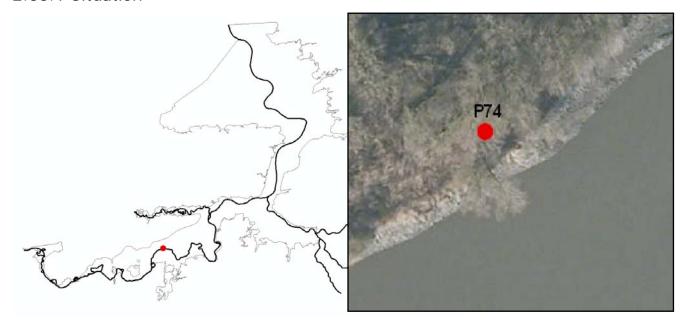
Full classification name, without specifiers

(except where listed as such for prefix and suffix qualifiers):

Gleyic Tidalic Fluvisol (Calcaric, Humic, Eutric, Siltic)

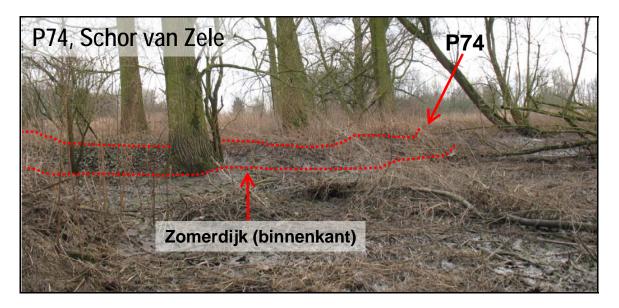
- Tidalic: flooded by tidewater but not covered by water at mean low tide
- Gleyic: reductimorphic colours and reduced conditions starts from 67 cm depth
- Calcaric: should contain at least 2% between 20-50 cm. Considering that the analyser method measure about 40% to little carbonate, all horizons qualify.
- Humic: the content exceeds 1% throughout, with a weighted average of 3.03% (0-50 cm)
- Eutric: The base saturation has only been measured for H1 where the saturation is more than 100%. Most probably and considering the free carbonate present through the soil all horizons have a saturation of at least 80%
- Siltic: H3-4 have a silty clay loam texture class

Full classification name, with specifiers:

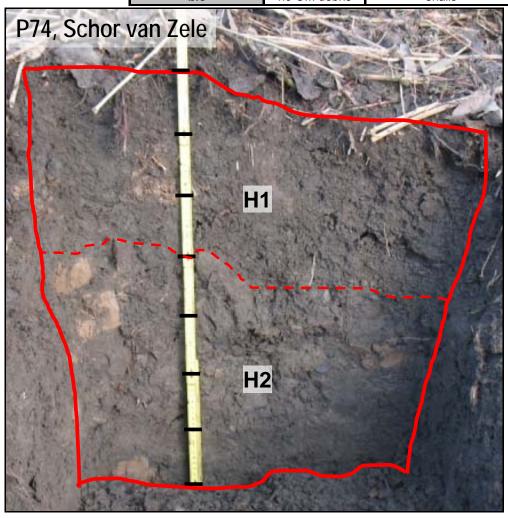

Endogleyic Tidalic Fluvisol (Calcaric, Humic, Hypereutric, Siltic)

- Hyperhumic: the weighted average is more than 5%
- Hypereutric: The base saturation probably exceeds 80% throughout the profile

2.33 Profile 'P74': Schor van Zele


(Derived elevation: 5.74m TAW; Lat.: 51.025811, Long.: 4.041108)

2.33.1 Situation


Profile 'P74' has a comparable history to P73, bit is still situated on tidal marsh, in an old summer dike.

After the planted poplar trees have been cut down, spontaneous willow shrub and forest encroached the tidal marsh.

2.33.2 Profile description

		H1	H2
	symbol	Abi1	Abi2
	depth	0-30	30-70
Colour	Wet		
	Moist	2.5Y 3/2	2.5Y 3/2
	abundance		
	colour		
Mottles	size		
	contrast		
	boundary		
	Reducing conditions	αα no	αα no
	Odour		
	Structure	strong granular	granular, locally massive
	Stratification	-	-
	Moist	very friable	friable
Consistance	Sticky	slightly	not possible
	Plastic	plastic	not possible
	Ripening	ripe	ripe
	Porosity	high	medium
	Roots	very few very fine	very few very fine
	bio	no OM debris	snails

2.33.3 Analytical laboratory data

Table A29: Analytical data for P74, Schor van Zele								
F	P74	Depth	LOI	Cai	rbon- TC	C	Nitrogen	C/N
Но	rizon		OM	TC	IC	OC	Kjeldahl	
nr.	symbols	cm	%	%	%	%	%	(TOC/Kjel.)
H1	Abi1	0-30	9.0			3.18	0.29	
H2	Abi2	30-70	6.5			2.47	0.17	
Horizon	Depth	Textu	re- pipette	e method (f	ractions	in µm)	CaCO ₃	Lab
nr.		0-2	2-10	10-20	20-50	50-2000	calculated	
	cm			%			%	
H1		23.6	8.3	6.6	23.0	38.4	3.4	JM533
H2		18.0	6.8	3.3	17.1	54.9	4.8	JM534
Horizon	Texture-	laser Cou	Iter (fracti	ons in µm)	р	Н	рН	EC
nr.	0.4-2	2-6	6-50	50-2000	H ₂ O	KCI	KCI/H2O	dS/m
		(% -		1:5	1:5		1:5
H1	12.1	13.4	35.6	38.9	7.9	7.3	0.92	0.16
H2				50.8		7.5	0.92	0.13
Horizon	Na⁺	K⁺	Ca ²⁺	Mg ²⁺	CEC	CEC	CEC/clay	BS by
nr.	by Mg	gSO₄ (com	pulsive m	ethod)	sum	measured		CEC-m
				cmol(+)/kg				%
H1	0.3	0.9	27.7	2.5	31.4	32.1		
H2		0.4	23.3	1.9		27.0		
Р	S	As	Cd	Cr	Cu	Ni	Pb	Zn
			A	qua Regia				
				mg/kg				
1876	915	32.3	6.6	241	71	26	135	785
1703	791	39.8	6.7	298	74	23	155	856

2.33.4 World reference base (2007) classification

Diagnostic horizon,	Present	Remarks:
properties, material:	in	
	horizon:	
Albic		Moist colours are too dark
Cambic		Evidences of alteration not sufficiently clear
Mollic	H1	At least H1 has sufficient structure and possible H2 as
		well. Dry colours are missing but probably they will
		have a value of no more than 5
Abrupt textural change		
Gleyic colour pattern		
Lithological		
discontinuity		
Reducing conditions		
Calcaric material	H1-2	Analytical data confirm the presence of more than 2%
		calcium-carbonate in both horizons
Fluvic material		

The soil will probably key out as a Phaeozem although the dry colours are missing.

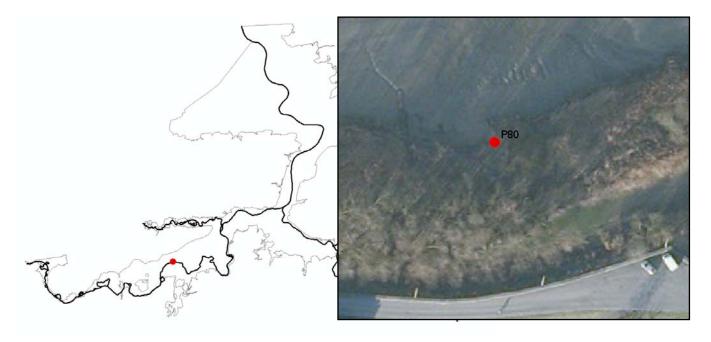
Full classification name, without specifiers

(except where listed as such for prefix and suffix qualifiers):

Haplic Phaeozem (Calcaric)

- Gleyic: the soil was only studied until a depth of 70 cm; probably no gley colours and reduced conditions will be present above 100 cm depth.
- Pachic: Considering the blocks of endogenic material present in the horizon the structure and biological mixing is consider insufficient for H2 to qualify for Mollic. If H2 is not a Mollic then Pachic will not apply

Full classification name, with specifiers:


Haplic Phaeozem (Calcaric)

• The carbonate content is 3.4-4.8% (analyser method)

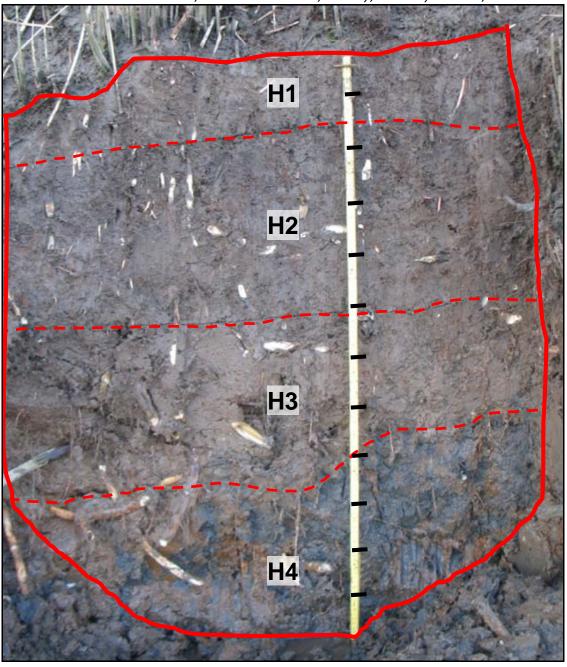
2.34 Profile 'P80': Nieuw schor van Appels

(Derived elevation: 4.00m TAW; Lat.: 51.025370, Long.: 4.041059)

2.34.1 Situation

Profile 'P80' was excavated in the tidal marsh edge of the tidal marsh 'Nieuw schor van Appels', situated opposite from 'Schor van Zele'.

It's a young tidal marsh that recently developed. Because of the erosion of 'Schor van Zele', the water stream declined on the opposite side of the river. Thus, 'Nieuw schor van Appels' was able to develop in the outer curve of the river.


2.34.2 Profile description

Profile P80		Nieuw Schor van Appels				
1.3 Date and time	e:	13/11/2008. Profile description initiated at 15:00. Low tide at 10:43				
1.4 Author:		Jari Hinsch Mikkelsen				
1.5 Location:		Belgium, Province of East Flanders, Dendermonde Municipality Coming from Dendermonde along the N406, 400m after having passed the bridge over the Dender follow the Zandstraat straight ahead for about 800m. On the righthand side (northern direction) turn into the				
		Koebosstraat. After 400m the road divides follow the Maaistraat. At the junction with Rijckelstraat turn right. At the next road junction turn 90° in northern direction along the Achtentwintig Roeden. At the end of the road turn right along the Sint Onolfsdijk. After about 600m on the dike the road turns right, tidal marsh and mud flat Nieuwe Schor van Appels				
		is located at the foot of the dike.				
1.6 Profile coordi	nates:	Latitude, longitude: 51° 02′ 53.71″ N, 04° 04′ 10.59″ E				
		Lambert72: 193163.465 N, 129028.229 E				
4.1 Elevation:		±4 m TAW (interpolation measurements in surroundings)				
2.1 Atmospheric and weather cond		Sunny				
Soil climate:		STR: Mesic SMR: Udic				
2.2 Topography:		Macrotopography: Estuarium, tidal mouth of the Scheldt river Mesotopography: Tidal marsh cliff Landscape position: Slope form: complex Slope gradient: - Slope length: - Slope orientation: -				
2.6 Land-use:		No land use				
2.7 Human influe	nce:	Grazing: No grazing No influence observed				
Vegetation:	iicc.					
2.8 Parent mater	ial:	Reed and fresh water bulrush (<i>Scirpus x kuekenthalianus</i>) Unconsolidated deposits> marine and estuarine clays and silts>				
2.9 Drainage clas	SC'	quaternary clay and silt> Holocene Clay (5221) Poorly drained				
2.10 External dra		Moderately rapid runoff				
2.11 Flooding		The cliff is flooded to a certain extent each day. Flooding exceeding the high of the cliff is happening around spring tides.				
2.12 Coarse surfa	ace frag.	None				
2.13 Erosion,	· · · · · · · · · · · ·	Active erosion sedimentation on the tidal marsh cliff in function of				
sedimentation:		changes of the current regime of the Scheldt				
2.14 Surface cracks:		None observed				
2.15 Salts:		None observed				
Localisation factors profile:		The profile is located centrally in this relatively small tidal marsh				
Remarks:	•	The tidal marsh cliff has a high at the location of the soil profile of 60 cm, an almost vertical straight slope profile and inclination				
N	Horizon de					
о.						
H1 A	0-20 cm; gra boundary	anular; common very fine to fine and none coarser roots; clear smooth				

Prof	file P80	Nieuw Schor van Appels			
H2	AC	20-37 cm; massive; few very fine to fine and none coarser roots; discontinuous			
		stratification disturbed by roots; clear smooth boundary			
Н3	Cr1	37-69 cm; very dark greyish colours; reductimorphic colour pattern; positive reaction			
		to aa-dipyridyl; massive; gradual smooth boundary			
H4	Cr2	69-93 cm; reductimorphic colour pattern; positive reaction to aa-dipyridyl; massive			

Extra subordinate symbols: 'bi' biological activity clearly evidences (fauna and flora), and more than what can be expected according to type of soil, position, time of year etc.

Colour measurements: M= Moist; MC= Moist-crushed; D= Dry; DC= Dry-crushed; W= Wet.

2.34.3 Analytical laboratory data

Table A30: Analytical data for P80, Nieuw schor van Appels								
Appels	Horizon	Depth	EC	CaCO ₃	рН		рН	Lab
Horizon	symbols		dS/m	titration	H ₂ O	KCI	KCI/H2O	
nr.		cm	1:5	%	1:5	1:5		
H1	Α	0-20	0.55	11.5	7.7	7.5	0.98	JM340
H2	AC	20-37	0.72	11.7	7.7	7.5	0.98	JM341
H3	Cr1	37-60	0.28	12.0	8.0	7.8	0.98	JM342
H3b	Cr1	60-69	0.70	13.2	7.5	7.3	0.98	JM343
H4	Cr2	69-93	0.36	9.9	7.8	7.7	0.99	JM344
Horizon	Depth	Textu	re- pipett	e method	(fractions	in µm)	TOC	LOI
nr.	_	0-2	2-10	10-20	20-50	50-2000	OC	OM
	cm			%			%	%
H1	0-20	12.8	5.2	3.1	18.9	59.9	1.16	3.7
H2	20-37						2.60	3.8
H3	37-60	5.6	0.7	1.5	14.9	77.3	0.79	1.8
H3b	60-69						4.87	7.1
H4	69-93	8.6	2.8	1.2	10.5	77.0	1.72	2.5
Horizon	S	As	Cd	Cr	Cu	Ni	Pb	Zn
nr.				Aqua	Regia			
				m	g/kg			
H1	2014	14	2.0	49	26	15	51	250
H2	2970	48	8.3	59	49	15	102	438
H3	1363	10	1.3	34	14	8	29	171
H3b	4864	113	12.5	142	121	29	240	926
H4	1737	31	3.6	51	36	12	76	362

2.34.4 World reference base (2007) classification

Diagnostic horizon, properties, material:	Present in	Remarks:
properties, material.	horizon:	
Albic		Colour data not available
Cambic		Soil is subject to active fluviatile erosion and
		sedimentation
Mollic		
Abrupt textural change		Probably not but only 3 horizons have been analysed
		for texture
Gleyic colour pattern	H3-4	Reductimorphic colour pattern
Lithological		
discontinuity		
Reducing conditions	H3-4	Reaction to alpha-alpha dipyridyl
Calcaric material	H1-4	Analytical data confirm the presence of more than 2%
		calcium-carbonate in all horizons
Fluvic material	H1-4	The content of organic carbon is irregular and remains
		above 0.2% through the soil

The soil keys out as a Fluvisols.

Full classification name, without specifiers

(except where listed as such for prefix and suffix qualifiers):

Gleyic Tidalic Fluvisol (Calcaric, Humic, Eutric)

- Tidalic: flooded by tidewater but not covered by water at mean low tide
- Gleyic: reductimorphic colours and reduced conditions starts from 37 cm depth
- Calcaric: should contain at least 2% between 20-50 cm. Titration carbonate shows values exceeding 10%.
- Humic: the content is less than 1% in H3. The weighted average is 1.55% (0-50 cm)
- Eutric: The base saturation has not been measured. Most probably and considering the free carbonate present through the soil all horizons have a saturation of at least 80%
- Arenic: H3 has a loamy sand texture but is too thin to qualify

Full classification name, with specifiers:

Epigleyic Tidalic Fluvisol (Hypercalcaric, Humic, Hypereutric)

- Hyperhumic: the weighted average is more than 5%
- Hypereutric: The base saturation probably exceeds 80% throughout the profile

List of references

FAO. 2006. Guidelines for Soil Description (4th edition) FAO, Rome.

IUSS Working Group WRB. 2007. World reference base for soil resources 2007. World Soil Resources Reports No. 103. FAO, Rome. Rewised version.

Mikkelsen, J.H., Cools, N., Van Braeckel, A. & Van den Bergh, E. 2009. Guidelines for site and soil description of estuarine tidal mud flats and tidal marshes. INBO.IR.2009.32. INBO, Brussels.

Munsell. 2000. Munsell Soil Color Charts. Gretagmacbeth, New Windsor, NY, US.

Van de Moortel, R. & Deckers, J. 1997. Bodemkundige karakterisatie van gecontroleerde overstromingsgebieden en schorren. Interne Rapport. Ministerie van de Vlaamse Gemeenschap.