
Intergovernmental
Oceanographic

Commission

Manuals and Guides No.

A GENERAL FORMATTING SYSTEM

FOR GEO-REFERENCED DATA

VOLUME 6

QUICK REFERENCE SHEETS FOR GF3 AND GF3-PROC

1989 Unesco



FOREWORD

The General Format 3 (GF3) system was developed by the IOC Technical Committee on International 
Oceanographic Data and Information Exchange (IODE) as a generalised formatting system for the exchange and 
archival of data within the international oceanographic community. It was presented to the Ninth Session of the 
Technical Committee (New York, 15-19 January 1979) which recommended that GF3 “be adopted for general use 
in international oceanographic data exchange” and “urged Member States to utilize GF3 as the standard 
international exchange format”. This recommendation was subsequently endorsed by the IOC Executive Council at 
its Eleventh Session (Mexico City, 1-3 March, 1979).

The GF3 format is supported by a comprehensive software package, GF3-Proc, which the IOC is prepared to 
make freely available on magnetic tape to ali organisations or laboratories involved in the international collection, 
management or exchange of oceanographic and other earth sciences data. Technical support for the distribution, 
installation and maintenance of GF3-Proc is provided, on behalf of the IOC, by the British Oceanographic Data 
Centre (BODC). Requests for copies of GF3-Proc should be forwarded to BODC at the address given overleaf 
and should include a clear description of the computer system on which it is to be installed, including the 
manufacturer, make and model number of the machine, the name and version of the operating system and an 
identification of the Fortran compiler. A small charge may be made to cover the cost of the tape and its 
documentation.

The use and development of the GF3 system is kept under review by the IOC Group of Experts on Technical 
Aspects of Data Exchange.

Support services in the use of GF3 are provided by the Service Hydrographique of the International Council for the 
Exploration of the Sea (ICES), acting as the Responsible National Oceanographic Data Centre for Formats, 
RNODC (Formats). The ICES Service Hydrographique is assisted in this task by the British Oceanographic Data 
Centre which provides technical advice and guidance on the use of GF3 and its supporting software.

The RNODC (Formats) operates under the following Terms of Reference :

i) To act as an archive centre for international marine environmental data formats, maintaining a full set of 
documentation on ali such formats.

ii) To act as an archive centre for the code tables for GF3 and the code tables for ali other international 
oceanographic archival formats, and for external code tables (e.g. taxonomic codes, chemical substances 
codes, etc), maintaining references to ali such code tables.

iii) To manage the expansion of the existing GF3 parameter code table as necessary under the guidance of the 
IOC Technical Committee on International Oceanographic Data and Information Exchange (through its 
Group of Experts on Technical Aspects of Data Exchange), and to provide a focal point to which user 
requirements for new parameter codes may be directed.

iv) To maintain user aids for GF3, including a programme library for the processing of GF3, guidance notes and 
user guides, documentation of standard and experimental subsets of GF3, and sample data tapes of GF3 
subsets.

v) To function as a centre for services to other centres in IOC and ICES Member States in such GF3 matters as 
responses to requests for information about, or copies of, items in i) to iv) above.

vi) To prepare a report to the IOC Technical Committee on IODE, together with a Newsletter for distribution to 
National Coordinators for IODE, National Oceanographic Data Centres and other interested parties such as 
WMO, ECOR, SCOR, highlighting new developments in GF3 and including an updated inventory of the 
documents, programmes, tapes, formats and code tables available.

1



vii) To work closely with the Group of Experts on Technical Aspects of Data Exchange to ensure the provision of 
expert knowledge on formats to other centres including World Data Centres-A and -B (ali disciplines) and 
subsidiary bodies of WMO, IOC and other international organizations and in the promotion of GF3 as an 
exchange format. The provision of expert knowledge will be ensured in fields covering :

a) guidance in the uses of GF3;

b) assistance to developing countries, including the development of national formats compatible with GF3;

c) assistance to developing data centres and countries, in collaboration with other RNODCS, in converting 
data into GF3.

Enquiries concerning these services should be addressed to :

RNODC (Formats),
ICES Service Hydrographique,
Palaegade 2-4,
DK-1261 Copenhagen K,
DENMARK.

Requests for technical advice and guidance on the use of GF3 should be addressed to :

British Oceanographic Data Centre,
Proudman Oceanographic Laboratory,
Bidston Observatory,
Birkenhead, Merseyside, L43 7RA 
UNITED KINGDOM.

The documentation for the GF3 system is published in IOC Manuals and Guides No. 17 in six separate volumes
under the title ’GF3 - A General Formatting System for Geo-Referenced Data’.

Volume 1 : ’Introductory Guide to the GF3 Formatting System’ is intended to familiarize the new user with the 
purpose and scope of the GF3 system without overburdening him with technical detail. An introduction is 
provided, illustrated by examples, both to the GF3 format and to its supporting software package GF3-Proc.

Volume 2 : ’Technical Description of the GF3 Format and Code Tables’ contains a detailed technical specification 
of the GF3 format and its associated code tables.

Volume 3 : ’Standard Subsets of the GF3 Format’ contains a description of standard subsets of the GF3 format 
tailored to a range of different types of data. It aiso serves as a set of worked-up examples illustrating how the 
GF3 format may be used.

Volume 4 : ’Users’ Guide to the GF3-Proc Software’ provides an overview of GF3-Proc explaining what it does, 
how it works and how it is used. It aiso provides an introduction to the subroutine calls in the user interface to 
the package.

Volume 5 : ’Reference Manual for the GF3-Proc Software’ contains a detailed specification of each GF3-Proc 
subroutine callable from the user’s program and provides detailed instruction on how and when these routines 
may be used.

Volume 6 (this volume) : ’Quick Reference Sheets for GF3 and GF3-Proc’ contains quick and easy reference 
sheets to the GF3 format (see Part A) and the GF3-Proc software (see Part B).

- it



CONTENTS

Page

PART A : GF3 REFERENCE SHEETS 1

Key features of GF3 1

GF3 tapes, files and records 3

GF3 Plain Language Record 4

GF3 Tape Header Record 5

GF3 Definition Records 6

GF3 File Header and Series Header Records 8

GF3 Data Cycle Record IO

GF3 End of Tape Record IO

GF3 Code Table 1 : IOC Country Code 11

GF3 Code Table 3 : Platform Type Code 11

GF3 Code Table 4 : Specific Platform Code 12

GF3 Code Table 5 : Modified IHB Ocean/Sea Area Code 12

GF3 Code Table 6 : Validation Flag 13

GF3 Code Table 7 : Parameter Code 13

PART B : GF3-PROC REFERENCE SHEETS 15

Key features of GF3-Proc 15

Introduction to GF3-Proc concepts 16

Initialising GF3-Proc and setting its Package Control Options 17

Setting up GF3-Proc I/O Units 17

Reading and writing GF3 files, records and fixed fields 18

Identifiers of GF3 fixed fields 19

Reading and writing the “user-defined areas” of GF3 records 20

Reading and writing GF3 cycles and parameter fields 21

GF3-Proc error reporting 22

List of GF3-Proc user interface routines 22

iii



PART A

GF3 REFERENCE SHEETS

These sheets provide a quick and easy reference to General Format 3 (GF3), the IOC’s 
standard formatting system for the international exchange of oceanographic data. A fuller 
description of the format may be found in IOC Manuals and Guides No. 17, Volume 2: 
“Technical Description of the GF3 Format and Code Tables” obtainable in English, 
French, Spanish and Russian versions.

KEY FEATURES OF GF3

* GF3 is a system for formatting geo-scientific data series into sequential files on digital storage 
devices. It is not a fixed format in the conventional sense but is a generalised system which allows 
the user a number of ways of organising his data.

* GF3 is a highly versatile system capable of accommodating virtually any type of digital 
oceanographic data including physical, chemical, biological, geological, geophysical and 
meteorological measurements. Being multi-disciplinary in nature it is aiso applicable to other 
branches of the environmental and geo-sciences outside the field of oceanography.

* The main requirement for data series to be included in GF3 is that they are digital and are 
referenced in a space-time framework based on geographic coordinates.

* GF3 enables the user to describe, in the same files that carry the data, the structure and format 
of the data, and ali codes that have been used, as well as providing ample space for plain 
language documentation. Thus data in GF3 are both self-describing and self-documenting.

* Although GF3 was developed originally as a formatting standard for data exchange purposes, it 
is equally well suited for use in the archiving of data.

* Using GF3, diverse data types may be integrated into the same storage system. When used with 
homogeneous data sets, GF3 has the particular advantage of allowing adjustments to be made to 
the storage format as data collection techniques evolve or as new parameters are added to the 
data set.

* A complete, and easy to use, software interface (GF3-Proc) is available for reading and writing 
data in the GF3 format.

1



TEST RECORD
Figure 1 SCHEMATIC DIAGRAM TO ILLUSTRATE 

THE RULES FOR THE SEQUENCING OF 
RECORDS ON A GF3 TAPE

TAPE HEADER 
RECORD

(Tape Level

FILE HEADER 
RECORD

(File Level)

SERIES HEADER 
RECORD

(Series Level)

MANDATORY
Single Occurrence 
of Record Type A.

FILE HEADER 
RECORD with(dummy entries)

OPTIONAL
One or more 
Occurrences of 
Record Type A.

MANDATORYEND OF TAPE RECORD
Mark.

SERIES HEADER 
DEFINITION 

RECORD

DATA CYCLE 
DEFINITION 

RECORD

PLAIN LANGUAGE 
RECORD

DATA CYCLE 
DEFINITION 

RECORD

DATA CYCLE 
RECORD

DATA CYCLE 
DEFINITION 

RECORD

SERIES HEADER 
DEFINITION 

RECORD

PLAIN LANGUAGE 
RECORD

PLAIN LANGUAGE 
RECORD

2



Ui

GF3 TAPES
1. GF3 is a character format that cari be used on any storage media 

supporting sequential files. Characteristics related to its use with 
unlabelled, digital magnetic tapes are specifically defined.

2. Preferred character code: ASCII or EBCDIC.
3. Character set: restricted to upper case letters A to Z, lower case letters 

a to z, decimal numerals 0 to 9, the blank character and the special 
characters
+ -*/< >

4. Preferred recording: 9 track 1600 bpi (or 6250 bpi if convenient to 
exchanging parties) on unlabelled magnetic tape.

5. Physical records: one logical record (fixed length 1920 characters) per 
physical record. By agreement between exchanging parties an increased 
blocking factor may be used if tape usage is critical.

GF3 FILES ON TAPE
1. Each GF3 tape contains 4 different types of file arranged in the 

following order, with end of file (EOF) marks as indicated:
1 Test File
EOF
1 Tape Header File
EOF
1 or more Data Files
EOF
1 Tape Terminator File
2EOFs

Individual data files are separated by EOF marks.
2. If a data set is too long to fit onto one tape it can be continued on 

further reels. The tape header and tape terminator files contain 
information to link such tapes.

3. The test lile is a special file to protect against data loss due to 
mechanical damage at the beginning of the tape. It comprises sufficient 
“test records” to occupy about 2m of tape. These records each contain 
1920 entries of the character ’A’.

GF3 RECORDS
1. There are 8 different types of record in GF3, each identified by a one 

character record identifier.
Record

ID0 
plain language record

1 
tape header record

3 
series header definition record

4 
data cycle definition record

5 
file header record

6 
series header record

7 
data cycle record

8 
end of tape record

2. Each record contains a well defined structure of standard fields in a 
fixed format, except for the last 1520 characters of the series header 
record and the last 1900 characters of the data cycle record, which are 
“user-defined areas”. These areas are completely defined by the user 
through series header definition records and data cycle definition 
records respectively.

3. Descriptive text qualifying the data is stored using plain language 
records - the liberal use of these records is recommended to ensure that 
the data are adequately documented.

4. The tape header record contains administrative information identifying 
the tape and its source, and appears once only on the tape at the 
beginning of the tape header file.

5. The end of tape record appears once only on the tape and is the last 
record on the tape. Its main purpose is to terminate the tape.

6. The file header record and series header record are used to define the 
beginning of a data file or a data series respectively. They contain 
qualifiers, identifiers and other data/information that are common to the 
file or the series as a whole.

7. Data cycle records are used for the storage of actual data. For files with 
very short data series, the data may alternatively be stored within the 
series header records.

THE SEQUENCING OF GF3 RECORDS
1. Each type of GF3 file has its own well defined structure of allowable 

record types (see facing page).
2. Certain records are mandatory:

i) the tape header file always starts with a tape header record 
U) each data file always starts with a file header record
iii) each data series always starts with a series header record
iv) the tape terminator file consists solely of a file header record (with 

dummy entries) followed by an end of tape record
3. Plain language, records and definition records may appear in any 

number and combination at any of three levels:
i) at tape level if they are generally applicable to the tape as a whole
ii) at file level if they apply to a specific data file
iii) at series level if they are specific to a particular data series

4. Plain language records, if present, always appear immediately following 
the relevant tape, file or series header record.

5. At a given level any definition records are inserted after the plain 
language records, if present. At each level, series header definition 
records, if present, precede data cycle definition records.

6. If data are included in the “user-defined area” of the series header 
record then series header definition records are required. Similarly, if 
data cycle records are present then data cycle definition records are 
required.

7. Data cycle records are mandatory unless the data occur in very short 
data series whose data cycles can be contained within the “user-defined 
area” of the series header records.

STANDARD SUBSETS OF GF3

GF3 provides a flexible framework within which a great 
diversity 

of geoscientific measurements may be 
exchanged. It is recognised that participants in the 
routine exchange of specific types of data may not need 
the full flexibility of GF3 (as evidenced by its various 
options) and may prefer a format tailored specifically to 
the type of data being exchanged. GF3 is particularly 
well suited for this purpose in that it provides a 
framework within which data specific standard formats 
can be created. Such formats may be considered as 
subsets of the GF3 formatting system.

A standard subset is constructed by preselecting the use 
of the various options within GF3 and, in particular, by 
predefining the definition records on the tape so as to 
predefine the contents of the tape and its detailed 
format. In such a case the definition records are 
normally stored once only on the tape in the tape 
header file. The recipient of the tape, once aware of the 
standard subset in use, has advance warning of the 
complete character by character layout of the tape, and 
through rather simple programs should be able to 
retrieve the data without difficulty.

Up to date information on existing standard subsets of 
GF3 may be obtained by writing to RNODC-Formats - 
if an appropriate subset is not available for your data, 
you are of course free to design your own.

If you live under the misconception that GF3 is a card 
image format, please be reassured that the 80 byte 
aspect pertains only to the fixed format part of GF3 
records. In the data areas the user is free to choose data 
cycles of any length up to a maximum of 1900 bytes. 
Many GF3 standard subsets have been designed with 80 
byte alignment of data cycles - however, this is for 
reasons of legibility and ease of listing on VDU screens 
and is not due to any restrictions imposed by GF3.



GF3 RECORD LAYOUT (GENERAL RULES)
Although each GF3 record type has its own distinctive content and format,
certain general rules apply:
1. The first character in each record identifies the record type (record 

ID).
2. The second character is set to the identifier of the following record 

(next record ID). (EOF marks are not classed as records - thus the 
record immediately preceding an EOF mark references the record 
following the EOF).

3. Each record comprises 1920 characters - any space left unused is blank 
filled. Except for the “user-defined areas”, each record consists of 24 
contiguously grouped lines (80 characters each).

4. The first character in each line contains the record ID and the last 
three characters (c78-80), the sequence number of the line, starting at 
’001’ for the first 80 characters, ’002’ for the second and so on through to 
’024’ for the last line in the record. W

here the record contents are 
continued on a succeeding record of the same type (plain language or 
definition records only) the sequencing is carried over e.g. set to ’025’ 
for the first 80 characters of the following record and so on.

5. The content and format of each record type is illustrated on the 
following pages by a layout sheet supplemented by a set of explanatory 
notes. The location of individual fields within each line is identified by 
its character positions relative to the beginning of the line - these are 
identified in the explanatory notes by the prefix letter ’c’.

6. Within each record type, entries for some of the fields are mandatory -
these are identified on the layout sheet either by prefilled entries or by a 
solid bar 

placed over the space allocated for the field. The
remaining fields are filled only if it is appropriate to do so and the 
relevant information is available, otherwise they are normally filled with 
blanks.

7. Individual fields are stored either as right justified integers or as 
alphanumeric character strings. Those stored in alphanumeric form are 
identified on the layout sheet by a letter ’A’ placed above the field name. 
Two fields in the definition record (the scaling factors) are stored in 
Fortran floating point ’F format.

PLAIN LANGUAGE RECORD

123 !4 |5 |6|7 |8 |9|l0|ll)l2|l3|l4|l5ll6|l7|l8|l9|20|2l|22|23|24|25|26|27l28l29l30|3l|32[33|34l35|36|37|38|39|40|4l|42|43|44[45|46|47(48|49|50|5l|52|53|54|55l56l57t58|59|60|6l|62|63|64|65|66l67|68|69|7o|7l|72!73|74|75|76|7778179180

1 RECORD ID
INEXT RECORD

A
PLAIN LANGUAGE COMMENTS OR DESCRIPTION

LINE
8E0UENCE
NUMBER

000000000000000000000000
6 7

9IO1112 n141516 17161920212223 242526 272829 3031 3233343536373839404142434445464746495051525354555657 565960616263 6465666766 697071727374757677787960

PLAIN LANGUAGE RECORD LAYOUT

1. Each line contains the record ID ’0’ (zero) in cl and the line sequence 
no. from ’001’ to ’024’ in c78-80.

2. Except for c2 in the first line which is set to the next record ID, the 
remaining space in the record is available for plain language text. For 
each of the last 23 lines of the record c2 is normally left blank.

3. Plain language comments or description may be continued on 
succeeding plain language records, if necessary, using line sequence nos. 
’025’ to ’048’; ’049’ to ’072’ etc. - other aspects of format as above.

4. Except for cl and c78-80 the unused space in each line should be filled 
with blanks.



TAPE HEADER RECORD LAYOUT

TAPE HEADER RECORD

2Si26l27l2a|29|30|3l|32|33|34|3S|36|37|38i39|40|41
i3|l4|15|l6|l7|r8|f9|2Q[2H2?l23l24

O2|43|44|45|46|47|48|49|50t51|52|53l54}55l56|57|58|5960|61|62|63|64|63|66|67|68|69|70|71|72|73|74|7 5l76|77
NAME OR NUMBER OF

DATA SUPPLIER - NAME OF COUNTRY 
(Plain Language)

DATA  SUPPUER - NAME OF INSTITUTION 
(Plain Language)

TAPE NAME OR NUMBER

DATE TAPE RECEIVED 
THIS TAPE TFIRST VERSION

THIS TAPE
TYPE OF COMPUTER USED 
(Plain Language)

TRANSLATION TABLE ( •= BLANK)

PLAIN LANGUAGE COMMENTS OR DESCRIPTION

1. Each line contains the record ID ’1’ (one) in cl and the line sequence 
no. from ’001’ to ’024’ in c78-80.

2. Line ’001’ identifies the data supplier i.e. the institute/data centre that 
wrote (originated) the tape.
c2 

: next record ID
c7-8 

: code identifying the country of the data supplier - see GF3
Code Table 1

c9 
: institution code identifier - set to ’9’ for national code

clO-12 : code identifying the institution of the data supplier
C13-24 : name or number of the tape as allocated by the data supplier
c30-41 : name or number of preceding tape - if data set is continued 

from another tape
c42-59 : plain language name of country of data supplier 
060-77 : plain language name of institution of data supplier

3. Line ’002’
Date fields that follow are expressed as YYMMDD where YY = last 2 
digits of year, MM = month (01 to 12) and DD = day of the month.
c2-7 

: date this version of the tape was written by the data supplier
c8-13 : date that first version of the data on the tape was written by the 

data supplier. Same as c2-7 unless previous versions were in 
error or lost

cl4-19 : date that tape was received by receiving institution
c20-25 : date that first version of the tape was received by receiving 

institution
c26-37 : name of manufacturer/model of computer used to write the 

tape
c38-42 : version of GF3 used - set to ’GF3.2’

4. Line *003'
c2~53 : translation table containing the GF3 character set - prefilled as 

shown on the layout sheet. This table provides the recipient of 
the tape with a check thai he can interpret the characters 
correctly on his own machine

c74-77 : logical record length - set to ’1920’
5. Lines *004' to *024'

c2-77 : plain language comments or description (c2 is normally left 
blank)

Plain language comments or description may be continued on succeeding 
plain language records, if necessary, using line sequence numbers ’001’ to 
’024’; ’025’ to ’048’ etc.



DEFINITION RECORD
USE OF DEFINITION RECORDS

ia|l9|20|21[22|e3|24|25|26|27|g8|29|30l3i|32|33|3<l|35l36|37|3e|39|40|4Ïr42[43|4a|45l46|47He|49|50|5l|S2|53|54|55|56|57|58|59|60|6l|62|63|64|65|66|67l6e|69|70|7l|7e|73|74|;5l76|77

FORTRAN FORMAT DESCRIPTION (PARTS 2, 3 8. 4)

NAME OF PARAMETER ANO UNITS
(Plain Language)

1. The series header definition record specifies the contents and format of 
the last 1520 characters of the series header record. Likewise, the data 
cycle definition record defines the last 1900 characters of the data cycle 
record.

2. The two types of definition record are used independently of each other, 
although they have the same basic format and are used in a similar 
fashion.

3. Definition records may appear at more than one level on a given tape - 
the following rules apply:
a) definition records at series level (data cycle definition records only) 

apply only to that series
b) definition records at file level apply to ali series in that file except for 

those with definition records at series level
c) definition records at tape level are generally applicable to the tape as 

a whole, but only become operative if corresponding records do not 
appear at file or series level

4. Each field defined by the user in a “user-defined area” is termed a 
parameter. Each definition record allows for the definition of up to 21 
parameters - if more parameters are required, the definitions are 
continued on succeeding definition records of the same type.

5. Within any “user-defined area” two types of parameter are recognised:
header parameters - these parameters occur once only in each 
occurrence of the “user-defined area”
data cycle parameters - these parameters are repeated as many times as 
there are data cycles within each “user-defined area”

6. In a given “user-defined area” ali header parameters, if any, always 
appear before any data cycle parameters. Parameters are defined in the 
definition record in the same order in which they appear in the “user- 
defined area”.

7. The “user-defined areas” pertaining to the series header record and 
data cycle record may each be defined once only per data series. Any 
data cycles present in a “user-defined area” are ali of the same format 
and content. If the value of any defined parameter is missing it is filled 
with a user-defined “dummy value”.



DEFINITION RECORD LAYOUT
1. The series header definition record (ID = 3) and the data cycle 

definition record (ID=4) are of the same basic format. Each line 
contains the record ID in cl and the line sequence no. from ’001’ to ’024’ 
in c78-80.

2. Lines *001’ to *003’ contain the formatting information necessary to 
read/write data from/to the “user-defined area”.
Line *001’
c2

: next record ID
c3-5

: no. of header parameters, in the “user-defined arca”
c6-8

: no. of parameters in each data cycle of the “user-defined area”
c9

: summary of Fortran format types (ignore X) in the 
“user-defined area”; see Note B:

I 
= alli

P = I and A
F 

= allF
Q = F and A

A 
= ali A

M = I, F and A
S =

I and F

cl8-77 : Fortran format statement to read/write data from/to the “user- 
defined area”; may be continued in cl8-77 of lines ’002’ and 
’003’; see Note A

3. line *004* defines the first parameter stored in the “user-defined area”
thus:
c2 

: blank
c3-10 : parameter code - see GF3 Code Table 7
cl 1-13 : parameter discriminator - number to uniquely identify the 

parameter if other parameters in the “user-defined area” have 
the same parameter code

cl4-40 : parameter name and units; units refer to value read from the 
“user-defined area” after application of Scale 1 and Scale 2; 
see Note D

c41 
: Fortran format type used to store parameter in the “user-
defined area” (set to I, F or A); see Note B

c42-45 ; no. of character positions allocated to the parameter in the 
“user-defined area”

c46-48 : dummy value code; see Note C
c49-56 : Scale 1 - factor by which stored value is multiplied following 

retrieval from the “user-defined area”; see Note D
c57-64 : Scale 2 - factor which is added to the stored value after the 

application of Scale 1; see Note D
c65 

: set to ’A’ if the parameter is used to define the attribute of
another parameter; otherwise blank

c66 
: blank

c67-74 : secondary parameter code - identifies parameter whose 
attribute is being defined (used only if c65 = ’A')

c75-77 : Secondary parameter discriminator - contains the parameter 
discriminator, if any, of the parameter whose attribute is being 
defined (used only if c65 == ’A’)

4. The second and succeeding parameters (up to parameter 21) in the 
“user-defined area” are defined on lines ’005’ to ’024’ as required.

5. Further parameters may be included on following definition records 
using lines ’028* to ’048’ for parameters 22-42, lines ’052’ to *072* for 
parameters 43-63 etc.
The first 3 lines (’025* to ’027; *049’ to *051’ etc.) in each such continued 
definition record are left blank except for the record ID (cl), the line 
no. (c78-80) and, in the case of the first line, the next record ID (c2).

6. Any unused lines at the end of a definition record are blank filled except 
for cl (record ID) and c78-80 (line sequence no.). Such unused lines 
are only allowed after the last parameter has been defined.

7. Parameters are defined in the definition record in the same order in 
which they appear in the “user-defined area”.

NOTE A: Fortran form
at statem

ent
There are two components to the Fortran format of a series header record 
or a data cycle record: i) the format of the fixed part of the record i.e. first 
400 characters of the series header record (or first 20 characters of the data 
cycle record) - referred to as Part 1, and ii) the format of the “user-defined 
area” of the record.

The definition record contains the Fortran format statement of the 
“user-defined area” only and must start with an opening bracket *(*. 
Subsequent processing in conjunction with the fixed part of the record will 
normally remove this opening bracket.

The Fortran format statement may be split into three 60 character parts 
(Parts 2,3 and 4) but significant blanks should not be left at the end of each 
part; preferably terminate each part at a comma ’,*. The format statement 
must obey the normal Fortran rules - in particular ali brackets must be 
paired. It is terminated by a closing bracket *)* and the remainder of the 180 
character area is filled with blanks.

Repeat specifications must correspond with the number of parameters 
stored once per record and with the number of parameters in each data 
cycle. Each data cycle should be formatted in an identical manner, although 
different blank fills (X*s) may be used before and/or after each data cycle. 
The repeat count of the data cycles must ensure that the whole of 
“user-defined area” is covered.

In no case should individual data cycles be allowed to cross record 
boundaries i.e. each record should contain an integral number of data 
cycles. The format statement should map precisely the space available in 
the “user-defined area” (i.e. 1520 or 1920 characters) - add padding blanks 
nX if necessary.

It is recommended that alphanumeric fields are expressed in the form ’An’ 
rather than ’nAl’.

For each parameter the format specified in the Fortran format statement 
must accord precisely with the mode and field length specified for the 
parameter in c41-45.

NOTE B: Fortran form
at types

Each parameter stored in a “user-defined area” must accord with one of 
the Fortran format types:

A - alphanumeric string
I - integer (right justified)
F - floating point or real

Format types E or D are not allowed, although the parameter may be split 
into its mantissa and exponent parts stored as two separate parameters (see 
GF3 Code Table 7).

NOTE C: Dummy value code
The dummy value code in c46-48 specifies in a coded form the dummy 
value that is stored in the “user-defined area” to indicate that a value for 
the parameter is absent. The first character of the code specifies the sign of 
the absent data value; the second specifies the digit that is used; the third 
specifies the number of times the digit is repeated. For example, dummy 
value codes of 1, -11,23, or -92 indicate absent data values of 0, -1,222 or 
-99 respectively.

For floating point values the dummy value code applies to the integer part 
of the value e.g. for a code of 93 then stored values such as 999.1,999.2 etc. 
would be treated as absent data values.

The dummy value code indicates the absent data value that is actually 
stored in the “user-defined area” before application of Scale 1 and Scale 2.

The entry of a blank dummy value code for a numeric parameter implies 
that a valid parameter value is always present.

For parameters stored in A format an absent entry is signified by a field of 
blanks - the dummy value code is aiso left blank.

NOTE D: Scaling factors
Scale 1(*) and Scale 2( + ) in c49-64 may be used:

a) to reduce the number of characters needed to store the parameter
b) to enable floating point numbers to be stored in integer form
c) to enable the stored parameter value to be converted into standard 

units on retrieval
To recover the parameter in the units given in cl4-40 the stored value is 
first multiplied by Scale 1, and Scale 2 is then added. If the scaling factors 
are not used, Scale 1 is set to 1.0 and Scale 2 to 0.0. The scaling factors are 
not used for parameters stored as alphanumeric strings, in which case they 
are left blank.



FILE HEADER RECORD AND SERIES HEADER 
RECORD

The first five lines of the file header record and the series header record are 
of a similar format and contain the same set of fixed fields. However, 
whereas the remaining 19 lines (1520 characters) of the file header record 
are formatted for plain language comments, the last 1520 characters of the 
series header record constitute a “user-defined area” formatted according 
to user supplied definitions.

FILE/SERIES HEADER RECORD (LINES ’001’ to ’0051)

Date/time fields in this record are expressed in GMT in 
the general form

CCYYMMDDHHMMSS or parts thereof
where CC = first two digits of year, YY = last two 
digits of year, MM = month (01 to 12), DD = day of 
month, HH = hours (00 to 23), MM = minutes (00 to 
59), SS = seconds (00 to 59). Fields are entered to 
appropriate precision leaving remaining digits blank.

Latitude and longitude fields in this record are 
expressed 

as 
DDMMHHQ 

or 
DDDMMHHQ 

respectively, where DD (DDD) = degrees, MM = 
minutes, HH — hundredths of a minute and Q is set to 
N (North) or S (South) for latitude; and E (East) or W 
(West) for longitude.

Depth fields 
in this record 

are 
expressed 

as 
MMMMMT where MMMMM = metres and T = 
tenths of a metre. Heights above sea level or above sea 
floor are expressed as negative depths.

Il|2|3|4|5l6l7| B |9 |10|ll|12|13|l4|]5|l6|l7ll6|l9i20l2ll2g|23|24|25|26l27|2a|29|30|3l|32|33|34|35l36|37|38|39|'IO|4l|42|43|44K5|46|a7t48|49l50|51|52|53|54|55|56|57|5e|59|60|6l|62l63|64|65l66|67|68|69|70|7i|72|73|74|75|76|77|7e|79|80|

ORIGINAL SOURCE OF DATA

1 1 RECORD ID 1ocoo(CK
A

PROJECT NAME

_ I COUNTRY ^
1 CODE *
ICODE FLAG_ 1

INSTITUTION
CODE >

A
NAME OF COUNTRY 
- ORIGINAL SOURCE OF DATA
(Plain Language)

A
NAME OF INSTITUTION 
- ORIGINAL SOURCE OF DATA 
(Plain Language)

DATE
FILE/SERIES
WAS
CREATED

Y Y M M D D

TIME
FILE/SERIES
WAS
CREATED

H H M M S S

A
PROCESSING NUMBER 
ASSIGNED TO FILE/SERIES 
BY DATA CENTRE

LINE
SEQUENCE
NUMBER

M
T
 

T
 

rrT
T
 
T

1 
r 
t
 

1 
1 

1111
T

1 1 1 1 1
11 1 1 11 11 1 11

O
O

PRIMARY PLATFORM

1 RECORD ID 1

POo

LATFORM TYPE
NAME 

A
(Plain Language)

A<3LL.aoo

A
SPECIFIC
PLATFORM
CODE

A
PLATFORM NAME
(Plain Language)

A
ORIGINATOR'S 

M 
CRUISE/FLIGHT/
DEPLOYMENT--
IDENTIFIER

OURATION OF CRUISE/F
START DATE/TIME

CCYYMMDDHHMM

LIGHT/DEPLOYMENT--
END DATE/TIME

CCYYMMDDHHMM

LINE
SEQUENCE
NUMBER

1 II 1 1 1 1
1 1 II 1 1 II

1 II 1 1 II 1 1 1 II 1 1 1 II 1 1 II
1 II II II II

1 1 1 1 1 1 II II 1
1 1 1 1 1 1 II 1 1 1

01012

m
ii 111 m

SPACE/TIME COORDINATES

START DATE/TIME 
CCYYM

M
DDHHM

M
SS

END DATE/TIME
CCYYM

M
DDHHM

M
SS

POSITION (IF FIXED)
LONGITUDE A 

DDDMMHH^w
LATITUDE A H/

PDM
MHH7!

( -LAND 
ELEVATION ) 
SEA FLOOR 

DEPTH
MMMMMT

OBSERVATION
DEPTH
RELATIVE TO 
SEA LEVEL 

MMMMMT

OBSERVATION
DEPTH
RELATIVE TO 
SEA FLOOR 

MMMMMT

MINIMUM 
OBSERVATION 
DEPTH BELOW 
SEA LEVEL 

MMMMMT

MAXIMUM 
OBSERVATION 
DEPTH BELOW 
SEA LEVEL 

MMMMMT0|0|4
• HEIGHTS ABOVE SEA LEVEL EXPRESSED AS NEGATIVE VALUES

POSITION  LIMITS: IDENTIFIERS & COUNTS

NORTHERN 
LATITUDE A

LATITUDE A
LONGITUDE A

LONGITUDE A



FILE/SERIES HEADER RECORD LAYOUTS (LINES
TOI’ to *0050

1. The first five lines of the series header record and the file header record 
are of the same basic format. W

hereas the information in the file header 
record pertains to a data file as a whole, that in the series header record 
relates to a specific series.

2. Each line ’OOF to *005’ contains the record ID in cl (’5’ for the file 
header record, or ’6’ for the series header record), and the line 
sequence no. from ’001’ to ’005’ in c78-80. Remaining space is allocated 
as follows:

3. Line *001’ identifies the source of the data including the institution 
responsible for its original collection.
c2 

: next record ID
c3-ll : name or acronym of project under which data were collected
cl2-13 : code identifying the country of the data originator - see GF3 

Code Table 1
cl4 

: institution code identifier - set to ’9’ for national code 
cl5-17 : code identifying the institution of the data originator 
clS-35 : plain language name of country of data originator 
c36-53 : plain language name of institution of data originator
c54-59 : date (YYMMDD) this version of the data file or data series 

was created
c60-65 : time (HHMMSS) this version of the data file or data series was 

created
c66-77 : processing number or identifier assigned to the data file or data 

series by archiving data centre
4. Line *002’ identifies the primary platform and the cruise, flight or 

deployment on which the data were collected.
c2-3 

: code for type of platform - see GF3 Code Table 3
c4-ll : platform type in plain language (e.g. ship, buoy, aircraft, grid)
cl2 

: platform code identifier - see GF3 Code Table 4
cl3-21 : specific code to identify the platform (e.g. ship code, aircraft 

cali sign, mooring or buoy identifier) - see GF3 Code Table 4
c22-43 : platform name e.g. ship name
c44-53 : identifier assigned by the data originator to the cruise/ 

flight/deployment of the platform
c54-65 : date/time (GMT) of start of cruise/flight/deployment
c66-77 : date/time (GMT) of end of cruise/flight/deployment
The above two fields are expressed in the form CCYYMMDDHHMM.

5. Line *003’ is formatted in the same manner as line ’002’. This line is used 
for those cases where a secondary platform supports a primary platform 
e.g. for a buoy system the buoy may be considered as the primary 
platform and the ship to which the data is telemetered as the secondary 
platform. If no secondary platform is usefully identified, then c2-77 are 
filled with blanks.

6. Line *004’
c2-15 : date/time (GMT) of the earliest observation in the data file or 

series
C16-29 : date/time (GMT) of the latest observation in the data file or 

series
The 

above 
two 

fields 
are 

expressed 
in 

the 
form 

CCYYMMDDHHMMSS.
c30-36 : fixed latitude in the form DDMMHHQ
c37-44 : fixed longitude in the form DDDMMHHQ
The above two fields are entered only if ali data in the data file or series 
are collected at the same position - otherwise 9’s filled.
c45-47 : positional uncertainty or range of observations in the file or 

series about the position entered in c30-44 - expressed in 
tenths of a nautical mile

c48-53  : sounding depth at position entered in c30-44 
c54-59 : depth of observations below sea level 
c60-65 : depth of observations below sea floor 
c66-7l : minimum depth of observations below sea level 
c72-77 : maximum depth of observations below sea level
The above 5 fields are expressed in tenths of a metre and are 9’s filled if 
not used. Heights above sea level or above sea floor are expressed as -ve 
values. Depths in c54-59 or c60-65 are only entered if ali data in the file 
or series are collected at the same depth. W

herever possible an entry in 
cóO-65 should aiso be accompanied by one in c48-53.

7. Line ’005*
c2 

: flag to define the usage of fields in c3-32 set as follows:
’1’ 

fields define position at the start and the end of the data 
series or file

’2’ 
fields define the limits within which ali observations in the 
data series or file were collected

’9’ 
fields not used - in which case they are 9’s filled

c3-9 
: start/southern latitude in the form DDMMHHQ

clO-17 : start/western longitude in the form DDDMMHHQ
cl 8-24 : end/northern latitude in the form DDMMHHQ
c25-32 : end/eastern longitude in th form DDDMMHHQ
c33-35 : code for ocean/sea area in which data were collected - see GF3 

Code Table 5
c38 

: validation flag for data in file/series - see GF3 Code Table 6
c39-50 : identifier assigned to the data file or series by the data 

originator
c51-56 : no. of series within file - set to 9’s if not known or if record ID 

= ’6’

CÓ3-66 : no. of data cycles stored within the last 1520 characters of this 
record - set to ’0’ if there are none or if record ID = 5

c77 
: set to ’1’ (one) if the series header data cycles cannot be

contained within the last 1520 characters of this record and are 
continued on the next series header record. Set to ’0’ (zero) if 
not applicable

FILE HEADER RECORD LAYOUT (LINES *006’ to *0240
1. Each line contains the record ID i.e. ’5’ in cl and the line sequence no. 

from ’006’ to ’024’ in c78-80.
2. c2-77 of each line may be used for plain language comments or 

description; c2 is normally left blank; unused space is blank filled.
3. Plain language comments or description may be continued on 

succeeding plain language records, if necessary, using line sequence nos. 
’001’ to ’024’; ’025’ to ’048’ etc.

SERIES HEADER RECORD LAYOUT (LAST 1520
CHARACTERS)

1. The last 1520 characters of the record contain data formatted according 
to the relevant series header definition record. If no such definition 
record is present the characters are ali blank filled.

2. If “header parameters” are defined in the series header definition 
record they are each entered once only and before any data cycles.

3. Any data cycles defined in the series header definition record are then 
entered in sequence from data cycle 1 to data cycle N where N is 
specified in c63-66 of line *005’ of the series header record.

4. The remaining space following the N’th data cycle is blank filled.
5. If ali data cycles cannot be contained within the series header record 

they may be continued on the following series header record(s), in which 
case:
a) the overflow indicator {eli of line ’005’) is set to ’1’
b) the following record should repeat the first 400 characters of the first 

series header record (except for c2 of line ’001’ and c63-66 and c77 
of line ’005’ which are set to their appropriate values)

c) the ’header parameters’ if present in the first series header record 
are then repeated, before the data cycles are then continued

d) individual data cycles may not overlap series header records i.e. the 
last 1520 characters of each series header record must contain an 
integral number of data cycles



DATA CYCLE RECORD
1. The first 20 characters of the data cycle record contain accounting 

information for reading data cycles from the series
cl 

: record ID - set to ’7’
c2 

: next record ID
c3-6 

: no. of data cycles in the last 1900 characters of the record
c7-15 : total number of data cycles preceding this record - set to zero 

for the first data cycle record in the series
cl6-20 : data cycle record count - sequence no. of the data cycle record 

within the series
2. The remaining 1900 characters of the record contain data formatted 

according to the relevant data cycle definition record.
3. If “header parameters’* are defined in the data cycle definition record 

Ihey are entered following c20 and before the data cycles - they occur 
once only in each data cycle record.

4. The accounting fields (cl-20) are not considered as header parameters 
as referenced by the data cycle definition record.

5. Data cycles are entered in sequence from data cycle 1 to data cycle N 
where N is specified in c3-6.

6. The remaining space following the N’th data cycle is blank filled.

123|4 |S|6
7|8|9|lO|ll|l2|l3ll4|l516ll7|l8ll9l20

DATA CYCLE RECORD

oaooEE7 cootcz
NUMBER OF
DATA CYCLE8
IN RECORD

NUMBER OF 
PRECEDING
DATA CYCLES

DATA
CYCLE
RECORD
COUNT

USER FORMATTED AREA
2122232425262728293031 323334 353637383940414243444546 474849 50515253545556575859506162 63 54556657585970717273 74757677787980

IO11 1213 141516371819 20212223 2425262728293031 3233 3435 3637383940 414243 4445464748 4950515253545556575659606162 63646566 676869 7071 7273 747576777879eo

END OF TAPE RECORD
1. Each line contains the record ID, i.e. ’8’, in cl and the line sequence no. 

from ’001’ to ’024’ in c78-80. Remaining space is allocated as follows:
2. Line *001*

c2 
: next record ID - set to T’ if data set is continued on another 
tape - if not, set to ’9’

c3-12 : 9’s filled
C13-24 : name or number of tape on which the data set is continued - if 

data set is not continued, set to 9’s
c25-77 : 9’s filled

3. Lines ’002’ to *024’
c2-77 : plain language comments or description as appropriate

END OF TAPE RECORD
?5|26|27|2a|29|30|3l'|32|33|34|35|36|37|38|39i40|4ll42l43l^|45|46K7|4S|49|50|51|52|53|54|55|56|S7|58|59|60|6l|62|63|6a|65|66|67|68|69|70|7l|72|7 3l74|75l76|77

13|l4ll5ll6|l7|l8|l9|20|2l|22|23|249|9|9|9|9|9|9|9l9|9|9|9|9|9|9|9|9|9|9|9|9|9|9l9|9|9|9|9|9|9|9|9l9|9|9|9|9|9|9|9l9|9|9|9|9|9j9|9|9|9|9|9l9



GF3 CODE TABLE 1 : IOC COUNTRY COPE
(This two character code is intended solely as an identifier for data 

management purposes, and has no political implications)
Code

Country
Code

Country
06

Germany, Federal Republic of
89

Turkey
08

Argentina
90

Union of Soviet Socialist Republics
09

Australia
91

South Africa
IO

Austria
92

Uruguay
11

Belgium
93

Venezuela
12

Myanmar
94

Vietnam
13

Bolivia
95

Yugoslavia
14

Brazil
96

German Democratic Republic
15

Bulgaria
99

Unknown/unspecified
17

Cameroon
18

Canada
AL

Algeria
19

Sri Lanka
AN

Angola
20

Chile
BH

Bahamas
21

China
BN

Bangladesh
22

Colombia
BR

Barbados
24

Korea, Republic of
CR

Costa Rica
26

Denmark
CU

Cuba
27

Egypt, Arab Republic of
CV

Cape Verde
28

Ecuador
CY

Cyprus
29

Spain
DA

Benin (Dahomey)
31

United States of America
ET

Ethiopia
(32)

U.S.A. (alternative code)
FJ

Fiji
34

Finland
GA

Gabon
35

France
GH

Ghana
36

Greece
GM

Gambia
37

Guatemala
GN

Guinea * Bissau
38

Haiti
GU

Guinea
41

India
GY

Guyana
42

Indonesia
HO

Honduras
43

Iraq
IC

Cote d’Ivoire
44

Iran
IN

Intergovemmental/International
45

Ireland
JA

Jamaica
46

Iceland
KE

Kenya
47

Israel
KR

Korea, Democratic People’s Republic of
48

Italy
KU

Kuwait
49

Japan
MA

Mauritius
50

Jordan
MD

Maldives
52

Lebanon
ML

Malta
53

Libyan Arab Jamaihiriya
MO

Monaco
55

Madagascar
MS

Malaysia
56

Morocco
MU

Mauritania, Islamic Republic of
57

Mexico
MZ

Mozambique
58

Norway
NC

Nicaragua
59

New Caledonia (France)
NI

Nigeria
61

New Zealand
OM

Oman
62

Pakistan
PA

Panama
64

Netherlands
OA

Qatar
65

Peru
RC

Congo
66

Philippines
SA

Saudi Arabia
67

Poland
SC

Seychelles, Republic of
68

Portugal
SE

Senegal
70

Dominican Republic
SI

Singapore
72

Albania
SL

Sierra Leone
73

Romania
SM

Somalia
74

United Kingdom
SO

Solomon Islands
75

El Salvador
SU

Sudan
77

Sweden
TN

Tonga
78

Switzerland
TT

Trinidad and Tobago
79

Suriname
UA

United Arab Emirates
80

Syrian Arab Republic
UR

Ukrainian Soviet Socialist Republic
86

Thailand
WS

W
estern Samoa

87
Togo

YM
Yemen, Arab Republic of

88
Tunisia

ZA
Tanzania, United Republic of

GF3 CODE TABLE 3 : PLATFORM
 TYPE CODE

(two digit code of the form D1D2 where Di identifies the general 
platform type and D2 the subdivision within that platform type)

0zmJO
Oaa

UNASSIGNED

AIRCRAFT/
SATELLITE/
ROCKET !

Q)>OOZ

BUOY/
MOORING

SHIP

SUBMERSIBLE

LAND/
SEA FLOOR

UNKNOWN

TYPE OF PLATFORM

<0
eo

-v|
o>

en
O

N>
-

O
O / 
/

O
000m

UNKNOWN OR NOT SPECIFIED
O

SUB DIVISION OF PLATFORM TYPE

ICE
ISLAND

GEOGRAPHIC

RESEARCH
AIRCRAFT

FREE RISING (VERTICAL)

SURFACE:
MOORED

n
RESEARCH
SHIP

MANNED

SEA FLOOR: FIXED

-

CARTESIAN
_______1

-----------1

OTHER
AIRCRAFT 1

FREE
FLOATING
(HORIZONTAL)

SURFACE: !

DRIFTING

SHIP OF OPPORTUNITY

UNMANNED: <

MOBILE !

SEA FLOOR. MOBILE

ro

ROCKET:
NON
ORBITING

TETHERED

SUBSURFACE:
MOORED

SMALL CRAFT e.g. Dinghy

UNMANNED:
TOWED

BEACH/
INTERTIDAL
ZONE

0

SATELLITE:
GEO­ STATIONARY
ORBIT

SUBSURFACE:
DRIFTING

FIXED '

POSITION
e.g.
Lightvessel

LAND/
ONSHORE.
FIXED

4^

SATELLITE: '

NON GEO­ STATIONARY ORBIT

SUBSURFACE:
VERTICAL
PROFILING

LAND/
ONSHORE:
MOBILE

01

MANNED
SPACECRAFT

OFFSHORE STRUCTURE e.g. 011 Rig

o>

COASTAL STRUCTURE e.g. Pier, Lighthouse, rock

-gCDeo



GF3 CODE TABLE 4 : SPECIFIC PLATFORM
 CODE

(The exact use of this field in characters 93-101 and 173-181 of the 
File/Series Header Record is dependent on the “Identification of the code 
system” entry in the immediately preceding field i.e. character 92 or 172 
respectively).

Code System
Identifier 

Code System
(character 92/172)

1 
ITU Cali Sign

2 
W

MO/IOC
3 

ICES Ship Code

4 
IOC/NODC

5 
W

MO buoy identifier

9 
Other national or

local identifier

Specific Platform Code

For ships with cali signs consult the
ITU list of ship’s cali signs
e.g. R.R.S. Discovery = ’GLNE’
Reserved for future use
First 4 characters set to ’ICES’ - 
remainder expressed in form ccsss 
where cc 

= 
2 character IOC 

country code (GF3 Code Table 1) 
and sss = 3 digit ICES ship code 
within that country. W

here the 
ICES ship code is only 2 digits the 
last character is set as blank, e.g. 
R.R.S. Discovery = TCES7431 ’
First 3 characters set to ’cc-’ where 
cc = 2 character IOC country code 
(see GF3 Code Table 1) identifying 
the 

country 
of 

the 
national 

oceanographic data centre whose 
platform code is in use. The 
remaining characters contain the 
specific platform code padded out 
with blanks if necessary, e.g.
R.R.S. 

Discovery in 
the 

USA 
NODC 

ship 
code 

would 
be 

expressed as ’31-74DI ’
First 4 characters set to ’BUOY’ - 
remaining 5 characters set to the 
W

MO buoy identifier Aibwnbnbnb 
where:Ai = WMO Regional Asso­

ciation area in which 
buoy has been deployed 
(WMO 

Code 
Table 

0161)
bw = sub-area 

of Ai 
(see 

WMO Code Table 0161) 
nbnbnb = WMO serial number of 

buoy within Ajbw
Free format

GF3 CODE TABLE 5 : M
ODIFIED LILE. OCEAN /SEA AREA COPE

(This 3 character code is adapted from IHB Special Publication No. 23 (Third Edition, 1953) - ’Limits of Oceans and 
Seas’, which contains a precise definition of each area)

Code
Ocean / Sea Area

Code
Ocean / Sea Area

010
Baltic Sea

380
Gulf of Aden

01A
Gulf of Bothnia

390
Arabian Sea

01B
Gulf of Finland

400
Gulf of Oman

01C
Gulf of Riga

410
Gulf of Iran (Persian Gulf)

020
Kattegat, Sound and Belts

420
Laccadive Sea

030
Skagerrak

430
Bay of Bengal

040
North Sea

440
Andaman or Burma Sea

050
Greenland Sea

450
Indian Ocean

060
Norwegian Sea

45A
Mozambique Channel

070
Barentsz Sea

460
Malacca and Singapore Straits

080
W

hite Sea
46A

Malacca Strait
090

Kara Sea
46B

Singapore Strait
100

Laptev (or Nordenskjold) Sea
470

Gulf of Thailand (Siam)
no

East Siberian Sea
480

East Indian Archipelago
120

Chuckchi Sea
(Indonesia)

130
Beaufort Sea

48A
Sulu Sea

140
The Northwestern Passages

48B
Celebes Sea

14A
Baffin Bay

48C
Molukka Sea

150
Davis Strait

48D
Gulf of Tomini

15A
Labrador Sea

48E
Halmahera Sea

160
Hudson Bay

48F
Ceram Sea

16A
Hudson Strait

48G
Banda Sea

170
Arctic Ocean

48H
Arafura Sea

17A
Lincoln Sea

481
Timor Sea

180
Inner Seas off the West Coast

48J
Flores Sea

of Scotland
48K

Gulf of Boni
190

Irish Sea and St. George’s Channel
48L

Bali Sea
200

Bristol Channel
48M

Makassar Strait
210

English Channel
48N

Java Sea
220

Bay of Biscay
48P

Savu Sea
230

North Atlantic Ocean
490

South China Sea (Nan Hai)
23A

NE Atlantic (Limit 40W)
500

Eastern China Sea (Tung Hai)
23B

NW Atlantic (Limit 40W)
510

Yellow Sea (Hwang Hai)
240

Gulf of St. Lawrence
520

Japan Sea
250

Bay of Fundy
530

Inland Sea (Seto Naikai)
260

Gulf of Mexico
540

Sea of Okhotsk
270

Caribbean Sea
550

Bering Sea
280

Mediterranean Sea
560

Philippine Sea
28A

W
estern Basin

570
North Pacific Ocean

28B
Eastern Basin

57A
NE Pacific (Limit 180)

28C
Strait of Gibraltar

57B
NW Pacific (Limit 180)

28D
Alboran Sea

580
Gulf of Alaska

28E
Balearic Sea (or Iberian Sea)

590
Coastal W

aters of SE Alaska
28F

Ligurian Sea
and British Columbia

28G
Tyrrhenian Sea

600
Gulf of California

28H
Ionian Sea

610
South Pacific Ocean

281
Adriatic Sea

61A
SE Pacific (Limit 140W)

28J
Aegean Sea (The Archipelago)

61B
SW Pacific (Limit 140W)

290
Sea of Marmara

620
Great Australian Bight

300
Black Sea

62A
Bass Strait

310
Sea of Azov

630
Tasman Sea

320
South Atlantic Ocean

640
Coral Sea

32A
SE Atlantic (Limit 20W)

650
Solomon Sea

32B
SW Atlantic (Limit 20W)

660
Bismarck Sea

330
Rio de La Plata

700
Southern Ocean (South of 50°S)

340
Gulf of Guinea

70A
Atlantic Sector of ’700’

350
Gulf of Suez

70B
Indian Ocean Sector of ’700’

360
Gulf of Aqaba

70C
Pacific Sector of ’700’

370
Red Sea

999
Land Areas



GF3 CODE TABLE 7 : PARAM
ETER CODE

GF3 COPE TABLE 6 : VALIDATION FLAG
(FUe/Series Header Record, character 358)

The development of the GF3 Parameter Code Table is a continually 
evolving process, with new parameters being added and standard codes 
assigned as and when the need arises. The standard code table is 
maintained, updated and made available through RNODC-Formats.

Parameter code structure
The parameter code is structured as an eight character field expressed 
in the form PPPPKMMS where:

Code 
Descriptor

blank 
- 

unspecified, or quality control check has not been made

A 
- 

Acceptable: data found acceptable during quality control
checks

C 
- 

Caution: certain aspects of the data are considered suspect -
consult plain language records following file/series header 
record for further details

PPPP 
= parameter identifier

K 
— key for user-defined options

MM 
= method/parameter qualifier

S 
= sphere identifier

PPPP (parameter identifier) is a four character alphabetic (A-Z) code 
which identifies the parameter. The assignment of the code implies a 
clear definition of the parameter and the units in which it is stored.

K is a one digit key to identify those elements of the parameter code that 
are part of the standard code table and those that are user-defined.

The above table applies to the file/series as a whole. Individual values at the 
data cycle level may be flagged using the parameter ’FFP'P7AANJ (as 
described in GF3 Code Table 7) in conjunction with the following code 
table:-

Code 
Descriptor

blank 
- 

unspecified, or quality control check has not been made

A 
- 

Acceptable: data found acceptable during quality control
checks

S 
- 

Suspect Value: data considered suspect (but not replaced) by
the data originator on the basis of either quality control 
checks or recorder/instrument/platform performance

Q 
- 

Questionable Value: data considered suspect (but not
replaced) during quality control checks by persons other than 
those responsible for its original collection e.g. a data centre

R 
- 

Replaced Value: erroneous or missing data has been replaced
by estimated or interpolated value - method by which 
replacement values have been derived should be described in 
plain language records

M 
- 

Missing Value: original data erroneous or missing

K7 
P,M,U ali standard 

6 
P,M standard, U non standard 

5 
P,U standard, M non standard 

4 
P standard, M,U non standard 

2 
P,M,U ali non standard 

where 
P = parameter identifier PPPP
M = method/parameter qualifier MM 
U = parameter units

K = 7 implies that ali aspects of the parameter code, definition and 
units conform precisely with entries in the standard code table.
For K = 6 or 4, non standard units U implies units differing from those 
specified for the parameter in the standard code table.
For K = 5 or 4, non standard M implies the use of a user-defined 
method/parameter qualifier with a standard parameter identifier.
Finally, K = 2 implies that ali aspects of the parameter code, its 
definition and units are defined by the user.

MM is a two character alphabetic code identifying the method used to 
measure the parameter. Alternatively, it may be used as a qualifier of 
the parameter itself. It is coded with respect to the parameter identifier 
PPPP except when it is unspecified when it is always set to ’XX’.

S is a one character alphabetic code to identify the sphere in which the 
parameter is measured.

A
atmosphere

H
B

air/sea interface
J

D
hydrosphere

N
EG

sea/bottom interface 
lithosphere

X

interstitial
biosphere (internal to organisms) 
not applicable (e.g. coordinates) 
unspecified

The interface spheres are used only where the parameter refers to 
something being transported through the interface or where reference is 
made to measurements on both sides of the interface (e.g. air-sea 
temperature difference).

STANDARD PARAM
ETER CODES

In order that the GF3 Parameter Code Table may be built up 
in a rigorous and consistent manner, parameters are only 
assigned standard codes as and when a real need is identified 
for their general use in the exchange of data on an 
international or multilateral basis. It is assumed that the needs 
of local or bilateral exchanges can be satisfied by creating 
temporary or local codes through the mechanism of 
user-defined codes.

The GF3 Parameter Code Table published in 1988 in IOC 
Manuals and Guides No. 17, Volume 2, includes standard 
codes for almost 300 parameters, organized under various 
headings such as physical oceanography, waves, meteorology, 
geophysics and chemistry in addition to general and special 
purpose parameters, and parameters relating to space, time 
and navigation. A selective extract of some of the more 
commonly used codes is listed overleaf.

The code table will continue to grow to encompass new or 
missing parameters, and will be maintained on computer in a 
regularly updated form. Users are encouraged to contact 
RNODC-Formats on a regular basis to obtain the latest and 
most up-to-date version of the code table. You are aiso 
encouraged to inform RNODC-Formats of any commonly 
used parameters that have been omitted from the code table - 
please include clear definitions of the parameter and its units. 
The units stated should be selected to conform with SI 
(Système Internationale).

USER-DEFINED PARAM
ETER CODES

Users are encouraged to use standard parameter codes 
whenever possible, although the coding system is deliberately 
structured in a form that enables the user to create his own 
codes if necessary, e.g. if a standard code is not already 
available for the parameter, or if the user is not aware of the 
standard code.

W
here user-defined codes are in use, the user is required to 

provide a definition of the parameter, its code and units in the 
plain language area of the tape header file.



A SELECTION OF PARAM
ETERS FROM

 GF3 COPE
TABLE 7

GENERAL PURPOSE PARAM
ETERS

PPPP KMM
S

FFFF 
7 —

 N QUALITY CONTROL FLAG
This quality control flag applies to the value of the 
immediately preceding parameter in the “user-defined 
area”. The method code MM indicates the flag code 
table in use:

7 A A 
Flag coded as in GF3 Code Table 6

6 XX 
User defined flag code in use - consult plain language
records for details

EEEE 
7 XX N DECIMAL EXPONENT

Power of ten by which the value of the immediately 
succeeding parameter in the “user-defined area” 
should be multiplied, after any application of scaling 
factors associated with that parameter. For example, 
values of ’2’ and T23’ for successive parameters EEEE 
and ABCD imply a value of 123 x 1CT for the parameter 
ABCD.

S DE V 7 XX N STANDARD 
DEVIATION 

OF 
PRECEDING 

PARAMETER (units as for preceding parameter) - 
normally applies to immediately preceding parameter in 
“user-defined area”, unless thai parameter is already 
followed by quality control flag FFFF. To avoid 
ambiguity, the parameter to which it refers should be 
identified in the secondary parameter field of the 
definition record.

TEXT 
7 XX N PLAIN LANGUAGE TEXT

Used for creating plain language area 
in the 

“user-defined area” of a series header record.
MMMM 7 - - N METHOD CODE IN USER-DEFINED AREA

This parameter enables the method code, MM, 
appropriate to a specified parameter to be stored in a 
“user-defined area” rather than in a definition record.
The definition record line defining this method code 
parameter has c3-10 set to MMMM7—

N (—
 being 

entered as below) and c67-74 (secondary parameter 
code) set to the code of the parameter to which the 
method code parameter is to apply.
The code table in use is defined as follows:

7 A A 
Standard two character method code appropriate to the
secondary parameter, as contained in the GF3 standard 
parameter code table.

6 XX 
User defined method code in use - consult plain 
language records for details.

DATE AND TIM
E W

ITHIN DAY
Note: Whenever possible, date and time should be expressed in G.M.T. 
However, if it is necessary to use local time (i.e. zonal time) then the Time 
Zone Correction parameter should aiso be provided.
PPPP KMMS
YEAR 7 - - N CALENDAR YEAR
M

NTH 7 - - N CALENDAR MONTH (MM) W
ITHIN YEAR

DAT E 7 - - N DATE W
ITHIN YEAR IN FORMAT MMDD

DAYS 
7 - - N DAY NUMBER W

ITHIN YEAR (Jan 1st = 1)
TIM

E 7 - - N TIME W
ITHIN DAY IN FORMAT HHMMSS

HHMM 7 - - N TIME W
ITHIN DAY IN FORMAT HHMM

HOUR 7 - - N HOURS W
ITHIN DAY

M
INS 

7 - - N MINUTES W
ITHIN HOUR

SECS 
7 —

 N SECONDS W
ITHIN MINUTE

The definition of each of the above parameters is 
qualified according to the entry in MM thus:

Z T 
Time of observation (G.M.T.)

Z S 
Time of observation start (G.M.T.)

Z E 
Time of observation end (G.M.T.)

L T 
Time of observation (local time)

L S 
Time of observation start (local time)

L E 
Time of observation end (local time)

ZONE 7 XX N TIME ZONE CORRECTION (hours)
Defined as the number of hours to be added to convert 
the stored date/time parameters to G.M.T.

GEOGRAPHIC COORDINATES
PPPP KMMS
LATD 7 XX N LATITUDE DEGREES (North + ve, South -ve)
LATM

 7 XX N LATITUDE MINUTES W
ITHIN DEGREE (North 

+ ve, South -ve)
LOND 7 XX N LONGITUDE DEGREES (East +ve,W

est-ve)
LONM

 7 XX N LONGITUDE MINUTES W
ITHIN DEGREE (East 

+ ve, W
est -ve)

Note: It is possible to use either one parameter (e.g. LATD) with a decimal 
fraction or two parameters (e.g. LATD and LATM) with a decimal fraction 
in LATM. In the latter case the sign of the latitude should be attached to 
both parameters. Similar rules apply to longitude values.
F I X F 

7 A A N PRIME NAVAID FIX FLAG
Used with 

underway measurements 
to highlight 

occurrence of fixes. Sei to ’F if position is a primary 
navaid position fix; otherwise set as blank.

SENSOR HEIGHT OR DEPTH
PPPP KMM

S
ALTG 7 XXN HEIGHT/ALTITUDE ABOVE GROUND LEVEL 

(metres) upwards + ve
ALTS 

7 XXN HEIGHT/ALTITUDE ABOVE MEAN SEA LEVEL 
(metres) upwards + ve

HGHT 7 XX N HEIGHT/ALTITUDE 
ABOVE 

SEA 
SURFACE 

(metres) upwards + ve
HT S F 7 XX N HEIGHT ABOVE SEA FLOOR (metres) up + ve
D E P H 7 XX N DEPTH BELOW

 SEA SURFACE (metres) down + ve
DP S F 7 XX N DEPTH BELOW

 SEA FLOOR (metres) down +ve
TOT P 

7 XXD TOTAL PRESSURE (decibars 
= 

IO4 Pascals): 
atmospheric + sea pressure

PRES 
7 XXD SEA 

PRESSURE 
(decibars 

= 
IO4 

Pascals): 
sea surface = 0

PHYSICAL OCEANOGRAPHY
PPPP KM

MS
S S T P 

7 XX D SEA SURFACE TEMPERATURE (°C)
SSPS 

7 XXD SEA SURFACE PRACTICAL SALINITY (-)
TEM

P 7 XXD SEA TEMPERATURE (°C)
PSAL 7 XXD PRACTICAL SALINITY (-)
S S AL 7 XX D SALINITY (PRE-1978 DEFN.) (%<>)
CNDC 7 XXD ELECTRICAL CONDUCTIVITY (mhos / m)
S VE L 7 XX D SOUND VELOCITY (m / s)
DOXY 7 XX D DISSOLVED OXYGEN (millimoles / m3)
PHOS 

7 XX D PHOSPHATE (PO4-P) CONTENT (millimoles/ m3)
NTRA 7 XXD NITRATE (NO3-N) CONTENT (millimoles/m3)
NTR I 

7 XX D NITRITE (NO2-N) CONTENT (millimoles / m3)
AMON 7 XX D AMMONIUM (NH4-N) CONTENT (millimoles / m3)
S L C A 7 XX D SILICATE (Si04-Si) CONTENT (millimoles / m3)
C PHL 7 XX D CHLOROPHYLL - a CONTENT (milligrams / m3)
SLEV 7 XXD OBSERVED SEA LEVEL (m)
HC S P 

7 XX D HORIZONTAL CURRENT SPEED (m/s)
HCDT 7 XXD HORIZONTAL CURRENT DIRECTION (degrees, 

relative to True North) - to which current is flowing



PART B

GF3-PROC REFERENCE SHEETS

These sheets provide a quick and easy reference to the GF3-Proc software for reading and 
writing data in the GF3 format. They relate specifically to the Level 4 release of the 
software for use only with Fortran 77 compilers on host machines with either ASCII or 
EBCDIC as their internal code.

Full user documentation for GF3-Proc may be found in IOC Manuals and Guides No. 17, 
Volume 4: “User’s Guide to the GF3-Proc Software”, and Volume 5: “Reference Manual for 
the GF3-Proc Software”. These volumes may be obtained from the British Oceanographic 
Data Centre (see Foreword).

KEY FEATURES OF GF3-PROC

*

*

*

*

*

*

*

*

*

*

*

*

*

*

provides a complete, and easy to use, software interface for reading and writing GF3 

exploits the full flexibility of GF3

automatically analyses GF3 definition records and provides a simple interface for reading and 
writing data in the “user-defined areas” of GF3 records

relieves the programmer of the detailed coding for reading and writing GF3 records

extensive inbuilt error-checking to ensure correctly formatted data

provides the user with procedural control in the reading and writing of GF3 records

enables GF3 records to be read/written on sequential disk files or output to a printer, as well as 
input/output on magnetic tape

designed for portability to host machines with Fortran 77 compilers 

consists of a suite of more than 150 Fortran routines 

consists of 11,000 lines of Fortran code of which 50% are inline comments 

highly active elements of the code have been designed to be machine efficient 

designed to maximise programmer productivity

comprehensive user documentation - User’s Guide, Reference Manual and an Installation Guide 

it works and is in regular use at data centres and research institutions worldwide

15



GF3-PR0C
GF3-PROC INPUT-OUTPUT UNITS

PHYSICAL DEVICE INPUT-OUTPUT
The GF3-Proc software is a portable suite of more thaii 150 Fortran 
routines designed for reading and writing data in GF3. Only about 50 of 
GF3-Proc’s routines may be called directly from the user’s Fortran 
program - these routines constitute the GF3-Proc User Interface. The 
remaining routines operate from within GF3-Proc and are transparent to 
the user.

Although GF3-Proc makes extensive internal use of labelled common 
areas, the communication of ali data and control information between 
GF3-Proc and the user’s Fortran program is carried out through arguments 
in calls to the User Interface routines.

The User Interface routines are designed to be closely related to the 
structure of the GF3 format and to give the user full procedural control 
over the handling of GF3 files, records, cycles and fields. However, ali 
instructions involving the reading or writing of GF3 records from/to 
physical storage are carried out from within GF3-Proc itself.

GF3-Proc processing is centred about a 1920 character "record buffer” in 
its internal storage which is designed to hold the contents of a single GF3 
record. Through the User Interface routines the user program may instruct 
GFJ-Proc to read data into the buffer, to manipulate data within the buffer 
or to write out the buffer.

The GF3-Proc software includes 180 error traps - if any of these are 
triggered an appropriate message is automatically generated in a standard 
format on the GF3-Proc Error Report file.

GF3-PROC 
Error Report

USER’S
FORTRAN
PROGRAM

Calls to GF3-PROC User 
Interface Routines

c
• GF3-PROC

GF3-PROC User 
Interlace Routines

GF3-PROC
Internal
Routines

! GF3 Record Buffer !

USER’S OWN 
DATA FILES

GF3 FILES 
& RECORDS

Although the user may initiate the reading and writing of GF3 records by 
calls to GF3-Proc, the software that actually carries out these operations is 
embedded deep in the internal structure of GF3-Proc in what are called 
GF3-Proc Input-Output Units.

Each GF3-Proc I/O Unit is assigned to a single GF3 storage device which 
may be an input tape, an output tape, an input disk file, an output disk file 
or a printer output file. Before it can be activated to read or write GF3 
records the user must define the characteristics of the Unit by calls to the 
routine GFUNST. Up to 5 GF3-Proc I/O Units may be assigned within the 
user’s Fortran program at any given time.

Each GF3-Proc I/O Unit is identified by a unique Unit key which is 
allocated by GF3-Proc when the Unit is created (using the routine 
GFUNCR). The user supplies this key to GF3-Proc to identify which 
GF3-Proc I/O Unit is to be active (i.e. current) when subsequent calls are 
made from the user program to read or write GF3 records.

GF3-PROC “RECORD BUFFER”
Ali input and output operations in GF3-Proc are centred around a 1920 
character area within its internal storage called the “record buffer” which, 
at any given time, contains the contents of a single GF3 record.

The function of an input GF3-Proc I/O Unit is to bring GF3 records, on a 
record by record basis, from the assigned input device to the “record 
buffer”, while an output GF3-Proc I/O Unit takes the GF3 record held in 
the “record buffer” and writes it to the appropriate output device. During 
the moving of records to or from the “record buffer” the GF3-Proc I/O 
Unit may be activated to carry out code conversion and a sophisticated level 
of “automatic processing”.

The GF3-Proc “record buffer” forms the GF3 data interface between 
GF3-Proc and the user program - thus, once a GF3-Proc I/O Unit has 
read a GF3 record into the “record buffer”, user-callable GF3-Proc 
routines are available to transfer GF3 fields from the record into the user’s 
Fortran program.

User-callable GF3-Proc routines are aiso available to transfer data fields 
from the user program to the “record buffer” in order to create a GF3 
record - once the record is complete the current output GF3-Proc I/O 
Unit can then be called to write the contents of the “record buffer” to the 
output device.

The user program communicates with the “record buffer” on a field by field 
basis and the user need not be concerned about which character positions 
each GF3 field occupies within the GF3 record - this is handled 
automatically by GF3-Proc which aiso looks after the correct formatting of 
the field. A special set of “automatic cycle processing” routines are 
available for reading/writing data in the “user-defined areas” of GF3 
records.

The Fortran calls that transfer GF3 records, between the “record buffer” 
and the physical input/output devices, are made from within the GF3-Proc 
I/O Units and not the user program. GF3-Proc I/O Units aiso handle the 
reading and writing of EOF marks. Although GF3 records are normally 
stored on magnetic tape, GF3-Proc aiso supports the reading/writing of 
GF3 records from/to sequential disk files, and the writing of GF3 records to 
a printer.

Disk I/O: GF3-Proc reads/writes individual GF3 records from/to sequential 
disk files as 24 lines, each in A80 format. These 80 byte units are 
transparent to the user program and do not constrain the structure of 
“user-defined areas”. EOF marks are logical (24 lines filled with 9s), not 
physical, so as to allow a number of GF3 files to be held in a single physical 
disk file. In addition to its use for archiving data, disk I/O provides support 
for the manual input of GF3 records, particularly definition records, and for 
the assembly of GF3 files prior to their transfer to tape.

Printer output: GF3-Proc produces printer output of GF3 records on a 
record by record basis in the same format as disk output, but with a carriage 
control character at the beginning of each line. In addition to its use for 
listing out GF3 records and files, printer output aiso provides an invaluable 
alternative to tape output during user program development - once 
development is complete it is a simple matter to switch the output to tape.

GF3-PROC USER INTERFACE ROUTINES
Each of the GF3-Proc User Interface routines is listed and described 
briefly on the following pages. The arguments appropriate to each routine 
are given in parenthesis after the routine cali. Arguments in bold typeface 
contain values returned by GF3-Proc - those in normal typeface are 
supplied by the user’s Fortran program.

The first character of the argument’s name indicates the type of Fortran 
variable thus: T = integer variable; ’F = floating point variable; ’K’ = 
character variable; and ’L* = logical variable.

Naming convention: Ali GF3-Proc routines have six character names with 
the first two characters set to ’GF - this convention applies to the User 
Interface routines and aiso to GF3-Proc’s internal routines. This naming 
convention aiso applies to ali of GF3-Proc’s internal labelled common 
areas. It is important, therefore, that the user should not create routines or 
labelled common areas with names starting with ’GF.

Note: A checklist of ali the GF3-Proc User Interface routines, sorted 
alphabetically by the routine name, may be found at the end of these 
Reference Sheets.



INITIALISING THE PACKAGE

CALL GFPROC 
Initialise GF3-Proc processing.

This routine must be called before any other GF3-Proc routine.
Within its internal storage GF3-Proc maintains information about the 
Input/Output Units from/to which it reads or writes GF3 records. Each 
Unit is identified by a unique Unit Key which is allocated by GF3-Proc.

GF3-PROC INPUT-OUTPUT UNITS
Returns the value IVAL to which the I/O characteristic IOPT is set 
for the Current I/O Unit. Any GF3-Proc I/O Unit can be made 
current by a cali to GFPCST with arguments 5, IUKY.

CALL GFUNLK (IOPT,IVAL) 
Look at GF3-Proc I/O Unit Option

CONTROLLING THE PACKAGE
Within GF3-Proc internal storage there is an array of ten option switches 
which may be manipulated by the user program to control the way in which 
the package operates. They may be set by calls to the following routine:

CALL GFPCST (IOPT,IVAL) 
Set GF3-Proc Package Control Option 
to a given value.

IOPT identifies the option switch and IVAL contains the value to 
which it is to be set. Some switches are preset with default values.

Option
Switch
IOPT1

Description of Option Switch 
and its allowed values IVAL

REPORT UNIT NUMBER (default = 6). Fortran logical unit 
number for the output of the GF3-Proc Error Report

3 
KEY OF CURRENT INPUT UNIT (no default) - i.e. the 
GF3-Proc I/O Unit which is to read GF3 records

4  
KEY OF CURRENT OUTPUT UNIT (no default) - i.e. the 
GF3-Proc I/O Unit which is to write GF3 records

5 
KEY OF CURRENT INPUT/OUTPUT UNIT (no default) - 
Key of the GF3-Proc I/O Unit whose characteristics are to be 
modified or interrogated (by calls to GFUNST or GFUNLK)

7 
PROGRAM RESPONSE TO DATA ERRORS (default = 1)

1 : Stop program execution after data errors
2 : Continue program execution after data errors

8 
OUTPUT SUPPRESSION DURING AUTOMATIC CYCLE 
W

RITING (default = 1)
1 : Output of data cycle records containing a header cycle

but no data cycles is suppressed
2 : Output of data cycle records containing a header cycle

but no data cycles is not suppressed
9  

UNDEFINED CYCLE PARAMETERS (default = 1)
1 : Insert dummy values for ali undefined parameters 
2: Insert 

dummy values 
for undefined data cycle 

parameters but abort program if any header parameter 
has been left with an undefined value

3 : Abort program if any header or data cycle parameter
has been left with an undefined value

IO 
CYCLE PARAMETER SCALING (default = 2)

1 : Do not apply scaling factors Scale 1 (*) and Scale 2 (+) 
2: Apply scaling factors

CALL GFPCLK (IOPT,IVAL) 
Look at GF3-Proc Package Control
Option value.

Returns the value IVAL to which the Option Switch IOPT is set.

CALL GFUNCR (IUKY) 
Create a new GF3-Proc I/O Unit

Initialises the creation of a new I/O Unit and returns to the user the 
Unit Key, IUKY, allocated by GF3-Proc. The characteristics of the 
I/O Unit must then be defined by a series of calls to GFUNST.

CALL GFUNST (IOPT,IVAL) 
Set GF3-Proc I/O Unit Option value

IOPT identifies the characteristic and IVAL contains the value to 
which it is to be set. Some characteristics are preset with default 
values. (This routine operates on the Current I/O Unit).

Tnp_ 
Description of I/O Characteristic

and its allowed values IVAL
1 

TYPE OF I/O UNIT (no default)
1 : Input Unit for reading GF3 records
2 : Output Unit for writing GF3 records

2 
AUTOMATIC PROCESSING (default = 1)

1: Switched off for this Unit 
2: Switched on for this Unit

3 
RECORD SYNTAX CHECKING (default = 1)

1 : Syntax check on ali GF3 records (only if automatic
processing is switched on)

2 : Syntax check on GF3 definition records only
6 

FORMAT TYPE (default = 2)
1 : Standard GF3 tape format
2 : Disk file line format (80 character lines)
3 : Printer format with Fortran carriage control characters

7 
FORTRAN LOGICAL UNIT NUMBER of the I/O device 
from/to which GF3-Proc I/O Unit reads/writes GF3 records

8 
TAPE DENSITY: IVAL = 800,1600 or 6250 (default = 1600) 
- used only for calculating length of GF3 Test File

9 
CHARACTER CODE in use on the Unit (default = 3)

1: ASCII 
2: EBCDIC
3 : Native code of computer (set to ASCII or EBCDIC on 

installation of software)
10 

UNIT STEP OPTION (default = 1) - used only on computers 
requiring each file to have a unique Fortran logical unit number

1: LUN stepping switched off 
2: LUN stepping switched on

11 
RECORD SPACING (default = 1) - used only for printer 
format or disk file line format

1 : No spacing between GF3 records
2 : Blank line (80 characters) between GF3 records
3  : Page throw for each GF3 record

CALL GFUNRL (IUKY) 
Release a GF3-Proc I/O Unit

GF3-Proc internal storage is limited to maintaining information on 
up to 5 GF3-Proc I/O Units. This routine enables information on a 
given I/O Unit (Unit Key - IUKY) to be deleted so as to make room 
for the creation of an additional Unit.

CALL GFUNRW (IUKY) 
Rewind a GF3-Proc I/O Unit

Enables the GF3-Proc I/O Unit identified by the Unit Key = IUKY 
to be rewound back to its beginning. (Check Reference Manual for 
consequences of calling this routine).

CURRENCY OF GF3-PROC I/O UNITS
At any given time, up to 5 different GF3-Proc I/O Units may be recognised 
by GF3-Proc. However, it will always read GF3 records from the Current 
Input Unit as specified in the most recent cali to GFPCST with IOPT set to 
’3’. Similarly, it will always write GF3 records to the Current Output Unit as 
specified in the most recent cali to GFPCST with IOPT set to *4’.

The concept of currency is aiso apparent in the use of routines GFUNST, 
GFUNLK for modifying or interrogating the characteristics of a GF3-Proc 
I/O Unit. These routines act on the Current I/O Unit as specified in the 
most recent cali to GFPCST with IOPT set to ’5’.

GF3-PROC “AUTOM
ATIC PROCESSOR”

The “Automatic Processor” is a key feature of GF3-Proc and enables a 
sophisticated level of automatic processing/checking to be carried out in the 
data path between the “record buffer” and a GF3-Proc I/O Unit. Once 
activated the “Automatic Processor” automatically performs the following 
tasks:-
a) Record sequence checking - checks that the sequence of records passing 

into (or out of) the “record buffer” conforms to the record sequencing 
rules of GF3.

b) Record content checking (may be switched off) - as each GF3 record is 
passed into (or out of) the “record buffer” checks are carried out on the 
data content and format of the record to ensure that it conforms to GF3 
specifications. The checks vary according to the record type.

c) “Next record type” field updating - as GF3 records are written from the 
“record buffer” on output, the “next record type” byte is automatically 
set by GF3-Proc.

d) Definition record analysis - see “Definition Record Analyser”.
e) Support for automatic cycle processing - see notes on “automatic cycle 

processing”.
Within the user program the “Automatic Processor” may only be activated 
on one user nominated input GF3-Proc I/O Unit and one user nominated 
output GF3-Proc I/O Unit. It operates on the input data path 
independently of its operation on the output data path, and vice versa.



READING GF3 FILES
W

RITING GF3 FILES
W

RITING GF3 FIXED FIELDS

CALL GFFLRD (ICNT) 
Read one or more GF3 Files

W
here ICNT specifies the number of GF3 files to be read from the 

Current Input Unit. Used mainly for positioning (e.g. to skip over the 
test file). If already part way through a file, the remainder of the file 
will be the first file to be read. As each file is read, each record in the 
file will be passed in turn through the “record buffer”.

READING GF3 RECORDS

CALL GFRCRD (ICNT) 
Read one or more GF3 Records

Moves ICNT records in turn into the “record buffer” from the 
Current Input Unit. Normally used with ICNT = 1 i.e. to read the 
next GF3 record into the “record buffer”. If an EOF mark is read the 
routine returns, even if ICNT records have not been read.

CALL GFRTGT (IRTY) 
Get the Record Type of the last record
read

Returns the record type IRTY (see table on this page) of the last GF3 
record read into the “record buffer” from the Current Input Unit. It 
aiso detects end of file marks.

READING GF3 FIXED FIELDS
The following 3 routines enable specified fields to be retrieved into the user 
program from the fixed format part of the GF3 record currently held in the 
“record buffer”. Each field is identified by the arguments IRTY, IFLD, 
ILIN (see facing page). The choice of routine depends on whether the user 
wants a floating point, integer or character string variable to be returned to 
his program - GF3-Proc performs any conversions that may be necessary.

CALL GFRFGT (IRTY,IFLD, 
Get floating point value from record field 

ILIN,FVAL)
Allowed to any numeric field - takes account of implied decimal 
points and returns field as a floating point value, FVAL.

CALL GFRIGT (IRTY,IFLD, 
Get integer value from record field 

ILIN,IVAL) 
"

Allowed to any integer field but ignores implied decimal points i.e. 
returns integer value, IVAL, ’as is’.

CALL GFRKGT (IRTY,IFLD, 
Get character (K) content of a record 

ILIN,KVAL) 
field

Allowed to any field and copies contents of field into character string, 
KVAL, which must be of sufficient length to receive the field.

It is recommended that latitude, longitude, date and time fields be retrieved 
into character strings i.e. using routine GFRKGT, rather than into numeric 
variables.

CALL GFFLCP (ICNT) 
Copy one or more GF3 Files

Copies ICNT files from the Current Input Unit, through the “record 
buffer”, and onto the Current Output Unit. If called part way through 
a file, the remainder of the file will be the first file to be copied. If a 
double EOF mark is read, the routine returns, even if ICNT files have 
not been copied.

CALL GFXFWT 
W

rite the GF3 Test (X) File
W

rites a complete test file with the requisite number of test records, 
followed by an EOF mark, onto the Current Output Unit.

CALL GFZFWT 
W

rite the GF3 Tape Terminator (Z) File
W

rites a complete file with a dummy file header record, end of tape 
record and two EOF marks, onto the Current Output Unit.

W
RITING GF3 RECORDS

CALL GFRCIN (IRTYJSEQ) 
Initialise the GF3 Record Buffer

Initialises the contents of the “record buffer” according to type of 
record IRTY (see table on this page) being created. The record 
identifier is set, together with the “line sequence” no on each line, 
starting at ISEQ (does not apply for “user-defined areas“). 
Remainder of record is filled with blanks except for the following 
fields:
IRTY = 1; format acronym, translation table and record size fields 

are set to appropriate entries
IRTY = 5; data cycle count and continuation flag are set to zero 
IRTY = 6; 

series count is 9’s filled and continuation flag set to ’0’
IRTY = 8

9’s fill in first line as appropriate

CALL GFRCVL (LERR) 
Validate GF3-Proc Record Buffer

Syntax checks the contents of the “record buffer” according to the 
type of record encountered. LERR is a logical variable returned as 
.TRUE, if errors are detected - otherwise returned as .FALSE. 
Routine may not be used to check definition records - this is carried 
out by the “Definition Record Analyser'*.

CALL GFRCWT 
W

rite a GF3 Record
W

rites contents of “record buffer” onto the Current Output Unit.

CALL GFRCCP (ICNT) 
Copy one or more GF3 Records

Reads ICNT records from the Current Input Unit, through the 
“record buffer”, and onto the Current Output Unit. If an EOF mark 
is read, the routine returns even if ICNT records have not been 
copied - an EOF mark is not written to the Current Output Unit.

CALL GFEFWT 
W

rite an End of File mark
W

rites an EOF mark onto the Current Output Unit.

The following 3 routines enables data values to be passed from the user 
program into specified fields in the fixed format part of the GF3 record 
being constructed in the “record buffer”. The field is specified by the 
arguments IRTY, IFLD, ILIN (see facing page). The choice of routine 
depends on whether the value is being passed over from a floating point, 
integer or character string variable.
CALL GFRFPT (IRTY,IFLD, 

Put floating point variable (FVAL) into 
ILIN,FVAL) 

record field
If field requires an integer value then the routine will round FVAL to 
nearest integer. If field requires an integer with implied decimal 
places, the value is scaled before rounding.

CALL GFRIPT (IRTY,IFLD, 
Put integer value (IVAL) Into record 

ILIN,IVAL) 
field '

Stores IVAL into an integer field ’as is’ with no account taken of 
implied decimal places. Recommend use of GFRFPT if implied 
decimal point is present.

CALL GFRKPT (IRTY,IFLD, 
Put character string (KVAL) into a 

ILIN,KVAL) 
record field

May be used for placing data in any field - KVAL must contain 
sufficient characters to fill the field, including padding blanks if 
necessary.

It is recommended that latitude, longitude, date and time fields should be 
passed over as character strings i.e. using routine GFRKPT.

CALL GFRKST (IRTY,IFLD, 
Set record field to a specified character 

ILIN,KVAL) 
(K)

Ali characters in the field are set to the single character contained in 
KVAL - e.g. to 9’s fill the field, KVAL = ’9’.

CODE (IRTY) FOR GF3 RECORD TYPE

IRTY
Record Type

-1
test record

0
plain language record

1
tape header record

3
series header definition record

4
data cycle definition record

5
file header record

6
series header record

7
data cycle record

8
end of tape record

9
end of file (EOF mark)

IO
end of data (double EOF)

11
record type not recognised

(codes -1, 9, IO, 11 are special codes used only as
values returned by GF3-Proc)



IDENTIFIERS OF GF3 FIXED FIELDS
IRTY IFLD ILIN

line
chars

FILE HEADER RECORD FIELDS
Set IRTY to ’6’ for series header record fields

Individua!  fields in the fixed format areas of GF3 records are identified to
GF3-Proc by a sequence of three arguments IRTY, IFLD, ILIN. These are

5
1

0
1

3-11
Project name (A9)

supplied by the user program when interrogating the contents of the 
“record buffer”, or in constructing a record in the “record buffer”.

5
2

0
1

12-13
Country code - data source (A2)

5
3

0
1

14
Institution code table flag (AI)

IRTY (see tableon facing paee) contains the record identifier and IFLD
Institution code - data source (A3)

(see below) specifies the field within that record type. ILIN is normally set
5

4
0

1
15-17

to zero, unless the possibility exists for the specified field to occur on a 
number of different fines, in which case ILIN is set to the “line sequence

5
5

0
1

18-35
Name of country - data source (A18)

no” (in place of the 
entered on the following table).

5
6

0
1

36-53
Name of institution - data source (A18)

The following table covers ali fields included in the fixed format areas of
5

7
0

1
54-59 Date created (YYMMDD)

GF3 records. It should be noted that a number of fields are handled 
automatically by GF3-Proc and need not be explicitly read/written by the

5
8

0
1

60-65
Time created (HHMMSS)

user. This applies particularly to the definition records.
5

9
0

1
66-77

Date centre ID for file/series (A12)
IRTY IFLD ILIN Une

chars 
GENERAL PURPOSE FIELDS

(Primary platform/Secondary platform)
The following 4 fields may occur in many

5
10/18

0
2/3

2-3
Code for platform type (A2)

different types of GF3 record - however they 
are always identified with IRTY set to ’0’

5
11/19

0
2/3

4-11
Name of platform type (A8)

0 
1

*
*

1 
Record identifier (11)

5
12/20

0
in

12
Platform code table flag (AI)

0 
2

0
1

2 
Next record identifier (11)

5
13/21

0
2/3

13-21
Specific platform code (A9)

0 
4

*
*

78-80 Line sequence no (13)
5

14/22
0

2/3
22-43

Platform name (A22)

0 
3

*
*

3-77 One fine of plain language comments or
S

15/23
0

2/3
44-53

Originator’s cruise (etc.) identifier (A10)
description (A75) - as may appear in tape

5
18/24

0
2n

54-65
Cruise (etc.) start date/time

header, file header, end of tape or plain 
language records

(YYYYMMDDHHMM)

chars 
TAPE HEADER RECORD FIELDS

5
17/25

0
in

66-77
Cruise (etc.) end date/time

IRTY IFLD ILIN line
(YYYYMMDDHHMM)

i 
1

0
1

7-8 Country code - data supplier (A2)
(Space and time ranges for file/series)

1 
2

0
1

9 
Institution code table flag (AI)

5
26

0
4

2-15
Start date/time (YYYYMMDDHHMMSS)

1 
3

0
1

10-12 Institution code - data supplier (A3)
5

27
0

4
16-29

End date/time (YYYYMMDDHHMMSS)
1 

4
0

1
13-24 Tape (volume) identifier (A12)

5
28

0
4

30-36
Fixed latitude DDMMHH(N/S)

1 
5

0
1

30-41 Identifier of preceding tape (A12)
5

29
0

4
37-44

Fixed longitude DDDMMHH(E/W
)

1 
6

0
1

42-59 Name of country - data supplier (A18)
5

30
0

4
45-47

Positional error/range (0.1 n.miles -13)
1 

7
0

1
60-77 Name of institution - data supplier (A18)

5
31

0
4

48-53
Sea floor depth (0.1m -16)

1 
8

0
2

2-7 Date written (YYMMDD)
5

32
0

4
54-59Fixed depth below sea level (0.1m -16)

1 
9

0
2

8-13 Date first written (YYMMDD)
5

33
0

4
60-65

fixed depth below sea floor (0.1m -16)
1 

IO
0

2
14-19 Date received (YYMMDD)

5
34

0
4

66-71
Min. depth below sea level (0.1m -16)

1 
11

0
2

20-25 Date first received (YYMMDD)
5

35
0

4
72-77

Max. depth below sea level (0.1m -16)
1 

12
0

2
26-37 Type of computer (A12)

5
36

0
5

2
Usage flag for following latitude and

1 
13

0
2

38-42 Format acronym (A5)
longitude fields (AI)

1 
14

0
3

2-53 Translation table (A52)
5

37
0

5
3-9

Start/Southern latitude DDMMHH(N/S)

1 
IS

0
3

74-77 Record size (14)
5

38
0

5
10-17

Start/Western longitude DDDMMHH(E/W
)

5
39

0
5 

18-24 End/Northem latitude DDMMHH(N/S)
5

40
0

5 
25-32 End/Eastern longitude DDDMMHH(E/W

)
5

41
0

5 
33-35 Ocean/sea area code (A3)

5
42

0
5 

38 
Validation flag (AI)

5
43

0
5 

39-50 Originator’s ID for füe/series (A12)
5

44
0

5 
51-56 Number of series in file (16)

5
45

0
5 

63-66 Number of data cycles in this record (14)
5

46
0

5 
77 

Series header continuation flag (AI)
IRTY IFLD ILIN line chars 

DATA CYCLE RECORD FIELDS
(normally handled automatically by GF3-Proc)

7
1

0
- 

3-6 No. of data cycles in record (14)
7

2
0

- 
7-15 No. of preceding data cycles (19)

7
3

0
- 

16-20 Data cycle record count (15)
IRTY IFLD ILIN line chars 

END OF TAPE RECORD FIELDS
8

1
0

1 
13-24 Identifier of following tape (A12)

Series Header Definition Record Fields 
IRTY IFLD ILIN line chars 

(Set IRTY to '4* for Data Cycle
Definition Record fields)

(normally handled automatically by GF3-Proc)
3

1
0

1 
3-5 No. of header parameters (13)

3
2

0
1 

6-8 No. of data cycle parameters (13)
3

3
0

1 
9 

Format mode (AI)
3

4
1/2/3 1/2/3 18-77 Part 2 (or 3 or 4) of Fortran format 

description (A60)
3

5
*

* 
3-10 Parameter code (A8)

3
6

*
* 

11-13 Parameter discriminator (13)
3

7
*

* 
14-40 Parameter name and units (A27)

3
8

*
* 

41 
Storage mode (AI)

3
9

*
* 

42-45 Field length (14)
3

IO
*

* 
46-48 Dummy value code (13)

3
11

*
* 

49-56 Scale 1 (F8.0)
3

12
*

* 
57-64 Scale 2 (F8.0)

3
13

•
* 

65 
Attribute flag (AI)

3
14

*
* 

67-74 Secondary parameter code (A8)
3

15
*

* 
75-77 Secondary parameter discriminator (13)



READING AND W
RITING DATA IN THE 

“USER-DEFINED AREAS” OF GF3 RECORDS
Facilities are provided within GF3-Proc’s “Automatic Processor” to enable 
the user to read or write data in the “user-defined areas” of GF3 records in 
a simple and automated fashion. The two key features that support this are 
the “Definition Record Analyser” which automatically decodes and 
assimilates the information in the GF3 definition records, and the 
“Automatic Cycle Processing Routines” that map data to and from the 
“user-defined areas” and the user’s Fortran program. The “Definition 
Record Analyser” is operative once the “Automatic Processor” is switched 
on for the relevant GF3-Proc I/O Unit - this must be done before the first 
definition record is passed through the “record buffer”.

GF3-PROC “DEFINITION RECORD ANALYSER”
If the “Automatic Processor” is switched on (see routine GFUNST, 
IOPT=2) then, as definition records are moved through the “record 
buffer” by the GF3-Proc I/O Unit, either on input or output, they are 
automatically picked up by a “definition record analyser” which subjects 
them to a rigorous analysis and validation, and converts them into a 
computationally convenient format for internal storage within GF3-Proc.

The analysed output of each definition record(s) contains ali the relevant 
parameter mapping information necessary for reading (or writing) data 
from (or to) the “user-defined area” to which it refers, including parameter 
codes, discriminators, dummy value, format type and scaling factors 
associated with each parameter.

Reserved space is maintained within GF3-Proc for the analysed output of 
ten definition records (including their continuation records, if any) - five 
for input and five for output. The five correspond to the data cycle 
definition records at tape, file and series level, and series header definition 
records at tape and file level.

As definition records are passed through the “record buffer”, the 
“definition record analyser” automatically determines whether they are at 
tape, file or series level; whether they are series header definition records or 
data cycle definition records; whether they are for reading or writing GF3 
records; and stores them in the appropriate location in its analysed 
definition record storage area. Entries for the file and series level definition 
records are deleted automatically when the file or series to which they refer 
has completely passed through the “record buffer”.

Ali the user program has to do to process definition records for reading (or 
writing) data in the “user-defined areas” of GF3 records is simply to pass 
the definition record through the “record buffer” (either by reading whole 
files or individual records) with the “Automatic Processor” switched on - 
GF3-Proc does the rest.

AUTOM
ATIC CYCLE PROCESSING

Data may be read from, or written into, the “user-defined areas” of the 
series header record or data cycle records using GF3-Proc’s Automatic 
Cycle Processing routines. Information on the formatting and content of 
these areas is automatically picked up by GF3-Proc as the definition 
records pass through the “record buffer”.

Data in the “user-defined areas” of GF3 records can be captured, or 
constructed, by the user through a special “cycle buffer” maintained by 
GF3-Proc. At any given time the “cycle buffer” will contain the header 
parameters of the “user-defined area” (referred to as the header cycle) or 
the current data cycle.

Cycle handling routines enable the user to read in the next cycle into the 
“cycle buffer” or to write the cycle buffer to the GF3 output. The mapping 
of the cycles to and from the “user-defined area” is handled automatically 
by GF3-Proc, i.e. the user can read or write data from/to “user-defined 
areas” without needing to be concerned about GF3 record boundaries or 
the reading or writing of GF3 records.

Once a cycle has been read into the “cycle buffer” a routine is available for 
the user program to detect whether it is a header cycle or a data cycle. 
Parameter handling routines enable the values of specified parameters to 
be read out of the cycle and into the user program - the parameters may be 
identified either by their GF3 parameter code or by the sequential position 
of the parameter in the cycle. As the parameter’s value is passed to the user 
program, GF3-Proc automatically applies the scaling factors appropriate to 
the parameter (as specified in the definition record) and converts it into the 
format requested by the user program. It aiso returns a simple on/off flag to 
indicate whether the parameter value is present or absent (i.e. set to its 
dummy value).

Analogous routines are available to enable the user program to write 
parameter values into the “cycle buffer”. GF3-Proc informs the user 
program whether it is expecting a header cycle 11 a data cycle, and 
automatically applies the scaling factors appropriate to each parameter 
value as well as converting numeric values into their appropriate format, i.e. 
floating point or integer. If, in writing cycles, a parameter value is missing, 
the user simply omits to pass a value for that parameter to the “cycle 
buffer” - GF3-Proc then automatically inserts the appropriate dummy 
value for the parameter.

In order to initiate “automatic cycle processing” on a particular series of 
cycles, the user must issue a cali to open “automatic cycle reading” or 
“automatic cycle writing”. This is to enable GF3-Proc to select the 
appropriate definition record from its internal storage. Note that 
“automatic cycle processing” may only be open on one GF3-Proc I/O Unit 
at any given time, and must be closed at the end of each series of cycles.

Technical note: The “cycle buffer” is only a logical concept and, unlike the 
“record buffer” is not an actual storage array within GF3-Proc. I/O 
operations on the “cycle buffer” simply involve the manipulation of pointers 
and storage associated with the “record buffer”. However, for ease of 
understanding, the user may view the “cycle buffer” as a real entity with its 
own storage array.

PARAM
ETER FIELD IDENTIFIER IFLD*

AND GF3 PARAM
ETER CODES

In the 6 routines that support the reading or writing of parameter 
values from or to the “cycle buffer” the individual parameters are 
identified in the argument IFLD. This is simply the position of 
the parameter in the ordering specified in the definition record. 
Please note that this is not necessarily the same as the position of 
the parameter within the cycle. Thus the n’th parameter in a 
header cycle will have a value for IFLD of ’n’ - however for the 
n’th parameter in a data cycle, IFLD = n + x, where x = the 
number of preceding header parameters. Conversions between 
the parameter field identifier and the GF3 parameter code are 
provided by the following routines which access the definition 
record held in GF3-Proc’s internal storage.

CALL GFCCGT (IFLD,KPRM, Get GF3 parameter codes for a 
IDSC,KSPRM,ISDSC) given 

parameter 
field 

identifier IFLD
Returns KPRM = CHARACTER*8 variable containing 

the Parameter Code
IDSC 

= Parameter discriminator
KSPRM = CHARACTER*8 variable containing 

the Secondary Parameter Code 
ISDSC = Secondary parameter discriminator

CALL GFCCLK (IFLD,KPRM, Get parameter field identifier 
IDSC»KSPRM,ISDSC) 

IFLD from GF3 parameter 
code information

Inverse routine to GFCCGT which returns the “parameter 
field identifier” when supplied with a full set of GF3 codes 
defining the parameter.

CALL GFCNGT (IFLD,KPRM, Get parameter field Identifier 
IDSC) 

iFLD for a given parameter
code

A simpler form of GFCCLK returning the “parameter field 
identifier” given only the GF3 Parameter Code KPRM and 
the parameter discriminator IDSC.

The above routines may only be called when cycle reading or 
writing has been opened and before it is closed.



GF3 CYCLE READING
“Automatic cycle reading” from the “user-defined area” of a GF3 record 
can only be initiated if that record is already in the GF3-Proc “record 
buffer” or is the next record to be read

CALL GFCROP (IRTY) 
Open automatlc^ydej^ading

Selects appropriate definition record from internal storage. Checks 
that a record of type IRTY (6 for series header record or 7 for data 
cycle record) is in the “record buffer” - if not then it reads the next 
record into the “record buffer” and again checks its type.

CALL GFCYRD (ICNT) 
Read one or more GF3 cocles

Reads ICNT cycles from the “record buffer” into the “cycle buffer” - 
the last cycle read remains in the “cycle buffer” for user-access. Used 
mainly to read in next cycle with ICNT set to ’1’. If record is 
exhausted then it automatically reads the next record into the “record 
buffer” and continues user’s request for cycles.

CALL GFCTGT (ICTY) 
Get type of lastcycle read

Returns the type of cycle last read into the “cycle buffer”. ICTY = 1 
for header cycle; = 2 for data cycle; = 3 for end of data.

CALL GFCRCL 
Close automatic cycle reading

Must be called when the user has finished reading and interrogating a 
given series of cycles.

READING PARAM
ETER VALUES FROM

 CYCLE BUFFER
The following 3 routines enable specified parameter values to be retrieved 
from the cycle currently held in the “cycle buffer”. The parameter is 
specified in the argument IFLD (see facing page). The choice of routine 
depends on whether the user wants a floating point, integer or character 
string variable returned to his program.

CALL GFCFGT (IFLD,FVAL, 
Get numeric parameter from cycle as 

LADY) 
floating point variable

If missing data is indicated (i.e. parameter set to its dummy value) the 
logical variable LADV is returned as .TRUE. Otherwise the 
parameter value is scaled according to the scaling factors, Scale 1 (*) 
and Scale 2 ( + ), specified in the definition record, and returned in 
the variable FVAL. May be used with any numeric parameter.

CALL GFCIGT (IFLD,IVAL, 
Get integer parameter from cycle as 

LADV) 
integer variable

If missing data is indicated the logical variable LADV is returned as 
.TRUE. Otherwise the integer value of the parameter is returned in 
the variable IVAL, but scaling factors are ignored. Scaled integers 
should be retrieved using routine GFCFGT.

CALL GFCKGT (IFLD,KVAL) Get parameter from cycle into character 
string KVAL

Returns the contents of the parameter field ’as is’ - ignores scaling 
factors and does not check for missing data. No. of characters 
returned depends on field width specified in the definition record.

GF3 CYCLE W
RITING

Before writing cycles in a series header record the fixed format part of the 
record (1st 400 chars.) must first be set up in the “record buffer”. Before 
writing cycles in a data cycle record ensure that the previous GF3 record set 
up in the “record buffer” has been written out.

CALL GFCW
OP (IRTY) 

Open automatic cycle writing
Selects appropriate definition record from internal storage. If IRTY 
= 6 it checks that a series header record is in the “record buffer”. If 
ERTY * 7 it sets up a skeleton data cycle record in the “record 
buffer”.

CALL GFCXGT (ICTY) 
Get type of next cycle to be written

Returns the type of cycle that GF3-Proc is next expecting to receive. 
ICTY = 1 for a header cycle; * 2 for a data cycle.

CALL GFCYWT 
W

rite a GF3 cycle from the “cycle buffer”
to the “record buffer”

W
rites the cycle into the “record buffer” - Mien full it writes out the 

record from the “record buffer” and initializes the next record in 
which cycles are to be written. Any parameters not given values will 
be set to their dummy values before the cycle is written.

CALL GFCCFL 
Flush cycle record

Instructs GF3-Proc to write out the record currently being prepared 
in the “record buffer” and to start writing cycles in the next record. 
Used when the value of a header parameter changes and the user 
therefore wishes to create a new header cycle.

CALL GFCWCL 
Close automatic cycle writing

Must be called when the user has finished writing a given series of 
cycles. It ensures that any data remaining in the “record buffer” are 
written out to the Current Output Unit.

W
RITING PARAM

ETER VALUES INTO CYCLE BUFFER
The following 3 routines enable data values to be passed from the user 
program into the parameter fields of the cycle being constructed in the 
“cycle buffer”. The parameter is identified in the argument IFLD (see 
facing page). The choice of routine depends on whether the value is being 
passed over from a floating point, integer or character string variable.

CALL GFCFPT (IFLD,FVAL) 
Put floating point value FVAL into a 
numeric parameter Geld in a cycle

Routine inversely applies the scaling factors Scale 1 (*) and Scale 2 
(+) as appropriate, and rounds the value to integer form or to the 
precision specified in the format statement in the definition record, 
depending on how the parameter is defined.

CALL GFCIPT (IFLD,IVAL) 
Put integer value IVAL into an integer
parameter Geld io a cycle

Stores the integer value ’as is’ without inverse scaling. Values 
requiring scaling should be copied to a floating point variable and 
stored using routine GFCFPT.

CALL GFCKPT (IFLD,KVAL) Put character string KVAL into a 
parameter Geld in a cycle

Copies the character string into space allocated for the parameter in 
the cycle - sufficient characters must be provided to fill the field, 
including padding blanks if necessary. Note that, for numeric 
parameters, it does not apply any inverse scaling.

INFORM
ATION FROM

 THE DEFINITION RECORD
Once automatic cycle reading (or writing) has been opened, and GF3-Proc 
has established a link with the appropriate definition record(s) held in its 
internal store, two routines are available to look up details in the definition 
record(s). Most GF3-Proc applications will not require this information.

CALL GFCSGT (IHCT,IDCT,ICPR) Get cycle sizes
Provides information about the cycles in the “user defined area” thus:. 
IHCT 

» no. of header parameters 
IDCT 

= no. of data cycle parameters
ICPR 

= maximum no. of data cycles which may be stored in the 
“user-defined area” of each record

CALLGFCFLD (IFLD,ITYP, 
Get parameter storage details for a given 

IWID,FSCA,FSCB) 
parameter

Given the “parameter field identifier”, IFLD, the routine returns:
ITYP 

= storage 
mode 

for 
the 

parameter 
(0 = integer, 1 = floating point, 2 — character string)

IW
ID 

= field width (in characters) allocated for parameter value 
FSCA 

= Scale 1(*)
FSCB 

= Scale 2 ( + )



GF3-PROC ERROR REPORTING

The GF3-Proc software includes 180 error traps designed to ensure that 
tapes read or written using the package conform to the GF3 specification, 
and to provide an inbuilt protection against user misuse, or code 
corruption, of the package. If any of these are triggered, an appropriate 
message is automatically generated on the GF3-Proc Error Report file in 
the format*** GF3-PROC MESSAGE mm mui 

SORRY, ttt...

where 
mm 
nnn 
ttt...

= message type (see below)
— message number
= abbreviated text for message type mm

Using the message number nnn as reference, the user is able to obtain 
details on the nature and likely cause of the error from the GF3-Proc 
Reference Manual.

There are nine types of error message, each corresponding to one of the 
nine different levels of error checking carried out by GF3-Proc:

Type
01 

VALUE NOT ACCEPTABLE: user supplied argument to a 
GF3-Proc User Interface routine is in error.

02 
CALL NOT ACCEPTABLE: a GF3-Proc User Interface 
routine has been called in invalid circumstances.

03 
CHECK HAS FAILED: syntax error detected in a field in the 
fixed format area of a plain language or tape/file/series header 
record.

04 
RECORD NOT IN SEQUENCE: a GF3 record has been 
read/written in a sequence not permitted by the rules of GF3.

05 
DEFINITION SCAN FAILED: the “Definition Record 
Analyser” has encountered a formatting error in a GF3 
definition record.

06 
FIELD CONVERSION FAILED: error in converting a data 
value into a floating point, integer or character variable.

07 
NOT ENOUGH INTERNAL STORE: an internal GF3-Proc 
array 

is 
under-dimensioned 

for 
the 

user’s 
particular 

application.
08 

INTERNAL ERROR: an internal check within GF3-Proc 
itself has failed - the user should consult BODO

09 
SITE SPECIFIC ERROR: error unique to a particular 
GF3-Proc installation. Most installations do not include this 
kind of check.

LIST OF USER INTERFACE ROUTINE S
GFPROC 

Initialise GF3-Proc processing

GFCCFL

GFCCGT

GFCCLK

GFCFGT

GFCFLD

GFCFPT

GFCIGT

GFCIPT

GFCKGT

GFCKPT

GFCNGT

GFCRCL

GFCROP

GFCSGT

GFCTGT

GFCWCL

GFCWOP

GFCXGT

GFCYRD

GFCYWT

GFEFWT

GFFLCP

GFFLRD

GFPCLK

(sorted alphabetically by routine name)

Flush cycle record

Get parameter codes for a given parameter identifier

Get parameter identifier from parameter code information

Get numeric parameter from cycle as floating point variable

Get parameter storage details for a given parameter field

Put floating point value into a numeric parameter field

Get integer parameter from cycle as integer variable

Put integer value into an integer parameter field

Get parameter from cycle in character form

Put characters into a parameter field

Get parameter identifier for a given parameter code

Close automatic cycle reading

Open automatic cycle reading

Get cycle sizes

Get type oflast cycle read

Close automatic cycle writing

Open automatic cycle writing

Get type of next cycle to be written

Read one or more GF3 cycles

W
rite a GF3 cycle

W
rite an End of File mark

Copy one or more GF3 Files

Read one or more GF3 Files

Look at GF3-Proc Package Control Option value

GFRCCP

GFRCIN

GFRCRD

GFRCVL

GFRCWT

GFRFGT

GFRFPT

GFRIGT

GFRIPT

GFRKGT

GFRKPT

GFRKST

GFRTGT

GFUNCR

GFUNLK

GFUNRL

GFUNRW

GFUNST

GFXFWT

GFZFWT

Copy  one or more GF3 Records 

Initialise Ule GF3 Record Buffer 

Read one or more GF3 Records 

Validate GF3-Proc Record Buffer 

W
rite a GF3 Record

Get floating point value from record field

Put floating point variable into record field

Get integer value from record field

Put integer value into record field

Get character content of a record field

Put character information into a record field

Set record field to a specified character

Get the Record Type of the last record read

Create a new GF3-Proc I/O Unit

Look at GF3-Proc I/O Unit Option value

Release a GF3-Proc I/O Unit

Rewind a GF3-Proc I/O Unit

Set GF3-Proc I/O Unit Option value

W
rite the GF3 Test File

W
rite the GF3 Tape Terminator File

GFPCST
Set GF3-Proc Package Control Option to a given value


	Contents



