

Intergovernmental 4 ^
Océanographie Manuals and Guides No. I /
Commission

@ A GENERAL FORMATTING SYSTEM

FOR GEO-REFERENCED DATA

VOLUME 5

REFERENCE MANUAL FOR THE

GF3-PR0C SOFTWARE

1992 Unesco

SC/92/WS/16

FOREWORD

The General Format 3 (GF3) system was developed by the IOC Committee on International
Océanographie Data and Information Data Exchange (IODE) as a generalised formatting
system for the exchange and archival of data within the international océanographie
community. It w a s presented to the Ninth Session of the Committee (New York, 15-19 January
1979) which recommended that G F 3 "be adopted for general use In IntematlonEil
océanographie data exchange" and "urged M e m b e r States to utilise G F 3 as the standard
International exchange format". This recommendation was subsequently endorsed by the IOC
Executive Council at its Eleventh Session (Mexico City, 1-3 March, 1979).

The G F 3 format is supported by a comprehensive software package, GF3-Proc, which the IOC
Is prepared to m a k e freely available on magnetic tape to all organisations or laboratories
Involved In the International collection, management or exchange of océanographie and other
earth sciences data. Technical support for the distribution. Installation and maintenance of
GF3-Proc is provided, on behalf of the IOC, by the British Océanographie Data Centre (BODC).
Requests for copies of GF3-Proc should be forwarded to B O D C at the address given overleaf
and should Include a clear description of the computer system on which it Is to be Installed,
Including the manufacturer, m a k e and model number of the machine, the n a m e and version
of the operating system and an identification of the Fortran compiler. A small charge m a y be
m a d e to cover the cost of the tape and Its documentation.

The use and development of the G F 3 system is kept under review by the IOC Group of Experts
on Technical Aspects of Data Exchange.

Support services In the use of G F 3 are provided by the Service Hydrographique of the
International Council for the Exploration of the Sea (ICES), acting as the Responsible National
Océanographie Data Centre for Formats, R N O D C (Formats). The ICES Service Hydrographique
Is assisted In this task by the British Océanographie Data Centre which provides technical
advice and guidance on the use of G F 3 and Its supporting software.

The R N O D C (Formats) operates under the following Terms of Reference:

I) To act as an archive centre for International marine environmental data formats,
maintaining a full set of documentation on all such formats.

II) To act as an archive centre for the code tables for G F 3 and the code tables for all other
International océanographie archival formats, and for external code tables (e.g. taxonomlc
codes, chemical substances codes, etc), maintaining references to all such code tables.

ill) To manage the expansion of the existing G F 3 parameter code table as necessary under
the guidance of the IOC Committee on International Océanographie Data and Information
Exchange (through Its Group of Experts on Technical Aspects of Data Exchange), and to
provide a focal point to which user requirements for new parameter codes m a y be directed.

Iv) To maintain user aids for G F 3 , Including a programme library for the processing of G F 3 ,
guidance notes and user guides, documentation of standcird and experimental subsets of
G F 3 , and sample data tapes of G F 3 subsets.

v) To function as a centre for services to other centres in IOC and ICES M e m b e r States In
such G F 3 matters as responses to requests for information about, or copies of, Items In
1) to Iv) above.

vi) To prepare a report to the IOC Committee on I O D E , together with a Newsletter for
distribution to National Coordinators for I O D E , National Océanographie Data Centres and
other Interested parties such as W M O , E C O R , S C O R , highlighting new developments In
G F 3 and Including an updated inventory of the documents, programmes, tapes, formats
and code tables available.

vil) T o w o r k closely with the G r o u p of Experts o n Technical Aspects of D a t a E x c h a n g e to
ensure the provision of expert knowledge o n formats to other centres Including World Da ta
Centres-A a n d - B (all disciplines) and subsidiary bodies of W M O , I O C a n d other
international organisations a n d in the promotion of G F 3 as a n exchange format. T h e
provision of expert knowledge will be ensured in fields covering:

a) guidance in the uses of G F 3 ;

b) assistance to developing countries, including the development of national formats
compatible with G F 3 ;

c) assistance to developing data centres and countries, in collaboration with other
R N O D C S , in converting data into G F 3 .

Enquiries concerning these services should be addressed to:

R N O D C (Formats),
ICES Service Hydrographique,
Palaegade 2-4,
DK-1261 Copenhagen K,
D E N M A R K .

Requests for technical advice and guidance on the use of GF3 and GF3-Proc should be
addressed to:

British Océanographie Data Centre,
Proudman Océanographie Laboratory,
Bldston Observatory,
Birkenhead, Merseyside, L43 7RA
UNITED K I N G D O M .

The documentation for the GF3 system is published in IOC Manuals and Guides No. 17 in six
separate volumes under the title 'GF3 - A General Formatting System for Geo-Referenced
Data'.

Volume 1 : 'Introductory Guide to the GF3 Formatting System' is intended to familiarise
the new user with the purpose and scope of the GF3 system without overburdening him
with technical detail. A n introduction is provided, illustrated by examples, both to the GF3
format and to its supporting software package GF3-Proc.

Volume 2 : 'Technical Description of the GF3 Format and Code Tables' contains a
detailed technical specification of the G F 3 format a n d its associated code tables.

V o l u m e 3 : 'Standard Subsets of the G F 3 F o r m a t ' contains a description of standard
subsets of the G F 3 format tailored to a range of different types of data. It also serves as
a set of w o r k e d - u p examples illustrating h o w the G F 3 format m a y be used.

V o l u m e 4 : 'Users' G u i d e to the G F 3 - P r o c Software' provides a n overview of GF3-P roc
explaining w h a t it does, h o w it w o r k s and h o w it is used. It also provides a n introduction
to the subroutine calls in the user interface to the package.

V o l u m e 5 (this v o l u m e) : 'Reference M a n u a l for the G F 3 - P r o c Software' contains a detailed
specification of each G F 3 - P r o c subroutine callable from the user's p rogram a n d provides
detailed Instruction o n h o w a n d w h e n these routines m a y be used.

V o l u m e 6 : ' Q u i c k Reference Sheets for G F 3 a n d G F 3 - P r o c ' contains quick a n d easy
reference sheets to the G F 3 format a n d the GF3-P roc software.

11 -

IMPORTANT NOTE TO PROGRAMMERS

GF3-Proc Is a suite of Fortran subroutines which provides the Fortran programmer with a
powerful yet easy to use software interface for reading and writing data in GF3 format. For an
Introduction to the software please refer to Volume 4 ' 'User's Guide to the GF3-Proc software'.

All subroutines and labelled common areas in GF3-Proc are named using the convention
GFxxxx (x is alphanumeric not alphabetic). This convention applies not only to the routines
of the GF3-Proc User Interface but also to all GF3-Proc's internal routines. So as to avoid
duplicate names, the user is advised to avoid using this naming convention for any
subroutines or labelled common areas in the application program.

No use is made of blank common within the package so this may be freely used in applications
programs. O n some smaller systems It is possible that labelled common areas are considered
volatile (i.e. are undefined after execution of a R E T U R N statement) unless declared in the
mainline program. In such cases, a file containing the C O M M O N declarations for the complete
package will be supplied with the software.

Two versions of GF3-Proc are currently maintained by the British Océanographie Data Centre
(BODO on behalf of IOC, viz. Level 3 and Level 4:

Level 3 is a Fortran 66 version designed to run on machines which use Internal character
codes other than ASCII or EBCDIC or do not have a Fortran 77 compiler.

Level 4 is a Fortran 77 version designed to run on machines which have either ASCII or
EBCDIC internal character code and a Fortran 77 compiler. The software assumes at
least 6 significant figure floating point precision and at least 32 bits assigned to variables
declared as INTEGER. Level 4 is both more compact and more elTlcient than Level 3 and
It Is therefore strongly recommended that Level 4 be installed on machines that are
capable of running it.

This manual covers GF3-Proc Level 4 (i.e. all versions of GF3-Proc designated 4.n). It must not
be used as documentation for GF3-Proc Level 3. Whilst the User-Interface Is broadly similar
for both versions of GF3-Proc there are a number of small but significant differences of detail -
these relate primarily to the different approaches available for handling character variables
in Fortran 66 and Fortran 77. A separate Reference Manual for GF3-Proc Level 3 is available
from B O D C .

ACKNOWLEDGEMENTS

The design, coding and testing of the GF3-Proc software is the result of the combined efforts
of two computer experts, Roy K . Lowiy and Trevor Sankey of the British Océanographie Data
Centre. It involved approximately 15 man-months of effort over a two-year period between
1983 cmd 1985. The work was carried out under the direction of MelrionT. Jones and In close
collaboration with the IODE Group of Experts on Technical Aspects of Data Exchange.

- HI

CONTENTS

1. INITIALISING T H E PACIÍAGE 1

1.1 Introduction 1

1.2 Routine GFPROC 1

2. CONTROLLING THE PACKAGE 2

2.1 Introduction 2

2.2 Routine GFPCST 2

2.3 Routine GFPCLK 2

2.4 Package Control Option Definitions 3

2.4.1 Report Unit Number (RPU) 3
2.4.2 Character Argument Format (KFT) 3
2.4.3 Key of Current Input Unit (KRD) 4
2.4.4 Key of Current Output Unit (KWT) 4
2.4.5 Key of Current Unit (KST) 4
2.4.6 Stored Parameter Code Length (PNL) 4
2.4.7 User Control of Data Errors Flag (DER) 5
2.4.8 Control of Output Suppression During Automatic Cycle Writing (OSP) 5
2.4.9 Undefined Cycle Parameters Check (UCP) 5
2.4.10 Cycle Parameter Scaling (CPS) 6

2.5 Unit Keys and Current Units 6

3. GF3-PROC INPUT-OUTPUT UNITS 7

3.1 Introduction .-. 7

3.2 Routine G F U N C R 7

3.3 Routine G F U N R L 8

3.4 Routine G F U N R W 8

3.5 Routine G F U N S T 9

3.6 Routine G F U N L K 10

3.7 Unit Option Definitions 10

3.7.1 Unit Type (UTY) 11
3.7.2 Automatic Processing Flag (AUT) 11
3.7.3 Record Syntax Checking Flag (RCK) 13
3.7.4 Undefined 13
3.7.5 Undefined 13
3.7.6 Format Type (FMT) 13

- IV

3.7.7 Fortran Logical Unit Number (UNO) 14
3.7.8 Tape Density (DEN) 15
3.7.9 Character Code (CDE) 15
3.7.10 Unit Step Opüon (STP) 16
3.7.11 Record Spacing (SPC) 16

4. GF3 FILE HANDLING ROUTINES 17

4.1 Introduction 17

4.2 Routine G F F L R D 17

4.3 Routine GFFLCP 18

4.4 Routine G F E F W T 18

4.5 Routine G F X F W T 18

4.6 Routine G F Z F W T 19

5. GF3 RECORD HANDLING ROUTINES 20

5.1 Introduction 20

5.2 Routine G F R C R D 20

5.3 Routine G F R T G T 21

5.4 Routine G F R C W T 21

5.5 Routine G F R C C P 22

5.6 Routine GFRCIN 22

5.7 Routine G F R C V L 24

6. GF3 FIXED FIELD HANDLING ROUTINES 29

6.1 Introduction 29

6.2 Routine G F R F G T 29

6.3 Routine GFRFPT 30

6.4 Routine GFRIGT 30

6.5 Routine GFRIPT 31

6.6 Routine G F R K G T 31

6.7 Routine GFRKPT 32

6.8 Routine GFRKST 32

- V -

7. GF3 CYCLE HANDLING ROUTINES 38

7.1 Introduction 38

7.2 Automatic Cycle Reading 38
7.2.1 Outline 38
7.2.2 RouUne G F C R O P 39
7.2.3 Routine G F C Y R D 40
7.2.4 Routine G F C T G T 40
7.2.5 Routine G F C R C L 40

7.3 Automatic Cycle Writing 41
7.3.1 Outline 41
7.3.2 Routine G F C W O P 41
7.3.3 Routine G F C X G T 42
7.3.4 Routine G F C Y W T 42
7.3.5 Routine G F C W C L 43
7.3.6 Routine GFCCFL 43

7.4 Obtaining Information About The GF3 Cycles 44
7.4.1 Outline 44
7.4.2 Routine G F C S G T 44

7.5 Additional Notes For Maintenance Programmers 45

8. GF3 P A R A M E T E R HANDLING ROUTINES 46

8.1 Getting Parameter Values From The Cycle Buffer 46
8.1.1 Outline 46
8.1.2 Routine GFCFGT 46
8.1.3 Routine GFCIGT 47
8.1.4 Routine GFCKGT 47

8.2 Putting Parameter Values into the Cycle Buffer 48
8.2.1 Outline 48
8.2.2 Routine GFÇFPT 48
8.2.3 Routine GFCIPT 49
8.2.4 Routine GFCKPT 49

8.3 Obtaining Information About The Parameters 50
8.3.1 Outline 50
8.3.2 Routine G F C C G T 50
8.3.3 Routine G F C C L K 51
8.3.4 Routine G F C P G T 52
8.3.5 Routine G F C N G T 52
8.3.6 Routine G F C F L D 53

9. S P E C L \ L UTILITY R O U T I N E S 55

9.1 GF3-Proc Buffer Handling Routines 55
9.1.1 Introduction 55
9.1.2 Routine G F B R G T 55
9.1.3 Routine GFBRPT 56
9.1.4 Routine G F B R S T 56

- VI

10. G F 3 - P R O C E R R O R S 57

10.1 Introduction 57

10.2 Message Format 57

10.3 Message Types 57

10.4 Description of Error Messages 58

10.5 Type 01 Messages - V A L U E N O T ACCEPTABLE 58

10.6 Type 02 Messages - CALL N O T ACCEPTABLE 60

10.7 Type 03 Messages - C H E C K H A S FAILED 62

10.8 Type 04 Messages - R E C O R D N O T IN S E Q U E N C E 63

10.9 Type 05 Messages - DEFINITION SCAN FAILED 64

10.10 Type 06 Messages - FIELD CONVERSION FAILED 65

10.11 Type 07 Messages - N O T E N O U G H INTERNAL S T O R E 66

10.12 Type 08 Messages - INTERNAL E R R O R 66

10.13 Type 09 Messages - SITE-SPECIFIC E R R O R 67

Vll

CHAPTER 1

INITIALISING THE PACKAGE

1.1 INTRODUCTION

This chapter presents the single routine used for overall initialisation of GF3-Proc
processing.

1.2 ROUTINE GFPROC

Summary: Initialise GF3-Proc processing.

Call deflniüon: CALL G F P R O C

Use: You use this routine to initlaJlse the GF3-Proc package as a whole.
The routine has no arguments.

Sequencing: You must call this routine before using any other GF3-Proc
routines. Do not call it more than once In a single program run.

- 1 -

CHAPTER 2

CONTROLLING THE PACKAGE

2.1 INTRODUCTION

This chapter tells you how to use the routines that give you run time control over the
way GF3-Proc operates. This section describes the two routines which allow you to
set the user-controlled Package Control Options and to determine their current
status. A full definition of the available options is also given.

Please note that the package control is in the main fully dynamic, and most options
may be changed at any time, although in practice, the Package Control Options are
usually set up before any GF3 data are processed.

2.2 ROUTINE GFPCST

Summary: Set GF3-Proc Package Control Option to a given value.

Call definiüon: CALL GFPCST (lOPT.lVAL)

Both arguments are integer variables supplied by the calling
program. Neither is altered by the call to GFPCST.

¡OPT is the numeric identifier (termed index) of the option you wish
to set. The Package Control Options available are defined
later in this chapter.

IVAL is the new value for the Package Control Option identified by
lOPT.

Example call: CALL GFPCST (7,2)

The value of Package Control Option with index 7 (i.e. D E R , user
control of data errors flag) is set to 2 which allows execution of the
program to continue after data errors have been reported.

Use: You use this routine to change the value of a GF3-Proc Package
Control Option.

Sequencing: You may use this routine at any time after GF3-Proc has been
initialised by a call to routine G F P R O C .

2.3 ROUTINE GFPCLK

Summary: Look at GF3-Proc Package Control Option value.

Call definiüon: CALL GFPCLK (IOPT,IVAL)

Both arguments are integer.

CONTROLLING THE PACKAGE

lOPT is the numeric identifier (termed Index) for the GF3-Proc
Package Control Option that you wish to inspect. The options
available are defined later in this chapter. This argument is
supplied to the routine and is unmodified by GF3-Proc.

rVAL is the current value of the Package Control Option specified
by lOPT which is returned by the routine.

Example call: CALL GFPCLK (l.IRPU)

The current value of the Package Control Option with an index of 1
(i.e. RPU, the Fortran logical unit number to which GF3-Proc error
messages are written) is returned in the variable IRPU.

Use: You use this routine to obtain the present value of a GF3-Proc
Package Control Option.

Sequencing: You may use this routine at any time after GF3-Proc has been
initialised by a call to routine G F P R O C .

2.4 PACKAGE CONTROL OPTION DEFINITIONS

Each Package Control Option is described in a standard form. You will note that some
options have default values which is the value assigned to the option by the
initialising call to G F P R O C . This remains in force until the value is explicitly changed
by a call to GFPCST. You will further note that each option may be described by
either a numeric identifier (its index) or a 3 character mnemonic (e.g. R P U for report
unit number). The latter is used as a shorthand notation for references to the options
in the GF3-Proc documentation. The former is used to identily the option in calls to
GF3-Proc subroutines.

2.4.1 REPORT UNIT NUMBER (RPU)

Index: 1

Function: The value of this option is the Fortran logical unit number to which GF3-
Proc messages are to be written. Messages are written as 80 character
text lines, preceded by a Standard Fortran carriage control character. The
unit will usually be a printer, but you may use a file if you prefer. You
may change units at any time.

Values: Any valid Fortran logical unit number for your system.

Default: The default value is 6.

2.4.2 CHARACTER ARGUMENT FORMAT (KFT)

Index: 2

Function: This option is not used by GF3-Proc Level 4 (all character arguments are
passed as character variables). The option may be set or interrogated but
the value is ignored by GF3-Proc Level 4. GF3-Proc Level 3 application
programs may require modification if they use values other than 3
(remember 1 is the Level 3 default) for this option.

CONTROLLING THE PACKAGE

2.4.3 KEY OF CURRENT INPUT UNIT (KRD)

Index: 3

Function: All GF3-Proc routines that read data in from a GF3-Proc Input Unit, read
from the Current Input Unit defined by this option. The Unit is identified
by the Unit Key (see below). You may change this option at any time.

Value: The Key of a GF3-Proc Unit with its unit type set as input (see Unit
Option UTY).

Default: There is no initial default. When a Unit has its type option (Unit Option
UTY; index 1) set to input, or is rewound (routine G F U N R W) , the Unit
automatically becomes the Current Input Unit.

2.4.4 KEY OF CURRENT OUTPUT UNIT (KWT)

Index: 4

Function: All GF3-Proc routines that write data out to a GF3-Proc Output Unit,
write to the Current Output Unit defined by this option. The Unit Is
identified by the Unit Key (see below). You may change this option at any
time.

Value: The Key of a GF3-Proc Unit with its unit type set as output (see Unit
Option UTY).

Default: There is no initial default. When a Unit has its type option (Unit Option
UTY) set to output, that Unit automatically becomes the Current Output
Unit.

2.4.5 KEY OF CURRENT UNIT (KST)

Index: 5

Function: The GF3-Proc routines that inspect and set the options on individual
GF3-Proc Units, operate on the Unit specified by this option. The Unit is
identified by its Unit Key (see below). You may change this option at any
time.

Value: The Key of a previously created GF3-Proc Unit.

Default: There is no initial default. When a Unit is created or rewound, by calls to
routines G F U N C R or G F U N R W , it is automatically defined as the Current
Unit.

2,4.6 STORED PARAMETER CODE LENGTH (PNL)

Index: 6

Function: This option is not required by GF3-Proc Level 4 (Only 8 bytes of internal
store per parameter are required by Level 4 compared with 8 words
required by Level 3). The option may be set or interrogated, but the value
is ignored by GF3-Proc Level 4. Level 3 application programs which have
set this option may require modification.

CONTROLLING THE PACKAGE

2.4.7 USER CONTROL OF DATA ERRORS FLAG (DER)

Index: 7

Function: This option controls the response of GF3-Proc to data errors (ie errors
which do not prohibit continued execution of GF3-Proc). You choose
whether you want GF3-Proc to stop program execution when a data error
is detected, or to continue.

You may change this option at any time.

Values: Value Description

1 Stop program execution after data errors.
2 Continue program execution after data errors.

Default: D E R = 1; i.e. abort on data errors.

2.4.8 CONTROL OF OUTPUT SUPPRESSION DURING AUTOMATIC CYCLE WRITING
(OSP)

Index:

Function:

Values:

Default:

8

This option determines in part what action is taken by GF3-Proc routines
GFCCFL and G F C W C L . User-formatted areas may contain a single
header cycle, one or more datacycles or a single header cycle followed by
one or more datacycles. In the last case it is possible when writing an
unknown number of datacycles for a GFCCFL to be called (either directly
or by G F C W C L) when the user-formatted area contains a header cycle
but no datacycles. GFCCFL detects this condition and will normally
suppress output of such records. However, by setting this option to 2
GFCCFL may be forced to output records of this type.

You may change the value of this option at any time.

Value Description

1

2

Output of records containing a header cycle but no datacycles
Is suppressed.
Output of records containing a header cycle but no datacycles
is N O T suppressed.

The default is DRC=1: i.e. output of records containing only a header
cycle is suppressed.

2.4.9 UNDEFINED CYCLE PARAMETERS CHECK (UCP)

Index: 9

Function: This option is concerned with automatic cycle processing, which Is
designed around the concept of a 'cycle buffer'. In the case of automatic
cycle writing, the parameters in the cycle buffer are set as required using
the GFCxPT routines and then output by a call to G F C Y W T . This option
defines the action taken by the package if any parameters have not been
set before the call is issued to G F C Y W T . The package may either set the
values to the absent data value for that parameter or abort with an error.

Values:

CONTROLLING THE PACKAGE

Note that if no absent data code is specified for the parameter In question
(ie the corresponding field in the definition record entry has been left
blank) and one is required (ie the parameter is numeric) then an error
results whatever the value of this option.

Value Description

1 Insert absent data values in all cases.
2 Insert absent data values into datacycles. Abort if a header cycle

field is undefined.
3 Abort if any field in any type of cycle has not been explicitly set

by the user before that cycle is written out.

Default: The default is UCP=1, i.e. the system will insert absent data values
providing the d u m m y value code has been specified in the definition
record.

2.4.10 C Y C L E P A R A M E T E R SCALING (CPS)

Index: 10

Function: This option allows the user to determine whether the automatic cycle
processing routines apply the scaling factors obtained from the definition
record to the cycle parameters. Note that scaling is only possible with the
floaüng point routines GFCFPT and GFCFGT.

Values: Value Description

1 Do not apply scaling factors.
2 Apply scaling factors.

Default: Cycle parameter seeding is applied by default (CPS=2).

2.5 UNIT KEYS AND CURRENT UNITS

Each GF3-Proc Unit is identified within the package by a Unit Key. This is a single
word integer generated by the package when the Unit is created. As far as the user
Is concerned, the value is returned by the call to G F U N C R and then stored in a
Fortran variable to be passed as an argument to other GF3-Proc calls when required.

It will be noted that three of the Package Control Options (KFID. IÍWT, and KST)
contain what are termed 'Current Units'. These are set Unit Keys which determine the
effect of certain GF3-Proc calls. K R D is the Current Input Unit which tells GF3-Proc
where to look when a call Is made to a GF3-Proc read routine. Likewise, the Current
Output Unit specifies the destination for the output from a GF3-Proc write routine.

The 'Current Unit' (KST) specifies the GF3-Proc Unit whose Unit Options are to be set
or Interrogated by subsequent calls to routines G F U N S T and GFUNLK. For example,
if you wish to examine the values of the Unit Options for a given GF3-Proc Unit, you
must first set Package Control Option KST to the Unit Key of the required GF3-Proc
Unit (if the Unit Key were stored in the variable IKEY, then the required call is CALL
GFPCST (5,IKEY)) before issuing calls to G F U N L K to return the Unit Options.

6 -

CHAPTERS

GF3-PROC INPUT-OUTPUT UNITS

3.1 INTRODUCTION

Within an application program there are two types of I/O unit; those dealing with
data in the users' own formats and those dealing with data formatted in GF3. The
former are of no concern to GF3-Proc and are manipulated within the application
program by normal Fortran read and write statements. The latter are of direct concern
to GF3-Proc, being manipulated by I/O operations deep within GF3-Proc and
providing the user with facilities for reading and writing GF3 records. These are
termed GF3-Proc Input-Output Units or GF3-Proc Units for short.

A GF3-Proc Unit may be a tape, disk (input or output), or printer (output only). The
properties of a Unit are specified by a number of attributes, termed Unit Options. This
obviously requires internal storage within the package which is limited thus placing
a limit on the number of GF3-Proc Units which may be open simultaneously. This is
currently set to 5.

The concept of currency is used in the interface between the application program and
the GF3-Proc Units. There are three types of Current Unit; the Current Input Unit,
the Current Output Unit, and the Current Unit. All calls to GF3-Proc read routines
read from the Current Input Unit whilst all calls to GF3-Proc write routines direct
output to the Current Output Unit. Package Control Opüons KRD, K W T and KST are
used to specify the Units which are current (see previous chapter). Thus for example
if you wish to merge two GF3-Proc Input Units onto a single Output Unit you would
set Package Control Option K R D to the Unit Key of the first Input Unit, set K W T to the
Output Unit, copy the required information, reset K R D to the second Input Unit and
complete the merge.

The Current Unit (Package Control Option KST) Is defined as the GF3-Proc Unit whose
Unit Options are to be examined or updated. In other words. Package Control Option
KST can be considered as a pointer which tells GF3-Proc where to look in its attribute
store for the Unit Options of the required GF3-Proc Unit.

This chapter describes the routines you use to create, rewind, and release GF3-Proc
Units, and the routines required for manipulation of the Unit Options.

3.2 ROUTINE GFUNCR

Summary: Create a new GF3-Proc Unit.

Call definiüon: CALL G F U N C R (IUPÍY)

lUKY is the integer key, termed Unit Key, assigned by GF3-Proc to
the Unit; i.e. the value to be stored in Package Control
Options KRD, KWT and KST to define the Unit as a current
Unit. It is returned by the routine and it is strongly
recommended that this value is neither modified nor utilised
by application programs other than as an argument to GF3-
Proc calls.

GF3-PROC INPUT-OUTPUT UNITS

Use: You use this routine to create a n e w GF3-Proc Unit. A s far as the
apphcations program is concerned its sole function is to supply a
Unit Key which can be used for subsequent references to a G F 3 -
Proc Unit. Note that after you have created a Unit description with
this routine, you must use routine G F U N S T to specify the Unit
Options required, before you try to use the Unit. This routine
(G F U N C R) automatically specifies the Unit it creates as the Current
Unit (by modifying Package Control Option KST) . Thus subsequent
calls to routine G F U N S T automatically operate on the n e w Unit.

Sequencing: Y o u m a y use this routine at any time after GF3-Proc has been
initialised by a call to routine G F P R O C . You m a y define as m a n y
Units as you wish. However, the Unit descriptions use GF3-Proc
internal storage, and this routine will fall If there is Insuflficent free
space. The current Implementation of GF3-Proc allows up to 5 G F 3 -
Proc Units.

3.3 ROUTINE GFUNRL

S u m m a r y : Release a GF3-Proc Unit.

Call deflnlUon: C A L L G F U N R L (lUKY)

lUKY is the Unit Key (as supplied by G F U N C R w h e n you created
the Unit) assigned to the Unit that you wish to release. It is
supplied to the routine by the application program and
returned unmodified although it is of no further use to that
program.

Use: You use this routine to release a GF3-Proc Unit, w h e n you have
finished with it which frees the Intemeil storage assigned to that
Unit for subsequent use. You do not have to use this routine unless
you wish to use more than 5 GF3-Proc Units, but it is good
programming practice to release a Unit once you have finished with
it.

Sequencing: Y o u m a y use this routine at any time after the GF3-Proc Unit has
been created. Once you have released a Unit, you mus t not m a k e
any further reference to it.

3.4 ROUTINE GFUNRW

S u m m a r y : Rewind a GF3-Proc Unit.

Call definiüon: C A L L G F U N R W (lUKY)

l U K Y is the Unit Key (i.e. the value returned by G F U N C R w h e n the
Unit w a s created) for the Unit that is to be rewound. The
argument is supplied by the application program and
returned unmodified.

Use: You use this routine to rewind a GF3-Proc Unit.

If the Unit to be rewound is an Output Unit, rewinding It redefines
it as an Input Unit.

-8

GF3-PROC INPUT-OUTTUT UNITS

Sequencing:

The Current Input Unit and Current Unit are redefined as the Unit
rewound by this routine (I.e. the Unit Key supplied as the argument
Is stored In Package Control Options K R D and KST).

If the Unit had automatic processing switched on before the rewind,
it Is switched off by this routine.

Note that you cannot rewind a Unit which is set up as a Print Unit
(i.e. has Unit Option F M T - index 6 - set to a value of 3).

You can use this routine if you want to do a check scan on a tape
you have Just written, or after a preliminary scan of an Input tape
prior to detailed processing.

You may use this routine at any time after the GF3-Proc Unit has
been created. If the Unit has Just been rewound, further calls to the
routine will have no effect.

3.5 ROUTINE GFUNST

Summary:

Call deflnlüon:

Set GF3-Proc Unit Option value.

CALL G F U N S T (lOPT.IVAL)

Both arguments are integer and are supplied by the calling
program. Neither is modified by the call.

lOPT is the index (i.e. numeric identifier) of the option that you
wish to change. The options available are defined below.

rVAL is the value to which the Unit Option specified by lOPT is to
be set.

Example call: CALL G F U N S T (6,3)

Use:

Sequencing:

Set Unit Option F M T (which has the index 6) to the value 3; I.e.
specify the Unit as a file which is to be listed off on a llneprinter
(Print Unit).

You use this routine to cheinge the value of a GF3-Proc Unit Option.
You will need to use this routine extensively In most GF3-Proc
applications to define the properties of the GF3-Proc Units you are
using. The routine operates on the Current Unit I.e. the Unit whose
Unit Key is stored in Package Control Option KST. A Unit becomes
current, either when you explicitly assign the Unit Key value to
package option KST using routine GFPCST, or when you create or
rewind the Unit, using routines G F U N C R or G F U N R W .

You may use this routine at any time when a Unit Is specified as
current (i.e. a valid Unit Key is stored in Package Control Option
KST). Because the Unit Options form a hierarchy. It Is best for you
to define the required options for a Unit in ascending order of option
index.

-9

GF3-PROC INPUT-OUTPUT UNITS

3.6 R O U T I N E G F U N L K

Summary: Look at GF3-Proc Unit Option.

Call definiüon: CALL G F U N L K (lOPT.IVAL)

Use:

Sequencing:

Both arguments are integer

lOPT is the index (i.e. numeric identifier) of the GF3-Proc Unit
Option that you wish to inspect. The options available are
defined below. The argument is supplied by the calling
program and returned unmodified.

IVAL is the current value of the option specified by lOPT; the value
is returned by the routine.

Example Call: CALL G F U N L K {6,IFMT)

The variable IFMT is set to the current value of Unit Option F M T
(which has the numeric identifier 6).

You use this routine to look up the present value of a GF3-Proc
Unit Option. Please refer to the next section for a full explanation
of the Unit Options available. The routine operates on the Current
Unit; i.e. the Unit whose Unit Key is currently stored in Package
Control Option KST. The Unit may be made current either explicitly
(by a call to GFPCST), or implicitly by calls to G F U N C R or G F U N R W .

You may use this routine at emy time when a GF3-Proc Unit has
been specified as current (i.e. Package Control Option KST contains
a valid Unit Key).

3.7 UNIT OPTION DEFINITIONS

This section fully describes the Unit Options that are available. Each option is
described in a standard form. You will note that some of the options have default
values which are automatically assigned when the Unit is created. These remain in
force unless explicitly changed by a call to GFUNST. You will further note that each
option may be referred to by a numeric Identifier (termed index) or a 3 character
mnemonic. The latter is used as a shorthand notation throughout the documentation.
The former Is used to identify the option in calls to GF3-Proc subroutines.

The Unit Options form a hierarchy which is obeyed IF T H E OPTIONS AIRE SET IN T H E
O R D E R O F INCREASING INDEX (e.g. Unit Option A U T - index 2 should be set before
Unit Option R C K - index 3). Please note that Unit Options D E N , C D E and STP (indices
8-10) may only be set if Unit Option F M T (index 6; the format selected for the Unit)
Is set to 1 (Tape Format) and that Unit Option SPC (index 11 ; record spacing) may
only be set if Unit Option F M T is set to 2 or 3 (Line Format or Print Format).

3.7.1 UNIT T Y P E (UTY)

Index: 1

Function: GF3-Proc Units may be required for reading GF3 records (Input Units) or
writing them out (Output Units). When you create a new GF3-Proc Unit,
you must set this option to specify whether you wish it to be used for
input or output (by setting this option) before you set any other options.

- 10

GF3-PROC INPUT-OUTPUT UNITS

The rules for changing this option after a Unit has been used are as
follows.

1. Y o u m a y not change a Unit from output to input without first
rewinding the Unit (which changes its type from output to input
automatically).

2. W h e n you rewind an Output Unit (routine G F U N R W) , it is
automatically redefined as an Input Unit. Note that any change of Unit
type automatically switches off automatic processing. Therefore, If you
require automatic processing on an Input Unit set up by rewinding an
Output Unit you must turn it on explicitly by a call to G F U N S T after
the call to G F U N R W .

3. You m a y change a Unit from input to output at any point, if your
operating system allows this for the type of unit being processed. If the
Unit has automatic processing switched on, then it will be switched
off.

* * N B * * R e m e m b e r that turning off automatic processing causes the
system to delete any definition records stored for that Unit. A s a
result, definition records which were read whilst positioning the tape
C A N N O T be used to define the structure of subsequent data output.

The main use of this rule is to add data to a partially written tape. For
excimple, a typical program would read the input tape until the tape
terminator file were encountered, switch from input to output, copy
over the additional data file (or files) and then output a fresh tape
terminator file.

Please note that programs of this type can only use the GF3-Proc cycle
handling routines if G F 3 definlLion records are included at the file or
series level (tape level definition records are lost w h e n the Unit is
switched from input to output). A n alternative strategy which avoids
this problem (as well as increasing data security) is the 'grandfather-
father-son' system of backing up and maintaining files.

Values: Value Description

1 Input Unit
2 Output Unit

Default: There is no default for this option; it mus t be specified.

3.7.2 AUTOMATIC PROCESSING FLAG (AUT)

Index: 2

Function: Automatic processing is one of the most powerful features of GF3-Proc
and it is strongly recommended that any G F 3 output files generated by
the system be written to a Unit with this option turned on. Automatic
processing mus t be set on for an Input Unit if the cycle handling routines
are to be used to read the data or if system checking of the input data is
required. Turning automatic processing on provides the following
facilities:

11 -

GF3-PROC INPUT-OUTPUT UNITS

1. The sequence of records input/output is checked against the G F 3
Technical Specification and any errors encountered are reported as
'data' (non-fatal if Package Control Option D E R is set to 2) errors. The
checks are confined to the ordering of the records starting with the
first record processed after automatic processing is turned on. The
package does N O T check to ensure that the global structure of the
tape is correct other than to ensure that test file records do not follow
any other G F 3 record type. This allows GF3-Proc applications to
generate isolated G F 3 files without screeds of error messages which
greatly increases the number of situations in which the package m a y
be used.

2 . Each record input is checked syntactically by a system generated call
to G F R C V L . The checks undertaken are documented under that
routine. If the record is a definition record, it is subjected to a rigorous
analysis and stored in a computationally convenient form used by the
automatic cycle processing routines. The storage mechanism takes
account of series header definition records at tape and fUe levels and
datacycle definition records at tape, file and series levels.

Please note that the syntax checks m a y be suppressed for records
other than definition records if required (see Unit Option R C K) .

3. The cycle and parameter handling routines are enabled. These are
fully described in later chapters. Automatic processing supports these
routines by updating the accounting fields in datacycle records and
setting the series header record continuation flag to the appropriate
value.

4 . O n Output Units, the next record t3TDe byte is automatically set to the
value of the following record. In order to do this the output is buffered
and care must be taken to flush the buffers (2 calls to G F E F W T) if
isolated G F 3 data files are being produced (a call to G F Z F W T does this
automatically).

These facilities are invoked for a Unit by setting this option to a value
of 2 .

Note that these facilities are restricted to Just one input and one output
Unit at any one time. You m a y set this option on or off at any time,
although care must be exercised w h e n using the automatic cycle
processing routines to ensure that the appropriate définition records are
analysed and stored. This option is automatically turned off w h e n you
rewind a Unit (routine G F U N R W) , or change Unit Option U T Y . Turning
the option off results in the deletion of any definition records currently
held by the system.

Values: Value Description

1 Automatic processing is switched off.
2 Automatic processing is switched on.

Default: A U T = 1; i.e. automatic processing is switched off.

- 12 -

GF3-PROC INPUT-OUTPUT UNITS

3.7.3 R E C O R D SYNTAX CHECKING FLAG (RCK)

Index: 3

Function: Automatic processing includes a record syntax check (equivalent to a
system generated call to GFRCVL). This obviously uses a significant
amount of processing time, particularly when checking GF3 file and
series header records. With large volumes of certain data types (e.g. water
bottle or BT data) where there are lots of small series, the checking
overhead may be considered excessive, but other facilities provided by
automatic processing are required. This option allows the syntax
checking to be disabled whilst the other features of automatic processing
are retained.

The value of this option is only meaningful when automatic processing
Is switched on. Switching automatic processing on sets this option to Its
default value. Consequently, if you wish to set up a Unit with automatic
processing switched on but record syntax checking disabled you must set
Unit Option A U T to 2 before setting this option to 2.

Please note that GF3 definition records Eire checked and stored no matter
what the current value of this option as they are required to support the
GF3-Proc cycle and parameter handling routines.

Values: Value Description

1 Apply syntax check to all GF3 records.
2 Only check GF3 definition records.

R C K = 1; i.e. all GF3 records are checked syntactically (providing of
course option A U T has been set to 2)

Default:

3.7.4 UNDEFINED

Index: 4

Function: This option is reserved for future GF3-Proc developments.

3.7.5 UNDEFINED

Index: 5

Function: This option is reserved for future GF3-Proc developments.

3.7.6 F O R M A T TYPE (FMT)

Index: 6

Function: This option controls the format of the data on a file to be read from or
written to by GF3-Proc. GF3-Proc gives you three dilTerent formats to
choose from. You may only set this option before you write to or read
from the Unit. After that, it must not be changed. W h e n this option is set,
options D E N , C D E , STP and SPC (Indices 8-11) are reset to their defaults.

13

GF3-PROC INPUT-OUTPUT UNITS

Values: Value Description

1 GF3-Proc writes each GF3 record to tape as one physical record
of 1920 bytes. Physical end of file marks are written. This is true
GF3 format data. The same format is required for data read In.
You must set the Unit Option U N O . Unit Opüons D E N , C D E ,
and STP apply to this format type.

This format (termed Tape Format) is normally used for data on
magnetic tape. Indeed, on some GF3-Proc installations It may
not be used for any other purpose.

2 GF3-Proc writes each GF3 record as 24 lines of 80 characters
each. The spacing between records is determined by the Unit
Option SPG. End of file marks are written as a GF3 record
containing all nines. The same format is required for data read
in. O n input, physical end of file is treated as GF3 end of tape
i.e. as a double EOF. You must set Unit Option U N O .

This format (termed Line Format) is used for disk files. It should
not be used for the production of GF3 tapes as the result would
not be portable. Line Format files are manipulated by GF3-Proc
using conventional formatted Fortran I/O. Consequently, Line
Format files may be handled outside GF3-Proc by such utilities
as text editors.

3 This format is restricted to Output Units. Units using this
format type may not be rewound. GF3-Proc writes each GF3
record as 24 lines, each of 80 characters and each preceded by
a Standard Fortran carriage control character. O n the first Une
the control character inserted is determined by the value of the
SPG option, on other lines it is always set to blank. End of file
marks are written as a single 80 character line, spaced as
determined by the SPG option, and containing the text "***** -
End of File Mark - *****". You must set Unit Option U N O for this
format type.

This format (termed Print Format) is used to generate files which
are to be listed using a lineprinter. Please note that GF3-Proc is
unable to input files in this format.

Default: F M T = 2; each GF3 record is written as 24 lines of 80 characters.

3.7.7 FORTRAN LOGICAL UNIT NUMBER (UNO)

Index: 7

Mnemonic: U N O

Function: The value of this option is the Fortrem unit number for the Unit. You
must always specify this option.

You may change this option at any time, but this is not a recommended
practice as some GF3-Proc input-output may be buffered. It is better to
define separate GF3-Proc Units for each Fortran unit you wish to use.
Where your computer operating system requires a different unit number
for each file on a multi-file tape, set this option to the unit number of the
first file, and switch on the unit step option (STP; index 10). The logical

- 14 -

GF3-PROC INPUT-OUTPUT UNITS

Values:

Default:

unit number will then be stepped by one, each time an end file mark Is
read or written (rewinding the Unit restores the original value).

Any valid Fortran unit number for your system.

There is no default for this option, it must always be specified explicitly.

3.7.8 T A P E D E N S I T Y (DEN)

Index: 8

Function: This option tells GF3-Proc the density you have specified (normally
through Job control language) for a magnetic tape so that it can generate
a test file with the appropriate number of records to fill the required 2 m
of tape. It serves no other purpose. This option has no meaning for G F 3 -
Proc Units which do not have Unit Option T P E (index 6) set to 1.

Values: Value Description

800 800 bpi
1600 1600 bpi
6250 6250 bpi

Default: D E N = 1600; i.e. a tape density of 1600 bpi.

3.7.9 CHARACTER CODE (CDE)

Index: 9

Function: This option specifies the character code of a magnetic tape being read or
written by GF3-Proc; i.e. for GF3-Proc Units which have Unit Option T P E
(index 6) set to 1.

Values: Value Description

1 GF3-Proc ASCII character set. GF3-Proc Level 4 supports a
subset of the ISO 7-bit ASCII character set incorporating the
G F 3 character set plus a full lower case alphabet. This goes
beyond the G F 3 Technical Specification but it is felt that in
some cases the G F 3 character set is unnecessarily restrictive.
One word of warning. GF3-Proc Level 3 only supports the G F 3
character set and will in all cases translate lower case text into
garbage so it is strongly recommended that the expanded
character set should only be used for internal archives or for
data exchange between consenting parties.

This value should be used in cases where you particularly want
to produce an ASCII G F 3 tape.

2 GF3-Proc E B C D I C character set. This is the E B C D I C equivalent
of the ASCII character set described above.

This value should be used in cases where you particularly want
to produce an E B C D I C G F 3 tape.

15

GF3-PROC INPUT-OUTPUT UNITS

3 Default. This is native character code of the machine running
GF3-Proc which must either be ASCII or EBCDIC. Thus on
ASCII machines CDE=3 is equivalent to CDE=1 whilst on
EBCDIC machines CDE=3 is equivalent to CDE=2.

4 Tape header translation table. This option is N O T SUPPORTED
by GF3-Proc Level 4. If this capability Is required. GF3-Proc
Level 3 must be used.

Default: C D E = 3; i.e. the character set on the tape is the same as the system
character set.

3,7.10 UNIT STEP OPTION (STP)

Index: 10

Function: This option applies only to Units specified as Tape Units (i.e. Unit Option
TPE - index 6 - is set to 1). Some operating systems require that each
physical file read from or written to a magnetic tape is given a separate
Fortran unit number. When you set this option to 2, GF3-Proc
automatically increments the Fortran unit number for the Unit by one
whenever an end of file mark is read or written. Rewinding the tape (by
a call to G F U N R W) resets the logical unit number to its original value.

Values: Value Description

1 Logical unit number stepping switched off.
2 Logical unit number stepping switched on.

Default: STP = 1; i.e. logical unit number stepping is switched off.

3.7.11 R E C O R D SPACING (SPC)

Index: 11

Function: This option .determines the spacing between GF3 records for GF3-Proc
Units in Line Format or Print Format (Unit Option F M T set to 2 or 3
respectively).

Values: Value Description

1 No space between records. The carriage control character for the
first line on each GF3 record for printer output is blank.

2 One line between records. For Line Format Units (disk files) a
blank line is written before each GF3 record on output, and is
expected on input. The carriage control character for the first
line on each GF3 record for printer output is 0, giving a line skip
before the record.

3 Allowed for printer output only. The carriage control character
on the first line of each GF3 record is 1, giving a new page for
each record.

Default: SPC = 1; i.e. no spaces or page-throws between records.

16

CHAPTER 4

GF3 FILE HANDLING ROUTINES

4.1 INTRODUCTION

This chapter describes the routines provided for the handUng of GF3 flies. Routines
are provided to read any number of files, copy any number of files, write a test file,
write a tape trailer file, and output an end-of-file.

Please note that GF3-Proc error messages are described in a separate chapter.

4.2 ROUTINE GFFLRD

Summary: Read one or more GF3 Files.

Call defíniüon: CALL GFFLRD (ICNT)

Use:

Sequencing:

ICNT is an integer argument supplied to the routine which specifies
the number of files to be read. The value must be positive (i.e.
you cannot read 'backwards') and is returned unmodified by
the routine.

This routine reads one or more files from the GF3-Proc Current
Input Unit. As the files are moved they are transliterated by GF3-
Proc as necessary, and subjected to the degree of checking and
analysis specified by the values of Unit Options A U T and R C K . If a
double EOF (end of data) is read, the routine returns, even if it has
not read the specified number of files.

The main use of the routine is to position a GF3-Proc Input Unit for
further processing; for example to read past previously processed
data files or to skip over the GF3 Test File. If you are part-way
through reading a GF3 file, a call to this routine with ICNT = 1 will
skip to the beginning of the next GF3 file. Please note that this
must not be attempted whilst automatic cycle reading is open (see
the chapter on cycle handling routines).

This routine may be used effectively to check a complete GF3 tape.
The Current Input Unit is set up with Unit Options A U T and R C K
set to 2 and 1 respectively. A single call to GFFLRD with the file
count set to an Impossibly large value performs the checks.

Please note that this routine reads from the Current INPUT Unit. It
cannot therefore be used to position an Output Unit. This must be
done by first specifying the file as an Input Unit, positioning it and
then redefining it as an Output Unit. Please see the description of
Unit Option UTY for further details.

This routine must only be used when the Current Input Unit is
defined; i.e. Package Control Option K R D contains a valid GF3-Proc
Unit Key.

17

GF3 FILE HANDLING ROUTINES

4.3 R O U T I N E GFFLCP

Summary: Copy one or more GF3 Files.

Call definiüon: CALL GFFLCP (ICNT)

ICNT Is an Integer argument supplied to the routine which specifies
the number of files to be copied. The value must be positive
and Is returned unmodified by the routine.

Use: You use this routine to copy one or more GF3 files from the GF3-
Proc Current Input Unit to the Current Output Unit. If you Ccdl it
part way through processing a file, the remainder of the file will be
the first file to be copied. As the files are moved, they are
transliterated, formatted and checked as specified by the Unit
Options set for the Input and Output Units. If a double E O F (end of
data) is read, the routine returns, even if it has not copied the
specified number of files.

You can use this routine to assemble different GF3 data files Into
a single tape, or to copy complete tapes. It is possible to produce
'asis' backup tapes or to produce a copy In a different character
code for data exchange (e.g. an EBCDIC copy could be made of an
ASCII GF3 tape - see Unit Option CDE).

Sequencing: This routine must only be used when GF3-Proc Package Control
Options KRD and K W T both contain valid Unit Keys; I.e. the
Current Input and Current Output Units are both defined.

4.4 ROUTINE GFEFWT

Summary: Write an End of File mark.

Call definiüon: CALL G F E F W T

Use: You use this routine to write an end of file mark on the GF3-Proc
Current Output Unit, as defined by the Unit Key held in Package
Control Option K W T . The mark written may be physical or logical,
depending on the current value of Unit Option F M T for the Current
Output Unit. If the Unit Option A U T is set to 2 for the Unit, the
write is delayed to allow automatic next record type byte update
(unless two successive EOFs are written). If logical unit stepping Is
specified for the Unit (Unit Option STP is set to 2) then the Fortran
logical unit number for the Unit is incremented.

Sequencing: This routine must only be used when GF3-Proc Current Ouput Unit
Is defined; i.e. when Package Control Option K W T contains a valid
Unit Key. It should be used at a point in the output sequence of
GF3 records at which an end of file mark Is allowed by the GF3
Technical Specification.

4.5 ROUTINE GFXFWT

Summary: Write the GF3 Test File.

Call definiüon: CALL G F X F W T

18

GF3 FILE HANDLING ROUTINES

Use: You use this routine to write a GF3 test file on the GF3-Proc
Current Output Unit. The file is formatted as specified by the Unit
Options set for the Output Unit. In particular, when the Unit Option
F M T is set to 1 (Tape Format), the routine computes the number of
GF3 test records to be written from the value of Unit Option D E N
(tape density). For other formats, it only writes a single test record.
The routine always terminates the file with an end of file mark (by
an internal call to GFEFWT).

Sequencing: This routine must only be used when GF3-Proc Current Output
Unit is defined; i.e. Package Control Option KWT contains a valid
Unit Key. The call should be the first used to output to the Unit, as
the GF3 test file must be placed at the start of the tape.

4.6 ROUTINE GFZFWT

Summary: Write the GF3 Tape Terminator File.

Call definition: CALL G F Z F W T

Use: You use this routine to terminate the writing of a GF3 tape. The
routine initialises and outputs a d u m m y file header record and a
GF3 end-of-tape record to the Current Output Unit. These are
followed by two end-of-file marks. The output is formatted as
specified by Unit Options for the Current Output Unit.

If you wish to include plain language comments, do not use this
routine. Instead use rouünes GFRCIN, GFRKPT, G F R C W T , and
GFEFWT.

Sequencing: This routine must only be used when GF3-Proc Current Output
Unit Is defined; i.e. Package Control Option K W T contains a valid
Unit Key. It should be used after an E O F has been written to the
Output Unit, as this is the only point in the GF3 record sequence
at which a tape trailer file is allowed by the GF3 Technical
Specification.

19

CHAPTERS

GF3 RECORD HANDLING ROUTINES

5.1 INTRODUCTION

This chapter describes the routines provided for the handling of Individual GF3
records. GF3-Proc is based upon the concept of an internal buffer which holds a
single GF3 record. Routines are provided to read a record into the buffer, ascertain
the type of that record, write out the buffer, copy a record, initialise the buffer and
validate it.

Please note that GF3-Proc error messages are fully described in a later chapter.

S.2 ROUTINE GFRCRD

Summary: Read one or more GF3 Records.

Call definlUon: CALL G F R C R D (ICNT)

ICNT is an integer argument supplied by the calling program which
specifies the number of records to be read by the call to
G F R C R D . The value supplied must be positive and is
returned unmodified by the routine.

Use:

Sequencing:

You use this routine to move one or more GF3 records from the
Current Input Unit into the GF3-Proc Record Buñer. As the records
are moved they are transliterated by GF3-Proc as necessary. If
automatic processing is enabled for the Unit (i.e. Unit Option A U T
is set to 2), the automatic processing checks are applied to each
record read and definition records are automatically analysed and
stored. If an end of file mark is read, the routine returns, even if it
has not read the specified number of records. Note that after GF3-
Proc has read an E O F mark, the contents of the record buffer are
undefined.

You use this routine mainly to read in one record at a time for
specific processing. The ability to read multiple records is useful
when you need to skip records on a GF3-Proc Unit in order to select
a particular portion for processing.

This routine must only be called when the Current Input Unit Is
defined; i.e. when Package Control Option K R D contains the Unit
Key of the GF3-Proc Unit from which you wish to read a record.

Please note that Ccdling this routine whilst automatic cycle
processing is open (see chapter on GF3 cycle handling routines) will
give very unpredictable results.

20

GF3 RECORD HANDLING ROUTINES

5.3 ROUTINE GFRTGT

Summary: Get the Record Type of the last record read.

Call definiüon: CALL G F R T G T (IRTY)

IRTY is an integer code returned by the routine which indicates the
type of the last GF3 record read. It may be translated using
the table below.

Use:

Sequencing:

-1 Test record.
0 Plain language record.
1 Tape header record.
2 File header definition record (GF3.1 only).
3 Series header definition record.
4 Datacycle definition record.
5 File header record.
6 Series header record.
7 Datacycle record.
8 End of tape record.
9 End of file.

10 End of data (double EOF)
11 Record type not recognised.

You use this routine to find the GF3 record type of the last record
read by GF3-Proc. The type returned is always that of the last
record read in from any Unit, whether or not that Unit is still the
Current Input Unit at the time of the call, and irrespective of which
GF3-Proc routine caused the read to take place.

This routine must only be used after GF3-Proc has read data in
from the Current Input Unit.

5.4 ROUTINE GFRCWT

Summary: Write a GF3 Record.

Call definiUon: CALL G F R C W T

Use:

Sequencing:

You use this routine to write the GF3 record currently held In the
GF3-Proc Record Buffer to the GF3 Current Output Unit. You must
make sure that the Buffer contains the data you wish to write. The
data are transliterated and fonnatted as specified for the given Unit.
If Unit Option A U T is set to 2 (automatic processing switched on) for
the Unit, the write is delayed to allow automatic next record type
bĵ e update, and automatic processing checks are applied.

This routine must only be used when the Current Output Unit is
defined; i.e. when Package Control Option K W T is set to the Unit
Key of the GF3-Proc Unit to which you wish to write the record.

After a call to this routine, the contents of the GF3-Proc record
buffer are UNDEFINED. You must ensure that the entire buffer is
redefined (for example using a call to routine GFRCIN or to routine
G F R C R D) . before you call routine G F R C W T again.

Calling this routine whilst automatic cycle processing Is open will
give very unpredictable results.

21 -

GF3 RECORD HANDLING ROUTINES

5.5 ROUTINE GFRCCP

Summary: Copy one or more GF3 Records.

Call definiüon: CALL G F R C C P (ICNT)

Use:

Sequencing:

ICNT Is an Integer iirgument supplied by the calling program which
specifies the number of GF3 records to be copied. The value
must be positive and is returned unmodified by the routine.

You use this routine to move one or more GF3 records from the
GF3-Proc Current Input Unit to the Current Output Unit. As the
records are moved, they are transliterated, formatted and checked
as specified by the options set for the Input and Output Units.

If automatic processing is switched on for either of the Units (i.e.
Unit Optiort A U T is set to 2), the automatic processing checks are
applied to each GF3 record copied and definition records are
automatically analysed and stored as they are encountered.

If an end-of-file mark is read, the routine returns, even if it has not
copied the specified number of records. Please note that in this
case, no end of file mark is written to the Output Unit. The routine
can therefore be used to merge GF3 files.

This routine must only be called when both the Current Input and
Current Output Units are defined; i.e. Package Control Options KRD
and K W T contain valid Unit Keys.

The GF3 record types of the records copied should follow the
records already written to the Output Unit in a sequence allowed by
the GF3 Technical Specification.

5.6 ROUTINE GFRCIN

Summary: Initialise the GF3 Record Buffer.

Call definiüon: CALL GFRCIN (IRTY, ISEQ)

Both arguments are integer and must be supplied by you. They are
not altered by GFRCIN.

IRTY is the type of record to be initialised. Allowed values and the
resultant actions are tabled below.

ISEQ is the card image sequence number of the first line in the
definition record or plain language record. This argument is
orüy required for certain values of argument IRTY. as shown
in the table below. For other values of argument IRTY, the
supplied value of ISEQ is ignored.

IRTY
value

ISEQ
needed

Action of routine

-1 No GF3 test record. Each character of the record
buffer is set to the GF3 test character A ,
(supporting GF3.2).

22

GF3 RECORD HANDLING ROUTINES

0 Yes GF3 Plain language record. The record type and
card image sequence number fields are set on
each line of the record. The remainder of the
record image is set to blanks. Set argument
ISEQ to 1, except when you are writing
continuation plain language records. In this
case increase ISEQ by 24 for each record to give
the sequence 1, 25, 49 etc.

1 No GF3 tape header record. The record type and
card image sequence number fields are set on
each line of the record. The mandatory values
for the format acronym, translation table, and
record size fields are inserted, and the
remainder of the record Is set to blanks.

2 Yes) GF3 definition records. The record tjqje and
) card image sequence number fields are set on
) each line of the record. The remainder of the

3 Yes) record is set to blanks. ISEQ should be 1
) unless you are using continuation records to
) define more than 21 parameters in a GF3 user

4 Yes) formatted area, in which case it should be in
) the sequence 1, 25, 49) etc.

5 No GF3 file header record (GF3.2 version). The
record type and card image sequence number
are set on each line of the record. The datacycle
count and continuation fields are set to zero.
The remainder of the record is set to blanks.

6 No GF3 series header record. The record type and
Ccird image sequence number fields are set on
the first five lines only of the record. The series
count field is filled with nines and the
continuation field is set tb zero. The remainder
of the record is set to blanks.

7 No GF3 data cycle record. The record type field Is
set on the first line only of the record. The
remainder of the record is set to blanks.

8 No GF3 end of tape record. The record tjT3e and
card image sequence number fields are set on
each line of the record. The remaining
characters of the first line are set to nines and
the remaining characters of all the other lines
are set to blanks.

Example call: CALL GFRCIN (0, 25)

Initialise a plain language record image with record type 0, and card
image sequence numbers starting from 25.

Use: You use this routine to prepare a skeleton GF3 record Image In the
GF3-Proc Record Buffer. The routine only changes the buffer; it has
no other effects. The precise acUon of the routine depends upon
which GF3 record type you request as described in the call
definition.

23

GF3 RECORD HANDLING ROUTINES

Sequencing: You may use this routine at any time after GF3-Proc has been
initialised by a call to GFPROC.

5.7 ROUTINE GFRCVL

Summary: Validate GF3-Proc Record Buffer.

Call definition: CALL G F R C V L (LERR)

LERR is a logical variable returned by the routine. It is assigned
the value .TRUE, if any errors have been detected by the
routine. Otherwise it is returned .FALSE.. This logical switch
is designed to allow application programmers the option of
including customised debug procedures such as listing the
buffer .contents if they so require.

Use: This routine is called to validate the current contents of the GF3-
Proc Record Buffer. It is automatically called by the system when a
record is read from or written to a GF3-Proc Unit with automatic
processing and record checking enabled. (Technical note: the
system actually calls a lower level routine which is also called by
GFRCVL but the effect is exactly the same). The action taken by the
routine depends upon the type of record in the buffer when the
routine is called.

Please note that this routine WILL N O T C H E C K DEFINITION
R E C O R D S . Calling the routine when a definition record Is in the
buffer results in an error (GF3-Proc error 02 039). This restriction
is necessary to prevent confusion over the definition record to be
used for automatic cycle processing. (Remember that the type of
record currently in the buffer is either known to the application
program or may be obtained by a call to GFRTGT).

The checks applied and their associated error messages are detailed
below by record type. The field numbering convention used Is
expledned in the next chapter of this document and in The GF3-Proc
Users* Reference Sheets. You may find the latter more convenient
when working through the following.

Plain language record (record type 0).

The record identifier and sequence numbering of each card Image
is checked. The former must all be zero and the latter must form an
integer contiguous sequence starting with a multiple of 24 plus 1.

Error 03 004 - Error in record ID field.
Error 03 005 - Error in card sequence numbering.
Error 03 030 - Error in plain language record.

Tape header record (record type 1).

The record identifier field on each card image (column 1) Is checked
(must be 1).

Error 03 004 - Error in record ID field

24

GF3 RECORD HANDLING ROUTINES

The card sequence numbers (columns 78-80 of each card image)
are checked and must form an integer contiguous sequence starting
from 1.

Error 03 005 - Error in card sequence numbering

The mandatory fields are checked to ensure that they are non-
blank. The fields regarded as mandatory are fields 1,4,6-9,13-15. If
a call to GFRCIN has been used to initialise the buffer then fields
13-15 are set automatically.

Error 03 006 - Mandatory field not set.

The fields specified as blank (card 1 cols 3-6 and 25-29; card 2 cols
43-77; card 3 cols 54-73) are checked for non-blank characters.

Error 03 007 - Data in unused field.

The format acronjTii and record size fields are checked for the
values 'GF3.2' and '1920' respectively. Note that the system Is N O T
designed to process both GF3.1 and GF3.2 specification tapes
automatically. However, most of the GF3-Proc facilities are available
to GF3.1 tapes providing that they do not contain file header
definition records. Indeed, the system provides an easy pathway for
conversion of GF3.1 tapes to GF3.2 specification.

Error 03 008 - Incorrect format acronym.
Error 03 009 - Incorrect record size.

The date fields (fields 8-12) are scanned and if they contain valid
data (not all blanks or 9s) the syntax is checked. If both fields 8 and
9 contain valid data then a check is made to ensure that the date
in field 9 precedes or is equal to the date in field 8. A similar check
is made between fields 10 and 11,8 and 10. and 9 and 11.

Error 03 002 - Date syntax error.
Error 03 010 - Current version precedes first version.
Error 03 011 - Tape received before written.

All the above are followed by:

Error 03 031 - Error in tape header record

File header definition record (record type 2)

This type of record is not allowed in GF3.2 and attempts to check
it generate the message

Error 02 038 - No valid GF3.2 record in the buffer.

Series header definition and datacycle definition records (types
3 and 4)

As explained above, the routine is not designed to check this type
of record. If analysis is required then the buffer containing the
definition record should be written to an Output Unit which has
automatic processing turned on.

-25

GF3 RECORD HANDLING ROUTINES

Error 02 039 - Def. rcrd. analysis may not be invoked manually.

Series header and file header records (types 5 and 6)

The first column of each card image Is checked against the
appropriate value (5 for file header, 6 for series header). Note that
only the first 5 card images of the series header record are checked.

Error 03 004 - Error in record ID field.

The record sequence numbering (cols 78-80) of cards 1-5 (series
header) or 1-24 (file header) are checked to ensure an Integer
contiguous sequence starting from one.

Error 03 005 - Error in card sequence numbering.

Each field regarded to be mandatory is checked to ensure that it Is
non-blank. The fields checked are 2, 5-6 (series header only), 7. 26.
28, 29. 32-40, 44-46.

Error 03 006 - Mandatory field not set.

Columns 36-37, 57-62, and 67-76 in card Image 5 are checked to
ensure that they are blank.

Error 03 007 - Data in unused field.

The syntax of date and üme in fields 7, 8, 16. 17. 24. 25. 26, and
27 are checked syntactically unless they are blank or 9s filled. The
syntactic checks consist of range checks on each subfield (day,
month, year etc) which make full allowance for the calendar (e.g.
February is only allowed 29 days in a leap year). One point to note
is that the GF3 Technical Specification allows the precision of a
date/time to be specified by setting the insignificant subfields to
blanks. To support this, the current version of GF3-Proc allows a
value of zero in subfields where this would normally be illegal (e.g.
month). If this happens, the internal date/time used for the
extrinsic time checks is computed as the stcirt of the least
significant subfield specified. For example, if year alone were
specified as 1985, the internal date/time for checks between fields
would be set to 00.00 hours on 1st January 1985.

Error 03 002 - Date syntax error.
Error 03 003 - Time syntax error.

Extrinsic time checks are carried out as follows:

Start date/time preceding or equal to end date/time on fields
16/17, 24/25, and 26/27.
End date/time (fields 17, 25, and 27) preceding date/time of
file/series creation (fields 7 and 8).
Data duration (fields 26/27) not spanned by platform duration
(fields 16/17 and 24/25).

If any of the fields involved in a given check contain absent data
(blank or all 9s) then the check is suppressed. If a date but no time
is given then the time is assumed to be 00.00 for the purposes of
the check. If the checked date/times are equal then the check does
not fail.

- 2 6 -

GF3 RECORD HANDLING ROUTINES

Error 03 012 - File/series created before data collected.
Error 03 013 - End date/time precedes start date/time.
Error 03 014 - Data not spanned by platform duration.

The latitude/longitude fields (28, 29, 37-40) are scanned and if they
are not set to a d u m m y value code, a syntax check is applied. (In
this case, ' d u m m y value code' is defined as the numeric portion or
all of the field filled with 9s or blanks). This ensures that latitudes
lie in the range 0-90 with a hemispheric indicator of N or S and that
longitudes lie in the range 0-360 with a hemispheric indicator E
or W . The longitude check is deliberately lax to allow a choice of
convention when working in the region of the International Date
Line.

Error 03 026 - Latitude syntax error.
Error 03 027 - Longitude syntax error.

The usage flag (field 36) is checked to be 9 (in which case fields
37-40 must be filled with 9s), 1, or 2.

Error 03 015 - Usage flag incorrect.

The depths (fields 31-35) are checked to ensure that the absolute
value of the sea floor depth lies in the range 0-12000m, that the
maximum depth exceeds or equals the minimum depth, that the
instrument depth does not exceed the water depth by more than
five per cent. These checks are suppressed if the field is set to
absent data. Account is taken of instruments above sea level when
checking instrument depth against water depth.

Error 03 016 - Elevation/sea floor depth exceeds 12000m.
Error 03 017 - Inst depth exceeds total water depth by >5 per

cent
Error 03 018 - Minimum depth exceeds maximum depth.

The positional uncertainty is checked and the check fails if a
negative value is found.

Error 03 019 - Positional uncertainty negative.

A check on the series count ensures that this field is set to an
absent data value (i.e. 9s) on a series header record and to a
positive value on a file header record. A similar check is made on
the datacycle count field which must be zero on a file header record
and zero or positive on a series header record. The continuation flag
is checked and must be 0 or 1 on a series header record and 0 on
a file header record.

Error 03 020 - Series count specified on a series header record.
Error 03 021 - Series count zero or negative.
Error 03 022 - Datacycle count negative.
Error 03 023 - Datacycle count specified on a file header record.
Error 03 024 - Illegal continuation flag.
Error 03 025 - File header continuation specified.

All error messages are followed (assuming that Package Control
Option D E R has been set to 2) by the appropriate message from the
following pair.

27 -

GF3 RECORD HANDLING ROUTINES

Error 03 032 - Error in file header record.
Error 03 033 - Error in series header record.

Datacycle record (type 7)

No checks are made on this record type.

End of tape record (type 8)

Column 1 of each card image is checked and must contain the
correct record identifier (8). The card sequence numbering in
columns 78-80 of each card image are checked against the Integer
contiguous sequence 1-24.

Error 03 004 - Error in record ID field.
Error 03 005 - Error in card sequence numbering.

A check Is made ensuring that columns 3-77 of the first card Image
Is filled with 9s.

Error 03 028 - Tape trailer field incorrectly set.
Error 03 029 - Multi-reel files not supported by GF3-Proc

Sequencing: This routine may be called whenever there Is a valid GF3 record
other than types 2-4 in the GF3-Proc buffer. It Is called
automatically when an appropriate record Is read from or written to
a GF3-Proc Unit with automatic processing switched on (Unit
Option A U T set to 2).

-28 -

CHAPTER 6

GF3 FIXED FIELD HANDLING ROUTINES

6.1 INTRODUCTION

This chapter describes the routines provided to assist with the processing of fields
within the G F 3 records. These routines are designed for the construction/
interrogation of the fixed format areas within G F 3 . The management of fields within
the user formatted areas of G F 3 is the topic dealt with in the next Chapter.

A suite of 7 routines is provided which allows exchange of floating point, integer, and
character data between the G F 3 record and the application program. These routines
employ a c o m m o n interface to identify the field within record which is to be accessed.
Figures 6-1 to 6-5 show the field divisions within the various types of G F 3 record. It
can be seen that most of the fields have been assigned a number which is the
required value of argument IFLD w h e n access to that field is required. The fields
which are not assigned numbers are automatically set up by the system (e.g. by a call
to GFRCIN) . It can be seen that in certain record types, the IFLD value does not
necessarily form a unique field identifier. W h e n this is so, the fields are uniquely
labelled by an additional parameter, ILIN, which is the number of the card image
within the individual G F 3 record (1-24). Please note that if IFLD forms a unique
reference then ILIN M U S T be set to zero.

A careful examination of figures 6-1 to 6-5 reveals what at first sight appears to be
a serious problem. This is that the next record byte field is only numbered on type 0
records, apparently making it inaccessible to the application program for most of the
time. However, the argument IRTY is N O T checked against the current contents of the
GF3-Proc Record Buffer. Thus the next record byte can be accessed at any stage w h e n
the Record Buffer contains a valid G F 3 record, by the call G F R I G T (0,2,0,IVAL).

The 'type' of routine used is not determined by the typing of the field in the G F 3
record, but by the type of variable required by the application program. Character
access is allowed to any field, floating point access is allowed to any numeric field
whilst integer access is restricted to integer fields. If an integer field contains implied
decimal places (e.g. the depth fields in the file/series header records) then floating
point access to these fields automatically takes this into account.

A L L of the routines described in this Chapter m a y be called at any time after the
initialising call to G F P R O C , although the GF3-Proc Record Buffer must contain a valid
G F 3 record if these routines are to return meaningful values.

6.2 ROUTINE GFRFGT

S u m m a r y : Get floating point value from record field.

Call definiUon: C A L L G F R F G T (IFOY.IFLD.ILIN.FVAL)

IRTY is an integer argument supplied to the routine which specifies
the record type being accessed. Please note that this value is
N O T checked against the record type currently In the Record
Buffer. It is returned unmodified.

29

GF3 FIXED FIELD HANDLING ROUTINES

IFLD Is an integer argument supplied to the routine which specifies
the identifier (within the record) of the field which is to be
accessed. See figures 6-1 to 6-5 for the appropriate value.
Please note that the value of IFLD must always be specified
whatever the value of argument ILIN. It is returned
unmodified.

ILIN is an integer argument supplied to the routine which specifies
the card image within the GF3 record containing the field.
THIS S H O U L D B E SET T O Z E R O UNLESS IFLD FAILS T O
U N A M B I G U O U S L Y IDENTIFY T H E FIELD. It is returned
unmodified.

FVAL is a floating point variable returned by the routine containing
the contents of the specified field.

Use: This routine is used to obtain a floating point value from a numeric
field within the G F 3 record currently held in the GF3-Proc Record
Buffer.

If the field is not defined in the G F 3 Technical Specification as one
which Includes an implicit decimal point the result is the same as
reading the field with F w . O .

If the field does include an implicit decimal point then this Is
automatically taken into account by the routine.

6.3 ROUTINE GFRFPT

S u m m a r y : Put floating point variable into record field.

Call definiUon: C A L L G F R F P T (IRTY.IFLD.ILIN.FVAL)

IRTY Please see routine G F R F G T .

IFLD Please see routine G F R F G T .

ILIN Please see routine G F R F G T .

F V A L is a floating point veiriable supplied to the routine which Is to
be stored in the specified field. It is returned unmodified.

Use: This routine is used to store a floating point variable in a numeric
field within a G F 3 record. If the field requires an Integer value, the
floating point value is rounded to the nearest integer. In cases
where the field requires an integer with implied decimal places (e.g.
the depth fields in the file/series header records), the routine scales
the value before rounding.

6.4 R O U T I N E GFRIGT

S u m m a r y : Get integer value from record field.

Call definiüon: C A L L G F R I G T (IRTY.IFLD.ILIN.IVAL)

IRTY Please see routine G F R F G T .

30

GF3 FIXED FIELD HANDLING ROUTINES

Use:

IFLD Please see routine GFRFGT.

ILIN Please see routine GFIü^GT.

IVAL is the integer value returned by the routine from the
specified field.

This routine is used to return an integer variable from a specified
integer field within a GF3 record. The value is returned 'asis'; i.e. if
the field includes implied decimal places then it will require scaling
by the application program. In such cases it is recommended that
the floating point routine G F R F G T is used which automatically
scales the value.

6.5 ROUTINE GFRIPT

Summary: Put integer value into record field.

Call defíniüon: CALL GFRIPT (IRTY.IFLD.ILIN.IVAL)

IRTY Please see routine GFRFGT.

IFLD Please see routine GFRFGT.

ILIN Please see routine GFRFGT.

Use:

rVAL Is an integer variable supplied to the routine which contains
the value to be stored in the specified field. It is returned
unmodified.

This routine is used to store £m integer variable into an integer field
within a GF3 record. The vedue is stored 'asis'. If the field contains
implied decimal places then these must be set up by suitable code
in the application progreun. In such cases it is recommended that
routine GFRFPT is used which scales the values automatiCcdly.

6.6 ROUTINE GFRKGT

Summary: Get character content of a record field.

Call defíniüon: CALL G F R K G T (IRTY.IFLD.ILIN.KVAL)

IRTY Please see routine GFRFGT.

IFLD Please see routine GFRFGT.

ILIN Please see routine GFRFGT.

Use:

KVAL is a character variable returned by the routine containing
the contents of the specified field.

This routine is used to copy the contents of a specified field of a
GF3 record into a character variable. The number of bytes returned
is defined by the width of the specified field. KVAL must therefore
be large enough to accommodate the complete field or a GF3-Proc
error will result. This routine may be used to return the contents of
any of the fields within the GF3 record.

31 -

GF3 FIXED FIELD HANDLING ROUTINES

6.7 ROUTINE GFRKPT

S u m m a r y : Put character information into a record field.

Call definiüon: C A L L G F R K P T (IRTY.IFLD.ILIN.KVAL)

IRTY Please see routine G F R F G T .

IFLD Please see routine G F R F G T .

ILIN Please see routine G F R F G T .

K V A L is a character variable supplied to the routine containing
sufficient characters to fill the specified field. It is returned
unmodified.

Use: This routine is used to copy character information from a character
variable into the specified field of the G F 3 record. The number of
characters copied is determined by the width of the field. Thus
sufficient characters must be supplied to fill the field, Including
padding blanks where necessary. If not, a GF3-Proc error (02 042)
results. The routine m a y be used to place information Into any of
the fields within the G F 3 record.

6.8 ROUTINE GFRKST

Summary;

CaJl definition:

Use:

Set record field to a specified character.

C A L L G F R K S T (IRTY.IFLD.ILIN.KVAL)

IRTY Please see routine G F I ^ G T .

IFLD Please see routine G F R F G T .

ILIN Please see routine G F R F G T .

K V A L is a CHAÎÎACTER* 1 variable passed to the routine containing
the character which is to fill the field. It is returned
unmodified.

This routine is used to completely fill the specified field of the G F 3
record with a single character. This is especially useful for setting
fields to the usual d u m m y value code of all 9s.

- 32 -

^~

ñ

uaannN

aoN
snoas

sun

<

z o h-0.
E

Ü

CO

lU

o oc
o O

u lu
<s
< 3 O

1 _l z < a.

auooau XXBN

^

CO

Ol
Ql aU

O
O

B
uIlT-

o C
O

C
O

r̂

LT)

C
O

I-*

C
M

¿^
r-v

O

r-.
O

l
tO

00

iO

«£>

^ fO

to
C

M

tO

i-H

¡s.
o lO

o>
m

O

D

¡n
IT)

(O

tn
in
ir>

to

C
O

tn
(NJ
tn

m

o
m

en

C
O

^ m
 ̂ ^ ^

'en
C

\J

C
3

O
l

m

C
O

r̂

m
 m

m

m

£2
C

O

C
M

fO

m

o en
O

l

C
O

C

M

C
M

C
M

•X

I

C
M

^ C

M

C
O

C

M

C
M

C

M

r-t
C

M

O

C
M

O

t

»5"

O
l

C
O

* C
O

C
M

^
H

CM

G

C
il

M

c
3

uaannN
l

3
0

N
3

n
0

3
s

|
^

3
N

n
|

<

z 0 1-a.
ce
U

CO

UJ
Q

K

O

CO

O

O

LU

O

< 3 O

z < -1

z < Û
.

ai auooau

CO

T
-

o 00
O

t

00
1««»

r*.

m

f-.

C
O

C
M

r̂

r̂

o h
»

.

O
t

\o
eo
IS

.
r-lO

%

o
_*o
m

to

s C
O

to
C

M

to
i>

^

to
O

*o
a*
IQ

C

O

1X1
r»«.
m to
m

in

C
O

m

C

M

m

to

o to
ot

O
O

^ to

m
 ̂ ^ ä

Ja.
C

M

^
4

O

O
t

£2
«

0

J3.
r»*
C

O

to
C

O

tn
C

O

S

C
O

C

O

C
M

C

O

•-H

m

o C
O

O

l
eo

C
M

C
M

to
C

M

in
C

M

* C
O

C

M

C
M

O

J
£i

O

ot

C
O

•—

1

to

In
fO

o f—
•

O
t

eo

h^

(O

m

* C
O

C
M

-H

o o O
)

(O

3 O
)

c

Q
. •

(O

1̂

(O

o
.

o

& s>
C

§

c
2

3.
C

'S a.

o
o

Ç

JC

Iff

PI
B

vi

'tí
ill 8 0)
z c O

)
(O

-
33

T
—

5

usannN
aoNsnoss

3NI1

z

O

<
§

 1
-

P (9

z o

111

z <
z
 1

g^

is:
Q

-
^

1-Z 3

O

o
u.

o

lu

<

Z 1

IE

„

UJ
^

<

^

1-

ra

û
^

-

<

, U
.

o

ÛZ a
.

lU

<

ii
(c fîi

z

CO

z <

_l
CO

<

K

U
l

m

s 3

Z ce
o

lu
z <

Z lu

a
.

<

1-

<

3
0

0
0

N
O

Iin
iliS

N
I

svid aaoo

1̂

(O

in

•i-CO

CM

<

3
0

0
0

1

A
dlN

nO
O

 1
 ''"

(4

b£

Z <

_J

m

'03U

iX
3

N
|

0
1

0
3

»
 n

O

0
0

o»
0

0

1««.

r«*

m

«*
r*.

r«.
O

r̂

"Ô
T

lO

0
0

to

\D

\D

m

£
 ̂

¿O

_¡o

C
\J

¿o
to

o lO

o»
L

O

0
0

to

iO

lO

to

1X
1

to

m

lO

C
M

to

to

O

kO

o
o

to

•
%

tn

^
X

 m

^ C
J

^ ^H o

m

oo
m

£2
to

m

to

m

P
O

P

O

P
O

C
M

C

O

P
O

O

P
O

O
l

CVJ

0
0

C
M

P
«*

C
M

to

C
M

T
o

C
M

C

M

ro
C

M

C
M

C

M

C
M

O

C

M

o»

"cô"

"^
tO

"
tÔ

^ m

C
M

"H

"ô"

en

Q
O

f̂

to

to

^ P
O

C
M

-

CM

l

¡s

CO

z <

m

<

lU

CO
3 DC
lU

1-3 o S"
Ü

g

,
L

L
S

0

-'
lU

^

£
L

*0

?-s:
»---'
z

o

Q

§

í̂

lU
 o

^

^

>
 S

2

Ö

>- ^

a 2
 >-

i_

^

o

UJ ?

s

<

¡2

2

û

s

>

>-
z

Q

fe
 1-

2

1 g >

lU
l""

>
•

J
-

L
U

û

¡y 1
 2

<

¡2

2

>-

CO

r-CM

T
-

^ ^ O

^ 0
)

00

ai '03u[]

o

C
O

0
0

»̂

fN
.

r-.

to

í̂-

r>.

C
M

r-»

.

r̂

o

rs
.

O
v

:&
0

0

to

ro

to

to

t£

to

to

* to P
O

to

C

M

to

o

to

O
l

to

0
0

to

r«.
to

to

tn

m

to

s

P
O

to

C
M

to

to

O

tn

O
l

0
0

to

tn

^
^ ro ^ CM
¿ O

l

P
O

0
0

P
O

P

S
.

P
O

(O

P

O

m

P
O

P
O

P

O

C
M

22
fO

o

ro

O
l

C
M

0
0

rs
.

^ to C
M

C
M

C
M

P
O

c^
C

M

C
M

C
M

O

C

M

C
^

^ ~
'O

o»

C
O

1
^

lO

tn

^ C
O

C
M

^

CO

1
 u

C3

K
tu

O
fci

gco
e

 CO

^ 1

-J

CD

<
 LU

-J

<

H

Z O

H

<

_J

z <

Q
:

1-

'03U

in

'i
T

*

O

C
O

o»

C
O

r«.
f*«

.

to

fs
.

tn

£
2

.

* r̂
m

C

M

h
»

O

r**
O

l
to

oo

to

p
s

.

to

to

to

m

to

P
O

to

C

M

to

to

o

to

O
t

in

O
O

tn

tn

to

m

tn

m

tn

P
O

m

C
M

to

tn

o

tn

O
l

O
O

r
»

.

to

tn

^
^ m

C

M

^ O

(3
1

P
O

«

0

£
0

P
O

to

P
O

m

C
O

P
O

m

C
M

fn

.

P
O

o

ro

^ CM

C
D

C

M

"^
,C

M

^C
M

in

C

M

,C
M

P

O

C
M

C
M

C

M

C
M

O

C

M

(71

~ to

in"

^ cñ"

^ ^
"Ô

"

O
l

0
0

r*«.

to

to

* P
O

C
M

-

(0

0)

0)
•T3
<Q
0)

X
 Q>

Q
.

|2

CM

I

(O

O
)

-
34

eo

S

^ (0

1
 o

0
0

o

o
o

^D

^
^̂

C

M

o

eo

to

to

IT
)

to

to

ro

to

C
M

«o
to

o

to

O

l

m

C
O

tn

«o

m

m

un

C
sj

m

o

to

o»
^ oo to

m

m

^ GVJ

O

O
ï

C
O

m

ro

to

e
n

tn

e

n

•
^

m

m

m

C
N

J

en
en
o

m

O

l
<\i

0
0

C
V

J

to

CVJ
L

D

C
M

*
!

•

C
M

m

C
M

C

M

C
M

C
M

O
)

"c?

"tO

"^
tñ

^
^

¿

1—
>

o

CA

0
0

to

m

^ M

C
M

-

uaannN

3
0
N

3
n
0
3
S

3
N

n

<

?
•

•s
ra

c
i

(9
1-<

z o H 0
.

u lu

û

1-< o u.

z < c 1-DC
O

u.

CO

z <

-1

<

iV
N

U
O

d

suB
ianvuvd

310A0 V
iva

JO
uisnnN

suaiiN
vuvd

U
ia

V
3

H

do
uasM

riN

auooau IXHN
ai au

o
o

iu

^

eo

CM

T
-

<t
^

~

O

C
O

0
0

to

in

^ ts. rn

1
^

C

M

.r>.
IN

.
O

rs

.

O
l

oo
IN

.

to

to
"

to

3.
m

cvT

to

O

IS
.

o>

¿n

0
0

to

tfi

lii

m

tn

C
M

H
i

o

tf>

O
l

.s.
0

0

S
.

to

a.
ifî

en

^ CM
a.
i-H

o»

0
0

m
 rs

.
m

tO

rn

iO

en

S
 en

en

C

M

£2.
o

S

2
.

O
t

C
M

o
o

fN

tO

££

lO

C
M

^ CM
en

C

M

C
M

C
M

O

C

M
O

l

"cÔ

rv.

to

"̂

f»7

^ •
^

^
H

o

O
t

0
0

IN
.

to

m

^ en

C
M

r-t

S
 a * (0

1

uiennN

3
0

N
3

n
0

3
3

3
N

I1

N
iuosia

U
3

1
3

N
V

U
V

d
A

llv
a

N
0

0
3

$

<
 c s
lie

ils
lu

<

09 a

. N
N

V
Ifl

<
3in

siu
iiv

u
.

Ü
 ~

"
09

u.
-̂<

•
o —

(9

 aaoo
3m

vA
AHnna

9Í
yi

z
u

.
lu

_J

<
3aon

<

CO

b

z 3

O

Z < K lU

1-lU

2 ce a

C
»

U
-

c

lu

=

z «-'

H
iuosia

U
3

1
3

H
V

U
V

d

<

OC
U

l

tû lu

fi. XNvna
ai auoo3u|

in

^
"

* •
^

n

CM

T
-

T—

^ O

o>

00

h
-

(O

m

1

o

0
0

.
O

t
IN

.

o
o

fN
.

to

"ïn"
rN

«*
fN

en

C
M

IN

.

r-N

o

IN
.

O
l

to

0
0

to

to

to

to

m

to

s m

to

C
M

to

to

o

to

O
»

u>
C

O

m

P
N

to

If)

in

in

in

en

m

C
M

tn

tn

o

m

o»

:T

e
o

^
N

to

tn

1
 en

^ CM * 5 o

o»
en
C

O

en

IN
.

£2

to

m

m

en

tn

en
c

g

en
^

4

O en

o>

S
i

fN

to

C
M

m

C
M

^ ^ en C
M

C

M

£
i

s C
M

o>

eo

^ tô

m
 r<
-t

en

C
M

v

4

v-l

o

O
l

eo

to

m

* en

C
M

r-t

(0

0)

0)

Q

eo •

(O

d)

- 3
5

i

uisnnN

30N
3n

03S

3N
n

^
111

oc
U

J

m S!
C

D
111

S

=J
 111

3

U
. oc

r

1-
O

z

O

K

lU

Z
O

CO

 Û

^

8
*9

°
o

c
«

>-
0. <

m

W

»

LU

(0

oc

Q

^

111

H
I

S

lü
¡¡j»

¡2

^

1

=i 5

OC
 ^

1- U

. s

o

X

K

Q

_

U
J

UJ

Z

u
iS

2
„!i

2

Ci u
. s

u

>

.

<

< < Q

u.
z

O

O

uj
P

Ü

"1

Il
<

C

z
,

i

<

<

1
-

< a u.
O

ii o

W
 O

)

:^
en

U
.

<

c

5
=

1

5
, ê

<

aaoo

N
O

lX
niilS

N
I

5V
1J

3
0

0
0

o>

00

h
*

(O

m

^

CO

^
A

U
lN

n
O

O
l*^

<

U
i

< Z (-O U
J

->

o GC
Û

.

"^

0U
O

03U

IX
a

N
l

Gl G
uooaul

o

O
O

O

í

C
O

m

d

r-C
M

r^

•—
•

O

C
T

i

to

C
D

P
»

*

iO

tO

to

to

«o
m

<o
o (O

O

l
iO

C

O

m

r—

in

•
o

tn

u

n

H
l

m

C
O

U

I

m

*n

o

iO

O
l

0
0

tO

U
l

en

C
M

3.
o

O

Í

£
2

.
C

X
>

C

O

m

•£>
ro

m

m

m

C
M

m

m

m

O
l

C
M

C
O

C

M

C
M

lO

C

M

»n

C
M

C
M

m

C
M

C

M

C
M

C

M

O

C
M

O

)

"cô"

1
^

TS"

^ O
ï

C
O

tO

P
O

C
M

-•
ê

uaannN
30N3noas

3NI1
z

i
ï ̂

z

^

û

^
^

o

î;

<

2

2
°

5

S
§

^

;:
>

Z
i

1

o

«

2

3

UJ

X

g
î

X

o
^

=

2-

<

°
o

°

2

i=

fc

2

§

Í
>

û

»

>-

o U

< OC e
s

t
>

 ^
 Su

c
S

Ë
u

j
O

u

 Q
 Q

<

UJ

2
„

<

0)

i
(O

S
°>

o

-j

<
 5

<

2

c
 o

ö

t
u

J

>" <
 s

0. 5

o

CO s! O

<
0

V
1

d
3

0
0

0

UJ
^

ä

tl.

(O

>
•

=3

K

g-
2

2

£
î

1
-

<

Q
-

<

Z

—

-1

1

U
.

1

3
0

0
0

01
 ayo

o
3u

h
-

in

1—

CO

(M

o

n
 c

^

LO

CM

CM

CO

CM

CM

CM

CM

cF

00

r-

o

0
0

O
l

!*<.
0

0

h
»

io

m

r*»

r-ro
r«.
C

M

r-s

O

O
l

v
O

O

O

to

r^

«
o

iO

<
o

* ¿
o

,
ro

V

O

C
M

2£_

u
a.

o *o
o

>

tn

C
O

r^

m

to

to

m

in

m

iû
.

C
M

o o
»

C
D

P
N

.

S
.

lO

P
O

C
M

3
.

o

s
m

C

O

C
O

fO

to

ro
m

P

O

^
ro
ro
P

O

C
M

P

O

ro
o ro
O

)

C
M

O
O

C

M

I**
C

M

to

C
M

m

C
M

^ P
O

C

M

C
M

C
M

O

C

M

O
t

"cô

~ "îo"

"ïH
"

In

C
M

"o"

O
l

0
0

to

P
O

C
M

-

i <

1

usanriN

30N
3n

03$
3N

I1

•
z

5

•-
S

2
s

P
ca rrf

iffif"
 =

S S

 ^
 <

s

<

£9
 U

J
 ¡u

^

S

O

O

S

2

2
 5

 *" >

'̂

2

LU

K

-
*

•
*

2

O
 o

<o

2

§

O

"•

(C
 I

F

i¿

3

lu

F

<

"
•

*

m

U
J

 UJ
 S

2

o

o

EC
 <o

2

<

g
S

 2

S
Í5

Ü
Í2

•
-

fc

•-
Z

O

S

it
d

t
=

3

5

"• UJ
3

1
§

¡5'̂
 2

UJ

es

2

39N
V

U

F

/U
0U

U
3

Z

IV
N

O
IX

IS
O

d
z

X
U

J
1

-
O

X

_

§

2

S
g

5

g
S

 '̂

u.
o

~

1

'^

ê

'
<

2
V

b

U

J

=

§
§

^
" 1

 1

<

2

-"
O

O

1
0

ta

2

ï
i

t;
X

S
«̂

i
i >->-u u 09

C
9

2

U
J

2

?
X

¡U

X

Q

a

Í
2

«

>->

u

Ü

01
 011003»

CO

CO

C
O

C
O

C
M

C

O

CO

o

CO

O
)

CM

0
0

evj

CM

CM

o

C
O

O

l

r«.
C

O

p
«

.
p

s
.

p
^

to

f-m

p
N

.

p
^

ro
1»«.

C
M

P

^

O

O
l

to

0
0

to

p
«
»

to

to

to

to

to

C
O

to

C

M

to

to

o

to

o
»

i£
L

O

O

m

4
n

tO

^

to

to

m

ro
_tn

C

M

o

to

O
l

C
O

p
^

to

P
O

C
M

O
l

ro
0

0

£
0

ro

to

P
O

lO

P

O

^ P
O

ro
ro
C

M

P
O

P
O

o

P
O

O

)
C

M

0
0

C
M

C
M

tO

C

M

m

C
M

C
M

P
O

C
M

C

M

.^
t^
C

M

O

C
M

O

l
^-«
0

0

T
o

"

tn

"^
Tñ"
"^

"3"
^

H

O
»

0
0

p«»

tO

lO

^ P
O

C
M

-

(0
L

U

< > U
J

> < C

lu

z < Q U
J

CO
€9
U

J

tL

X U
J

U
J

> U
J

-J

< U
J

<0
U

J
> o m

< CO
1-X

o U
J

X

•

m a>
c

usannN
30N

3n
033
3N

n
N

O
IX

V
n

N
IlN

O
O

ld
^

V)
z 3 m

0U
O

03U

SIHX
 N

I
8310A

0
VXVQ

dO

U

3annN

z < _i

u.
O s (4 z

<
 w<
ë =

i

g
2

á

<
N

O
IX

V
O

nV
A

sxN
via

^
3

0
0

0
V

3U
V

V
39/N

V
30O

U
l

1-
2

^
F

<5

^

û

M

z

^

Z
<

O

û

UJ

 U
J

-1

Q

Q

<
2

\
"

iu
j

==

Is
 ^

z o

 <

2

U
J

 Z

_l
Q

o

U
J

=

Q a

<
z

\-
Z

X

oc
 UJ

1-

V
.

U
l

Q

X

CO CO Z
i

a

a
D

vu aovsn
CI

O
U

O
O

SU

LO

CO

^
'^

^

o

C7>
C

O

0
0

CO

1^

CO

c
ri

o

C
O

O

l
p

^

C
O

p
v

to

f-l.

L
O

p
^

P

O

f-»

C
M

r-t

p
s

.

O

p
^

C
ïl

to

O
O

to

r»

-

(O

to

to

m

to

to

ro

to

C
M

to

O
O

to

r-to

to

to

U

l
to

to

P
O

to

C

M

to

r-(

to

o

to

C
7I

C
O

1*-»

to

to

ro

C
M

O

tj-

O
l

ro
C

O

P
O

P
O

lO

P
O

to

ro

ro

P
O

P

O

C
M

C

O

P
O

o

to

o
>

C
M

0

0

C
M

C
M

to

C
M

to

C

M

C
M

ro
C

M

C
M

C

M

(M

3"
C

M

O
l

"«"

"ÏS
"

"in"

"^
T

o

"^

"o"

O
)

C
O

P
v

to

to

ro

ÍM

-

(0

0)
•a

(0

0)

z (0

'C
0)
(0

0)

36

73

O

U

a>

DC

a>

Ü

^ (0

a

O
 o

T
-

c

'3

a

lU

CC

K

<

J

O

z
1- o

 o

2

<

>-
lU

O

o

o

K

o

C9
UJ

U

-
.

-<

O
O

ü
oc 5

O

lU

 LU

00
 o

<

2

lU

H

3

ÛC

<

Z

Q
. O

Q
U

003U
 N

I
S

310A
0

V
iv

a

dO
 U

B
Q

IñinN

auooau
 IXB

N

CO

O
i

T
-

G
I a

U
0

9
3

u
f|

o

CT»

CO

p»*

"»5"

m

•I-!-

^
fO

CM

^ o

CO

r̂

n

CNJ

-

•s
o o a>

oc

o.
.<B

H

O

•a

c

111

t o

^ c

uaannN

30N
3n

03S

3N
n

v
>

a

O

K

1-UJ

C9

<

Î»

O
IL

'
o

*«. ~

Û

^

"

lu
 2

 —
 Ë

s

-1

 lu

z
< O

s! fe

z
u

. u
. o

(9

St

o

»-[¡¡
(9

1
 T
-

aU
O

O
B

U

1
X

3
N

I

ai Q
uooauf]

oO

1**
00

rv.

tO

r»̂

m p«*
^ C

O

!*•»

C
sJ

r^

o r*.
a*
to

CO

*o
r«.
lO

iO

¡o

_

m

^ to

m

to

CVJ

to

to

o

to

o

tn

O
O

in

m

to

tn

m

m

* in

m

C
M

in

m

o

C
O

-=£.
lO

in

CM

O

a%

tn

00

CO

1^

CO

to

tn

m

tn

Ä

m

m

C
\J

rn
r-t
ro
O

m

O

)
C

M

C
O

C

M

f«»

N

to

m

C
SJ

* CM C

O

^H

C
M

O

C

M

O
i

"05"

to

•—
t

tn

i-4

CO

C
M

•-I

(-1

•
^

^̂

o»

OO

to

m

* ro

CM

^

0)

0)

0)
Q

.
(0

I-c

•o

c

CO

(0

0)

•a

0)
o >•
o m

CO

Q

lO
 I

(O

O
)

37

CHAPTER?

GF3 CYCLE HANDLING ROUTINES

7.1 INTRODUCTION

This chapter and the following chapter describe the routines which handle
Information contained in the user-formatted areas of the series header and datacycle
records. This chapter documents the routines which read and write G F 3 cycles whilst
the routines documented in the following chapter allow individual G F 3 parameters
to be stored in and retrieved from the G F 3 cycles.

Within the user-formatted areas there Eire two types of parameter, header parameters
and datacycle parameters. A user-formatted area m a y contain all header parameters,
all datacycle parameters or both types of parameter. For the following discussion it
is assumed that both types of parameter are present.

The structure of the user-formatted area of a G F 3 record follows a fixed pattern with
the header parameters grouped into a single 'header cycle' at the start of the user-
formatted area followed by the datacycle parameters grouped into a 'datacycle' which
is repeated until the user-formatted area is filled.

* * N B * * G F 3 count fields containing 'the number of datacycles' in a G F 3 record
E X C L U D E the header cycle.

The automatic cycle processing routines are based upon the concept of a cycle buffer.
(Technical note: the cycle buffer is a logical concept not an actual array within the
system. Thus on the cycle buffer I /O operations involve the manipulation of pointers,
not character copying. This makes processing m u c h more efficient).

The subroutines in this chapter are subdivided into automatic cycle reading routines
and automatic cycle writing routines. Each group of routines includes routines which
open automatic cycle processing, distinguish between header cycles and datacycles,
read (or write) a G F 3 cycle and close automatic cycle processing. In addition,
automatic cycle writing includes a routine which flushes the GF3-Proc BulTer whether
or not it contains its full quota of G F 3 cycles. This provides some control over the
assignment of datacycles to G F 3 records.

7.2 AUTOMATIC CYCLE READING

7.2.1 OUTLINE

Four subroutines are provided which open automatic cycle reading, read a G F 3 cycle,
determine the type of the last cycle read and close automatic cycle reading.

Automatic cycle reading is first opened or closed. It should be noted that automatic
cycle processing (reading O R writing) m a y only be open on one unit at any one time:
i.e. it is not permissible to open automatic cycle writing whilst automatic cycle reading
Is open on another unit.

The main function of the open cycle reading routine (GFCROP) is to establish a link
between one of the definition records stored internally and the data which are to be
read. Definition records m a y be classified as series header or datacycle and m a y be
active at tape, file, or (in the case of datacycle definition records only) series level. The

- 38 -

GF3 CYCLE HANDLING ROUTINES

definition record storage area is scanned for the lowest level (tape is high; series is
low) definition record of appropriate type in the storage area. The system stores
definition records as they are encountered and deletes them w h e n the file or series
to which they refer is completed. Thus the definition record selected is as predicted
by the G F 3 . 2 Technical SpecificaÜon, PROVIDING T H E ENTIRE I /O S T R E A M H A S
B E E N P R O C E S S E D WITH AUTOMATIC PROCESSING O N .

It is also important to realise that the system garbage collection depends upon the
correct inclusion of file and series header records. For example, if a file header record
is omitted it is quite possible for the file level definition record from a previous file to
be picked up with very unpredictable results. It is therefore advisable to give class 04
(record not in sequence) errors a second glance w h e n automatic cycle processing is
being used.

The G F 3 cycle read routine (GFCYRD) allows one or more G F 3 cycles to be read,
leaving the last cycle read in the cycle buffer.

G F 3 cycles m a y be header cycles or datacycles. The type of the last cycle read m a y
be determined as an integer code using the cycle type determination routine
(GFCTGT). This routine also informs the application program w h e n all the cycles from
a given user-formatted area have been read.

Closing automatic cycle processing by a call to G F C R C L allows GF3-Proc to 'tidy up'
its internal housekeeping areas making the system ready to read another user-
formatted area or start automatic cycle writing.

The routines in this section form an integrated group which allow specified G F 3 cycles
to be read into the cycle buffer ready to be interrogated by the routines documented
in the next chapter.

7.2.2 ROUTINE G F C R O P

Summary: Open automatic cycle reading

Call deflnlüon: CALL G F C R O P (IRTY)

IRTY is an integer variable supplied to the routine which specifies
the type of GF3 records from which the cycles are to be read.
A value of 6 specil'ies series header records whilst a value of
7 specifies datacycle records. The value Is returned
unmodified.

Use: The routine accesses the appropriate definition record and checks
the contents of the GF3-Proc Record Buffer. If the type of the record
In the Buffer matches IRTY, then no further action Is taken. If not,
the next GF3 record is read from the input stream and Its type Is
checked. An error (01 045) results if the type of this record
disagrees with IRTY.

Sequencing: The routine must only be called when the Current Input Unit is
defined and positioned such that the first GF3 record containing the
cycles to be read is either in the GF3-Proc Buffer or Is the next
record to be read. Please note that this Unit must have automatic
processing turned on (i.e. Unit Option A U T must be set to 2).

As automatic cycle processing may only be open on one Unit at a
time, this routine may not be called whilst automatic cycle reading
or writing is open on another Unit.

39 -

GF3 CYCLE HANDLING ROUTINES

7.2.3 ROUTINE GFCYRD

S u m m a r y : Read one or more G F 3 cycles.

Call definiüon: C A L L G F C Y R D (ICNT)

Use:

Sequencing:

ICNT is an integer variable supplied to the routine which specifies
the number of cycles to be read. In other words, ICNT-1 G F 3
cycles are skipped and then the next cycle is read into the
cycle buffer. The value is returned unmodified.

This routine is used to read a G F 3 cycle into the GF3-Proc cycle
buffer. If required, a specified number of G F 3 cycles (ICNT-1) m a y
be skipped before reading a cycle into the buffer.

The routine manipulates pointers to successively 'read' each cycle
in the G F 3 record until the record is exhausted. A further G F 3
record is then read from the input stream automatically. The 'end
of data' condition is recognised by maintaining a check on the next
record byte of G F 3 datacycle records or the continuation flag of G F 3
series header records.

This routine m a y be called at any stage w h e n automatic cycle
reading is open.

7.2.4 ROUTIPÍE G F C T G T

S u m m a r y : Get type of last cycle read

Call definlUon: C A L L G F C T G T (ICTY)

Use:

Sequencing:

ICTY is an integer variable returned by the routine which describes
the type of the last cycle read by G F C Y R D . The possible
values of the code are 1 (header cycle), 2 (datacycle) or 3 (end
of data). Please note that in this context 'end of data' refers to
'end of user-formatted area' which m a y be a sequence of G F 3
series header records (flagged as continuations) or G F 3
datacycle records.

This routine is used to detemiine whether the last cycle read by a
call to GFCYFÎD was a G F 3 header cycle, a G F 3 datacycle. or end of
data.

The routine m a y be called at any time after at least one call has
been m a d e to G F C Y R D .

7.2.5 ROUTINE GFCRCL

S u m m a r y : Close automatic cycle reading

Call definiüon: C A L L G F C R C L

Use: This routine is called to tell GF3-Proc that you have finished
reading cycles from a particular user-formatted area. The routine
breaks the linkage with a definition record established by G F C R O P
and re-initialises some GF3-Proc internal storage. The only user
visible result of this is that calls to G F C R O P and G F C W O P (which

40 -

GF3 CYCLE HANDLING ROUTINES

opens automatic cycle writing) are now accepted by GF3-Proc.

Sequencing: The routine must only be called when automatic cycle reading is
open: i.e. at some stage after a call to G F C R O P . Usually, it will be
called as soon as a call to G F C T G T has returned ICTY set to 3 (i.e.
when all the cycles from the user-formatted area currently being
examined have been read).

As automatic cycle processing may only be open on one unit at any
one time this routine must be called on completion of cycle reading
or subsequent calls to G F C R O P / G F C W O P will not be accepted by
GF3-Proc.

7.3 AUTOMATIC CYCLE WRITING

7.3.1 OUTLINE

There are five automatic cycle writing routines. The first four, G F C W O P , G F C X G T .
G F C Y W T and G F C W C L may be compared directly with the automatic cycle reading
routines. The only difference is that G F C X G T returns the type (i.e. header cycle or
datacycle) of the next cycle to be written whereas G F C T G T returns the type of the last
cycle read.

The additional routine, GFCCFL, is included to give the applications programmer
some control over the mapping of GF3 cycles into GF3 records. Normally, GF3-Proc
packs the GF3 cycles into the GF3-Proc Record Buffer (which corresponds to a GF3
record) until it is full. The Buffer is then written to the Current Output Unit. This
buffering of cycles is completely transparent to the applications program.

A call to GFCCFL causes the GF3-Proc Record Buffer to be written out providing it
contains at least one datacycle or (providing Package Control Option OSP is set to 2)
a header cycle. This is required in cases where there is a change in a header cycle
parameter which is not coincident with a GF3 record boundary.

7.3.2 ROUTINE GFCWOP

Summary: Open automatic cycle writing

Call definiüon: CALL G F C W O P (IRTY)

IRTY is an integer variable supplied to the routine specifying the
type of GF3 record in which the cycles are to be stored. A
value of 6 specifies series header records whilst a value of 7
specifies datacycle records. The argument is returned
unmodified.

Use: This routine accesses the appropriate definition record, and
initialises the system for cycle writing. If the routine has been called
with IRTY=6, the internal buffer is checked and must contain a
series header record. Please note that you must set up the fixed
area of a series header record before writing cycles to the user-
formatted area. If called with IRTY=7, a skeleton datacycle record is
placed in the buffer. Please note that in this case the previous
buffer contents are destroyed and therefore the previous record
must be output before the call to this routine.

41

GF3 CYCLE HANDLING ROUTINES

Sequencing: The routine must only be called when the Current Output Unit is
defined (i.e. Package Control Option liWTmust contain a valid Unit
Key). This Unit must have automatic processing switched on (I.e.
Unit Option A U T must be set to 2).

As automatic cycle processing may only be open on one Unit at a
time, this routine may not be called whilst automatic cycle reading
or writing is open on another Unit.

7.3.3 ROUTINE GFCXGT

Summary: Get type of next cycle to be written.

Call definiUon: CALL G F C X G T (ICTY)

ICTY is an integer variable returned by the routine which specifies
the type of the next cycle to be written. Possible values are 1
(header cycle) or 2 (datacycle).

Use: This routine returns an integer variable which contains a code. This
describes the type of cycle (header or datacycle) which GF3-Proc
expects next.

Most applications which use automatic cycle writing will include a
loop which calls this routine, inserts the appropriate parameters
into the cycle buffer (see next chapter) and then writes out the cycle
by calling G F C Y W T .

Sequencing: The routine may be called at any time whilst automatic cycle
writing is open.

7.3.4 ROUTINE GFCYWT

Summary: Write a GF3 cycle

Call definiUon: CALL G F C Y W T

Use: This routine appears on the surface to perform a fairly simple

function: writing a GF3 cycle aller the parameters have been set by
the GFCxPT routines (described in the next chapter). However, there
is a more complex internal function concerned with the handling of
absent data codes.

The GFCxPT routines maintain a map of the cycle which Indicates
which parameters have been set by the user. G F C Y W T interrogates
this m a p and sets any parameters which have not been defined to
the absent data code specified for that parameter in the definition
record. If no d u m m y value code has been specified where one Is
required then an error results. (GF3-Proc assumes that absent
alphanumeric parameters are to be be set to blanks; hence d u m m y
value codes are only required for numeric parameters).

Consequently, the best way to set up parameters which are to
contain A B S E N T data is N O T T O SET T H E M . This relieves the
application progreim of the burden of mapping parameters to
appropriate absent data codes.

42

GF3 CYCLE HANDLING ROUTINES

This action can be modified if required via Package Control Option
UCP. If this is set to 2, the package will not attempt to set header
parameters to d u m m y value codes. A value of 3 extends this to
datacycle parameters in addition to header cycle parameters. In
these cases, attempts to write a cycle before all the required
parameters have been explicitly set will result in a GF3-Proc error.
This facility is useful for testing applications software to ensure that
channels have not been inadvertently filled with d u m m y data.

As each cycle is written, it is packed into an internal buffer which
is flushed when full. Any cycles remaining in the buffer when
automatic cycle writing is closed are output without any action by
the user.

Sequencing: This routine is called after all the parameters in the cycle containing
valid data have been set up by a series of calls to the GFCxPT
routines.

7.3.5 ROUTINE GFCWCL

Summary: Close automatic cycle writing

Call deflniüon: CALL G F C W C L

Use: This routine is used to tell the system that you have finished writing

cycles; i.e. that you have completed the particular group of series
header records or datacycle records that you were writing.

Please note that in the case of series without datacycle records (i.e.
datacycles are stored only in series header records), the call to
G F C W C L effectively marks the end of the series; i.e. the
continuation flag field of the GF3 series header record which
contains the last cycle written before the call to G F C W C L will be set
to zero even if the next GF3 record to be written is also a series
header record.

Besides Its system housekeeping function, this routine issues a call
to GFCCFL (see description below) to ensure that any cycles
remaining in the GF3-Proc Buffer are output.

Sequencing: The routine must only be called when automatic cycle writing Is
open. It must separate a call to G F C W O P from any subsequent call
to G F C W O P or a call to G F C R O P .

7.3.6 ROUTINE GFCCFL

Summary: Flush cycle record.

Call deflniüon: CALL GFCCFL

Use: This routine is used when the user wishes to specify the start of a
fresh GF3 record. The usual reason for calling the routine is where
a change occurs in one of the header cycle parameters. By default,
the routine only outputs the GF3-Proc Buffer if there is at least one
DATACYCLE present thus preventing generation of GF3 records
containing a header cycle with no datacycles. In cases where this
is required, it may be achieved by setting Package Control Option

- 4 3 -

GF3 CYCLE HANDLING ROUTINES

OSP to 2.

NB If the user-formatted area structure consists of a header
cycle with no datacycles then each call to G F C Y W T causes the
buffer to be flushed.

The system is reset to a state where the next cycle to be written Is
the first cycle in the next GF3 record.

Sequencing: This routine may be called at any stage when automatic cycle
writing is open. Please note that it will have no effect unless at least
one datacycle (Package Control Option 0SP=1) or header cycle
(Package Control Option OSP=2) has been written by a call to
GFCYWT.

7.4 OBTAINING INFORMATION ABOUT THE GF3 CYCLES

7.4.1 OUTLINE

A single routine is provided which interrogates the stored definition record accessed
when automatic cycle processing was opened. The information returned is the
number of parameters in the GF3 header cycle, the number of parameters in each
GF3 datacycle and the maximum number of datacycles which may be stored in a
single GF3 record.

This may seem surprising considering the philosophy behind GF3-Proc is the isolation
of the application program from the data structure. However, there are two reasons
for its inclusion. Firstly, access to the parameter counts facilitates the writing of data-
driven applications. Secondly, it is quite possible that some of the parameters in the
header cycle require foreknowledge of the number of datacycles contained in that
record. For example, the header parameter may flag whether the current data set is
to be continued onto the next record. This is impossible unless the applications
program can determine the number of datacycles per GF3 record.

7.4.2 ROUTIPíE G F C S G T

Summary: Get cycle sizes

Call deflniüon: CALL G F C S G T (IHCT,IDCT.1CPR)

IHCT is an integer variable output by the routine which returns the
number of paxemieters in the header cycle.

IDCT is an integer variable output by the routine which returns the
number of parameters in each datacycle.

ICPR is an integer variable returned by the routine which specifies
the maximum number of datacycles which may be stored in
each GF3 record.

Use: This routine returns the number of parameters in the header cycle,
the number of parameters in each datacycle and the maximum
number of datacycles per GF3 record.

Sequencing: The routine may be called at any time whilst automatic cycle
reading or writing is open.

- 44

GF3 CYCLE HANDLING ROUTINES

7.5 ADDITIONAL NOTES FOR MAINTENANCE PROGRAMMERS

The automatic cycle processing routines use a complex structured vector to store the
definition record information in a form which can be retrieved and applied efficiently
by GF3-Proc. Whilst every effort has been made to ensure that the code is free from
bugs, the large number of program paths resulting from processing a self-defining
format means that it is impossible to guarantee that the software is totally bug-free.

Routines are supplied with the package which list the definition record storage area
and the automatic cycle processing control common in a formatted manner. Before
reporting any bug you believe to be associated with automatic cycle processing to
MIAS it would greatly assist Isolation of the problem if a listing were generated from
the program in question with calls to these debug routines inserted at strategic
points. Please be liberal - it is better to waste a little paper than waste a lot of time
because the bug has not been adequately localised.

The routines to be inserted are GFDVLl and GFCULS. Both routines have a single
input argument, LOUT, which is the logical unit number of the stream to which the
printer output from the routine is to be directed.

45

CHAPTERS

GF3 PARAMETER HANDLING ROUTINES

8.1 GETTING PARAMETER VALUES FROM THE CYCLE BUFFER

8.1.1 OUTLINE

A set of 3 routines is provided to handle integer, character, and floating point data.
It is important to realise that it is the typing of the variable in your program which
controls the routine used and N O T the typing of the parameter as stored in the G F 3
cycle. The floating point routines are designed to read/write integer parameters, and
as they incorporate scaling they should be used except where there are good reasons
for storing the data in integer variables (e.g. dates, times, etc.).

8.1.2 ROUTINE GFCFGT

S u m m a r y : Get numeric parameter from cycle as floating point variable.

Call deflnlUon: C A L L G F C F G T (IFLD.FVAL.LADV)

IFLD is an integer variable supplied to the routine which specifies
the parameter within the G F 3 cycle which is to be returned.
The value is defined as the position of the parameter in the
parameter order specified by the definition record.

N B This is not necessarily the same as the position of the parameter
within the G F 3 cycle.

Please note that the required value m a y be obtained from the G F 3
parameter code using routine G F C C L K or G F C N G T described below.

The value is returned unmodified.

F V A L is a floating point variable returned containing the value of
the specified parameter.

L A D V is a logical variable returned . T R U E , if the specified
parameter was set to its d u m m y Vcilue code.

Use: This routine is called to obtain a floating point variable from a
numeric pareimeter in the cycle in the cycle buffer (this would
normally be the last cycle read by a call to GFCYFiD).

The numeric parameter is copied into a floating point variable and
the integer portion is compared with the absent data code for that
parameter (if specified). L A D V is set as appropriate.

The scaling factors from the definition record are then applied
unless Package Control Option C P S (cycle parameter scaling) has
been set to 1 in which case scaling is suppressed.

- 46

GF3 PARAMETER HANDLING ROUTINES

Sequencing: This routine may theoretically be called at any time when automatic
cycle processing (reading or writing) is open. However, in the vast
majority of GF3-Proc applications it would only be called after a
GF3 cycle had been read into the cycle buffer by a call to G F C Y R D .

Please note that the range of legal values for IFLD Is sequence
dependent in a more subtle manner. The call to G F C Y R D may
return either a header cycle or a datacycle (if these terms are not
understood please see the introduction of the previous chapter). The
type of cycle returned may easily be determined by a call to
G F C T G T . If the definition record specifies x header parameters and
y datacycle pcirameters then IFLD must be in the range 1 to x when
a header cycle has been read and x+1 to x+y when a datacycle has
been read.

8.1.3 ROUTINE GFCIGT

Summary: Get integer parameter from cycle as integer variable.

Call definition: CALL GFCIGT (IFLD.IVAL,LADV)

IFLD Please see routine G F C F G T above.

rVAL is an integer variable returned by the routine containing the
value of the specified parameter.

L A D V is a logical variable returned .TRUE, if the specified
parameter contained its d u m m y value code.

Use: This routine is called to obtain an integer variable from an Integer
parameter in the cycle currently in the cycle buffer (this would
normally be the last cycle read by a call to GFCYRD) .

The value is compared with the appropriate absent data code (if
present) and LADV is set as appropriate.

Note that attempts to use this routine on a scaled parameter will
produce a GF3-Proc data error unless Package Control Option GPS
is set to 1. (If a scaled parttmeter is required in an integer variable
with the scaling factors applied, then a call to G F C F G T should be
used followed by real to integer conversion within the application
program).

Sequencing: Please see routine G F C F G T above.

8.1.4 ROUTINE GFCKGT

Summary: Get parameter from cycle in character form.

Call definition: CALL G F C K G T (IFLD,KVAL)

IFLD Please see routine G F C F G T above.

KVAL is a character variable returned by the routine containing
the character representation of the selected parameter as
stored in the GF3 cycle. The required size of KVAL depends
upon the size of the field being accessed. However,

- 47 -

GF3 PARAMETER HANDLING ROUTINES

underdimensionlng will be detected by bound checks within
GF3-Proc.

Use: This routine is used to return the character content selected G F 3
parameter from the cycle currently held in the cycle buffer. This is
normally the last cycle read by a call to G F C Y R D . The complete
parameter field is returned as a character variable.

This routine can be directed at any parameter (whether the
parameter is numeric or chciracter) in the G F 3 cycle. This allows
optimisation of certain applications e.g. the reformatting of G F 3
parameters into another character format.

Sequencing: Please see routine G F C F G T above.

8.2 PUTTING PARAMETER VALUES INTO THE CYCLE BUFFER

8.2.1 OUTLINE

Three routines are provided to pass information from the variables or arrays of the
application program into the cycle buffer. These are precise complements of the
routines described in the previous section, passing floating point variables, integer
variables and character variables respectively.

N B it is the type of the variable in the application program which should govern the
routine used N O T the nature of the G F 3 parameter which is to be stored.

8.2.2 ROUTINE GFCFPT

S u m m a r y : Put floating point value into a numeric parameter field.

Call definiUon: C A L L G F C F P T (IFLD.FVAL)

IFLD is an integer variable supplied to the routine, which
identifies the paran:ieter which is to be passed to the G F 3
cycle. IFLD is defined as the position of the parameter in the
ordering specified in the definition record. Please note that
this is not necessarily the same as the position of the
parameter within the cycle.

Please note that the required value for IFLD m a y normally be
derived from the G F 3 parameter n a m e using routine G F C C L K or
GFCNGT.

The value is returned unmodified.

F V A L is a floating point variable supplied to the routine which is
the value to be stored. IL is returned unmodified.

Use: This routine is used to store a lloating point value into a field of the
cycle buffer corresponding to a numeric (floating point or integer)
G F 3 parameter.

The value is scaled (unless Package Control Option C P S is set to 1)
using the scaling factors talœn from the definition record. The
value is stored to the accuracy specified by the format included in
the definition record.

- 48 -

GF3 PARAMETER HANDLING ROUTINES

Sequencing: The routine may be called at any time after automatic cycle
processing has been opened. In all but some extremely advanced
GF3 editing applications this routine would only be used whilst
automatic cycle WRITING is open.

The range of legal values for the argument IFLD varies depending
upon whether a header cycle or datacycle is currently in the cycle
buffer. If there are x header parameters and y datacycle parameters
then IFLD must be in the range 1 to x for a header cycle and x+1 to
x+y for a datacycle.

The type of the cycle in the buffer may be determined by calling the
appropriate routine (normally GFCXGT).

8.2.3 R O U T I N E GFCIPT

Summary: Put Integer vedue into an integer parameter field.

Call definiUon: CALL GFCIPT (IFLD.P/AL)

IFLD Parameter identifier. Please see subroutine GFCFPT above
for a full description.

rVAL is an integer variable supplied to the routine which contains
the value to be stored. It is returned unmodified.

Use: This routine stores an integer variable in an the field of the cycle
buffer corresponding to an integer GF3 parameter.

Note that if the value requires sccüing, the variable must be copied
to a floating point variable and stored using a call to GFCFPT.

Sequencing: Please see subroutine GFCFPT above.

8.2.4 ROUTINE GFCKPT

Summary: Put characters into a parameter field.

IFLD Parameter identifier. Please see routine GFCFPT above for a
full description.

KVAL is a character variable passed to the routine containing the
characters to be stored.

It must contain sufficient characters to fill the parameter field (as
specifed by the definition record entry for the parameter) including
padding blanks where necessary. If too few characters are supplied
GF3-Proc will fail with error 02 042.

ICVAL is returned unmodilied.

Use: This routine is used to place character information into a parameter
field in the cycle buffer. The routine may be used to store
information in any parameter field irrespective of the type of the
parameter. This allows optimised reformatting applications to be
written.

49

GF3 PARAMETER HANDLING ROUTINES

Sequencing: Please see routine GFCFFT above.

8.3 OBTAINING INFORMATION ABOUT THE PARAMETERS

8.3.1 OUTLINE

Five routines are provided in this category although two (GFCPGT and GFCNGT) are
redundant and are retained purely to ease the conversion of application programs
from Level 3 to Level 4. Four of the routines provide a lookup between the GF3
parameter code and the parameter identifier (IFLD) used to specify parameters in calls
to the routines described in this chapter.

The final routine returns a description of a given parameter. The type of parameter
(integer, character etc), the width of its associated field in the GF3 cycle, and the
scaling factors applied when storing the parameter are all returned. This routine Is
designed to assist in the coding of data-independent GF3-Proc applications.

8.3.2 ROUTINE GFCCGT

Summary: Get Parameter codes for a given parameter identifier.

Call definiüon: CALL G F C C G T (IFLD,KPRM,IDSC,KSPRM,ISDSC)

IFLD is the parameter identifier supplied to the routine as an
integer variable. It is defined as the position of the
parameter in the ordering specified in the definition record
(i.e. the order of the pai'ameter entries). It is returned
unmodified.

K P R M is a CHAFÎACTER*8 variable returned by the routine
containing the 8-byte parameter code for the parameter
specified by IFLD.

IDSC is an integer variable returned by the routine containing
the parameter discriminator for the parameter specified by
IFLD.

K S P R M is a CHARACTER*8 variable returned by the routine
containing the 8-byte secondary parameter code for the
parameter specified by IFLD.

ISDSC is an integer variable returned by the routine containing
the secondary parameter discriminator for the parameter
specified by IFLD.

Use: This routine is used to return the GF3 primary and secondary
parameter codes and discriminators for a specified parameter. This
routine parallels the function of Level 3 routine GFCPGT
(documented below) but in addition it returns the secondary
parameter code and discriminator.

Sequencing: The routine may be called at any time whilst either automatic cycle
reading or writing is open.

50

GF3 PARAMETER HANDLING ROUTINES

8.3.3 ROUTINE GFCCLK

Summary: Get parameter Identifier from parameter code information.

Call defirütion: CALL GFCCLK (1FLD,KPRM,IDSC,KSPRM,IDSC)

IFLD is an integer variable returned by the routine containing
the parameter identifier; i.e. the position of the supplied
parameter code within the order specified by the definition
record. This is the value required to specify a parameter In
calls to most of the routines in this chapter.

If the GF3 definition record has been coded rigorously, the specified
parameter codes and discriminators should uniquely identify a
parameter entry within it. Should this not be the case, IFLD is
returned negative with its absolute value equal to the first
occurrence of the duplicated parameter.

If no parameter can be found matching the parameter codes and
discriminators supplied, a value of zero is returned.

K P R M is a CHARACTER*8 variable supplied to the routine
containing the parameter code to be located. Remember
that the characters must be supplied in upper case. It Is
returned unmodified.

IDSC is an integer variable supplied to the routine containing
the parameter discriminator assigned to the occurrence of
the parameter to be located by the routine. Note that in
cases where the parameter discriminator field is left blank,
IDSC should be supplied as zero. It is returned
unmodified.

K S P R M is a CHAFÎACTER*8 variable supplied to the routine
containing the 8-byte secondary parameter code for the
pareimeter to be located. Blank is a permissible value used
frequently as secondary parameters are not often included
in definition records. Remember that when supplying a
blank character constant to a CHARACTER*8 variable that
the syntax ' ' should be used and N O T ' '. K S P R M is
returned unmodified by the routine.

ISDSC is an integer variable supplied to the routine containing
the secondary parameter discriminator for the parameter
to be located. A value of zero should be used if the
appropriate secondary parameter field in the definition
record is left blank. It is returned unmodified.

Use: This routine returns the argument IFLD used by the GFCxxT
routines for a given set of parameter codes and discriminators. It
parallels Level 3 routine G F C N G T (see below) but as the
discriminators are INPUT to the routine it does not have the same
limitations as that routine (Fortran 77 allows a much more powerful
internal data structure to be used which could not be implemented
in Fortran 66 without unaccepliVoIe memory overheads).

Sequencing: The routine may be called at any time when automatic cycle reading
or writing is open.

51 -

GF3 PARAMETER HANDLING ROUTINES

8.3.4 ROUTDIE GFCPGT

S u m m a r y : Get Parameter code for a given parameter Identifier.

Call definiüon: C A L L G F C N G T (IFLD,KPRM,IDSC)

IFLD is the parameter identifier supplied to the routine as an
Integer variable. It is defined as the position of the
parameter in the ordering specified in the definition record
(i.e. the order of the pariimeter entries). It is returned
unmodified.

K P R M is a CHAFÎACTER*8 variable returned by the routine
containing the 8-byte parameter code for the parameter
specified by IFLD.

IDSC is an Integer variable returned by the routine containing
the parameter discriminator for the parameter specified by
IFLD.

Use:

Sequencing:

This routine is used to return the G F 3 parameter code and
discriminator for a specified parameter. It has been superceded by
G F C C L K which fulfils the same function but with the additional
bonus of secondary parameter information.

The routine m a y be called at any time whilst either automatic cycle
reading or writing is open.

8.3.5 ROUTINE GFCNGT

S u m m a r y : Get parameter identilier for a given parameter code.

Call definiüon: C A L L G F C N G T (IFLD,KPRM,IDSC)

IFLD is an integer variable returned by the routine containing
the parameter identifier; i.e. the position of the supplied
pcirameter code within the order specified by the definition
record. This is the value required to specify a parameter In
calls to most of the routines in this chapter.

If the specified parameter code occurs more than once In the
definition record it is always the first occurrence that is returned.

If the specified parameter code cannot be found, a value of zero is
returned.

K P R M is a CHAFÎACTER*8 variable supplied to the routine
containing the parameter code to be located. Remember
that the characters must be supplied in upper case.

The array is returned unmodified.

IDSC is an integer variable returned by the routine containing
the parameter discriminator assigned to the occurrence of
the Pcirameter code located by the routine.

52

GF3 PARAMETER HANDLING ROUTINES

Use:

Sequencing:

This routine returns the argument IFLD used by the G F C x x T
routines for a given parameter code. The routine is superceded by
G F C C L K (see above) which achieves the same result more elegantly,
particularly in cases where the parameter discriminator Is used.

The routine always locates the first occurrence of the parameter
code. The parameter discriminator is always returned so the
application program can check that it has located the occurrence
of the parameter code that was intended.

If the identifier of a subsequent occurrence of the parameter code
is required It can easily be obtained by placing G F C P G T in a loop
and calling it until the required code/discriminator combination Is
returned.

The routine m a y be called at any time w h e n automatic cycle reading
or writing Is open.

8.3.6 ROUTINE GFCFLD

S u m m a r y : Get parameter storage details for a given parameter code.

Call definlüon: C A L L G F C F L D (IFLD,ITYP,nVID,FSCA,FSCB)

IFLD is an Integer variable supplied to the routine which
contains the parameter identifier for the parameter of
interest. This is defined as the position of the parameter in
the ordering specified in the definition record and m a y
normally be derived from the parameter code using the
routines described above. It is returned unmodified.

Use:

ITYP is an integer veû iable returned by the routine containing a
code which specifies the parameter type. The convention
used is zero for integer, 1 for floating point and 2 for
character.

IWID is an Integer variable returned by the routine containing
the width in bytes of the storage required for the specified
parameter in a G F 3 cycle. The value Is obtained from the
Field Length given in the entry for the specified parameter
in the definition record. If this is not present (set zero or
blank), the width is derived from the Fortran format given
for the U F A in the definition record.

F S C A Is a floating point variable returned by the routine
containing the value of Scale 1 for the specified parameter.
(Look at definition records in the G F 3 Technical
Specification or Reference Sheets if you don't k n o w what
this is).

F S C B is a floating point variable returned by the routine
containing the value of Scale 2 for the specified parameter.

This routine is used to obtain some of the information held In the
definition record for a specil'ied parameter.

53

GF3 PARAMETER HANDLING ROUTINES

Most GF3-Proc applications will not require this information.
However, the typing and widths of fields assigned to parameters Is
vital for the coding of data driven applications.

Sequencing: This routine m a y be called at any time whilst automatic cycle
processing (reading or writing) is open.

-54

CHAPTERS

SPECIAL UTILITY ROUTINES

9.1 GF3-PROC BUFFER HANDLING ROUTINES

9.1.1 INTRODUCTION

Experience using GF3-Proc Level 3 has revealed one area of weakness. In certain
circumstances it has proved impossible or extremely inconvenient to use the field
access routines to perform certain operations on the GF3-Proc Buffer. For example,
the plain language field in GF3-Proc (figure 6-1) only covers bytes 3-77 of each line
whereas with one exception the field is defined as bytes 2-77 (although byte 2 Is
'normally' left blank). Inevitably GF3 tapes are encountered where byte 2 is not blank
which poses an insoluble problem for the applications programmer armed only with
the Level 3 user interface routines.

Three routines are included in Level 4 to overcome this problem. G F B R G T allows a
specified portion of the GF3-Proc Buffer to be copied into a character variable or (on
most systems) a C H A R A C T E R * ! array. GFBRPT is the complimentary routine which
allows a chiiracter vciriable to be copied to a specified position within the buffer.
G F B R S T allows a specified portion of the buffer to be set to a given character.

Please note that whilst these routines are present in GF3-Proc Level 3 they are N O T
part of the User Interface and should not be called by applications programs.
Attempts to do so without knowledge of the internal workings of GF3-Proc is certain
to lead to disaster.

9.1.2 ROUTINE GFBRGT

Summary: Get a specified portion of the GF3-Proc Buffer

Call definiUon: CALL G F B R G T (ICHR,ILEN,KVAL)

ICHR is an integer variable supplied to the routine specifying the
first byte within the GF3-Proc Buffer to be copied. It is
returned unmodified.

ILEN is an integer variable supplied to the routine specifying the
number of bytes to be copied. It is returned unmodified.

KVAL is a character variable returned by the routine containing
the specified portion of the GF3-Proc Buffer. It must be
declared as CHARACTER*n where n is >= ILEN. Note that
this implies a maximum size of CHARACTER* 1920 which
may not be permitted by some Fortran 77 compilers. O n
most systems this may be circumvented by declaring KVAL
as a CHAFIACTER*1 KVAL(n).

Use: This routine is called to copy all or part of the GF3-Proc Buffer into
a character variable. It may be used to access parts of the buffer
not covered by the GF3-Proc field definitions (e.g. byte 2 of a line of
plain language) or to archive all or part of the buffer in the
application program (may be useful for preserving the first 5 lines

55

SPECIAL UTILITY ROUTINES

Sequencing:

of a G F 3 file header record for use as the basis of subsequent series
header records).

The routine m a y be called at any time after the package has been
Initialised by a call to G F P R O C . Please note that unless the Buffer
has been defined, garbage will be returned.

9.1.3 ROUTINE GFBRPT

Summary: Put a character variable into a specified portion of the GF3-Proc
Buffer

Call definiüon: CALL GFBRPT (ICHR.ILEN.KVAL)

ICHR is an integer variable supplied to the routine specifying the
first byte within the GF3-Proc Buffer to be overwritten. It
is returned unmodified.

ILEN is an integer variable supplied to the routine specifying the
number of bytes to be copied. It is returned unmodified.

K V A L is a character variable supplied to the routine which is to
be copied into the Buffer. It must be declared as
C H A R A C T E R * n where n >= ILEN. Note that this implies a
m a x i m u m size of CHAP{ACTER*1920 which m a y not be
permitted by some Fortran 77 compilers. O n most systems
this m a y be circumvented by declaring K V A L as a
C H A R A C T E R * ! KVAL(n).

It is returned unmodified.

Use: This routine is called to copy a character variable into a specified
position within the GF3-Proc Buffer.

Sequencing: The routine m a y be called at any time elfter the package has been
initialised by a call to G F P R O C .

9.1.4 ROUTINE GFBRST

S u m m a r y : Set specified portion of the GF3-Proc Buffer to a given character.

Call definiUon: C A L L G F B R S T (ICHR,ILEN,KVAL)

I C H R is an integer variable supplied to the routine specifying the
first byte within the GF3-Proc Buffer to be set. It is
returned unmodified.

ILEN is an integer variable supplied to the routine specifying the
number of bytes to be copied. It is returned unmodified.

K V A L is a C H A R A C T E R * ! variable supplied to the routine
containing the character which is to fill the specified
portion of the Buffer. It is returned unmodified.

Use: This routine is called to completely fill a specified portion (or all) of
the GF3-Proc Buffer with a single character.

Sequencing: The routine m a y be called at any time after the package has been
initialised by a call to G F P R O C .

- 56 -

CHAPTER 10

GF3-PROC ERRORS

10.1 INTRODUCTION

This chapter gives you details of the various messages written on the report output
unit by GF3-Proc.

The action that GF3-Proc takes following error detection depends on the class of error.
If the error prevents the correct functioning of the package, GF3-Proc always outputs
a message and stops program execution. Otherwise, the action Is determined by the
current value of Package Control Option D E R .

Each message includes a message type and a message number within the type. Each
message type has an associated message text, which gives you a general indication
of the error found. As these texts are stored in main memory, the number of types is
kept small. The message number identifies the details of the error.

10.2 MESSAGE F O R M A T

All GF3-Proc messages have the following format.

*** GF3-PROC M E S S A G E m m rmn S O R R Y , ttt..

where

m m Is the message type.

nnn is the message number.

ttt.. is the plain language text for message type m m .

Example

•** GF3-PROC M E S S A G E 02 008 S O R R Y , CALL N O T ACCEPTABLE

10.3 MESSAGE TYPES

The following message types are supported at present.

Type Message

01 VALUE NOT ACCEPTABLE

02 CALL NOT ACCEPTABLE

03 CHECK HAS FAILED

04 RECORD NOT IN SEQUENCE

05 DEFINITION SCAN FAILED

06 FIELD CONVERSION FAILED

- 57 -

GF3-PROC ERRORS

07 NOT E N O U G H INTERNAL STORAGE

08 INTERNAL ERROR

09 SITE-SPECIFIC E R R O R

10.4 DESCRIPTION O F E R R O R M E S S A G E S

10.5 T Y P E 01 M E S S A G E S - V A L U E N O T A C C E P T A B L E

These messages eire generated when an argument passed to a GF3-Proc subroutine
fails the internal checks carried out by the system. The errors are listed below
followed by a brief explanation of the most likely cause.

01001 - Buffer field address must be positive
01 002 - Addressed field ends outside buffer

These errors result from passing incorrect arguments to the GF3-Proc routines which
directly access the GF3-Proc buffer (GFBRGT, G F B R P T , and G F B R S T) . If you are not
calling these routines directly then object code corruption should be considered as the
most likely cause.

01 003 - Package Option index must be in range 1 to 10

A call has been issued to G F P C L K or G F P C S T with argument lOPT set outside the
valid range.

01 004 - Supplied unit key not known

This error means that you have asked the system to operate on a GF3-Proc Unit
which it knows nothing about. Likely causes of the error are incorrect setting of
argument lUKY in calls to G F U N x x routines, corruption of Package Control Options
KRD, KWr, or K S T or attempting to access a Unit which has been released by a call
to G F U N R L .

01 005 - Unit Option index must be in range 1 to 11

This error means that the argument lOPT supplied to either G F U N S T or G F U N L K lies
outside the expected range of values.

01006 - Field length must be positive
01 007 - Fill indicator must be 1 or 2
01009 - Field length must be positive
01010 - Field length must be positive
01 Oil - Decimal count less than -2
01012 - Decimal count too big for field
01013 - Field length must be positive
01014 - Decimal count must not be negative

These errors are generated by low-level routines within GF3-Proc and, if encountered,
should be considered symptomatic of object code corruption.

0 1 0 1 5 - Character field has no real value
01 016 - Character field cannot be given a real value
01017 - Only integer field has Integer value
01018 - Integer value can only be sent to integer field

- 58

GF3-PROC ERRORS

These errors result from access to an inappropriately typed field: e.g. attempting to
store a floating point value in a character field. The problem can usually be overcome
using Fortran 77 internal I/O to perform an Intennediate type conversion.

01 019 - Record mode field needs zero line no.
01 020 - Line mode field needs valid line no.
01 021 - Record type not known by fixed field routines
01 022 - Fixed field number must be positive
01 023 - Fixed field number not known

These errors result from incorrect values passed to the GFRxxx routine arguments
ILIN (019,020), IRIY (021), or IFLD (022,023).

01 024 - A U T option allowed on 1 input unit only
01 025 - Package Option value must be in valid range
01 026 - Unit specified is not an input unit
01 027 - Unit specified is not an output unit
01 028 - Unit Option value must be in valid range
01 029 - Print format only valid on output unit
01 030 - Tape density must be 800, 1600, or 6250
01031 - Page spacing only valid if print format

These errors result from calls to G F P C S T and G F U N S T with the ¡OPT set to an illegal
value or combinations of calls to these routines which request an illegal combination
of options.

01 033 - Field length must be 14 characters or less

This error results from GF3-Proc's use of internal 14-byte buffers for character
conversions which are sufficient for the current GF3 specification but m a y be
exceeded by future modifications.

01037 - Only integer field has Integer value
01 038 - Integer value can only be sent to integer field

These errors aire unlikely to be encountered by users unless undocumented low-level
access into the package is attempted.

01 039 - Print format unit cannot switch to input

This error results from tm attempt to change a Print Unit to an Input Unit (see the
Unit Option definitions).

01 041 - A U T option allowed on 1 output unit only

This error results from an attempt to set up a second output unit with automatic
processing.

01 044 - Parameter identifier invalid for current cycle type

The automatic cycle processing routines maintain a distinction between header cycles
and datacycles. This error is triggered by an attempt to access a header parameter
when the system is processing a datacycle or vice versa.

01045 - Input record not of expected tyî e

This error results from incorrect positioning of the Current Input Unit when
automatic cycle reading is opened. It is important to note that the medium must be
positioned such that the first record containing the cycles is either in the GF3-Proc

- 59 -

GF3-PROC ERRORS

Record Buffer or is the next record to be read before Issuing a call to G F C R O P .

01046 - Parameter identifier out of range

This Is the result of calling subroutine GFCPGT with the argument IFLD outside the
range 1 to n where n is the number of parameters given in the currently active
definition record. If you are convinced that the value you've specified is correct then
a useful diagnostic is a call to GFCSGT. This should provide sufficent information to
tell you which definition record the system regards as current. Discrepancies here can
be attributed to accidentally turning automatic processing off, not turning it on, or
using operating system calls to position media.

10.6 TYPE 02 MESSAGES - CALL NOT ACCEPTABLE

This class of error results when a call is issued to a GF3-Proc subroutine in
circumstances where such a call is not permitted. The individual error messages are
listed below with brief notes to assist debugging where needed.

02 001 - Cannot rewind print format unit
02 002 - No current output unit defined
02 003 - No current output unit defined
02 004 - No current unit description
02 005 - No current unit description

These errors are the result of incorrect dynamic allocation of Package Control Options
K\VT and KST. Option KST is used to store a GF3-Proc unit key which defines the
unit operated upon by subsequent calls to G F U N S T and GFUNLK. Errors 004 and
005 are telling you that this option has a value of zero when accessed by these
routines. OpUon ICWTis used to store the Unit Key of the Current Output Unit. Errors
002 and 003 tell you that the system has tried to \vrite a record without this Option
set to a valid Unit Key.

02 007 - Tape I/O not available

This error results from an attempt to use tape I/O on a version of GF3-Proc where
this is not available (e.g. most PC installations).

02 011 - No current input unit defined

You've asked the system to read a record without first inserting the correct value into
Package Control Option K R D .

02 022 - Definition record needed for automatic cycle lO

This error results from a call to GFCROP or G F C W O P before the package has
analysed any definition records. Calls to these routines should be issued at the latest
possible stage. Alternatively, attempts to use operating system routines to position
media can result in vital definition records being missed.

02 023 - Automatic cycle processing not open

This error generally results from a missing call to G F C R O P or G F C W O P , or premature
calls to G F C R C L or G F C W C L .

02 024 - Record type for cycle processing must be 6 or 7

This indicates that argument IRTY in a call to G F C R O P or G F C W O P has been
incorrectly specified.

- 60 -

GF3-PROC ERRORS

02 025 - Read attempted whilst cycle writing on
02 026 - Read attempt after end of data flagged

These errors indicate a misplaced call to G F C Y R D . Error 025 Is the result of an
attempt to read a cycle whilst writing cycles. Error 026 is the result of an attempt to
read a cycle after the system has signalled end-of-data in response to the previous
read.

02 027 - Parameter access after end of data flagged

This error results from a call to one of the GF3 parameter access routines (GFCFGT
etc.) after the system has signalled end-of-data in response to a call to G F C Y R D . Note
that end-of-data means precisely that and not 'last cycle returned'.

02 028 - Scaling factors not applied by integer routines

This means that a call to GFCIxT has been issued where a call to GFCFxT would be
more appropriate. Please see the chapter describing these routines for further details.

02 029 - Cycle write before all required parameters set

This error results from a call to G F C Y W T before all the cycle fields which must be set
by calls to the GFCxxPT have been set. If you are convinced that you are setting all
the required fields, check the value of Package Control Option U C P is as you expect
and that all the required d u m m y value codes have been included in the definition
record.

02 030 - Auto. proc. required on Current Input Unit
02 031 - Auto. proc. required on Current Output Unit

These errors result from an attempt to open automatic cycle processing when the
Current Input/Output Unit (Package Control Options K R D / K W T) refers to a Unit with
automatic processing turned off.

02 032 - Automatic cycle processing íüready open

You have attempted to open automatic cycle processing twice. Look for a missing call
to one of the A C P close routines.

02 033 - Series header record fixed area not set up

You have tried to open automatic cycle writing to a series header UFA without first
setting up the fixed area of the series header record in the GF3-Proc buffer.

02 034 - Write attempt whilst cycle reading on

This error results from a call to G F C Y W T whilst automatic cycle reading is open. If
you intended writing, check that you've used the correct routine when you opened
automatic cycle processing.

02 035 - Automatic cycle writing not open
02 036 - Automatic cycle reading not open

These errors result from calls to the cycle processing routines without a preceding call
to the appropriate routine to open automatic cycle processing.

02 038 - No valid GF3.2 record in the buffer

61

GF3-PROC ERRORS

The system has tried to identify the record type in the buffer and found garbage.
Likely causes are forgetting to read something into the buffer, missing a call to
G F R C I N , or getting Unit Option C D E wrong.

02 039 - Def. rcrd. analysis m a y not be invoked manually

You have called routine G F R C V L w h e n the internal buffer contained a definition
record.

02 040 - Automatic cycle writing not closed
02 041 - Automatic cycle reading not closed

O n e important function of the call to G F C W C L is the flushing of the internal buffer.
Consequently, the system checks before destroying the buffer that automatic cycle
writing is closed. If it is not, this error results. The cure is to insert a call to G F C W C L
after writing the last cycle. The system also checks to ensure that certain operations
are not performed (e.g. the analysis or deletion of a definition record) in the middle of
automatic cycle reading. The most likely cause of the error 02 041 is a missing call
to GFCRCL.

02 042 - Not enough characters in character variable

This error results when the argument KVAL to routines G F R K G T , GFRKPT, G F R C G T ,
GFRKPT is declared with less bytes than GF3-Proc requires. The most likely causes
are an incorrect CHARACTER*n specification or (even more likely) the declaration of
KVAL as a character constant without the required number of trailing padding
blanks.

02 901 - At present only 5 units can be assigned

GF3-Proc has to store the Unit Options and consequently a storage limit must be
imposed which is set at 5 Units. If you find this to be a handicap then the limits may
be increased by redimensioning the appropriate arrays. Please see the person
responsible for software maintenance at your Installation.

10.7 TYPE 03 MESSAGES - CHECK HAS FAILED

With the exception of errors 001 and 036-037, all of the errors in this group result
from the checking undertaken by routine G F R C V L . Please see the description of this
routine in the appropriate chapter for further explanation of these errors.

03 001 - Incomplete Une format record read

This error results w h e n the package encounters end-of-file whilst part of the way
through reading a G F 3 record: i.e. the number of card Images in a line format data
file is not a multiple of 24.

03 002 - Date syntax error
03 003 - Time syntax error
03 004 - Error in record ID field
03 005 - Error in card sequence numbering
03 006 - Mandatory field not set
03 007 - Data in unused field
03 008 - Incorrect format acronym
03 009 - Incorrect record size
03 010 - Current version precedes first version
03 011 - Tape received before written
03 012 - File/séries created before data collected

- 62 -

GF3-PROC ERRORS

03 013 - End date/time precedes Start date/time
03 014 - Data not spanned by platform duration
03 015 - Usage flag incorrect
03 016 - Elevation/sea floor depth exceeds 12000m
03 017 - Inst depth exceeds total water depth by >5 per cent
03 018 - Min imum depth exceeds m a x i m u m depth
03 019 - Positional uncertainty negative
03 020 - Series count specified on series header record
03 021 - Series count zero or negative
03 022 - Datacycle count negative
03 023 - Datacycle count specified on file header record
03 024 - Illegal continuation flag
03 025 - File header continuation specified
03 026 - Latitude syntax error
03 027 - Longitude sjmtax error
03 028 - Tape trailer field incorrectly set
03 029 - Multi-reel files not supported by G F 3 - P R O C
03 030 - Error in plaintext record
03 031 - Error in tape header record
03 032 - Error in file header record
03 033 - Error in series header record
03 034 - Error in tape trailer record

03 036 - Record spacing option and file contents disagree.

This error results when unit option SPC disagrees with the input stream -either a
blank line is encountered SPC=1 or no blank line is found where expected with
SPC=2. Check the current value of SPC and set it to the appropriate value.

03 037 - Untranslatable character converted to '<'

This error results when the internal GF3-Proc character code conversion routines
encounter a character not contained in their lookup tables. The result is that the
offending character is replaced by the character *<' in the GF3-Proc Buffer. If reading
a G F 3 tape this message is purely informative but if writing a tape the Information
passed to the GF3-Proc Buffer should be checked for characters not conforming to the
GF3-Proc character set. (This is strictly defined as the G F 3 character set plus lower
case alphabet but in practice has been set up to include the complete c o m m o n subset
of ISO 7-bit ASCII and IBM EBCDIC plus a custom mapping of I to { and] to }.
Unrecognised characters are therefore likely to be control codes, currency symbols or
accents.)

10.8 TYPE 04 MI^SSAGES - R E C O R D NOT IN SEQUENCE

04 001 - Missing definition record continuation
04 002 - Sequence error on automatic input unit
04 003 - Sequence error on automatic output unit
04 004 - File header definition record not allowed
04 005 - Incorrect record type following E O F
04 006 - Incorrect record type after plaintext record
04 007 - Incorrect record type following tape header
04 008 - Incorrect record type following S H definition
04 009 - Incorrect record type following D C definition
04 010 - Incorrect record type following file header
04 011 - Incorrect record type following series header
04 012 - Incorrect record type following d. cycle record
04 013 - Incorrect record type following E O T record

63-

GF3-PROC ERRORS

These errors are generated by the sequence analyser invoked when automatic
processing Is turned on. Providing Package Control Option D E R is set appropriately,
the messages are generated in pairs, the second message stating whether the error
occurred on input or output.

04 014 - Error in datacycle record running total
04 015 - Error In datacycle record sequence numbering

The sequence analyser also maintains a check on the accounting fields (running total
and sequence numbering) of the datacycle records. The check is maintained on both
Input and Output Units, but as these fields are automatically updated by GF3-Proc
the latter can be considered as an internal consistency check. Should either of the
two errors above be encountered on an Output Unit (i.e. followed by error 04 003),
please inform B O D C immediately.

04 016 - Series header continuation record missing
04 017 - Sequence not as predicted by next record byte

These errors only apply to Input Units as they would always fall on Output Units (the
next record byte and series header continuation flags are only set when the following
record has been written). The first check ensures that the record following a series
header with its continuation flag set is in fact a further series header record. The
second check ensures that the record is of the type predicted by the next record bĵ e
of the previous record.

04 018 - Test file record out of sequence

Whenever a GF3.2 test file record (all As) is encountered, the sequence analyser
checks to ensure that no GF3 records of any other type have been encountered. If not,
the above error is issued.

10.9 TYPE 05 MESSAGES - DEFINITION SCAN FAILED

These errors are generated by the softwiire which analyses definition records. The
checks cover both simple syntax checks and cross-checking between fields. Many of
the messages are self explanatory but notes are included to help in cases where
brevity may obscure the cause of the error.

05 001 - Format not enclosed by parentheses
05 002 - Unpaired parentheses in format
05 003 - Illegal character in format.
05 004 - Syntax error in format
05 005 - Maximum of 14 decimal places allowed
05 006 - Parentheses may only be nested 4 deep

Format statement checks.

05 007 - Alphanumeric absent data code must be blank
05 008 - Field too small for absent data value
05 009 - Illegal absent data code

These are checks on the d u m m y value code specified for each parameter. This must
not be specified for an alphanumeric parameter (007), must contain fewer digits when
expanded than the associated field (008) and must conform to the GF3 Technical
specification (009).

05 010 - Parameter code and netme must be specified

64

GF3-PROC ERRORS

05 Ol 1 - Error in fixed field

This error is triggered when a field whose value is explicitly defined by the GF3
Technical Specification fails to conform to that specification. Examples of this type of
field are the card-image numbering (the last 3 columns of each card image) and the
record t3T)e field (the first column of each card image).

05 012 - Illegal field mode

The character in column 41 of a parameter description card image is not I, F, or A .

05 013 - Format summary and format inconsistent

Analysis of the Fortran format supplied In the definition record tells the package the
types of the parameters. These are checked against the parameter type summary code
(column 9 of the 1 st card image) and any discrepancy triggers the above error.

05 014 - Parameter definitions and format inconsistent

As each parameter definition is read by the package, it is matched against the
appropriate segment of the format statment. Any discrepancy in type or field width
triggers the above error.

05015 - Missing secondary parameter flag

Column 65 of a parameter definition is blank whereas columns 67-74 are not.

05 016 - Illegal format summary character

Column 9 of the first card image does not conteiin I, F, A , M , P, Q , or S.

05 017 - Variation in datacycle structure not allowed

The format statement describes the contents of the UFA in a single GF3 record. This
must consist of a header cycle and one or more datacycles of identical structure. If
analysis of the format shows variation in cycle to cycle then this error is triggered.

05 021 - Parameter count incorrect

The number of parameters defined does not equal the sum of header parameters and
datacycle parameters specified in the first card image.

05 022 - User formatted area exceeds record size

The expanded format requires more cheiracters than are available in the UFA of a
single GF3 record of appropriate tjq̂ e. In other words the format specified would force
cycles to span GF3 record boundaries which is prohibited.

10.10 TYPE 06 MESSAGES - FIELD CONVERSION FAILED

These errors are concerned with the package's type conversion facilities. Errors 001
and 004 relate to conversion to character; the rest to conversion from character. They
parallel the checks made by the Fortan I/O routines except that field overflow is
reported as an error which is considered preferable to filling the field with asterisks.

06 001 - Integer value too large for field
06 002 - Unrecognized character in integer field
06 003 - Misplaced sign in integer field

- 6 5 -

GF3-PROC ERRORS

06 004 - Real value too large for field
06 005 - Unrecognized character in real field
06 006 - Misplaced sign in real field
06 007 - Extra decimal point in real field

10.11 TYPE 07 MESSAGES - NOT ENOUGH INTERNAL STORE

These errors indicate that various arrays used internally by the package are under-
dimensioned for your particular application. The obvious action is to ask for their size
to be Increased by the person responsible for program maintenance.

07 001 - Floating point buffer exhausted
07 002 - Paired parentheses map exhausted
07 004 - Definition Record Vector exhausted
07 005 - Format substring pointer array exhausted
07 006 - Absent data value lookup exhausted
07 007 - Absent data value buffer exhausted
07 008 - Parameter name heap exhausted

10.12 TYPE 08 MESSAGES - INTERNAL ERROR

The GF3-Proc package has been coded using 'defensive programming' techniques with
a large number of (hopefully) redundant internal checks. Type 08 errors are the result
of these checks failing. Using the package in practice has shown this to be not strictly
true, and 08 errors have been triggered. In these cases, higher level checks have n o w
been installed. Should you encounter 08 errors a detailed report would be appreciated
to allow further minor corrections to be made .

08 001 - Scaled field not known
08 004 - Cannot input from print format unit
08 006 - Character pointers outside valid range
08 007 - Expanded parentheses map inconsistent
08 008 - Stack pointer or counter corrupted
08 009 - Paired parentheses map corrupted
08 010 - Field type not recognised
08 011 - Parentheses nesting level inconsistency
08 012 - Retrieval attempted from empty stack
08 013 - Descriptor Vector already in required state
08 014 - Duplicate descriptor vector entry
08 015 - Definition vector header inconsistent
08 016 - Range check on descriptor failed
08 017 - I /O attempted from closed descriptor vector
08 018 - Write attempt to Descriptor Vector In read mode
08 019 - Illegal I/O status flag
08 020 - Illegal hierarchical level indicator
08 021 - Definition analysis on incorrect record type
08 022 - Parameter total equals zero
08 023 - Definition Record Vector open during deletion
08 024 - A C P control array access out of bounds
08 025 - A C P control array value out of bounds
08 026 - A C P control array fixed field updated
08 027 - Cycle number out of range
08 028 - E O F detected by G F Q U A N
08 029 - Illegal automatic processing option
08 030 - Unit description not stored

66

GF3-PROC ERRORS

10.13 TYPE 09 MESSAGES - SITE-SPECIFIC ERROR

These messages are unique to a particular GF3-Proc installation and are documented
In the installation specific supplement to the Reference Manual. Please note that site
specific error reporting is not a feature of all GF3-Proc installations.

D o not worry if you have not received a supplement for your particular installation -
the vast majority of GF3-Proc installations do not require one.

-67

	Contents

