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Abstract

The presence of skeletal anomalies in farmed teleost fish is currently a major

problem in aquaculture, entailing economical, biological and ethical issues. The

common occurrence of skeletal abnormalities in farmed fish and the absence of

effective solutions for avoiding their onset or definitely culling out the affected

individuals as early as possible from the productive cycle, highlight the need to

improve our knowledge on the basic processes regulating fish skeletogenesis and

skeletal tissues differentiation, modelling and remodelling. Severe skeletal anoma-

lies may actually occur throughout the entire life cycle of fish, but their develop-

ment often begins with slight aberrations of the internal elements.

Comprehensive investigation efforts conducted on reared larvae and juveniles

could provide a great contribution in filling the gap in knowledge, as skeletogene-

sis and skeletal tissue differentiation occur during these early life stages. The aim

of this review is to provide a synthetic but comprehensive picture of the actual

knowledge on the ontogeny, typologies and occurrence of skeletal anomalies, and

on the proposed causative factors for their onset in larvae and juveniles of Euro-

pean farmed fish. The state-of-art of knowledge of these issues is analysed

critically intending to individualize the main gaps of knowledge that require to be

filled, in order to optimize the morphological quality of farmed juveniles.

Key words: causative factor, environmental condition, genetics, juveniles, nutrition, rearing

methodology, skeletal anomalies.

Introduction

In aquaculture, the incidence of skeletal anomalies is

highly variable, in different species and under different

rearing conditions. The percentage of fish with medium

to severe anomalies varies greatly, not only among the

different farms, but also among different lots within the

same hatchery or even within the same batch of eggs.

Existing data about the incidence of anomalies are col-

lected using different diagnostic tools (Fig. 1; external

observations, X-rays, palpation, whole mount staining,

synchrotron microcomputer tomography, computer

tomography, histology, histopathology, histochemistry,

immunohistochemistry) that provide different levels of

accuracy (varying according to the life stage considered).

For example, palpation of different groups of Atlantic

salmon underyearling smolts evidenced 2–27% of smolts

with vertebral anomalies, against the 27–94% identified

by radiology (Grini et al. 2011). Presently very few farms

and/or only a fraction of the reared lots can claim rou-

tinely to produce 100% of non-deformed fish. The real

economic losses are difficult to estimate, due to the

reluctance of farmers to provide data that could com-

promise the farm’s reputation: the minimum annual loss
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estimated for European aquaculture is more than

€ 50 000 000 per year and it is supposed that a 50%

reduction of skeletal anomalies could save € 25 000 000

per year, would increase production and profitability,

and could improve the image of aquaculture (Hough

2009). The systematic monitoring of skeletal anomalies

is missing for many reared species and for many farms.

There is a lack of standardized classification in the lit-

erature for the different skeletal anomalies in reared fish,

and many typologies are still identified on subjective and

not objective criteria. Furthermore, different terminolo-

gies are used without a detailed description of the bones

affected, different terms refer to similar anomalies, and

similar terms are used to describe unrelated anomalies.

The reason for these discrepancies could be identified in

the many gaps of knowledge regarding the aetiology and

developmental relationship of different anomaly types

(Witten et al. 2009). However, some effort in this direc-

tion has been made recently: an ordering system of verte-

brae anomalies in farmed subadult and adult salmon has

been proposed by Witten et al. (2009) and a more

general listing (and description) of anomalies in some

European reared fish was attempted by the FineFish EU

Project (available at: http://www.finefish.info/default.asp?

CAT2=0&CAT1=0&CAT0=0&SHORTCUT=633).

In the literature, anomalies in the shape of skeletal ele-

ments are often defined by different terms, e.g. deforma-

tion, malformation, anomaly. Based on the terminology for

human pathology, all these and other terms clearly address

peculiar developmental disorders: i.e. abnormality and

anomaly could be considered as synonyms, indicating a

difference or deviation from the average or norm (The

American Heritage® Medical Dictionary Copyright ©
2007); deformation is an alteration in shape and/or in

structure of previously normally formed part (The Ameri-

can Heritage® Medical Dictionary Copyright © 2007); dis-

ruption is a morphological defect resulting from the

extrinsic breakdown of, or interference with, a develop-

mental process: it depends on time not on agent (Dorland’s

Medical Dictionary for Health Consumers © 2007); dyspla-

sia is an abnormality of development; in pathology, it is

used to indicate an alteration in size, shape and organiza-

tion of adult cells (Dorland’s Medical Dictionary for Health

Consumers © 2007); malformation is a morphological

defect of an organ or larger region of the body, resulting

from an intrinsically abnormal developmental process

(Dorland’s Medical Dictionary for Health Consumers ©
2007); basically, it is a primary structural defect resulting

from a localized error of morphogenesis; congenital mal-

formation is a structural defect present at birth; syndrome

is a set of symptoms occurring together in a recognized pat-

tern of malformations with a given aetiology; teratology is a

congenital malformation and developmental abnormality

(Mosby’s Medical Dictionary, 8th edition © 2009, Elsevier)

and it is connected to the toxic effects of teratogens in the

environment inducing or increasing the frequency of struc-

tural disorders in the progeny (Wilson 1959). It would

clearly be better to use each of these terms according to

their own meaning but the actual knowledge on the devel-

opment or aetiology of the different skeletal disorders

observed in fish, still makes it difficult. However, in this

review, an effort to use this terminology was attempted,

when practicable. Otherwise, the more generic terms

‘anomaly’ or ‘abnormality’ were used preferably.

(a) (b) (c)(a)

Figure 1 Some of the whole mounting methodologies more commonly used to check for skeletal anomalies in fish larvae and juveniles. (a) In vivo

fluorescent calcium-binding dye (calcein): fluorescence analysis of calcein bound to calcium phosphate (hydroxyapatite) allows direct quantification of

extracellular matrix mineral content. Strength: yellow-green fluorescence upon binding to calcium; live staining; highly sensitive; stained live larvae

can be followed for several days, until squamation occurs; <2 h for observation; total bound calcein could be quantified by direct fluorescence analy-

sis. Weakness: it only permits the identification of calcified structures; larger fish or those with scales do not allow clear visualization of internal struc-

tures (Photo by P. Gavaia). (b) Whole-mount specific staining for bone (Alizarin red) and cartilage (Alcian blue). Strength: it dyes both bone and

cartilage; it allows easy observation of each skeletal element since hatching (higher resolution than X-rays). Weakness: no information is achievable

on the different bone types and it is not entirely specific: Alizarin red is not a specific dye for hydroxyapatite, the main mineral phase of bone (Zerekh

1993) and its staining of areas of calcium salt deposition (Humason 1962; Pearse 1985) may indicate the deposition of calcium salts in non-ossifying

embryonic connective tissue (Faustino & Power 1998). Alcian blue dye is more aspecific: it stains acid mucopolysaccharides and glycosaminoglycans,

which are present also in tissues other than cartilage. Furthermore, its use entails the use of acetic acid, which can demineralize lightly ossified ele-

ments that lose Alizarin red affinity (Photo by S. Fontagn�e). (c) Radiographic analysis. Strength: it can be used also in live fish. Weakness: low resolu-

tion for larval stages as it can only be performed at stages when enough calcified tissue is present; it permits observation only on one side of the body

(no evaluation of asymmetry); low resolution of pectoral and pelvic fins and of rays. (Photo Boglione/University TV).
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Early developmental anomalies

This section considers the anomalies of ‘skeleton’ detectable

at the very early ontogenetic stages (newly hatched larva or

stages in which skeletal tissues are still poorly or not yet

differentiated), which can develop into sub-lethal skeletal

anomalies in the subsequent life stages. The aim is to iden-

tify and describe what precocious signals of anomalous skel-

etal development are available in the literature for the early

evaluation of larvae quality. It should be considered that a

high larval growth rate, in itself, is not always considered to

be a good indicator of the final quality of young fish: lots of

red porgy (Pagrus pagrus) juveniles, from the same egg

batch and with similar larval growth rates, showed signifi-

cant differences in the number of deformed fish (e.g. 46.5%

vs. 16.3%) (Roo et al. 2009). In addition, even if some ver-

tebrae fusion and related anomalies can also develop late in

life (i.e. after smoltification in salmon; Witten et al. 2005),

many skeletal anomalies have their onset during chondro-

genic and osteogenic differentiation at early larval stages.

The most early developmental defects include anomalies

of the blastomeres (Avery et al. 2009; Hansen & Puvanen-

dran 2010), yolk-sac (Divanach 1985; Kentouri 1985), swim

bladder (Kitajima et al. 1981; Johnson & Katavic 1984; Bat-

taglene et al. 1994; Trotter et al. 2004), notochord and pri-

mordial finfold (Barahona-Fernandes 1982; Divanach 1985;

Kentouri 1985; Andrades et al. 1996; Koumoundouros

et al. 1997a, 2001; Fitzsimmons & Perutz 2006), as well as

hydropsy (Koumoundouros et al. 2004) and yolk-sac or

pericardial oedema (Carls et al. 1999).

As far as embryo anomalies are concerned, most available

information deals with pollution effects on natural popula-

tions. The most commonly observed anomalies were those

affecting cranial structures and/or yolk sac ones, noto-

chordal shortening and curvatures (lordosis, scoliosis

C-shaped body) and cardiac anomalies. For detailed reviews

on the effects of heavy metals, organophosphorus pesticide,

dithiocarbamates (DCs, pesticides), fipronil (a phenylpy-

razole insecticide used in or near aquatic environments, i.e.

rice fields), disulfiram and radiation on fish embryonic

development see Van Leeuwen et al. (1986), Middaugh

et al. (1990), Stehr et al. (2006), Jezierska et al. (2009).

To our knowledge, the presence of urinary calculi is

probably the only non-skeletal defect in reared larvae and

juveniles that has been considered as potentially lethal and

not related to the development of other skeletal anomalies.

Most of the marine reared fish are physoclistous as adults

but physostomous at larval stages (i.e. gilthead seabream

Sparus aurata, European seabass Dicentrarchus labrax,

sharpsnout seabream Diplodus puntazzo), and the non-

inflation of the swim bladder (Fig. 2o) was the most com-

mon early developmental failure observed at the beginning

of European aquaculture. At present, losses as a result of

swim bladder anomalies are typically in the order of 5–10%
of all fingerlings produced, but can reach as much as 50%

in some cases (Woolley & Qin 2010). In species where rear-

ing technologies are poorly developed, the incidence of

swim bladder non-inflation is as high as 70–100% (Trotter

et al. 2004). It is mainly induced by the inability of the lar-

vae to access the air–water interfaces in order to activate

swim bladder by gulping air (Kitajima et al. 1981; Chatain

1986; Battaglene et al. 1994; Trotter et al. 2004). Larvae

and juveniles without a correctly inflated swim bladder

have to actively swim with larval pectoral fins to maintain

the required level in the water column; the derived overuse

of pectoral fins flapping increases the activity of pre-haemal

muscles, in the first stage. This hyper activity of pre-haemal

muscles could cause a mechanical overload exerted on dif-

ferentiating pectoral elements, with consequent anomalies

occurring in this fin, as observed in reared gilthead seab-

ream lacking a normally inflated swim bladder but not in

siblings with swim bladder. This release of a more intense

mechanical load on ossifying pre-haemal vertebrae may

cause gradual bending of the notochord/vertebral axis

(Kranenbarg et al. 2006), with consequent deformation

and fusion of involved pre-haemal vertebrae (Kitajima

1978; Chatain 1994; Boglione et al. 1995) at first, then

extending to the haemal vertebrae (Clara Boglione, unpubl.

data, 2012). Also the loss of the mechanical support fur-

nished by a normally inflated swim bladder to the develop-

ing vertebral axis, in combination with the overuse of

pectoral larval fins, could induce axis anomalies.

The swim bladder can also abnormally over-inflate

(Johnson & Katavic 1984; Katavic 1986). Larvae with over-

inflated swim bladder remain trapped in the superficial lay-

ers, often against the tank wall, and die of starvation. In

Atlantic cod (Gadus morhua) larvae, swim bladder over-

inflation was shown to induce notochord abnormalities,

which later evolved into anterior vertebrae anomalies

(Grotmol et al. 2005), described below.

Interaction between the notochord and spinal cord influ-

ences vertebral differentiation: excision of the spinal ganglia

induces the presence of an uninterrupted unique neural

arch on normally shaped vertebral centra, the opposite

occurs when the notochord is excised (Hall 2005). Verte-

bral fusions and changes in the number of vertebrae were

attributed to defects of notochord segmentation and dis-

ruption of vertebral centrum differentiation (Haga et al.

2009), a condition that can be promoted by vitamin A-

induced accelerated skeletogenesis (Mazurais et al. 2008).

Notochord anomalies are quite frequently observed in

newly hatched larvae, but the most severe are commonly

lethal: Koumoundouros et al. (2001) reported a low rate of

notochord deviations (<1%) in newly hatched common

dentex (Dentex dentex), but none in embryos and in first

feeding larvae.
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Koumoundouros et al. (1997a) found that about 65% of

gilthead seabream larvae (total length (TL) 3.4–3.9 mm)

were affected by slight upward distortion of the posterior tip

of the notochord (not affecting larval swimming behaviour),

which persisted also after the flexion stage. The postflexion

larvae (TL > 9.5 mm) exhibited two different caudal anom-

alies: laterally twisted tail (concurrent with Z-like body

shape when swimming) or additional hypoplasmic caudal

fin. In a further study, no association among notochordal

deviations in larvae and kyphosis in postlarvae was found in

European seabass (Koumoundouros et al. 2002).

Santamaria et al. (1994) observed the presence of lor-

dotic gilthead seabream larvae at 18 days post hatching

(hereafter named dph) that is before the vertebrae differen-

tiate. Their notochord presented a variable diameter, disor-

ganized muscle bundles that appeared arranged in different

planes, and an irregular perinotochordal sheet with much

infolding. Further, lower collagen–proteoglycan interac-

tions were found to occur in lordotic larvae, probably due

to an impaired proteoglycan formation.

Andrades et al. (1996) reported that although 27% of

newly hatched gilthead seabream larvae displayed more or

(a) (b) (c) (d)

(e) (f)

(i)

(g)

(j)

(h)

Figure 2 Examples of some skeletal anomalies detected in reared European larvae and juveniles. (a) Atlantic bluefin tuna (Thunnus thynnus) juvenile

(SL: 27 mm) showing a severe pre-haemal kyphosis (arrow) (Photo by Marroncini/University TV). (b) White seabream (Diplodus sargus) juveniles (SL:

77 and 82 mm). The fish at the top has a normal skeleton, the other shows a severe lordosis spanning on posterior pre-haemal and anterior haemal

vertebrae (arrow) (Photo by P. Gavaia). (c) White seabream (Diplodus sargus) juvenile (SL: 73 mm) showing a saddle-back located between the ante-

rior and posterior portions of the dorsal fin (Photo by P. Gavaia). (d) Senegalese sole (Solea senegalensis) juveniles (90 dph) with ectopical formation

of a fin connecting anal and dorsal fins (arrowhead), and neural and haemal arches anomalies (arrows; Photo by P. Gavaia). (e) Senegalese sole

(Solea senegalensis) juveniles (90 dph) with severe kypho-lordo-kyphosis in haemal and caudal vertebrae. Note rays and neural and haemal arches

anomalies (Photo by P. Gavaia). (f) Meagre (Argyrosomus regius) larva (35 dph) with partly fused and deformed vertebral bodies and arches (arrow;

Photo by P. Gavaia). (g) European seabass (Dicentrarchus labrax) postlarva (50 dph) with a supernumerary ectopic pelvic fin (Photo Boglione/University

TV). (h) European seabass (Dicentrarchus labrax) juveniles showing different cephalic, caudal fin and axis anomalies. The fish on the bottom is normal

(Photo by E. Gisbert). (i) Thicklip grey mullet (Chelon labrosus) early juvenile (SL 8.4 mm) showing different vertebrae and axis anomalies (Photo Bogli-

one/University TV). (j) Gilthead seabream (Sparus aurata) with anomalous opercular plates, at market (Photo by Boglione/University TV). (k) Dusky

grouper (Epinephelus marginatus) larva (50 dph) with deformed body, neural and haemal arches of caudal vertebra. Note the ossification defects in

the hypuralia and last haemal spine (arrows; Photo Boglione/University TV). (l) Rainbow trout (Oncorhynchus mykiss) fry (20 days after first-feeding)

with fused and deformed haemal vertebral bodies and fused spines of caudal vertebra (Photo by S. Fontagn�e). (m) European sea bass (Dicentrar-

chus labrax) juveniles (85 dph) with haemal lordosis (top); with haemal lordosis and caudal kyphosis (central); with fused pre-haemal and haemal ver-

tebrae (bottom; Photo by G. Koumoundouros). (n) European sea bass (Dicentrarchus labrax) juvenile (80 dph) with fusions and lordosis of

anteriormost pre-haemal vertebrae (top); without spines of the dorsal fin (bottom; Photo by G. Koumoundouros). (o) Gilthead seabream (Sparus aura-

ta) juvenile (75 dph) with haemal lordosis (top) and with pre-haemal lordosis and non-inflated swim bladder (Photo by G. Koumoundouros).

Reviews in Aquaculture (2013) 5 (Suppl. 1), S121–S167

© 2013 Wiley Publishing Asia Pty LtdS124

C. Boglione et al.



less severe notochord deviations, only very few of them

were lordosis. The deviated notochord showed connective

tissue penetrating the notochord to form septa and

surrounding the notochordal sheet. In 60 dph gilthead

seabream, axis deviations (mainly lordosis) affected the 5%

of surviving fish, thus evidencing that survival of lordotic

larvae was higher than that of other deformed larvae.

Wargelius et al. (2005) subjected Atlantic salmon

(Salmo salar) embryos (at gastrulation, at 1–6 somites and

at 15–20 somites) to an abrupt increase of temperature

(from 6 to 12°C in 24 h). The temperature shock induced

malformed embryos (27–34%) with severe trunk defects:

the 80% of the anomalous embryos displayed a bilateral

trunk phenotype (curled tail, in which the trunk appeared

curved on itself) and the 20% a short tail (where the trunk

caudad to the dorsal fin was bent, very different from the

‘shortail’ salmon anomaly, described below, where

the entire body appears compressed and not bent, due to

the presence of compressed and fused vertebrae).

In red porgy Pagrus pagrus, vertebral fusions can be early

detected at the onset of vertebral ossification, which occurs

at 20 dph (TL around 6.3 mm; Roo et al. 2009).

In general, anomalies of the primordial finfold are not

considered to influence the formation of adult fin struc-

tures: zebrafish mutants lacking the embryonic finfold can

develop regular fins (Van Eeden et al. 1996). Nonetheless,

notochord, primordial marginal finfold and caudal fin

anomalies have been correlated in some species: in com-

mon dentex, Koumoundouros et al. (2001) described that

saddleback and severe caudal fin anomalies were anatomi-

cally and ontogenetically related to each other, and origi-

nated at early larval stages as a result of abnormalities of

the primordial marginal finfold and of the posterior tip of

the notochord.

The dorsal and ventral portions of the embryonic fin-

fold are respiratory surfaces in pelagic fish larvae and it

has been ascertained that physical and physiological

changes accompanying oedema (decreased blood flow to

tissues, interference with nervous system function and

increased energy expenditures), reduced the finfold

surface area and retarded pectoral fin development (Von

Westernhagen 1988).

Regarding the early detection of fin anomalies, Marino

et al. (1993) described anomalies in the second dorsal, first

dorsal and anal fins initially appearing in 10.7, 12.6 and

13.5 mm standard length (SL) European seabass larvae,

respectively. Caudal fin anomalies were detected earlier, in

9.4 mm SL larvae.

In 24 dph Senegal sole (Solea senegalensis) larvae, Gavaia

et al. (2002) observed fusions occurring between cartilaginous

parhypural and hypural plates 1–2, and the cartilaginous extra

hypural plate near the tip of urostyle, not yet ossified.

(k)

(l)

(m)

(n)

(o)

Figure 2 (Continued)
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Vertebral column anomalies

Vertebral anomalies have been documented in all the

reared fish species, in the form of curvature, dislocation,

shortening and twisting. In severe cases, anomalies of verte-

brae centra and/or arches are associated with macroscopic

deviations of the vertebral axis. These latter involve lordosis

(V-shaped dorsal–ventral curvature), kyphosis (Λ-shaped
dorsal–ventral curvature), scoliosis (lateral curvature). The
angle formed by axis bending must be of a certain magni-

tude in order to identify the anomaly under gross external

examination, but it has to be considered that many fish

may present this problem to a lesser severe degree. Differ-

ent authors use diverse modalities to assess the severity of

axis deviations: e.g. some are used to measure the angle

between the most involved vertebrae in the deviation, cen-

tred in the intervertebral space at the most curved point,

while others consider axis anomalies only as the column

deviations where the involved vertebrae present deformed

or fused bodies, and other deviations as vertebrae displace-

ment or misalignment. In this way, a common methodol-

ogy for univocal and objective identification should be

established, particularly for larval stages where in toto stain-

ing is necessary for observing skeletal elements: the diaph-

anization process by glycerol or excess of trypsin treatment

(as suggested, i.e. by the Park & Kim 1984 protocol) may

provoke some swelling that, if exacerbated, can disarticulate

some differentiating vertebrae or can deviate the noto-

chord, resulting in confusing artefacts.

However, any severe axis deviation should include fusion

and deformation of the involved vertebrae.

Existing literature indicates that finfish species of Euro-

pean aquaculture could be divided into two different

groups according to the type, severity and frequency of

some vertebral anomalies. The first group includes gilthead

seabream, European seabass, flatfish and most of the candi-

date new species, whereas the second group includes the

reared salmonids. In the non-salmonid group, vertebral axis

anomalies are quite frequent in the same lot or species, and

concern almost all the recorded types to date. In salmonid

species, vertebral axis deviations appear dramatically only

after smoltification, being rarely observed in early juveniles,

and they mainly concern the compression of the vertebral

axis due to fused and compressed vertebral bodies. Further-

more, it must be considered that belonging to the same

Family should not justify the transfer of knowledge from

one species to the other, considering that the farming envi-

ronment for one species to another can be very diverse.

Non-salmonid group

Lordosis is the most well studied axis anomaly in Mediter-

ranean marine species (Fig. 2b,e,m,o). It can affect every

region of the vertebral axis, but it is most commonly

observed in either the pre-haemal or haemal part.

Pre-haemal lordosis has been correlated significantly to

the non-inflation of the swim bladder in European seabass

and gilthead seabream by Chatain (1994), but Boglione

et al. (1995, 2009) and Andrades et al. (1996) did not con-

firm a similar correlation for European seabass and dusky

grouper Epinephelus marginatus, and gilthead seabream,

respectively. In fact, even if some juvenile lordotic gilthead

seabream display an uninflated swim bladder, most of the

lordotic adults possess an inflated swim bladder; addition-

ally, larvae with a lordotic curvature of the notochord in

the pre-haemal region are detectable before the period in

which the swim bladder inflates in gilthead seabream (And-

rades et al. 1996) or in grouper larvae with a normally

inflated swim bladder (Boglione et al. 2009). Further, it

should be considered that larvae with notochord lordosis

may well have an impaired ability to reach the air-water

interface to gulp the air bubble necessary for the swim blad-

der inflation at the appropriate time; if so, the non-infla-

tion of the swim bladder would be a consequence rather

than a cause of lordosis.

Haemal lordosis was first differentiated from pre-haemal

lordosis by Boglione et al. (1995) and by Divanach et al.

(1997), both reporting that European seabass juveniles with

a normally inflated swim bladder can develop lordosis, but

in the haemal vertebrae. At present, causes other than an

uninflated swim bladder are considered to be involved in

the onset of lordosis during development (Andrades et al.

1996; Kihara et al. 2002; Koumoundouros 2010), as

discussed below.

Haemal lordosis is a quite frequent anomaly in European

seabass (reaching up to 70% of reared juveniles) and in

Atlantic cod (Baeverfjord et al. 2009; Fjelldal et al. 2009;

Koumoundouros 2010), less frequent in fish with a less

elongated body shape (e.g. 1–13% in gilthead seabream,

Georgakopoulou et al. 2010).

Cranial (i.e. involving the anteriormost vertebrae) and

caudal lordosis (involving the centra of the caudal pedun-

cle) are quite rare anomalies in European seabass and gilt-

head seabream: in a recent study carried out on 874

gilthead seabream and 638 European seabass reared juve-

niles, subadults and commercial size fish from different

intensive farms, Cataudella et al. (2011b) found no individ-

uals with cranial lordosis, no gilthead seabream with hae-

mal lordosis and no European seabass with caudal lordosis.

In gilthead seabream, the highest occurrences (5.3%) of

haemal lordosis were found in samples from the ongrowing

phase and very few in the juveniles (1.2%) or in commer-

cial size fish (0.4%). Caudal lordosis was observed only in 1

(0.1%) gilthead seabream juvenile. In European seabass,

only one individual was observed with pre-haemal and

haemal lordosis, respectively.
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Haemal lordosis has been proposed also to be linked

with inappropriate tank hydrodynamism and forced swim-

ming (Chatain 1994; Andrades et al. 1996; Divanach et al.

1997) but lordotic fish have been found also in gentle water

flow tanks, leaving open the door to a different hypothesis

formulation. Izquierdo et al. (2010) related the develop-

ment of axis anomalies to the typical feeding behaviour of

red porgy: juveniles of this species are very voracious and

haemal lordosis has been considered the consequence of

coupling insufficient feeding (causing skeleton weakness)

and excessive swimming activity for feeding.

Lordosis and other spinal anomalies are the most geneti-

cally analysed anomalies (as described below): genetic

causes were also shown to be involved in their onset.

Lordosis in red porgy juveniles spans the pre-haemal

(about 20% of all lordosis) and, mostly, the haemal region

(about 80%; Izquierdo et al. 2010). In this species, an asso-

ciation with fused vertebrae and a reduced or excessive

number of vertebrae was found in most of the lordotic

specimens, as described also in red seabream (Pag-

rus major; Hattori et al. 2003; Matsuoka 2003). The most

common skeletal anomalies observed in reared red porgy

were lordosis (13%) and fused vertebrae (14%), and their

localization along the column, but not the occurrence, a

result affected by culture intensity: in intensively reared red

porgy, a significantly higher incidence of kyphosis between

the cephalic and pre-haemal region (semi-intensive: 3.9%;

intensive: 8.8%) was detected, not in association with an

over-inflated swim bladder. In addition, most of the lor-

dotic specimens showed the presence of a reduced or an

excessive number of vertebrae (Izquierdo et al. 2010).

In reared Atlantic cod, lordosis is the most commonly

reported anomaly of the vertebral axis. Again, in this spe-

cies it has been observed also in individuals with a nor-

mally inflated swim bladder. The identification of this

anomaly is based on the measurement of the angle

between the eight most involved vertebrae in the lordosis,

centred in the intervertebral space at the point of maxi-

mum flexion (Baeverfjord et al. 2009). In Atlantic cod,

lordosis can affect the entire spine, but mostly the cranial

vertebrae (‘stargazer’ anomaly), as a consequence of a per-

sistent increase in pressure exerted early on the notochord

by an over-inflated swim bladder (Grotmol et al. 2005).

‘Stargazer’ has been a particular and frequently occurring

vertebral anomaly in intensively reared cod (Grotmol et al.

2005; Hamre 2006), so named for the particular upward

bending of the head: an increased angle between the pala-

tine bone and the anteriormost vertebrae leads to a slight

upward tilt of the head (so the fish seems to gaze at the

stars), so creating an indented dorsal body contour at the

transition between the head and the trunk. It is detectable

early (7 dph) by microscope observation of the larvae as

an increased dorsal curvature of the notochord above the

swim bladder, but the fish farmer can detect it externally

only at the juvenile stage. In the least severe cases, the

external diagnosis may be uncertain. Grotmol et al. (2005)

described a critical time window for the appearance of this

anomaly (18–36 dph), characterized early by a ventral

groove-shaped longitudinal impression of the notochord

sheath, occupied by the swim bladder in severely affected

larvae, to form a hernia-like lesion in the notochord. Dur-

ing vertebrae differentiation, the centra adopt an abnormal

wedge shape, ventrally concave, and neural arches are fre-

quently S-shaped. This condition can be associated with

severe vertebral anomalies in the cranialmost vertebrae, as

well as with other axial deviations such as lordosis, kypho-

sis and scoliosis in the cranial part of the spine. However,

this anomaly is more easily detectable in larger fish (50 g)

than in yearling, in which shrinking artefacts due to the

fixative solution can result in a similar picture; it is con-

sidered to worsen with growth.

Pre-haemal kyphosis (Fig. 2a,b,e) was first reported by

Boglione et al. (1995) to co-occur with haemal lordosis in

European seabass juveniles without a normally inflated

swim bladder. As was shown later by Koumoundouros

et al. (2002), pre-haemal kyphosis can also develop in

European seabass larvae with an inflated swim bladder, and

kyphosis can be combined significantly with abnormalities

of the branchiostegal rays, in the examined European sea-

bass lots. Kyphosis is, however, rarely observed in European

seabass and gilthead seabream (Boglione, unpubl. data)

and is considered less common than lordosis in Atlantic

cod.

Scoliosis, the lateral bending of the vertebral axis, is

the axis anomaly most easily identifiable in live fish, with

the best detection being from the dorsal or ventral side

of the whole fish: for this reason can be culled out easily

during manual selection. The reported incidences are very

low in gilthead seabream, European seabass and Atlantic

cod. As radiographs are taken routinely in a lateral view,

less severe scolioses can be misjudged because of the poor

preservation of the specimen or because of rigor mortis

in a non-flat position (consult Witten et al. 2009 for a

critical review on the possibility of artefacts in X-rays).

Sometimes, in the most severe cases, various combina-

tions of these three anomalies occur, as in the LSK

syndrome (a consecutive repetition of lordosis–scoliosis–
kyphosis, from the head to the caudal fin) described in

gilthead seabream by Afonso et al. (2000, 2009).

Izquierdo et al. (2010) recently found that in red porgy

juveniles fused vertebrae affected only RPP-rotifer (Red

Pepper Paste®, RPP-Rot) fed larvae, whereas in DPS-roti-

fers (DHA Protein Selco®, DPS-Rot) principally lordosis

and kyphosis, together with scoliosis, compressed vertebrae

(and asymmetric fins, deformed rays) were found. It is

concluded that in this species, the nutritional quality of live
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prey during very early feeding is a determining factor in the

appearance of scoliosis and compressed vertebrae.

Flatfish are regularly affected by two main types of

abnormalities of the external phenotype: pigmentation dis-

orders and osteological anomalies. The abnormalities in

pigmentation comprise albinism and ambicoloration and

can affect up to 61% of the reared fish (Est�evez & Kanazawa

1995; Est�evez et al. 1999; Villalta et al. 2005). It was

observed that in the post-larval and juvenile stages of Sene-

galese sole, produced under intensive rearing conditions,

the incidence of individuals affected by vertebral anomalies

can reach levels ranging from 44% to 80% of the reared lots

(Gavaia et al. 2002, 2009; Engrola et al. 2009; Fern�andez

et al. 2011) while wild captured larvae display a low inci-

dence of deformed fish.

In Atlantic halibut (Hippoglossus hippoglossus) juveniles,

Lewis-McCrea and Lall (2010) found that the most com-

monly observed anomalies changed in fish fed different

diets: regarding axis deviation, low phosphorus diets

enhanced scoliosis in the cephalic and haemal regions of

the vertebral column; in the group fed no ascorbic acid

supplement, the most frequent anomalies were scoliosis

and lordosis, primarily affecting the haemal vertebrae; high

levels of vitamin A in the diet caused scoliosis, spanning the

cephalic/pre-haemal and anterior haemal vertebrae; fish fed

the oxidized oil diet mainly showed scoliosis, spanning the

cephalic/pre-haemal/anterior haemal regions. The authors

underlined that the pattern and type of abnormalities

observed in fish fed these experimental diets were similar to

those observed in a commercial halibut hatchery. At the

beginning of the experimental alimentation (4.61 � 0.09

g), no serious types of abnormalities, such as scoliosis and

lordosis, were detected. However, the same authors

described lordosis as commonly observed in the anterior

haemal region in juveniles of Atlantic halibut. The occur-

rence of pre-haemal lordosis and scoliosis in Atlantic hali-

but were reported by Lewis et al. (2004) to be related to the

presence of hypertrophic vertebrae.

Salmonid group

Fjelldal et al. (2007) reported compression, fusion and dis-

location as the most frequent types of spinal anomalies in

Atlantic salmon, but we consider that these anomalies affect

single vertebrae and not the axis conformation and for this

reason they will be described in the vertebrae anomalies

section below. Recently, Witten et al. (2009) proposed an

ordering system of anomalies affecting the vertebral axis in

Atlantic salmon divided into seven categories: spinal curva-

tures (three types: lordosis, kyphosis and scoliosis), symme-

try deviations and displacement of vertebral bodies (three

types: vertically shifted vertebrae, vertebral bodies with

uneven internal structures and vertebrae centra shifted

dorsally or ventrally), and severe multiple anomalies (all

associated in one typology: a series of various co-occurring

anomalies that may be associated in some cases with bone

fractures). The description of the different anomalies is

based on X-rays, thus excluding very early juveniles, result-

ing in very rare spinal curvatures. It is evident that, at least

in salmon, there is the tendency to consider both vertebral

body and vertebral axis anomalies together, probably as a

consequence of the gap in knowledge existing on what is

the primary anomaly. In this review, a separation between

axis and vertebrae anomalies is maintained, taking into

consideration that not all compressed and/or fused verte-

brae bodies evolve into spine curvatures, even in salmonid

fish.

The ‘curled tailed’ and ‘short tail’ axis anomalies,

observed in the embryo salmon by Wargelius et al. (2005)

(see section on early anomalies) were never observed in the

more than 5000 X-rays from 5 g to 14 kg salmon analysed

by Witten et al. (2009), so making these anomalies special

cases.

Vertebrae misalignment is not a ‘curved’ axis but a dis-

crete displacement of a limited number of vertebrae that

appears shifted dorsad or ventrad to the rest of the vertebral

column. This type of anomaly has been only recently

described and monitored in salmonid fish (anomaly 17 in

Witten et al. 2009) and only sporadically and recently in

European seabass and gilthead seabream: the main reason

is that the level of vertebrae misalignment shows a contin-

uum between imperceptible and gross shifts, and many

least severe cases are not considered and thus monitored.

Displacement of vertebral bodies has been mainly detected

in underyearling smolts, fast growing and intensively reared

salmons (Gil Martens 2012).

Among the main risk factors invoked for the onset of

spinal anomalies, in contrast to those reported in non-sal-

monid species, temperature seems to be the most potent

(Wargelius et al. 2010), together with smoltification tim-

ing (underyearlings instead of yearlings), vaccination and

dietary phosphorus deficiency, even if the reproducibility

of induction of these anomalies by these factors has not

always succeeded in laboratory conditions (Gil Martens

2012).

Scoliosis in Atlantic salmon has been reported to be the

result of alterations in the central nervous system, neuro-

muscular junctions or/and ionic metabolism induced by a

number of different causes by Silverstone and Hamell

(2002) or vitamin C deficiency by Gil Martens (2012).

Vertebrae anomalies

In this section, actual knowledge on the different types of

anomalies affecting vertebrae (centrum, neural and haemal

arches) and other skeletal elements that articulate (e.g. ribs)
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on vertebrae is presented (Fig. 2f,i,l,m,n). Vertebrae anom-

alies co-occurring in deviated vertebral axis are excluded

here, being considered as a secondary anomaly or because

they are discussed in the former section. Vertebrae anoma-

lies, in fact, may be present regardless of the presence of

axis deviation, and the onset of vertebrae fusion/deforma-

tion does not always lead to fish with a deformed vertebral

column.

They include: (i) dislocation, fusion, shortening, defor-

mation or lack of the centra (Hattori et al. 2004; Sawada

et al. 2006); (ii) dislocation, compression, deformation,

lack or extra formation of the haemal and neural arches

and apophysis (Nguyen et al. 2008), and (iii) dislocation,

shortening, deformation, lack or separation of the ribs (Ko-

mada 1980; Matsuoka 1987; Boglione et al. 1993, 1995).

Compressed vertebrae with intervertebral spaces are classi-

fied as platyspondyly, and compressed vertebrae without

intervertebral spaces are classified as vertebral ankylosis and

platyspondyly (Fjelldal et al. 2007).

The most severe vertebrae anomalies are those affecting

the vertebral body such as fusion, compression and modi-

fied shape because, if including many vertebrae, the fish

length could be reduced, as in stunt-body or short-tail

salmon. Conversely, anomalies altering vertebral arches and

ribs are considered slight, as they do not affect the external

shape of the fish. In point of fact, from a physiological view

their presence is, however, a sign of altered osteogenic pro-

cesses and, if a functional context is concerned, it should be

considered that neural arches protect the spinal cord and

furnish the insertion for dorsal musculature: thus, severe

anomalies affecting many neural arches and spines could

lower fish performance. Haemal arches, in turn, protect the

arteria and venae caudalis, and severe and extended arch

anomalies could interfere with blood flow in the organism:

oxygen levels influence chondrogenesis (Hall 2005). Also

ventral compression of the renal ducts was found to be

induced by anomalous vertebrae development (Couch

et al. 1979).

In all reared fish, incomplete and complete fusion of

vertebral bodies are considered not necessarily as develop-

mental stages of the same anomaly, as not always incom-

plete fusions aggregate in older fish (Deschamps et al.

2009). Fused vertebrae have been described as the result of

transdifferentiation of notochordal (at the intervertebral

spaces) and periosteal (at the growth zone) cells into

chondroblastic cells, in compressed and fused vertebrae of

Atlantic salmon, European seabass, Senegalese sole and gilt-

head seabream, as a pathological response to a compressive

mechanical environment (Beresford 1981; Hall 2005; Kra-

nenbarg et al. 2005; Witten et al. 2005, 2009; Roberto 2006;

Fiaz et al. 2010; Cardeira et al. 2012).

According to Witten et al. (2009), fusions of vertebral

bodies to the occipital region of the skull and to the

urostyle should not be considered as anomalies as they are

common non-pathological phenomena in Osteichthyans.

Compressed and fused vertebrae are considered as true

deformations, as it has been reported that vertebral bodies

often develop normally up to a certain point (Nordvik

et al. 2005; Fjelldal et al. 2007; Witten et al. 2009), then the

tissue of the intervertebral space (notochord tissue) is

replaced by cartilage and fibrocartilage and, concurrently,

cells of the vertebral growth zone change their character

from osteoblastic to chondroblastic (Gil Martens et al.

2005; Witten et al. 2005, 2006, 2009).

It has been shown that two ankylosed and compressed

vertebrae can reshape into one single regularly structured

and joint vertebra in salmon (Witten et al. 2006). Sufficient

dietary mineral content for promoting proper mineraliza-

tion may be a factor that favours containment and prevents

aggravation of a vertebral anomaly, as well as the possibility

that normal hyperostotic processes (age-dependent) can

repair or mask these anomalies in older fish, under favour-

able environmental rearing conditions.

Recently, under- (or radio-translucent) and over-miner-

alized (or radio-opaque) vertebrae have also been consid-

ered to be anomalies, as they can evolve into anomalous

vertebral bodies. Identification is carried out by X-ray, so

their early detection in early juveniles or in larvae is not

possible and for that reason is not treated in this review:

undermineralization (osteopenia) of vertebrae is detectable

through X-rays starting from 100 g salmon. Hyper dense

vertebrae are observed early as axial deviations caused by

one small vertebra, that later develops into a hyper dense

vertebra. This condition can exacerbate (fusion) or normal-

ize (normal vertebra) (Baeverfjord et al. 2009).

Non-salmonid group

Vertebral body fusion, compression, deformation and

reduction in the absence of vertebral axis deviations are

quite common in reared European seabass and gilthead

seabream juveniles. The main affected regions in these spe-

cies are the haemal and caudal vertebrae, even if they have

been observed all along the column. Vertebrae anomalies

are quite rarely the object of investigations themselves, as

their presence does not necessarily affect the external shape

of the fish, and have been described rarely in detail in mar-

ine reared juveniles.

Fused vertebrae are the most frequent anomaly observed

in reared red porgy, together with vertebrae shortening and

lack of neural and haemal spines (Izquierdo et al. 2010).

Porgies reared under different methodologies exhibit differ-

ent localization of fusions but similar incidence: in inten-

sive conditions fused vertebrae particularly affect the

caudal peduncle, whereas in the semi-intensive system they

are located mainly in the pre-haemal region. Fish fed a low
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phosphorus diet showed twisted neural and haemal spines

in the pre-haemal and haemal vertebrae (43.7% and 41.2%,

respectively).

Anomalous neural and haemal arches have been

observed in all vertebral regions and in all the species,

even in early larvae. They affect a consistent number of

European seabass and gilthead seabream larvae, juveniles,

subadults and adults. They are more frequent in inten-

sively, rather than in semi-intensively, reared gilthead

seabream juveniles, mainly concentrated in the haemal

vertebrae (Prestinicola 2012). All arches and rib anoma-

lies tend to be augmented with size of fish both in

European seabass and gilthead seabream (Cataudella

et al. 2011b).

In Atlantic cod, a general state of irregular morphology

affecting several successive vertebrae (a condition difficult

to classify) are generically grouped under the term ‘asym-

metries’. The final evolution of these anomalous vertebrae

may be fusion or platyspondyly, or they might normalize

(Baeverfjord et al. 2009).

Lewis-McCrea and Lall (2010) described neural spines

anomalies (e.g. bifurcated and supernumerary spines) in

the cephalic and haemal vertebrae of juvenile Atlantic hali-

but (4.61 � 0.09 g), whilst fused and compressed vertebrae

were prominently localized in the cephalic/pre-haemal and

anterior haemal region.

The Senegalese sole vertebral column is mostly affected

by vertebrae fusion and anomalies, and abnormalities of

the vertebral arches (Engrola et al. 2009; Fern�andez et al.

2009; Cardeira et al. 2012), with a special incidence on the

preural vertebrae and caudal fin regions, in both reared and

wild specimens (Gavaia et al. 2002, 2009; Engrola et al.

2009; Fern�andez et al. 2009; Fern�andez & Gisbert 2010). In

Senegalese sole, vertebrae are commonly found malformed

or fused, with the fusion of preural vertebral elements as

one of the main anomalies found in the early stages of this

species. Recently, Cardeira et al. (2012) described the mi-

croanatomical changes that occur at tissue and cellular lev-

els in lordo-kyphotic Senegalese sole. In affected

individuals, ectopic cartilage-like tissue within bone matrix

was found at the growth regions (contact area between two

vertebrae) of affected vertebrae. The authors hypothesized

that the increase in strain supported by deformed vertebrae

may trigger the onset of metaplastic tissue formation

through an osteochondroprogenitor precursor from the

condensation of mesenchymal cells or by trans-differentia-

tion of (pre-)osteoblastic cells to a chondrocytic lineage. In

addition, a change in the phenotypes observed from juve-

niles to adults suggests that the response to altered loads

will vary according to fish size or to the mineralization state

of the vertebrae.

In Atlantic halibut juveniles, Lewis-McCrea and Lall

(2010) found that a low phosphorus diet enhanced anoma-

lous haemal and neural spines in the haemal region. Pre-

haemal lordosis and scoliosis were reported in Atlantic hali-

but by Lewis-McCrea and Lall (2004) as a secondary anom-

aly, a consequence of hypertrophic vertebrae. According to

these authors, hypertrophic vertebrae are the result of an

accelerated organogenesis while the body size maintains a

normal size, contributing to vertebral column bending.

Salmonid group

Discreet vertebrae anomalies are one of the main problems

in salmonid culture: Deschamps et al. (2008) found that up

to 55% of normally shaped rainbow trout Oncorhyn-

chus mykiss (i.e. showing no external anomalies) at market

size were found to be affected by vertebral anomalies in

French farms. Gil Martens (2012) reported that a certain

number of Atlantic salmon were affected to a different

degree by a variable number of compressed vertebrae, not

externally visible.

Platyspondyly is the main vertebrae anomaly observed in

salmon reared in Norway (Gil Martens 2012), characterized

by a compressed vertebral body that may or may not be

fused. If the number of compressed vertebrae is large, then

the reduction in the fork length characterizes the ‘short-tail’

phenotype. A compressed vertebra has a normal central

portion of the body but deformational changes in the ante-

rior and posterior rims of the compact bone (Witten et al.

2006). They mainly occur in the vertebrae caudad to the

dorsal fin; however, the entire axis can be involved. Verte-

brae compression was observed in salmon after a period of

mechanical strength, in association with a low vertebral

mineral content. The destiny of compressed vertebrae may

follow two directions: (i) damage the notochordal tissue in

the intervertebral regions, which initiates transdifferentia-

tion of the notochordal cells into chondroblasts; or (ii) ini-

tiate cartilage deposition directly through differentiation of

some bone cells into chondroblasts (Fjelldal et al. 2009). In

salmon, the calcification of the heterotopic intervertebral

cartilage and its subsequent remodelling into bone appar-

ently facilitates the factual fusion of vertebral bodies

(Witten et al. 2006).

The ordering system of vertebral body anomalies com-

monly observed in Atlantic salmon commercial farms pro-

posed by Witten et al. (2009) provided a standard that

could improve diagnosis, help link peculiar anomalies to

particular extrinsic or intrinsic causal factors and better

identify developmental patterns. Decreased intervertebral

space without vertebral fusion (commonly related to platy-

spondyly), homogeneous compression, compression and

reduced intervertebral space, compression that alters the

radiodense X-structure (that characterizes each vertebral

body) and one-sided compression are all subtypes of com-

pressed vertebrae; compression and fusion (ankylosis),
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complete fusion and centre fusion are subcategories of

fused vertebrae. All these related anomalies were found to

emerge both independently from each other and share

common characters: platyspondyly can result in vertebral

fusion but also occurs without vertebral fusion. This is

because anomalies may regress, change their character or

the same anomaly may represent a final stage, a develop-

mental intermediate stage towards another type of anomaly

or just a mild case that does not progress further.

As far as anomalies affecting the vertebral arches are con-

cerned, they have been considered and reported rarely in

reared Salmonid fish.

Anomalies of the fins

Fins anomalies are frequently observed in reared fish, but

the frequency, the affected fin and the severity of anomaly

largely vary according to the species, the rearing methodol-

ogy and the tank features (Fig. 2d,e,g,h,n). In intensive

conditions, fin erosions or bitten caudal fins are quite fre-

quent due to crowding effects: these are not to be consid-

ered as skeletal anomalies (and so are not considered in this

review). However, the poor state of bitten or eroded fins

prevents the monitoring of true fin anomalies.

In general, the most severe observed fin anomalies are

the complete lack of a fin, the presence of a supernumerary

fin or fin dislocation, but they are very rare or limited to

some peculiar lot/farm or observed in the experimental

rearing of a new candidate species.

The lateral bending and the duplication of caudal fin is

the first severe fin anomaly recorded in European reared

species (gilthead seabream, Koumoundouros et al. 1997a).

Since then, caudal fin anomalies have been recorded as

developing with an incidence of 60–100% in at least four

commercial hatcheries, in a variety of species (e.g. gilthead

seabream, sharpsnout seabream, white seabream Diplo-

dus sargus, red porgy and bogue Boops boops) and in the

form of lateral bending, duplication, partial lack or stricture

of the fin rays (Koumoundouros 2010). Koumoundouros

et al. (1997a) demonstrated that caudal fin anomalies may

originate during early ontogenetic stages (e.g. yolk-sac

larval stage), well before the development of the caudal fin

skeleton, as a result of anomalous bending of the posterior

tip of notochord.

The partial or complete underdevelopment of the dorsal

or anal fin has been documented as developing in the spe-

cies of Mediterranean aquaculture. This anomaly is named

‘saddleback syndrome’ (Fig. 2c), but different anomalous

patterns are included under this anomaly, by different stud-

ies, in different species. The common trait is a characteristic

depression in the anterior dorsal profile, easily detectable at

gross examination. According to Koumoundouros et al.

(2001) and Koumoundouros (2010), this type of anomaly

in reared common dentex (affecting 4–4.4% of observed

samples) originates from early abnormalities of the dorsal

part of primordial marginal finfold. In this species, it was

expressed as a lack of one to all the dorsal spines and

relative pterygiophores, anatomically and ontogenetically

associated with severe caudal fin anomalies. In white seab-

ream, Sfakianakis et al. (2003) recorded a variant of saddle-

back syndrome, which was described as a V-shaped

deformation of the complete dorsal fin, accompanied with

a simultaneous development of pre-haemal kyphosis and

haemal lordosis and caudal fin anomalies. In common pan-

dora (Pagellus erythrinus), Boglione et al. (2003) described

the saddleback occurring in the transitional area between

the spinous and soft regions of the dorsal fin, also affecting

relative pterygiophores. In this species, saddleback was

found to be associated with caudal fin anomalies only in

one juvenile (3.2% of saddleback deformed specimens) and

never with anomalous underlying vertebrae. Up to now, no

data are available to understand if all these deformation

patterns can be attributed to a different severity of the same

anomaly or to different anomalies with different aetiology:

its presence has been reported in many fish species, under

rearing and natural environmental conditions (Boglione &

Costa 2011).

The formation of additional or duplicated dorsal fin is

another severe, but rare, anomaly of fins (Komada 1980;

Matsusato 1986).

Fusion, lack, extra formation, displacement of the fin

supporting elements (Marino et al. 1993; Koumoundou-

ros et al. 2001) and curvature of the rays and spines

(Paperna 1978; Daoulas et al. 1991) are relatively fre-

quent fin anomalies in Mediterranean aquaculture, with

negligible importance in respect of their effect on the

external morphology of the final product. In additional,

Georga et al. (2011) reported for the first time a bilateral

or unilateral (left side) lack of pelvic fins (at frequencies

of 44% and 22%, respectively), in European seabass

under experimental conditions (low dietary levels of vita-

min A). To date, such anomalies are extremely rare in

juveniles from commercial farming.

The flatfish possess large dorsal and anal fins, supported

by a large number of soft rays. Typically, there is an exten-

sion of the dorsal fin from the head to the base of the cau-

dal fin that, in some species like those of the families

Soleidae and Cynoglossidae can form a continuous or semi-

continuous structure together with the caudal and anal fins,

both in adult and larval fish (Carpenter 2002). A significant

number of anomalies affecting the fins of Senegalese sole

have been observed, mainly appearing as fusions or anoma-

lies of hypurals in the caudal fin and as anomalous ptery-

giophores in the dorsal and anal fins (Gavaia et al. 2002;

Engrola et al. 2009; Fern�andez et al. 2009; Fern�andez &

Gisbert 2010). It has been reported that the cartilaginous
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elements, like those composing the internal skeleton of the

dorsal, anal and caudal fins, are more sensitive to high

levels of vitamin A than dermal bones, with higher inci-

dences of anomalies in hypuralia in fish receiving high die-

tary vitamin A doses (Fern�andez & Gisbert 2010).

Anomalies of the fins are quite rarely reported in Salmo-

nids, with exclusion of fin erosions.

Skull anomalies

Anomalies affecting the skull, mainly splanchnocranium,

are evident at gross examination and mainly affect dentary,

pre- and maxillary, glossohyal and opercular plate. They

are mainly sublethal anomalies and affected fish show diffi-

culty in efficiently nourishing, so growing slower and

weaker than unaffected fish.

Opercular plate reduction or folding (Fig. 2h,j) leaves

the branchial arches more exposed to injuries or parasites,

so affecting the health status of affected fish.

Terminology on cranium anomalies is even more confus-

ing than for vertebral anomalies, for the presence of more

complex syndromes, in which more than one skeletal

element may be affected. In species of Mediterranean aqua-

culture, skull anomalies have been recorded to affect the gill

cover, jaws and hyoid arch.

Among them, anomalies of the gill cover have been

recorded to affect mainly gilthead seabream (up to 80%:

Koumoundouros 2010; a maximum of 9%: Cataudella

et al. 2011b; 5–20%: Beraldo & Canavese 2011), but also

European seabass and a variety of candidate species, in

some lots (Paperna 1978; Barahona-Fernandes 1982; Franc-

escon et al. 1988; Verhaegen et al. 2007; Koumoundouros

2010). Opercular plate (or gill cover) anomalies are ana-

tomically attributed to inside or outside folding, shortening

or abnormal positioning of the opercular and subopercular

bones, both bilaterally or monolaterally (directional: Ver-

haegen et al. 2007; Fern�andez et al. 2008; or fluctuating:

Barahona-Fernandes 1982; Koumoundouros et al. 1997b;

Galeotti et al. 2000). Gill cover anomalies develop during

the pre-flexion and flexion stage (Koumoundouros 2010).

In gilthead seabream, the opercular folding into the gill

chamber is detectable starting from 25 dph larvae (Beraldo

et al. 2003). Beraldo and Canavese (2011) recently showed

that the monolateral inside folding of the gill-cover pre-

sents a partial recovery during the on-growing of fish in sea

cages, but only when the degree of anomaly is low. Further,

in gilthead seabream juveniles, opercular plate anomaly has

been found to develop mostly in intensive conditions: sib-

lings reared in semi-intensive conditions showed no

deformed opercular plates compared with intensively

reared fish (Prestinicola 2012).

Pugheadness, cross-bite and lower jaw reduction or elon-

gation are the main types of jaw anomalies that can affect

the finfish reared in Mediterranean aquaculture (Barahona-

Fernandes 1982; Koumoundouros et al. 2004; Abdel et al.

2005).

In pugheadness, the ethmoid region and upper jaws are

antero-posterior compressed. Data from both experimental

and reared fish demonstrate that pugheadness is more

frequent in gilthead seabream, whereas in European seabass

and common dentex all kinds of jaw anomalies are

observed.

In cross-bite, the dentary appear affected by asym-

metric growth: the result is that the dentary tip appears

skewed off-centre so it is not oriented parallel to the

upper jaw.

Finally, the reduction of the lower jaw is almost identical

to the intense cross-bite and attributed to the ventro-lateral

distortion of the jaw elements (Hickey et al. 1977; Cobcroft

et al. 2001).

In Atlantic cod, curved palatine bone, pughead and

deformed dentary have been described.

The prognathism (prolongation) of the dentary is quite

frequently observed only in intensively reared European

seabass or gilthead seabream (Clara Boglione, pers. comm.,

2012) and in young stages in cod (Baeverfjord et al. 2009).

It was found to be associated sometimes with premaxillary

anomalies. In this way, both prognathism of the dentary,

mainly observed in European seabass, and a reduction of

premaxillary (and maxillary), more frequent in gilthead

seabream, give a longer lower jaw to the fish.

It has been suggested that jaw anomalies develop mainly

during the early larval stages (Koumoundouros 2010).

An anomalous hyobranchial skeleton is frequently

observed in reared gilthead seabream juveniles (rarer in

European seabass), reaching frequencies of even 40–80%,

in some lots. The anomaly is related to the ventral projec-

tion of glossohyal, or basihyal or hypohyal elements, often

associated with bending and/or dislocations of ceratohyals.

This anomaly has been detected as developing during the

early larval stages (Koumoundouros 2010).

Izquierdo et al. (2010), while studying the cranial anom-

alies in red porgy, found that the intensiveness of the rear-

ing conditions, particularly increased upper-jaw reduction

and cross bite jaw and observed a very low incidence of

opercular plate anomalies. According to the authors, the

low incidence of opercular anomalies in red porgy could be

explained by the early presence of long larval pre-opercula

and opercula spines that could reinforce the forming oper-

culum, preventing its folding into the gill chamber. How-

ever, the presence of more or less extended larval opercular

spines in all the Sparids, gilthead seabream included, does

not support this hypothesis.

In flatfish, it is relatively common to find specimens with

anomalies in the skull due to abnormal ocular migration

and incorrect migration of the cranial structures during
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metamorphosis. It has been found that post metamorphic

Senegalese sole can display up to 5% of specimens with

ocular migration related abnormalities (Gavaia et al. 2009).

This type of abnormality has been associated with the

presence of a deformed pseudomesial bar, in other flatfish

species (Okada et al. 2003; Schreiber 2006).

Only one report on jaw anomaly in larval Senegalese sole

is present in the literature: recently, Blanco-Vives et al.

(2010) described a relationship between jaw anomalies and

the daily variations of temperature and light cycles during

the early development of Senegalese sole larvae. Lower inci-

dences of jaw anomalies were observed when fish were

reared at a thermal cycle of 22.1°C day/19.0°C night,

instead of 19.2°C day/22.0°C night.

There are also some references inherent to jaw anoma-

lies (named ‘gapers’) affecting the larvae of Atlantic hali-

but, at levels ranging from 1% (Saele et al. 2003, 2004)

to 11% (Solbakken & Pittman 2004). Pittman et al.

(1998) and Saele et al. (2004) described some of the

main types of developmental problems affecting Atlantic

halibut larvae and detectable during metamorphosis, in

the form of malpigmentation, incomplete eye migration,

unattached anterior dorsal fin, cranial anomaly and jaw

anomalies.

Est�evez and Kanazawa (1995) found that turbot larvae

fed high levels of vitamin A resulted in a higher number of

fish with abnormal eye migration.

In Salmonids, cephalic anomalies are less frequent than

vertebral, but maintain a certain relevance. Particularly in

salmonids, the terminology used often refers to a general

anomalous picture, involving more than one bone, instead

of indicating a single anomalous bone, so making difficult

any comparison with skull anomalies found in other reared

teleosts. Further, some description of severe skull anoma-

lies, involving both splanchno- and neurocranium, is lim-

ited only to some and not all involved bones. Pugnose

relates to consistent anomalies on pre-maxillary, palatine

and mesethmoid that give the head a characteristic profile.

In advanced juveniles, an abnormal dentary can be found

in association. This anomaly develops during embryonic

development and is already externally detectable in just-

hatched fry. In rainbow trout, many juveniles exhibit

anomalies of premaxillary and maxillary, associated with

severe reduction and maldevelopment of the upper rostral

bones of neurocranium. The upper jaw may be deformed

and protruding or only deformed or severely deformed and

reduced. The so-called ‘screamer disease’ is used to indicate

a typical anomaly co-affecting both dentary and maxillary,

that both curve ventrad. This anomaly has been detected

only after smoltification.

In early salmon juveniles, a ventral projection of the

glossohyal is observed, and in the most severe cases, the

bone projection perforates the skin ventrad to the mouth,

so forming a ‘double mouth’. This condition is easily

detectable during manual sorting and, however, is consid-

ered lethal.

The dentary shortening or dislocation is identifiable in

first feeding rainbow trout, rarely at later stages. Other

anomalies have been described in trout lower jaw, such as

dentary blockage in a gaping position (the mouth cannot

be closed). In rainbow trout, a series of peculiar anomalous

conditions are described (e.g. missing body parts, twin

anomalies, some head anomalies, strictures) only in

some groups and in high temperature rearing conditions

(Baeverfjord et al. 2009).

Effects of skeletal anomalies on fish biological
performance

The literature on the effects of skeletal anomalies on the

biological performance of the reared fish is scarce and exist-

ing published information consists of secondary data col-

lected indirectly during studies on the ontogeny and

anatomy of different types of skeletal anomalies. In general,

skeletal anomalies are considered to exert significant nega-

tive effects on animal welfare, the biological performances

of the reared fish, the quality of the product and the pro-

duction cost. Moreover, in species that are mainly mar-

keted as whole-fish (e.g. gilthead seabream and European

seabass), an anomalous external morphology (even of a few

fish) could substantially decrease the consumers’ overall

perception of aquaculture products.

Since external morphology is a major quality criterion

for consumers, body shape is probably the most important

character that is affected by skeletal anomalies. The altera-

tions of body shape by the presence of skeletal anomalies

usually have a continuous range, depending on the severity

of the anomalies. For example, the effects of haemal lordo-

sis on the body shape of European seabass were shown to

be well correlated with the lordosis angle and to have a con-

tinuous expression between a low significance of the effect

to severe shape alterations (Sfakianakis et al. 2006b). On

the other hand, gill-cover anomalies or the saddleback syn-

drome could be considered anomalies with discontinuous

effects on the external morphology, since their presence is

associated in some reared lots with other severe morpho-

logical alterations (i.e. gill exposure or depression of the

dorsal profile, respectively: Koumoundouros et al. 1997b;

Setiadi et al. 2006; Verhaegen et al. 2007).

Except for their negative effects on fish morphology,

some skeletal anomalies have been shown to or are

expected to downgrade the biological performance of the

reared fish. Gill cover anomalies have been shown to

increase the sensitivity to oxygen stress and a predisposition

to myxobacterial infections (Paperna et al. 1980), whereas

during the larval stage their incidence has been shown to
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correlate negatively with the growth rate of the fish (Ko-

umoundouros et al. 1997b). In gilthead seabream, Verhae-

gen et al. (2007) and Georgakopoulou et al. (2010) showed

a 2.5–4.0-fold decrease in the incidence of gill cover anom-

alies during the metamorphosis phase, possibly resulting

from a selective mortality of the deformed fish.

In European seabass, pre-haemal kyphosis was shown to

induce lethargic behaviour and a subsequent heavy mortal-

ity during vertebral axis osteogenesis, as a result of the

compression of the neural tube by the deformed vertebrae

(Koumoundouros et al. 2002). Finally, Basaran et al.

(2007) showed that lordosis significantly decreases the

endurance and critical swimming speed of European sea-

bass juveniles.

Carls et al. (1999) exposed herring eggs to 0.7 ppb poly-

nuclear aromatic hydrocarbons (PAHs) and then, by

observing the effects on hatched larvae, they found that the

spinal condition was the most important predictor of

swimming ability, the lower jaw size was the second predic-

tor and yolk sac oedema was the third; correlation with

pericardial oedema was not significant.

Seriously deformed neural and haemal arches, as above

reported, can affect blood flows and spinal cord functions.

Anomalies affecting the fins can exercise negative effects

on fish locomotion with effects varying according to the

involved fin, the seriousness of the anomalies and species-

specific swimming and feeding behaviour.

Serious jaw anomalies impair efficiency in feeding with

consequences on the growth rate.

Causative factors of skeletal anomalies in reared
fish

Many skeletal anomalies are the result of genetic factors

and/or the incapacity of homeorhetic mechanisms to com-

pensate for stressful environmental conditions.

Up to now, a great variety of factors have been shown to

be involved in the development of skeletal anomalies in a

variety of finfish species under rearing conditions (reviewed

by Divanach et al. 1996; Cahu et al. 2003a,b, 2009; Koumo-

undouros 2010; Zambonino-Infante & Cahu 2010; Bogli-

one & Costa 2011). With the exclusion of pollutants and

pathogens, which are well controlled under rearing condi-

tions, existing literature clearly suggests that unfavourable

abiotic conditions, inappropriate nutrition and genetic fac-

tors are the most possible causative factors of skeletal

anomalies in reared fish. This great variability of causative

factors, of their results on the skeleton, and of the species

under concern is furthermore expanded by changes in the

environmental and nutritional preferences of a given spe-

cies during the process of ontogeny, as well as by the devel-

opment of the different skeletal elements (and thus of the

related anomalies) at different ontogenetic stages (reviewed

by Koumoundouros (2010) for the species of Mediterra-

nean aquaculture and by Boglione & Costa (2011) for

reared Sparidae). As an example of this ontogenesis-related

requirement, Mazurais et al. (2009) showed that the opti-

mal level of dietary retinol for harmonious skeletal develop-

ment fluctuates significantly along the ontogeny of

European seabass. Similarly, Georgakopoulou et al. (2010)

showed that the optimal temperature for normal skeletal

development fluctuates significantly along the ontogeny of

gilthead seabream.

Genetic factors

Genetic factors underlying skeletal anomalies in reared fish

have been very recently the subject of investigations, most

of them arise secondarily during genetic selection pro-

grammes aimed at enhancing a fast growth rate. A series of

studies have been conducted to ascertain the heritability of

some skeletal anomalies, the existence of genetic drift or

gene mutations in deformed fish, the effects on the pheno-

type of genetic modifications, inbreeding, selective breed-

ing, polyploidy. The availability of highly polymorphic

genetic markers, such as microsatellites, has opened new

scenarios in estimates of the genetic basis of body anoma-

lies (O’Reilly & Wright 1995; Ferguson & Danzmann 1998;

Castro et al. 2004, 2006, 2007).

Genetic screening for mutants in zebrafish regulating

skeletogenesis represent the bulk of the studies on genetic

factors influencing fish skeletal anomalies and has been

used extensively to enlarge the knowledge on genetic factors

and regulatory mechanisms.

The first indication of the possibility that high inbreeding

levels in rainbow trout may produce skeletal anomalies was

described by Aulstad and Kittelsen (1971). It has also been

reported that some anomalies may be inherited as single

gene effects (Rosenthal & Rosenthal 1950; Gordon 1954;

Takeuchi 1966).

Several reports have suggested that both simple Mende-

lian genes and polygenic determinants could explain the

incidence of skeleton anomalies, and some recent papers

report on the heritability of some skeletal anomalies in gilt-

head seabream: Thorland et al. (2007) found moderate–
low heritability for external colour and vertebral axis

anomalies; Castro et al. (2008) reported in gilthead

seabream a slight familiar association (P < 0.05) when

comparing individuals lacking an operculum, but not

between lordotics or between normal ones, and concluded

that most of the phenotypic variation observed for lordosis

and lack of an operculum in gilthead seabream is due to

environmental factors; Afonso et al. (2000) found that the

LSK syndrome was statistically associated with the family

structure, suggesting a possible genetic origin. In a later

study, Afonso et al. (2009) described lordosis and consan-
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guinity levels in gilthead seabream breeders increase the

incidence of deformed larvae and that the susceptibility for

the presence/absence of vertebral column anomalies has a

high additive genetic component. Navarro et al. (2009)

reported estimates of heritability for lordosis and lack of an

operculum in gilthead seabream fingerlings, whilst a weak

association among skeleton anomalies and inbreeding was

reported in gilthead seabream by Astorga et al. (2003).

Izquierdo et al. (2010) reported that lordosis has been

found to be correlated to consanguinity, being a character

with a high heritability (85%).

Kolstad et al. (2006) found in Atlantic cod some specific

spinal anomalies showing a high degree of environmental

sensitivity, and that the G*E (Genotype vs. Environment)

interaction was of some significance owing to the occur-

rence of these anomalies: their conclusion was that the

inclusion of spinal anomalies character in a breeding pro-

gram demands a controlled environment, as performance

in one environment may not reflect performance in

another.

The contrary was found in Atlantic salmon by Gjerde

et al. (2005), where inbreeding is excluded from the causes

of the anomalies.

Researchers seem to agree that if a genetic basis for skele-

tal anomalies is observed, this predisposition is expressed

only when exceptional environmental conditions occur

(energy failure, temperature rising, ….): Kause et al.

(2007), when analysing skeletal deformations in farmed sal-

mon, discovered that heritability was close to zero in

cohorts in which management practices routinely run.

When there was a management failure, the incidence of

skeletal anomalies unusually rise with elevated heritability.

These authors also found that both positive and negative

correlations between generations were present, showing

that high liability at any time can be genetically connected

to low liability at another time, and that genetic correla-

tions between anomalies recorded in different environ-

ments were significantly or near to significantly positive, in

farmed salmon. The authors hypothesize that a trait

recorded as a skeletal anomaly is not a single trait, and its

genetic determination varies from place to place and from

generation to generation (Kause et al. 2007).

Interaction G*E is the main body of recent genetic inves-

tigation in reared fish: Wargelius et al. (2005) found that

when Atlantic salmon eggs were incubated at elevated tem-

perature, the expression of shh and twist transcriptional fac-

tors decreased (major details are available below). In the

same species, Grini et al. (2011) found that a temperature

higher than the species-specific one induced an up-regula-

tion of MMP13 (increasing the degradation process of

extracellular bone matrix) while Ytteborg et al. (2010)

found a down-regulation of extracellular matrix compo-

nents, as further reported.

The possibility that a genetic drift effect could be envis-

aged in reared fish is based on the observation of uneven

contribution given by different breeders to each reproduc-

tion event in farming conditions. Up to now and to the best

of our knowledge, the presence of genetic drift has been

ascertained in red seabream, cutthroat trout (Oncorhyn-

chus clarkii), brown trout (Salmo trutta fario), Atlantic

salmon and black seabream (Spondyliosoma cantharus).

Several genetic studies have been carried out on farmed

Atlantic salmon, demonstrating reduced allelic variation

compared with wild salmon populations, and Skaala et al.

(2004) observed significant genetic differentiation among

five major strains of farmed Atlantic salmon.

Regarding swim bladder anomalies, Peruzzi et al. (2007)

hypothesized that paternally and maternally inherited fac-

tors may contribute to the expression of swim bladder

anomalies in European seabass.

Recently, the use of polyploidic salmon (for a review on

current issues related to the application of induced poly-

ploidy in aquaculture see Piferrer et al. 2009), for improv-

ing body growth rates and reducing male aggressiveness

during the reproductive period, evidenced a higher inci-

dence of skeletal anomalies. Triploid European seabass lar-

vae showed a high incidence of anomalies and died just

after hatching (Zanuy et al. 1994), and Sugama et al.

(1992) attributed the low survival rates observed in triploid

red seabream to the high levels of anomalies. Since the

beginning of the 1990s triploid salmon have been more sat-

isfactorily produced, but the high frequencies of deformed

fish opened the scenario to investigations aiming to distin-

guish which between the triploidy condition in itself and

the induction shock applied to eggs the causative factor

was. In rainbow trout, temperature shocks for triploidiza-

tion of eggs resulted in a higher deformation rate at hatch-

ing than pressure shocks. The lower jaw anomalies

augmentation in triploid salmon has been imputed to the

triploidy condition (Piferrer et al. 2009), whilst more com-

plex anomalies, such as the co-occurrence of opercular and

gill filament anomalies, and reduced gill surface area, can

be imputed to only one of these two factors.

Externally detectable anomalies that were higher in trip-

loid than in diploid salmon, only in first feeding juveniles,

are macrocephalia, lordosis and twisted body (spiral tail;

Piferrer et al. 2009). In triploid Atlantic salmon at first

feeding, opercular shortening was the main anomaly

observed in one lot, but in the period from post hatch to

smolt unit transfer, spiral tail (a variant of twisted body)

was mainly observed in all the triploid lots (Taylor et al.

2011, 2012). However, anomalies in many triploid studies

are only rarely reported in the early stages, in contrast to

older stages where the prevalence of deformed individuals

can be very high, at least in Atlantic salmon (Lijalad &

Powell 2009). According to some authors, the most com-
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mon anomalies reported in triploid salmon are those affect-

ing the lower jaw, gill filament, spinal axis as well as cata-

ract and reduced gill surface area (Sadler et al. 2001;

Oppedal et al. 2003).

As far as spinal anomalies in triploid fish are concerned,

Johnston et al. (1999) hypothesized that ploidy induces

muscle fibre recruitment and hypertrophy, with a conse-

quent alteration of vertebral axis. Supernumerary normal

vertebra was found in triploid rainbow trout (Kacem et al.

2003), whilst triploid European seabass showed no alter-

ation in the frequency but in the severity of skeletal anoma-

lies with respect to diploids (Piferrer et al. 2009).

The presence of a high prevalence of deformation rate in

triploid fish has been ascribed to maternal effects (egg

quality).

Non-genetic factors: nutrition

Larval nutrition has been recognized by many studies as

one of the key parameters that affect skeletogenesis during

early fish development (for a comprehensive review on dif-

ferent nutritional requirements in reared finfish larvae see

Hamre et al. 2013 and Rønnestad et al. 2013). Several stud-

ies have demonstrated that different nutrients (e.g. lipids,

amino acids, vitamins and minerals) are responsible for the

appearance of skeletal anomalies when their level and/or

form of supply in the diet are inappropriate or unbalanced

(Cahu et al. 2003b; Lall & Lewis-McCrea 2007). The very

early observations reporting on the impact of larval nutri-

tion on skeletal anomalies were recorded mainly in fresh-

water fish species such as salmonids that can be fed easily

from first-feeding with compound diets (Halver 1957; Ki-

tamura et al. 1965). Then studies were extended to marine

fish species, in relation to the development of freshwater

and marine aquaculture. Considering that marine fish lar-

vae hatch much earlier in their development than most

freshwater fish and higher vertebrates (Haga et al. 2002),

they provide an exceptional tool for studying the molecular

processes influenced by nutrition that are involved in the

appearance of skeletal anomalies during the early stages of

teleost development. In this sense, the development of a

reliable and balanced microdiet for European seabass lar-

vae, which can totally and efficiently replace live prey, has

allowed several studies on the optimization of different

essential nutrients in feeds for marine fish larvae (Ville-

neuve et al. 2005a,b, 2006; Mazurais et al. 2008; Kv�ale et al.

2009; Darias et al. 2010, 2011a,b; Georga et al. 2011;

among others). However, the nutritional requirements for

the larvae of many other marine species, and the impact of

nutrients that are essential for normal larval development

and skeletogenesis, are still being researched using enriched

live prey, in those species that cannot accept microdiets at

early stages of development. In this sense, the rotifer

Brachionus plicatilis and the nauplii and metanauplii of the

branchiopod Artemia sp. have been used extensively as live

prey in rearing marine fish larvae protocols due to their

appropriate size, easy and rapid culture/production, and

suitability for mass production under controlled condi-

tions. However, their use requires the improvement of their

nutritional value to fit the nutritional requirement of fish

larvae by means of enrichment procedures. Although the

nutritional quality of rotifers and Artemia can be easily

manipulated by means of commercial or tailor-made

enrichments and emulsions, these live organisms have the

ability to metabolize nutrients, changing their nutritional

content (Navarro et al. 1999; Gim�enez et al. 2007). This

increases the difficulty of conducting nutritional studies in

this group of fish larvae that need to be fed with enriched

live prey, although there exist very comprehensive and

interesting studies in the literature assessing the impact of

different nutrients in fish larval morphogenesis and the

genetic regulation of this developmental process (Dedi

et al. 1995; Takeuchi et al. 1995; Haga et al. 2002; Tarui

et al. 2006; Fern�andez et al. 2011, among others). In this

section, the effect of different nutrients on fish larval skel-

etogenesis and their impact on the development of skeletal

anomalies are presented, considering the available literature

on this topic obtained from cold and temperate, marine

and freshwater reared fish species, fed with compound

microdiets and/or live feeds.

It is possible to find more detailed information on the

different larval nutrient requirement and general method of

action in the review on larval nutrition by Hamre et al.

2013.

Proteins and amino acids

It is generally recommended that artificial diets for fish lar-

vae should have a nitrogen solubility and molecular weight

profile similar to that found in wild live food (Carvalho

et al. 2003). In addition, the low capacity to digest proteins,

and the amino acid (hereafter indicated as AA) require-

ments for energy production and growth of marine fish lar-

vae, means that amino acid requirements are likely to be

very high and that dietary imbalances will have a burden in

terms of nitrogen utilization (Arag~ao et al. 2004) and,

eventually growth and development (Conceic�~ao et al.

2003). In this sense, several authors have recommended the

inclusion of protein hydrolysates in compound diets for

fish larvae, since they enhance the digestibility and nutri-

tional value of the feed (Kolkovski 2008). Protein hydroly-

sates typically consist of low molecular-weight peptides

(200 < MW < 500 Da) resulting from protein pre-diges-

tion (€Onal & Langdon 2009). These compounds are more

efficiently absorbed and digested by enterocytes compared

with high-molecular-weight macromolecules, which is due

to the specific digestive features of fish larvae in compari-
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son with juveniles or adults (see review in Zambonino-

Infante & Cahu 2010).

Different types of experimental and commercial protein

hydrolysates differing in their original raw material (i.e.

casein, krill, squid, shrimp, mussel, fish meal), their pro-

duction system (i.e. silage, enzymatic digestion, fermenta-

tion, among others) and their biochemical characteristics

(i.e. amino acid profile, molecular weight of peptides) have

shown that protein hydrolysates enhanced larval and fry

growth and/or survival performance in several freshwater

and marine species, such as common carp Cyprinus carpio

(Carvalho et al. 1997), rainbow trout (Dabrowski et al.

2003), Atlantic salmon (Berge & Storebakken 1996), Euro-

pean seabass (Zambonino-Infante et al. 1997; Cahu et al.

1999), gilthead seabream (Gisbert et al. 2012), Atlantic cod

and Atlantic halibut (Kv�ale et al. 2009). In terms of fish lar-

val quality and the development of skeletal anomalies, the

dietary incorporation of short peptides is considered as

beneficial for fish larval development, as they promote the

harmonious development of the skeleton (see review in

Cahu et al. 2003b). The rationale of this improvement of

the skeletogenesis in fish larvae fed microdiets incorporat-

ing protein hydrolysates is not clear. Enhanced larval per-

formance and quality of larvae fed these types of feeds

might be attributed to the enhanced proteolytic capacity of

the pancreas and the earlier development of the intestinal

digestion in those fish microdiets containing protein hy-

drolysates (Rønnestad et al. 2003; Kv�ale et al. 2009; Zam-

bonino-Infante & Cahu 2010). The capacity of the larval

digestive tract to process dietary protein is limited by its

proteolytic rather than by absorptive capacity (Conceic�~ao
et al. 2011). Thus, the advanced intestinal digestion may

have resulted in a better use of those nutrients contained in

the diet, which might have contributed to a better develop-

ment of the skeleton (Cahu et al. 2003b; Lall & Lewis-

McCrea 2007; Zambonino-Infante & Cahu 2010).

In addition to the molecular size of the protein com-

pounds included in the diet, the amino acid profile of the

feed has also been described as having an effect on the qual-

ity of fish larvae, since dietary imbalances in amino acids

have been reported to have major implications for larval

development, other than effects on growth (for major

details on amino acid requirements and effects on larvae

see Rønnestad et al. 2013 and Hamre et al. 2013). First

studies on specific amino acid deficiency conditions

reported that dietary tryptophan deficiency induced scolio-

sis in several salmonid species, such as the sockeye salmon

Oncorhynchus nerka, the rainbow trout, the coho salmon

O. kisutch and the chum salmon O. keta (Tacon 1992),

whereas scale anomalies and vertebral abnormalities were

found in rainbow trout fed with a diet containing high lev-

els of leucine (Choo et al. 1991). Recently, Saavedra et al.

(2009) reported that a balanced dietary amino acid profile

improved larval quality by reducing the incidence of skele-

tal anomalies (lower incidence of vertebral fusions and no

cases of lordosis) in the white seabream, whereas a diet sup-

plemented with tyrosine and phenylalanine also improved

the larval quality of this sparid (Saavedra et al. 2010). In a

recent study in gilthead seabream larvae co-fed live prey

and microdiets containing different levels and types of pro-

tein hydrolysates, Gisbert et al. (2012) suggested that leu-

cine, phenylalanine and valine had an important role in the

skeletogenesis process. Although the exact role of these

amino acids has not been studied in fish with regard to

skeletogenesis and bone health status, studies from higher

vertebrates indicated that leucine, phenylalanine and valine

were important for the proper development of the extracel-

lular bone matrix. Thus, phenylalanine is necessary for

maintaining the bone morphogenetic property of the bone

matrix (Urist & Iwata 1973), whereas leucine is the one of

the main components of some structural proteoglycans,

which are the most abundant constituents of the non-col-

lagenous proteins in the bone matrix (Robey 2002). In

addition, nutritional studies have shown that valine-defi-

cient diets reduced calcium levels in bones and induced

skeletal anomalies in chicks (Farran & Thomas 1992).

Lipids and fatty acids

In fish larval nutrition, lipids and their constituent fatty

acids are probably the most studied nutrients (see Hamre

et al. 2013 and Rønnestad et al. 2013). However, they

remain one of the least understood and enigmatic nutrients

in aquaculture nutrition (Glencross 2009). This might be

due in part to the relatively complex chemistry and the var-

ied functional roles of lipids (for review see Sargent et al.

2002). Lipids can be divided into different classes: triacyl-

glycerols, wax esters, phospholipids, sphingolipids and ster-

ols that all contain fatty acids with the exception of

cholesterol. All fatty acids can serve as an energy source,

but some specific long-chain polyunsaturated fatty acids

(PUFA) also have a number of essential roles in metabolism

and especially in bone metabolism, as demonstrated in

mammals (for review see Poulsen et al. 2007) and are

highly vulnerable to lipid peroxidation. The lipid require-

ments of marine fish larvae have been extensively studied

during the past two decades and particular attention has

been paid to PUFA and phospholipids (Cahu et al. 2003a;

Villeneuve et al. 2005b, 2006).

Essential fatty acids. Marine fish are considered to have an

absolute requirement for PUFA, such as eicosapentaenoic

acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-

3) and arachidonic acid (ARA, 20:4n-6), being unable to

produce these fatty acids from their precursors alpha-li-

nolenic acid (18:3n-3) and linoleic acid (18:2n-6). Thus,

their deficiency delays fish growth, induces mortality,
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reduces resistance to stress and results in anatomical

alterations associated with nutritional disorders (see

Hamre et al. 2013 on this journal). Although the quanti-

tative requirements and deficiency signs of essential fatty

acids (EFA) in several freshwater and marine fish have

been documented, the functional role of n-3 and n-6

HUFA in bone lipid metabolism of fish remains to be

investigated (Lall & Lewis-McCrea 2007). Essential fatty

acid requirements vary qualitatively and quantitatively

with both species and during ontogeny of fish, with early

developmental stages and broodstock being critical peri-

ods (for review see Tocher 2010 and Rønnestad et al.

2013). Symptoms of EFA deficiency include reduced

growth and increased mortality as well as myocarditis,

pale/swollen (fatty) liver, intestinal steatosis, fin erosion,

bleeding from gills, lordosis, reduced reproductive poten-

tial and shock syndrome (Tacon 1996; NRC 2011). How-

ever, data about the relationship between EFA deficiency

and the development of skeletal anomalies are quite

scarce. Takeuchi et al. (1991) reported that fingerlings of

grass carp Ctenopharyngodon idella fed a diet without

EFA showed a high incidence of specimens displaying an

upward displacement of the column at the region of the

12–15th vertebrae, from the caudal end. However, the

former authors were able to prevent lordosis by the addi-

tion of 1% linoleic acid to the diet. In milkfish

Chanos chanos larvae, the enrichment of live food with

DHA allowed a reduction in the incidence of opercular

anomalies in juveniles (Gapasin & Duray 2001). Likewise,

in red porgy larvae, a 50% reduction in the number of

deformed fish (mainly vertebral fusion and cranial anom-

alies) was obtained when the larvae were fed higher DHA

levels, denoting the important role of this fatty acid in

bone development (Izquierdo et al. 2010). However, the

exact role of dietary lipids in the development of skeletal

anomalies remains to be investigated in fish (Lall &

Lewis-McCrea 2007). Dietary lipids could influence the

fatty acid composition of fish bones and thus the forma-

tion of highly biologically active compounds, the eicosa-

noids, which are 20-carbon derivatives of 20-carbon

PUFA. These compounds include prostaglandins and leu-

kotrienes, which have diverse pathophysiological actions,

including bone cell metabolism. In Atlantic salmon juve-

niles, dietary vegetable oil as a replacement for fish oil

has been shown to influence the ARA level in the phos-

pholipids of vertebrae, slightly increase the production of

prostaglandin E2 (PGE2) in blood and reduce vertebral

mineralization without leading to any detectable skeletal

anomaly (Berge et al. 2009). Although ARA is present in

fish tissues in lower amounts than DHA and EPA, abso-

lute amounts of dietary ARA may not be neglected, as

well as its content relative to EPA and DHA (Moren

et al. 2011). Arachidonic acid is the major precursor for

eicosanoid synthesis, enhancing the immune system and

resistance to stress (Bell et al. 2003) and alterations in

the dietary ARA/EPA ratio can affect the production of

PGE2 known to regulate osteoblasts and bone metabolism

(Berge et al. 2009). Although the action of ARA on bone

turnover is well known in mammals (Watkins et al.

2001), little information on the effects of the dietary ARA

content on bone development in fish is available. In a

recent study, Boglino et al. (2012) fed Senegalese sole lar-

vae with Artemia metanauplii enriched with graded levels

of ARA (1.0%, 4.5% and 7.0% ARA of total fatty acids),

and found that dietary ARA levels did not affect the inci-

dence of total skeletal anomalies, although the skeleton of

larvae fed 4.5% ARA tended to be more calcified at

15 dph than that of larvae fed the other diets. Dietary

PUFA and their metabolites have also been demonstrated

to affect gene expression through several mechanisms

including the control of several transcription factors,

leading to changes in metabolism, growth and cell differ-

entiation in mammals (Jump 2004) and fish (Oku &

Umino 2008; Ytteborg et al. 2010). In European seabass

larvae, high dietary levels of n-3 long-chain PUFA with

4.8% of EPA and DHA have been shown to induce

cephalic and vertebral column anomalies, adversely affect-

ing fish growth and survival if compared with diets con-

taining 1.1% to 2.3% EPA and DHA, which were

associated with a down-regulation of some transcription

factor genes (Villeneuve et al. 2005b). Likewise, these

high dietary levels of n-3 long-chain PUFA only during

the very early development (from 8 to 13 days post-

hatching) have been shown to accelerate osteoblast differ-

entiation process through the up-regulation of RXRa and

BMP4, two genes involved in morphogenesis, causing a

supernumerary vertebra and suggesting that the composi-

tion of diets devoted to early stages of marine fish larvae

has a particularly determining effect on the subsequent

development of larvae and juvenile fish (Villeneuve et al.

2006). In addition, deleterious effects of excessive DHA

contents in microdiets for European seabass larvae have

also been observed by Betancor et al. (2011) with an

increased incidence of muscular lesions. A recent report by

Viegas et al. (2012) showed that when gilthead seabream

osteoblastic cells are exposed in vitro to different levels of

arachidonic acid, EPA and DHA, the cells have alterations

of phenotype, gene expression patterns and capacity to

mineralize. Arachidonic acid and EPA inhibited extracellu-

lar matrix mineralization while DHA stimulated minerali-

zation, possibly by modulating the expression of bmp2,

osteopontin and alkaline phosphatase.

Phospholipids. A relationship between the incidence of skel-

etal anomalies and dietary lipid class has been highlighted

in several studies with fish larvae and early juveniles. Indeed
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a dietary requirement for intact phospholipids has been

established for various freshwater and marine fish species

(for review see Tocher et al. 2008). The primary beneficial

effect was improved growth in both larvae and early juve-

niles, but also increased survival rates and decreased inci-

dence of anomalies in larvae. The stimulating effects of

phospholipids in larval fish development and growth have

been suggested to be due to the fish larvae having a limited

ability to biosynthesize phospholipids de novo (Coutteau

et al. 1997). The influence of dietary phospholipids on the

early ontogenesis of fish, and specifically on fish skeletal

development, has been reviewed recently by Cahu et al.

(2009). Since the first studies by Kanazawa et al. (1981)

that reported a reduction of skeletal anomalies (mainly

twisted jaw and scoliosis) in ayu (Plecoglossus altivelis altiv-

elis) larvae with the addition of chicken egg lecithin to the

diet, the importance of the phospholipid class for the pre-

vention of skeletal anomalies, particularly phosphatidylino-

sitol, has been highlighted in common carp larvae

(Geurden et al. 1998). The improved performance in

Atlantic cod (Finn et al. 2002) and Atlantic halibut (Næss

et al. 1995; Hamre et al. 2002) larvae, both coldwater spe-

cies, fed natural copepods compared with commercially

enriched live prey has been known for a long time and the

differences in nutrient composition (Van der Meeren et al.

2008) and the potential consequences in larval production

have been reviewed in detail by Hamre et al. (2005) and

Hamre (2006). The main skeletal anomalies in these species

are jaw anomalies and ‘stargazers’ in cod, and lack of eye

migration in Atlantic halibut. The development of these are

under fairly good control in today’s hatcheries, but produc-

ers say the quality may still vary from batch to batch and

the ‘robustness’ is not as strong as when the larvae are fed

natural copepods. A recent publication shows that an

increase of phospholipids resulted in a lower incidence of

vertebral anomalies and better growth (Hansen 2011). Nat-

ural copepods contain fewer lipids, but phospholipids con-

stitute a higher portion of the total lipids, which can partly

explain why natural diets are better than rotifers and Art-

emia. Lipid digestion in marine larvae is still not fully

understood (see Rønnestad et al. 2013). The success of the

use of pre-hydrolysed proteins in formulated feeds has trig-

gered the idea that pre-hydrolysed neutral lipids would also

improve the absorption of lipids. Mollan et al. (2008)

found that the limited ability to digest neutral lipids ham-

pered the uptake and processing of neutral lipids, while

mono-acyl-glycerol and phospholipids were absorbed by

the enterocytes in a linear manner in Atlantic halibut lar-

vae. But this effect was almost lacking in cod juveniles

(Hamre et al. 2011). Different age, species and experimen-

tal setup between these two studies could have affected the

outcome. The role of phospholipids on the ossification pro-

cess of the vertebral column has also been suggested in

Atlantic cod larvae (Kjørsvik et al. 2009) and rainbow trout

fry (Dapr�a et al. 2011), but the mechanisms remain to be

elucidated. The beneficial effects of phospholipid on fish

larval skeletal development could be due partly to an

enhancement in digestive functions and lipid absorption as

reported by Fontagn�e et al. (1998) in common carp larvae

and a more efficient provision of long-chain PUFA to target

tissues and cells compared with triacylglycerols as suggested

by the studies in European seabass larvae by Villeneuve

et al. (2005b). Indeed, the former authors demonstrated

the existence of a direct relationship between the amount

of n-3 PUFA in phospholipids and the effect on the normal

development of the skeleton during the larval stage. The

former authors showed that European seabass larvae used

EPA and DHA more efficiently when present in the phos-

pholipid fraction: 1.1% EPA + DHA (corresponding to a

total DHA: EPA ratio of 1.9:1) appeared optimal since it

induced a low level of anomalies. Better growth and sur-

vival of larvae was obtained with higher EPA + DHA levels

but to the detriment of morphogenesis. An excess of these

fatty acids in the phospholipid fraction of the diet induced

severe anomalies in the maxilla and vertebral column. High

levels of skeletal anomalies and a reduction in the growth

and survival were associated with a down-regulation of the

expression of RXRa, RARa, RARc and BMP4 expression.

These studies highlight the necessity for further research to

clearly understand the relationship between dietary lipid

classes and skeletal anomalies in fish larvae and early juve-

niles as well the type of bone ossification.

Oxidized lipids. Fish bones of some marine species contain

as high as 24–90% w/w lipid (Lall & Lewis-McCrea 2007).

Tissues containing such relatively high HUFA concentra-

tions are highly vulnerable to lipid peroxidation. Lipid per-

oxidation is an autocatalytic process initiated by free

radicals, which are produced in the body primarily as a

result of aerobic metabolism. Lipid peroxidation occurs

when lipids are damaged by free radicals. In this process,

HUFAs in cell membranes undergo degradation via a chain

reaction (Lall & Lewis-McCrea 2007). Thus, high levels of

PUFA in the absence of suitable antioxidant protection are

highly prone to auto-oxidation in feeds but also to in vivo

lipid peroxidation within the fish tissues that is considered

a major cause of diseases, including muscular dystrophy in

several fish (Tacon 1996). Information on the role of oxi-

dized lipids in the development of skeletal anomalies in fish

is very limited (Lall & Lewis-McCrea 2007).

Oxidized lipids could inhibit osteoblast differentiation

and induce osteoclast differentiation by increasing interleu-

kin-6 expression, an osteoclast-promoting cytokine, as

described for mammalian osteoblasts (Parhami et al. 1997;

Tseng et al. 2010). This contributes to the impairment of

the bone remodelling equilibrium that can result in an
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inhibition of osteoblasts and stimulation of osteoclasts,

causing bone loss (Watkins et al. 2001). In Siberian stur-

geon (Acipenser baerii) larvae, a non-teleost species, dietary

oxidized fish oil has been shown to induce morphological

anomalies (curved larvae, Fontagn�e et al. 2006). Lewis-

McCrea and Lall (2007, 2010) reported scoliosis, spanning

the cephalic/pre-haemal regions as well as the anterior hae-

mal region of the vertebral column, in juvenile Atlantic hal-

ibut fed oxidized fish oil. According to the latter authors,

additional studies are needed to examine the molecular and

biochemical basis of the pathogenesis of skeletal disorders

caused by lipid peroxidation in larval and juvenile tissues as

well as the efficacy of antioxidants in preventing these

anomalies. On the other hand, synthetic antioxidants such

as ethoxyquin have been shown to exert some toxic effects

(Yamashita et al. 2009; Wang et al. 2010) that might affect

skeletal development in fish larvae, although no specific

assays have been conducted on this issue.

Vitamins

Water soluble vitamins. The water-soluble vitamins include

eight members of the vitamin B complex group, the water-

soluble essential nutritional factors choline, inositol and

ascorbic acid that play key roles in growth, physiology and

metabolism, and several vitamins or dietary nutrients,

depending on the author, with less-defined activities for

fish, i.e. p-aminobenzoic acid, lipic acid, citrin, and unde-

fined growth factors (Halver 2002). Deficiencies of an indi-

vidual water-soluble vitamin (B-group or C) are quite

uncommon in commercial feeds; however, the effects of the

above-mentioned nutrients on fish growth and develop-

ment have been described in specific experimental studies.

In this section, the authors consider only the effects of vita-

mins B and C on the process of skeletogenesis in fish, since

there is no available information about the effects of the

other compounds on the skeleton of fish larvae.

B vitamins (thiamine, riboflavin, niacin, pantothenic

acid, pyridoxine, biotin, folate and vitamin B12) generally

function as coenzymes in the main energy-producing meta-

bolic pathways, and in the degradation and synthesis of

nucleic acids, protein, lipids and carbohydrates. Thus, defi-

ciency stages of the individual B vitamins lead to severe

metabolic functions and mortalities (Moren et al. 2011;

Hamre et al. 2013). While dietary unbalanced levels of vita-

min C cause drastic changes in different fish tissues, the

lack or excess of B vitamins is less obvious to evaluate, espe-

cially in larvae and juveniles that normally experience high

mortalities early in the larval production chain (Waagbø

2010). Most of the studies dealing with B vitamins in young

fish are focused on establishing the nutritional require-

ments for a single B vitamin in juveniles (Halver 2002; Wa-

agbø 2010), but no information is available about the

effects of different B vitamins in fish larvae, although the

deficiency effects of this group of vitamins may be inferred

from the existing knowledge in juveniles, and especially

that from salmonid species.

In the case of thiamine (vitamin B1), most of the signs of

dietary thiamine deficiency in salmonids, including rain-

bow trout, consisted of anorexia, poor growth and neuro-

logical disorders, while no effect on the skeletal tissue has

been reported (Tacon 1995).

Fish fed diets deficient in riboflavin (vitamin B2) showed

poor growth, anorexia, erosion of the snout and fins, cor-

neal lesions, neurological disorders and spinal anomalies,

among other deficiency signs (Tacon 1995). In this sense,

the high levels of riboflavin recorded in the ovaries of sev-

eral fish species seemed to highlight the importance of this

vitamin in embryogenesis and for the proper development

of larvae, although no specific assays have been conducted

on this issue (Waagbø 2010).

Niacin (vitamin B3) functions as a coenzyme in many

energy-related metabolic pathways and its deficiency nor-

mally results in anorexia, poor growth dermatoses and neu-

rological disorders (erratic swimming; Halver 2002), and it

has been also associated with jaw anomalies in catfish Ict-

alurus punctatus (Tacon 1995). In chickens and poultry,

niacin deficient diets have also been associated with abnor-

mal development of the cartilage or so-called chondrodys-

trophy (Combs 2008), which may be linked to an

impairment of chondroitin sulphate synthesis through a

reduction in the level of ATP in chondrocytes (Sheffield &

Seegmiller 1980).

Biotin is a cofactor in carboxylation and decarboxylation

reactions involving the fixation of carbon dioxide. These

reactions have important roles in anabolic processes and in

nitrogen metabolism. When biotin is deficient in experi-

mental salmonid diets, it generally results in poor growth,

anorexia, neurological disorders (spastic convulsions) and

muscular atrophy (Tacon 1995). No data on the effects of

biotin-deficient diets on fish skeleton are currently avail-

able, although data from poultry indicate that a deficiency

in this vitamin results in chondrodystrophy and irregular

bone development (shortened and twisted skeletal

elements). The explanation for these findings are not com-

pletely established, but presumably, reduced biotin levels

prevent prostaglandin synthesis from essential fatty acids,

and bone growth fails to respond to stress during develop-

ment (McDowell 2000).

Vitamin B5 (pantothenic acid) has critical roles in

metabolism, being an integral part of the acylation factors

coenzyme-A and acyl-carrier protein; thus, vitamin B5 is

required for the normal metabolism of fatty acids, amino

acids and carbohydrates, and has important roles in the

acylation of proteins (Combs 2008). The dietary vitamin B5
deficiency signs in salmonids are anorexia, reduced growth,

gill necrosis and clubbing, skin ulceration and opercular
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distension (Tacon 1995; Halver 2002). Considering that

this vitamin has an important role in lipid metabolism

(Combs 2008) and bones in fish species contain high lipid

levels (Lall & Lewis-McCrea 2007), it seems plausible,

although it has not been reported or experimentally dem-

onstrated, that impaired dietary levels of vitamin B5 may

also affect bone development and health in fish.

Vitamin B6 (pyridoxine) has a major role in amino acid

and protein metabolism and its deficiency generally results

in a fall in nitrogen retention, an excessive nitrogen excre-

tion and impaired tryptophan metabolism, and a poor use

of protein from feed. As this vitamin is involved in the uti-

lization of dietary protein and synthesis of tissue protein, it

is required in greater amounts during periods of rapid tis-

sue growth such as in the larval period. Salmonids and gilt-

head seabream fed pyrodixine-deficient diets showed poor

growth performance, anorexia, neurological disorders (lack

of coordination of muscle movements, hyperirritability,

erratic and rapid swimming behaviour) and excessive flex-

ing of the operculum (Tacon 1995; NRC 2011).

The most important tasks of vitamin B12 or cyanocobala-

min concern the metabolism of nucleic acids and proteins,

but it also participates in the metabolism of lipids and car-

bohydrates. A brief summary of vitamin B12 functions

would include purine and pyrimidine synthesis, transfer of

methyl groups and the formation of proteins from amino

acids. Vitamin B12 is metabolically related to other essential

nutrients, such as choline, methionine and folate. In partic-

ular, dietary deficiency of this vitamin will induce folate

deficiency by blocking the utilization of folate derivatives

(McDowell 2000). Data on the effects of vitamin B12 on fish

species indicated that salmonid species fed diets lacking

vitamin B12 resulted in poor growth and severe anaemia

(Halver 2002), whereas no signs of deficiency related to the

skeletal tissue have been described in fish. However, data

from humans indicated that a poor dietary intake and low

blood concentrations of several B vitamins such as folate,

vitamin B6 and B12 may affect the health of the skeletal tis-

sue. In this sense, low dietary levels of folate, vitamin B6
and B12 were associated with decreased bone mineraliza-

tion, whereas in vitro studies indicated that low B-vitamin

concentrations promoted osteoclast activity, whereas

elevated concentrations may stimulate bone formation. The

effect of the above-mentioned vitamins on bone may be

through an effect on plasma homocysteine levels, since

these vitamins serve as cofactors or substrates for the

enzymes involved in homocysteine metabolism (McLean

et al. 2008).

Vitamin C or L-ascorbic acid (LAA) has many biological

and physiological functions. It acts as a biological reducing

agent for hydrogen transport, and it is involved in many

enzyme systems for hydroxylation. This is especially rele-

vant since L-ascorbic acid is necessary for the synthesis of

collagen in the formation of connective tissues and struc-

tural supporting organs, such as the skin, cartilage and

bone in the developing fish larvae, as well as in bone forma-

tion and remodelling, contributing therefore to growth

(Darias et al. 2011a; Moren et al. 2011). In addition, L-

ascorbic acid is also involved in the formation of chondroi-

tin sulphate fractions (Halver 2002), which is an important

structural component of cartilage and provides much of its

resistance to mechanical compression. L-ascorbic acid also

plays a key role in other essential functions related to the

role of this nutrient in the integrated antioxidant system in

synergy with vitamin E, constituting an important part of

the cellular water-soluble antioxidant capacity together

with glutathione (Halver 2002; Waagbø 2010). Generally,

several benefits have been attributed to LAA supplementa-

tion in fish diets such as enhanced growth, survival, reduc-

tion of skeletal anomalies, immunoactivity and stress

response (Dabrowski 1992). For a deep insight into the die-

tary effects of LAA on the above-mentioned performance

parameters in several fish species and stages of develop-

ment, readers are encouraged to consult the review of

Darias et al. (2011a), since the impact of LAA in skeleto-

genesis is the only issue covered by this section.

Most of the available information dealing with the effects

of dietary LAA on bone health has been reported in fish

juveniles from different species fed compound diets in

which diets deficient in LAA were tested (Tacon 1995;

Halver 2002). Thus, LAA deficiency signs in fish are gener-

ally related to impaired collagen synthesis, resulting in

hyperplasia of the collagen and cartilage, and consequently,

scoliosis, lordosis, opercular resorption, abnormal support

cartilages in gills, spines, and fins, and hyperplasia of the

jaw and snout (Halver 2002). In marine fish species that

depend on live food at the onset of exogenous feeding,

there exist no studies on the effects of LAA in early fish

morphogenesis (Moren et al. 2011). Most of these studies

in fish larvae were more focused on establishing the

nutritional requirements of LAA in terms of growth, stress

resistance, survival and/or LAA deposition in larval tissues

(Merchie et al. 1995, 1996; Terova et al. 1998). However,

there is a comprehensive study that evaluates the effects of

dietary LAA on the skeletogenesis process and the develop-

ment of skeletal disorders in fish larvae (Darias et al.

2011b). The former authors fed European seabass larvae

with microdiets containing graded levels of LAA (5, 15, 30,

50 and 400 mg LAA kg�1 microdiet) from first feeding to

45 days after hatching and evaluated the effects of dietary

LAA levels on skeletogenesis, the development of skeletal

disorders and the degree of ossification of the skeleton,

among other parameters. In brief, Darias et al. (2011b)

found that LAA especially affected skeletal elements that

underwent chondral ossification (i.e. maxillary, caudal fin

complex, proximal pterygiophores of dorsal and anal fins)
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rather than those skeletal structures undergoing intramem-

branous ossification. Dietary levels of LAA lower than

30 mg kg�1 diet were not enough to match the larval needs

for collagen biosynthesis and bone ossification; therefore,

larvae were predisposed to develop skeletal anomalies. The

incorrect development of some of these structures in their

initial stages of development lead to the appearance of

anomalies later on, such as the joint of the haemal pro-

cesses to form the haemal arches or the formation of epu-

rals and specialized neural arches. In contrast, skeletal

elements that formed late in ontogeny and/or underwent

intramembranous ossification, such as vertebral column,

were less influenced by the extreme doses of LAA tested.

Indeed, these authors were not able to find a correlation

between the levels of dietary LAA and the development of

lordosis, scoliosis and kyphosis. In addition to these results,

the quantification of the ossification degree in conjunction

with gene expression results suggested that both low

(30 mg kg�1) and high (400 mg kg�1) dietary levels of

LAA led to poor mineralization or delayed ossification in

European seabass larvae. It was also noted that different

LAA levels induced a different percentage and type of

anomaly. There were anomalies specific for both low and

high levels of LAA, such as anomalies of the proximal

pterygiophores of dorsal and anal fins, and severe anoma-

lies in the caudal fin complex, specially affecting the special-

ized neural arch and urostyle. However, low LAA levels

specifically caused cartilage damage characterized by

unformed haemal arches and ‘cartilaginous vertebrae’,

among other skeletal abnormalities, such as jaw anomalies

and the loss of one vertebra. In contrast, high LAA levels

also caused pugheadness and the development of a super-

numerary vertebra, although the overall degree of skeleton

ossification was lower than in those fed 50 mg LAA kg�1

diet. Finally, Darias et al. (2011b) concluded that European

seabass larvae required a minimum amount of 15 mg LAA

kg�1 diet to survive, 30 mg kg�1 diet to attain maximal

growth and 50 mg kg�1 diet for adequate morphogenesis

of the skeletal tissue.

Fat soluble vitamins. The fat-soluble vitamins, A, D, E and

K, are absorbed in the intestine along with dietary lipids;

therefore conditions favourable for lipid absorption also

enhance the absorption of fat-soluble vitamins. Fish store

this group of vitamins, either actively in specific cell com-

partments or by simple accumulation in the lipid compart-

ment, if dietary intake exceeds metabolic needs. This

situation can result in an excessive accumulation of these

vitamins in tissues to produce a toxic condition (hypervita-

minosis). Although this has only been demonstrated in lab-

oratory conditions with fish juveniles, it is unlikely to occur

under practical conditions (NRC 2011), and is likely to

occur in fish larvae. Considering the high growth and meta-

bolic rates during the larval period, it was assumed that

vitamin requirements of fish larvae were higher than those

of juveniles. Higher levels of vitamins are generally incor-

porated into larvae feeds, microdiets or live preys enriched

with tailor-made or commercial enriching emulsions, the

most common level used being eight times the requirement

of juvenile fish (Mazurais et al. 2008); however, there are

still important gaps of knowledge regarding the nutritional

requirements for vitamins in fish larvae, and several studies

seemed to indicate that the level of incorporation of vita-

mins in diets for fish larvae exceeds their nutritional needs,

resulting in reduced growth, delayed maturation of the

digestive system and a high incidence of skeletal anomalies

(Haga et al. 2004a,b; Villeneuve et al. 2005a; Mazurais

et al. 2009; Darias et al. 2010; Fern�andez & Gisbert 2011,

among others).

Vitamin A is an essential nutrient during the complete

lifecycle in all chordates. The term vitamin A is used to des-

ignate any compound possessing the biological activity of

retinol (alcohol form), whereas the term retinoids applies

to a group of morphogenetic nutrients that include all

compounds that possess the same biological activity as reti-

nol (Ross et al. 2000). Beta-carotene and other carotenoids

that can be converted by the body into retinol are referred

to as provitamin A carotenoids or just carotenoids. There

are two primary active forms of retinoids: the retinal form

(11-cis-retinal, aldehyde form) used as the chromophore of

rhodopsin in the eye; and the retinoic acid (RA, acid form),

the main active metabolite of vitamin A that plays the other

non-visual functions of this vitamin (Ross et al. 2000). This

fat-soluble vitamin has numerous important functions,

including a role in vision, maintenance of epithelial sur-

faces, immune competence, reproduction, and embryonic

growth and development (Ross et al. 2000). The basis of

these functions appears to be gradients of RA created by

specialized cells that degrade or produce RA from retinol.

Then, the RA diffuses into the surrounding tissues and cre-

ates a gradient over the organ or embryo. The in situ RA

concentration seems to be a signal to individual cells, mod-

ulating their pattern of gene expression, differentiation and

proliferation through ligand-activated nuclear receptors

(Germain et al. 2006a,b).

Considering that fish are not able to synthesize vitamin

A, they have to obtain it from the diet at the optimum level,

in the form of carotenoids from vegetal and/or as retinyl

esters, such as retinyl palmitate or retinyl acetate (synthetic

form), or as xanthines, from animal sources. In general, ret-

inoids and their precursors (carotenoids) are absorbed

from the diet by means of a complex metabolism, which

includes a high number of transport proteins and enzymes,

that tightly control retinoid absorption, transport, accumu-

lation and conversion to their active forms (see a detailed

and comprehensive review in Rodrigues et al. 2004). Most
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of the numerous activities of this vitamin are due to the

action of all-trans retinoic acid (atRA) and its 9-cis isomer

(9-cis RA). Two classes of receptors convey the activity of

RA. The retinoic acid receptors (RARs) bind atRA and 9-cis

RA. This class is well-characterized for its predominant but

not exclusive role in embryogenesis and organogenesis. The

second class corresponds to the retinoid X receptors

(RXRs) that bind 9-cis RA only. Both RARs and RXRs

belong to the nuclear receptor superfamily, the largest class

of transcription factors. By the specific binding of RA iso-

mers to the RAR and RXR, they form homo- such as RXR/

RXR or hetero-dimers (with other nuclear receptors such

as THR, VDR and PPARc) that bind to specific nucleotide

sequences (retinoic acid response elements, RAREs) in the

promoter region of a large number of genes (Balmer &

Blomhoff 2002). By direct gene expression regulation

through the exhibition of a retinoic acid response element

in the gene promoter or through downstream signalling

cascade, retinoic acid could control directly or indirectly

the transcription of more than 300 genes (Balmer & Blom-

hoff 2005). Through the stimulation and inhibition of tran-

scription of specific genes, RA plays a major role in cellular

differentiation (Fern�andez 2011). For a deeper revision of

the molecular pathways involving vitamin A in the induc-

tion of skeletal anomalies in fish larvae, readers are encour-

aged to consult Haga et al. (2002, 2003); Villeneuve et al.

(2005a, 2006), Laue et al. (2008), Fern�andez (2011),

Fern�andez et al. (2011) and Haga et al. (2011).

A certain intake of vitamin A is essential for good health

in fish, including that of the embryo and the larvae at early

life stages of development, but both deficiency and excess

can cause problems. Excessive intake of vitamin A, in the

range 5–10 times the requirement, may disturb the same

functions for which it is vital (NRC 2011). Hypovitamino-

sis A is characterized in fish by poor growth, anorexia,

visual impairment (clouding and thickening of corneal epi-

thelium, degeneration of the retina, xerophthalmia and eye

haemorrhages), keratinization of the epithelial tissues,

haemorrhages at the base of the fins, and abnormal bone

formation (Halver 2002; NRC 2011). An excess of this fat-

soluble vitamin has been associated with an enlargement of

the liver and spleen, anaemia, abnormal growth, skin

lesions, epithelial keratinization, hyperplasia of the head

cartilage, and abnormal bone formation, resulting in anky-

losis, fusion of vertebrae and severe lordosis and scoliosis

(Halver 2002).

When considering fish larvae, most studies deal with the

effects of hypervitaminosis A due to the inherent difficulties

in working with live prey and the impossibility of reducing

the content of this nutrient in live prey without affecting

their lipid and fatty acid nutritional value (Gim�enez et al.

2007). There is scarce information on the effects of subopti-

mal levels of dietary vitamin A on fish skeletogenesis. In a

first study dealing with hypovitaminosis A in European sea-

bass larvae, Villeneuve et al. (2005a) fed larvae with

0.011 mg all-trans retinol g�1 diet and found a moderate

incidence of skeletal anomalies, similar to that of the con-

trol group (0.031 mg all-trans retinol g�1), but worse

growth and development of their digestive function.

Anomalies affecting European seabass fed hypovitaminosis

A were mainly concentrated in the maxillary and opercular

bones, whereas in fish fed 0.031 mg all-trans retinol g�1

showed a higher incidence of anomalies affecting the skele-

tal elements composing the neurocranium. In a recent

study, Mazurais et al. (2009) showed that suboptimal die-

tary vitamin A content (0.001 mg all-trans retinol g�1 diet)

implied a lower Hoxd-9 gene expression that could explain

why fish fed vitamin A deficient diet presented a partial or

complete lack of the pelvic fin. The above-mentioned die-

tary regulation of Hox genes expression by vitamin A has

also been reported previously in other marine fish species

such as Japanese flounder Paralichthys olivaceus (Suzuki

et al. 1999). In contrast, Villeneuve et al. (2005a) showed

that an excess of dietary levels of vitamin A (0.196 mg all-

trans retinol g�1) diet in European seabass resulted in a

fourfold increase of the incidence of anomalies affecting the

neurocranium and maxilla, whereas no significant increase

was observed with regards the anomalies affecting the

vertebral column in relation to those observed in the

control group (0.031 mg all-trans retinol g�1). The former

authors also observed a linear correlation between the die-

tary vitamin A level in larval tissues and the incidence of

skeletal disorders that was linked to a modification of sev-

eral nuclear receptors of the RA such as in RXRa, RARa
and RARc expression patterns, and they concluded that the

optimal dietary retinol level for the harmonious develop-

ment of European seabass larvae was close to 0.031 mg g�1

diet. The effect of dietary vitamin A on European seabass

larval performance and skeletogenesis does not depend on

the dietary level of this vitamin but also on the larval devel-

opmental stage at which the nutritional vitamin A imbal-

ance is applied, as was demonstrated by Villeneuve et al.

(2006). In this sense, larvae fed hypervitaminosis A (32

all-trans mg g�1 diet) from 8 to 13 days after hatching

exhibited a significant increase in skeletal anomalies

localized to the cephalic region, as well as to the vertebral

column (the loss of one vertebra) in contrast to those fish

fed the control diet (0.08 all-trans mg g�1 diet). These

changes in the normal development of the skeleton in those

larvae were correlated with a high expression of RARc,
RXRa and BMP-4, although the disruption of the expres-

sion in other genes, particularly other retinoid receptor iso-

forms not analysed in that study, could have taken place

and affected the normal development of the skeleton in lar-

vae. In addition, the results from the study of Mazurais

et al. (2009) revealed that the retinol levels for the optimal
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development of European seabass larvae depend to a great

extent on the skeletal elements under consideration and

their timing of differentiation/type of ossification. Thus,

the frequency of jaw and hyoid anomalies was minimized

for dietary retinol levels lower than 0.003 mg g�1, whereas

vertebral and fin elements developed better when retinol

levels were equal to or higher than 0.003 mg g�1. These

levels of retinol were much lower than those reported by

Villeneuve et al. (2005a), although Mazurais et al. (2009)

concluded that it was not possible to compare data from

both studies due to the elevated growth rates of larvae from

the other study (three times higher to those usually

observed), which could have induced a higher and unusual

nutritional requirement of vitamin A in this species.

In gilthead seabream larvae fed enriched rotifers with

increasing levels of vitamin A (75, 109, 188 and

723 ng total vitamin A mg�1rotifer DW) from 2 to

18 dph, Fern�andez et al. (2008) found a significant and

positive correlation between vitamin A levels and the inci-

dence of skeletal anomalies in the premaxilla, maxilla, den-

tary and opercular bones of early juveniles (60 dph). Fish

fed higher levels of vitamin A (109, 188 and 723 ng mg�1

rotifer DW) showed a supranumerary vertebra in the cau-

dal region, between the urostyle and vertebra number 23.

The incidence of lordotic, kyphotic and scoliotic specimens

increased with increasing dietary levels of vitamin A, the

compression of vertebral bodies being more frequent than

fusions. Independent of the dietary level of vitamin, the

caudal region was the area most affected by compression

and fusion of the vertebral bodies. Vertebral fusions and

changes in the number of vertebrae were attributed to a

defect of notochord segmentation and disruption of verte-

bral centrum differentiation (Haga et al. 2009), potentially

resulting from a vitamin A-induced accelerated skeletogen-

esis (Mazurais et al. 2008). Finally, the skeletal elements in

the caudal fin complex most affected were the specialized

neural arch, epurals, hypurals and parahypurals, and the

uroneural. In most cases, anomalies consisted in twisted or

undeveloped skeletal elements and their fusion with adja-

cent ones.

Regarding the specific effects of dietary vitamin A on

Senegalese sole skeletogenesis, Fern�andez et al. (2009)

found that feeding larvae with high vitamin A doses (24.8

and 60.9 ng total vitamin A mg�1 Artemia DW) from 6 to

37 dph (Artemia feeding phase) led to an increase of

deformed fish and the percentage of fish showing more

than one anomaly, which was correlated to an increase in

the dietary body vitamin. However, in contrast to what was

observed in gilthead seabream and other species (Haga

et al. 2002; Fern�andez et al. 2008), no jaw anomalies were

observed in any larval group, suggesting that the dietary

vitamin A imbalance was applied at a non-critical develop-

mental stage for jaw skeletogenesis (most skeletal elements

of the jaws were ossifying before feeding larvae with

Artemia), and/or the tested vitamin A dietary contents in

Artemia were not high enough to affect jaw development.

In addition, Fern�andez and Gisbert (2010) showed that

skeletal structures undergoing chondral ossification such as

neural and haemal spines, epural, parahypural and hypurals

were more sensitive to high dietary vitamin A levels than

dermal bones (vertebral bodies).

Considering several nutritional studies dealing with vita-

min A and enriched live prey, in gilthead seabream fed

enriched rotifers from 2 to 18 dph, the safe dietary vitamin

A content was reported as 30 mg retinol g�1 (Fern�andez

et al. 2008), whereas in Senegalese sole fed enriched Art-

emia metanauplii from 6 to 37 dph, it was 0.013 mg reti-

nol g�1 (Fern�andez et al. 2008, 2009). These results suggest

a wide range of dietary vitamin A values depending on the

species and developmental stage considered, although these

studies are barely comparable due to the use of different

experimental dietary levels and forms of vitamin A, feeding

protocols and types of live prey (Fern�andez 2011). In addi-

tion, the effects of dietary vitamin A on skeletal develop-

ment mainly depend on the levels of each vitamin A form

included in the diet and not the total vitamin A content, as

diets containing higher total vitamin A levels mainly in the

form of retinyl acetate resulted in lower toxicity than those

with lower total vitamin A content, where retinol, retinyl

palmitate and retinoic acid were the vitamin A compounds

primarily present in the diet (Takeuchi et al. 1998).

Although the teratogenic effect of vitamin A is well stud-

ied and characterized in temperate fish species and fish tend

to develop skeletal anomalies in the presence of excess vita-

min A, what seems to separate coldwater marine species

from temperate ones is that they tolerate much lower levels

of vitamin A in their diet before adverse effects are observed

(Moren et al. 2004). While vitamin A in excess introduces

anomalies, low levels do not seem to affect negatively cod

or Atlantic halibut larvae as long as the diet contains carot-

enoids (Moren et al. 2004, 2011). In vitro studies, using

cod lower jaw explants, have revealed that vitamin A (as

retinoic acid) decreases the osteoblast activities and

increases the osteoclast activity, probably through alter-

ation of the OPG/RANKL system (Lie & Moren 2012).

Clearly, vitamin A is essential in the regulation of skeletal

growth, but these responses may be altered by other nutri-

ents (Enric Gisbert, pers. comm.), as well as pollution: Ols-

vik et al. (2011) showed that cod larvae exposed to oil spill

had severely reduced expression of genes involved in bone

growth and an increased expression of genes important in

bone degradation.

Summarizing, different studies dealing with microdiets

and enriched live prey have shown that dietary vitamin A is

responsible for the development of various types of skeletal

anomalies, affecting the head, vertebral column and fins of
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fish larvae in Japanese flounder (Dedi et al. 1995; Takeuchi

et al. 1995; Haga et al. 2002), European seabass (Villeneuve

et al. 2005a, 2006; Mazurais et al. 2009), Senegalese sole

(Fern�andez et al. 2009; Fern�andez & Gisbert 2010) and gilt-

head seabream (Fern�andez et al. 2008). Cranial anomalies

affected the maxillary and premaxillary bones (pughead-

ness), dentary (shortening of the lower jaw), operculum

(inside folding), branchiostegal rays (curvature) and gloss-

ohyal (lateral or ventral transposition). Vertebral anomalies

consisted of compressed and fused vertebrae, over-mineral-

ization of vertebral bodies, kyphosis and lordosis of the

haemal vertebrae, as well as of the transformation of a pre-

haemal vertebra into haemal in European seabass. Loss of

caudal fin and supranumerary caudal fin rays was observed

in Japanese flounder, whereas fin anomalies concerned

abnormalities of the dorsal and anal pterygiophores, associ-

ated or not with severe deviations of the related rays, slight

(slight fusion between two elements) or severe (extensive

fusions, dislocations, shape alterations) modifications of

the anatomy of the caudal supporting elements (parahyp-

ural, epurals, hypurals, urostyle and pre-ural centra) in

Senegalese sole, European seabass and gilthead seabream, as

well as partial to complete lack of the pelvic fins in Euro-

pean seabass. In addition to the above-mentioned skeletal

disorders induced by dietary vitamin A, Georga et al.

(2011) demonstrated that the levels of this vitamin during

the larval stage have a significant effect on the skeleton

shape of normal juveniles.

Vitamin D is essential for maintaining calcium and inor-

ganic phosphate homeostasis and protecting bone integrity;

it also stimulates the absorption of calcium from the intes-

tinal mucosa, and influences the action of parathyroid hor-

mone on skeletal tissues (Halver 2002). In contrast to

mammals that are able to synthesize vitamin D from a cho-

lesterol derivative through photosynthesis in the skin under

ultraviolet B radiation exposure, fish cannot synthesize

vitamin D from solar energy because all traces of irradia-

tion are absorbed by sea water in the first few metres from

the surface (Lock et al. 2010). Two main natural forms of

vitamin D are vitamin D2 or ergocalciferol that only occurs

in plants, and vitamin D3 or cholecalciferol that occurs in

animals. Vitamin D3 itself is not physiologically active; it

has to undergo one or two hydroxylations to form the

more polar metabolites 25-hydroxyvitamin D3 (25(OH)D3)

or 1a,25-dihydroxyvitamin D3 (1,25(OH)2D3; calcitriol)

and 24R,25-dihydroxyvitamin D3 (24,25(OH)2D3), respec-

tively (NRC 2011). Most, if not all, actions of this vitamin

are mediated through a nuclear transcription factor known

as the vitamin D receptor (VDR) (for further details, see

Hamre et al. 2013 and Rønnestad et al. 2013).

In salmonid species, vitamin D deficient diets have been

correlated with reduced growth and feed efficiency, anor-

exia, tetany, elevated liver/muscle lipid content and

impaired calcium homeostasis in juveniles (Tacon 1995;

Halver 2002). Being a calciotropic hormone, the main task

of vitamin D3 is to regulate plasma calcium levels. Indeed,

several genes involved in the control of calcium uptake are

regulated by calcitriol, e.g. the epithelial calcium channel,

found in both the intestine and the gills (Hamre et al.

2010). Regarding fish larvae and early juveniles, very few

studies exist of the role of this vitamin on the development

of skeletal anomalies. Haga et al. (2004b) reported that

early juveniles of Japanese flounder fed a dietary excess of

vitamin D3 (21 vs. 1.8 IU g�1 from the control diet)

showed an increase in skeletal disorders mostly consisting

in the winding of the vertebral bodies caused by abnormal

calcification and impairment of their rigidity. In a recent

study of European seabass fed microdiets containing

graded levels of vitamin D3 (11, 28, 42 and 140 IU g�1

diet), Darias et al. (2010) found an impact of dietary vita-

min D3 on the European seabass digestive system ontogen-

esis that consequently conditioned the ossification process

and skeletogenesis. In this sense, the former authors found

a significant correlation between the levels of osteocalcin

gene expression and those of TRPV6, a membrane calcium

channel that is responsible for the first step in calcium

absorption in the intestine. Thus, they hypothesized that

impaired intestinal Ca2+ absorption together with the low

level of osteocalcin expression could induce poor bone

mineralization and lead to skeletal anomalies. In that study,

two distinct response patterns regarding skeletal anomalies

were observed considering the level of dietary vitamin D3:

vertebral and branchiostegal anomalies were maximized in

those larvae fed both the extreme levels of vitamin D3 (11

and 140 IU g�1 diet), whereas, pugheadness (deformed

maxillary and premaxillary elements) and caudal-fin anom-

alies were maximized in only fish fed 11 IU g�1. These

results could suggest that skeletal elements developed at the

early developmental stages (such as jaws and caudal fin ele-

ments) were less prone to the effect of high vitamin D3 lev-

els than those developing at later stages of development

(vertebrae and branchiostegal rays). Summarizing, based

on the changes of gene expression of bone morphogenetic

protein 4 (BMP-4), osteocalcin, VDR and TRPV6, as well

as growth performance and the incidence of skeletal anom-

alies, Darias et al. (2010) concluded that the level of dietary

vitamin D3 in European seabass larvae should be close to

28 IU g�1 in order to obtain an harmonious larval growth

and morphogenesis.

Finally, the interactions of vitamins A and D3 and their

metabolites have to be considered together in future stud-

ies, since both fat-soluble vitamins share several tissues,

including bone, as common targets of their action. In this

sense, in several mammalian species an antagonistic action

has been observed between retinoic acid and 1a,25-
dihydroxyvitamin D3 (Lock et al. 2010).
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Vitamin K (VK) belongs to the lipid soluble vitamins,

and occurs naturally as phylloquinone (vitamin K1) that is

synthesized by plants, and menaquinone (vitamin K2) syn-

thesized by bacteria. In addition, there is a synthetic provi-

tamin, menadione (vitamin K3), primarily used as a

vitamin K source in animal feed. Vitamin K has been

shown to be essential to bone metabolism through its role

in the gamma-carboxylation of skeletal vitamin K-depen-

dent proteins such as osteocalcin (Oc) and matrix Gla pro-

tein (Mgp) (Price 1988) and through its role in skeletal

gene transcription via pregnane X receptor (PXR, the vita-

min K receptor; Azuma et al. 2010). However, mechanisms

associated with the osteogenic and skeletogenic activity of

vitamin K in fish are still poorly understood and the nutri-

tional requirement remains to be determined.

Vitamin K-dependent proteins (VKD) have been

detected in many tissues and it has become clear that

vitamin K plays an important role in many biological

processes (see Hamre et al. 2013 and Rønnestad et al.

2013), such as bone metabolism and growth control

(Krossøy et al. 2011). Several vitamin-K dependent pro-

teins are present in bone and cartilage: osteocalcin (Oc or

bone Gla protein; BGP), Gla rich protein (GRP), matrix

Gla protein and protein S, being the important players in

bone health, extracellular matrix mineralization and skel-

etogenesis.

The major clinical signs of vitamin K deficiency in all

studied species are anaemia and impaired blood coagula-

tion. In addition, in animals that are vitamin K deficient,

the Gla proteins are incompletely formed or not formed at

all, rendering the Gla proteins inactive. This results in

under-carboxylated vitamin K-dependent proteins that can

lead to uncontrolled, extensive bleeding and internal

haemorrhaging, cartilage calcification, bone anomalies in

developing bone, and the presence of insoluble calcium

salts in arterial vessels (Lall & Lewis-McCrea 2007).

Regarding the effects of dietary vitamin K on bone in fish

larvae and juveniles, only a few studies have dealt with this

topic (Graff et al. 2002; Udagawa 2006; Roy & Lall 2007;

Krossøy et al. 2009). In haddock Melanogrammus aeglefi-

nus juveniles, Roy and Lall (2007) showed that vitamin K

deficiency decreased bone mineralization and increased the

occurrence of bone anomalies, without affecting the num-

ber of osteoblasts (measured by histomorphometry) in the

vertebrae. Diets without vitamin K supplementation

caused a higher incidence of anomalies in the vertebral col-

umn and caudal skeleton in mummichog Fundulus hetero-

clitus larvae. More specifically, vitamin K deficiency caused

the formation of thin and weak bone, and induced bone

structure abnormalities, such as vertebral fusion and row

irregularity, as well as anomalies in the neural and haemal

arches, both in early development and during later growth

(Udagawa 2006). In contrast, no signs of vertebral anoma-

lies were observed in first-feeding fry of Atlantic salmon

(Krossøy et al. 2009) fed increasing levels of menadione

sodium bisulphite salt (0–0.05 mg vitamin K3 g�1 diet).

The former authors concluded that the minimum vitamin

K requirement in Atlantic salmon fry for normal growth

and bone development was 0.01 mg g�1 diet. However, no

data are available about the minimum and optimum levels

of dietary vitamin K to support normal growth and devel-

opment of the skeletal tissue in marine fish larvae. It was

shown that a nutritional imbalance (deficiency or excess)

affects bone mineralization, bone mass and increases verte-

bral anomalies (Udagawa 2001). In addition, the effects of

vitamin K on the nutritional status of adults have been

related recently to larval quality (Udagawa 2004). It was

observed that in larvae from mummychog fed a vitamin

K-deficient diet showed a higher incidence of vertebral

abnormalities than larvae from fish fed a vitamin K-rich

diet. Larvae that were reared on a vitamin K-deficient diet

showed a thin and weak vertebral bone (Udagawa 2004).

Moreover, the use of phylloquinone (VK1) as a vitamin K

metabolite for diets was shown to be more appropriate

than menadione (VK3) (Udagawa 2001). Surprisingly,

there is no research aimed at understanding the effects of

vitamin K imbalance during the early stages of develop-

ment, and determining the underlying mechanisms of skel-

etal anomalies.

The term vitamin E is a generic descriptor for all mole-

cules that possess the biological activity of a-tocopherol.
There is an extensive and recent review on the role and

dietary requirements of vitamin E in fish (Hamre 2011).

In brief, this vitamin functions as a chain breaking antiox-

idant, reacting with lipid peroxide radicals and preventing

further reaction with a new HUFA. In addition, vitamin E

plays an important role in the fish immune response,

reproduction, stress resistance and larval growth. The

main deficiency signs of vitamin E in several fish species

are similar and include muscular dystrophy, oedema of

heart, muscle and other tissues, anaemia, body depigmen-

tation and ceroid pigment accumulation in the liver (NRC

2011). For fish larvae, the main results on the effects of

dietary vitamin E were reported in gilthead seabream and

European seabass by Atalah et al. (2012) and Betancor

et al. (2011), respectively. Betancor et al. (2011) fed Euro-

pean seabass larvae with diets containing different ratios

of DHA (22:6n-3) to vitamin E and found that increasing

the level of DHA increased the incidence of muscular

degeneration, while adding extra vitamin E at the high

DHA levels reduced the incidence of muscular pathology.

However, considering that fish larvae are very sensitive to

oxidative imbalances due to their high oxidative metabo-

lism, fast growth and/or high requirements for PUFA, the

role of this fat-soluble vitamin in bone homeostasis and

development might not be negligible, although no current
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data are available on the effects of vitamin E in fish larval

skeletogenesis. As Lall and Lewis-McCrea (2007) recently

reviewed, vitamin E may be important for proper skeletal

development, especially to combat endogenous and exoge-

nous free radicals that can cause damage to osteoblasts

and stimulate osteoclasts, as data from mammalian species

seemed to indicate.

Minerals

Information concerning mineral nutrition of fish is limited

compared with most other nutrient groups (for review, see

NRC 2011). Problems associated with the quantification of

mineral requirements include the identification of the

potential contribution of minerals from the water, leaching

of minerals from the diet prior to consumption, availability

of suitable test diets that have a low concentration of the

targeted mineral and the limited data on mineral bioavail-

ability. Moreover, the uptake of minerals from the diet or

aquatic medium and excretion of minerals in the urine or

faeces are influenced by osmoregulatory processes in

response to salinity of the aquatic medium, which can lead

to differences in the metabolism of certain minerals

between freshwater and marine species. However, like ter-

restrial animals, fish have been shown to require minerals

for their normal life processes such as the formation of

skeletal structures, maintenance of colloidal systems, regu-

lation of acid-base equilibrium and as important compo-

nents of hormones, enzymes and co-activators of enzymes.

Minerals can be divided into two groups: (i) macrominer-

als, found at high concentrations and required in gram

amounts including calcium (Ca), chloride (Cl), magnesium

(Mg), phosphorus (P), potassium (K) and sodium (Na),

and (ii) trace elements, occurring in the body at much

lower concentrations such as chromium (Cr), copper (Cu),

iodine (I), iron (Fe), manganese (Mn), selenium (Se) and

zinc (Zn) recognized to be essential in fish (for review, see

Watanabe et al. 1997; Lall 2002). Other elements have also

been claimed to be essential, but their essentiality remains

to be confirmed in fish.

Macrominerals. Among the macrominerals, only phospho-

rus, calcium and magnesium have been shown to affect

skeletogenesis process in fish (for review, see Lall 2002; Lall

& Lewis-McCrea 2007; Lewis-McCrea & Lall 2010; NRC

2011). Indeed, phosphorus and calcium function primarily

as structural components of hard tissues (e.g. bone, exo-

skeleton, scales and teeth) and are closely related to the

development and maintenance of the skeletal system. Mag-

nesium, that is mostly located in the bone, is also required

in skeletal tissue metabolism.

Phosphorus is probably the most studied mineral in fish

nutrition. In addition to its structural functions, phospho-

rus (P) is a component of a variety of organic phosphates,

such as nucleotides, phospholipids and coenzymes, playing

a major role in many metabolic processes. Dietary phos-

phorus supplies most of the phosphate required for growth

and metabolism, as the concentration of phosphorus is low

in both seawater and freshwater (Lall 2002). The absorbed

phosphorus accumulates in soft tissues and deposition in

skeletal tissue is relatively low. Signs of dietary phosphorus

deficiency include reduced growth, decreased feed effi-

ciency, poor bone mineralization and skeletal abnormalities

(for review, see Lall 2002; Sugiura et al. 2004; Lall & Lewis-

McCrea 2007; NRC 2011). Common skeletal anomalies

include curved spines, soft bones, twisted pleural ribs, com-

pressed vertebral bodies that can result in scoliosis and

cephalic anomalies. Poor growth, deformed operculum,

decreased bone mineralization and increment in whole

body lipid content were reported in juvenile Japanese

flounder fed a fed P-deficient diet (Uyan et al. 2007). A

deficiency of available dietary phosphorus in Atlantic sal-

mon fry has been suggested to cause spinal anomaly (Sulli-

van et al. 2007). In rainbow trout fry, dietary phosphorus

deficiency resulted in whole body phosphorus depletion

and mineralization defects with a lowered calcification of

both endochondral and dermal skeleton, resulting in irreg-

ular placement of vertebrae with twisted arches (Fontagn�e

et al. 2009). The dietary phosphorus requirements of fish

species have been reported to range from 0.3% to 1.5% of

diet (Lall 2002). The dietary phosphorus concentration has

been identified as a critical factor in the development of

bone anomalies. In Atlantic salmon, Fjelldal et al. (2009)

recommend extra mineral supplementation in the early sea

water phase to reduce the prevalence of vertebral anomalies

in fast-growing underyearling (0+) smolts and Bæverfjord

et al. (1998) and Helland et al. (2005) showed that in

Atlantic salmon juveniles fed insufficient dietary phospho-

rus, undermineralized but normally shaped vertebrae were

found (as confirmed later by Gil Martens et al. 2011, on

the same species) so enhancing that P supplementation

may reduce the prevalence of anomalies, but its dietary

deficiency is not necessarily a causal but a concausative fac-

tor. On the other hand, high concentrations of dietary P

and Ca have been shown to interfere with the absorption

and retention of Mg and certain trace elements and if a

high dietary P level (2.2%) was associated with a reduced

incidence of internal skeletal abnormalities in rainbow

trout fry, it also induced an impairment of survival (Fon-

tagn�e et al. 2009).

Calcium, in addition to its structural functions, is essen-

tial for blood clotting, muscle function, proper nerve

impulse transmission, osmoregulation and as a cofactor for

enzymatic processes (Lall 2002). Unlike terrestrial animals,

the major site of calcium regulation in fish is not in the

bone but in gills, fins and oral epithelia tissues. Dietary Ca

deficiency, that is usually quite uncommon due to the pres-

Reviews in Aquaculture (2013) 5 (Suppl. 1), S121–S167

© 2013 Wiley Publishing Asia Pty Ltd S147

Review on skeletal anomalies in reared fish



ence of this ion in the water, resulted in reduced growth,

poor feed conversion, anorexia and reduced bone minerali-

zation (for review, see Lall 2002 and NRC 2011). The

reduced bone mineralization has been reported only for

blue tilapia Tilapia aurea (now Oreochromis aureus) finger-

lings fed diet containing <0.65% Ca in Ca-free water (Rob-

inson et al. 1984). On the other hand, dietary Ca deficiency

has been reported to induce a delay in the ontogeny of skel-

etal development of rainbow trout fry without affecting

final bone mineralization but leading to modifications in

the shape and size of vertebrae (smaller vertebrae in the

anterior and mid-region of the vertebral column and irreg-

ular placement of the vertebrae in the column) compared

with rainbow trout fry fed a diet containing 0.8% Ca (Fon-

tagn�e et al. 2009). The requirement for proper bone miner-

alization has been shown to range between 0.34% and 1.5%

for different freshwater and marine fish species; however,

no specific data concerning larval stages are available.

Moreover, as mentioned above, different factors have been

suggested to affect Ca metabolism such as valine, vitamin D

but also fluoride (Camargo 2003) or heavy metals (Bernts-

sen et al. 2003). For instance, cadmium has been shown to

induce disturbance of Ca homeostasis in Atlantic salmon

parr without leading to bone anomalies (Berntssen et al.

2003), whereas spinal anomalies or altered axial curvature

and tail anomalies were noticed in the early life stages of ze-

brafish (Danio rerio) and Australian crimson spotted rain-

bow fish (Melanotaenia fluviatilis) by Cheng et al. (2000)

and Williams and Holdway (2000).

Magnesium, besides its role in skeletal tissue metabolism,

osmoregulation and neuromuscular transmission, is an

essential cofactor in many enzymatic reactions in interme-

diary metabolism. Dietary magnesium deficiencies have

been documented for a variety of freshwater fish and

include poor growth, high mortality, anorexia, lethargy,

muscle flaccidity, convulsions, vertebral curvature and

depressed Mg levels in the whole-body, blood serum and

bone (Lall 2002). As seawater contains high levels of Mg

that can be uptaken by fish to meet their metabolic require-

ment, marine species may not require a dietary source of

Mg. For instance, a dietary Mg level of 0.04% was required

to prevent skeletal anomalies (deformed snout and verte-

bral curvature) in juvenile channel catfish (Lim & Klesius

2003). In contrast, only 0.01% Mg was needed for proper

bone mineralization of Atlantic salmon reared in brackish

water and no signs of deficiency were observed in red seab-

ream reared in seawater (NRC 2011). However, in contrast

to Mg concentration, the ash, Ca and P concentrations in

the whole body, vertebrae and scales were inversely related

to the dietary Mg level in grass carp juveniles as in rainbow

trout, tilapia and channel catfish, suggesting that Mg could

reduce Ca absorption (Liang et al. 2012). These authors

also reported decreased Zn and Fe contents in whole body

and vertebrae of grass carp juveniles fed with high levels of

Mg (0.09%).

Trace elements. The role of trace elements in biological sys-

tems has been described in several animals. However, the

knowledge in fish is mainly limited to iron, copper, manga-

nese, zinc and selenium (Watanabe et al. 1997). Among

these trace elements, only manganese, zinc and selenium

have been shown to affect skeletogenesis process in fish

(Watanabe et al. 1997; NRC 2011). Due to the role of thy-

roid hormones in developmental processes, iodine defi-

ciency has been suggested as one possible reason for

skeletal anomalies (Hamre et al. 2005; Solbakken et al.

2002) but so far no studies have shown that an improved

iodine status gave a reduced level of skeletal abnormalities

(Moren et al. 2006; Hamre et al. 2008; Ribeiro et al. 2011,

2012).

Manganese functions as a cofactor in several enzyme sys-

tems including enzymes involved in lipid, protein and car-

bohydrate metabolism and the highest concentration of

manganese is found in bone. In vertebrates, Mn is essential

for development of the bone and cartilaginous matrix,

which is largely composed of mucopolysaccharides. Dietary

deficiencies in fish resulted in poor growth, skeletal abnor-

malities, high embryo mortalities and poor hatch rates (Lall

2002). In carp fingerlings, low dietary Mn levels

(<10 mg kg�1) induced short body dwarfism associated

with a reduction of ash, Mn, P, Ca, Mg and Zn contents in

vertebrae (Satoh et al. 1987). In red seabream larvae, Mn

supplementation to Artemia nauplii (from 12 to

43 mg kg�1 dry weight) has been shown to enhance growth

and to promote normal skeletal development with a reduc-

tion of anomalies in neural spines and arches (Nguyen

et al. 2008). According to these authors, supplementation

with Mn through Artemia to red seabream larvae during

the bone ossifying stage (total length: 6–19 mm) was more

effective in promoting normal skeletal development than in

the rotifer feeding stage, when most bones are still in the

cartilage form.

Zinc is an important trace element in fish nutrition as it

is involved in various metabolic pathways. Zinc functions

as a cofactor in several enzyme systems and is a component

of a large number of metalloenzymes. Dietary Zn deficiency

in fish resulted in reduced growth, decreased digestibility of

protein and carbohydrate, reduced appetite, impaired

immunological response, eye lens cataract and erosion of

fins and skin as well as short body dwarfism (for review, see

Watanabe et al. 1997 and Lall 2002). Satoh et al. (1983)

reported depressed growth, cataracts (100%) together with

short body dwarfism (80%) in rainbow trout fry fed a

Zn-deficient diet compared with diets containing

80 mg Zn kg�1. Depressed growth and increased incidence

of anomaly in dorsal fin rays were observed in red seabream
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larvae fed Artemia containing 119 mg Zn kg�1 compared

with enriched Artemia containing 423 mg Zn kg�1

(Nguyen et al. 2008). The latter authors suggested that the

beneficial effects of Zn supplementation on skeletal devel-

opment could be due to the stimulation of osteoblastic

bone formation and inhibition of osteoclastic bone resorp-

tion by Zn, as demonstrated in vitro in mammalian cell cul-

tures. The minimum Zn requirement for proper

development has been shown to vary with age, sexual

maturity, water temperature, water quality and composi-

tion of diet (Lall 2002). As already mentioned, some miner-

als such as P, Ca and Mg can interfere with absorption and

retention of Zn. On the other hand, Zn supplementation

has been shown to decrease whole body Fe content in red

seabream (Nguyen et al. 2008).

Selenium is an essential trace element for animals, includ-

ing fish, but also has the smallest window of any element

between requirement and toxicity. Selenium plays a pivotal

role against oxidative cellular injury as a component of the

enzyme family termed glutathione peroxidase, which con-

verts hydrogen peroxide and lipid hydroperoxides into

water and lipid alcohols, respectively (Watanabe et al.

1997; NRC 2011). Moreover, Se is a vital constituent of

many other protein molecules with diverse physiological

functions including the control of thyroid hormone pro-

duction (e.g. deiodinases), transport proteins (e.g. seleno-

protein P) and muscle physiology (e.g. selenoprotein W).

Fish have 32–34 selenoproteins relative to 23–25 in terres-

trial vertebrates and the physiological functions of some of

these selenoproteins are yet to be characterized (Lobanov

et al. 2008). Prior to the discovery of the essential role of

Se, its toxic properties were well recognized (Lall 2002).

High levels of Se exert their toxic effects in animals proba-

bly through competition with sulphur compounds or pro-

duction of reactive oxygen species from the reaction with

glutathione leading to oxidative stress (Misra et al. 2010).

Selenium toxicity has been demonstrated in several fish

species at dietary levels of 10–20 mg Se kg�1 from sodium

selenite or selenomethionine, resulting in reduced growth

and high mortalities as well as renal calcinosis (NRC 2011).

On the other hand, dietary Se deficiency has also been

shown to result in depressed growth and mortality as well

as reduced glutathione peroxidase activity, lipid peroxida-

tion, lethargy, loss of appetite and reduced muscle tone (for

review, see Watanabe et al. 1997 and Lall 2002). However,

a combined deficiency of Se and the lipid-soluble antioxi-

dant vitamin E was required to produce more overt defi-

ciency signs such as exudative diathesis and muscular

dystrophy (NRC 2011). In Atlantic cod larvae, Se supple-

mentation to rotifers (3 mg Se kg�1 similar to the level

found in copepods) did not improve growth and survival

or reduce the rate of skeletal anomalies but increased whole

body levels of Se, and expression and activity of Se-depen-

dent glutathione peroxidases suggesting that normally

enriched rotifers do not meet the Se requirements of cod

larvae (Penglase et al. 2010). However, the support of an

optimum antioxidant status during fish larval development

may be important to prevent the pathogenesis of skeletal

disorders caused by lipid peroxidation.

Non-genetic factors: miscellaneous

Despite the significance of skeletal anomalies for finfish

aquaculture, existing studies specifically targeted on their

causative factors are rather rare. Environmental factors

mainly cited for possibly causing skeletal anomalies in

reared fish are the broodstock condition, egg quality, stock

density, fast growth conditions, handling stress, hydrodyna-

mism/water turbulence/water supply rate, rearing method-

ologies, light regimes, mechanical factors, oil films on water

surface, levels of O2/CO2, pH, physical trauma/mechanical

stress, pathogens, parasites, toxins, radiation, salinity varia-

tion, typology of substratum (mainly for flatfish), tank

characteristics (volume, shape, colour, material), variation

of temperature, antibiotics and xenobiotics.

Environmental non-nutritional factors have been

invoked to explain the failure of swim bladder activation

(for the presence of an oily film at the air–water interface of
the tank) and vertebral axis deviations (water temperature

and water currents). The presence of an oily film on the

water surface during the first feeding and the preflexion

stage, before the re-absorption of the pneumatic duct, has

been proven to be the most important factor preventing

the non-inflation of the swim bladder (Chatain & Ounais-

Guschemann 1990). Secondarily, salinity (Battaglene & Tal-

bot 1993; Tandler et al. 1995), light intensity and quality,

photoperiod (Battaglene et al. 1994; Chatain 1997), water

turbulence (Chatain & Ounais-Guschemann 1990; Battag-

lene & Talbot 1993) and larval vigour have been imputed

to influence the initial swim bladder inflation.

Concerning swim bladder over-inflation, stress due to

disturbances of abiotic factors (Johnson & Katavic 1984;

Katavic 1986), handling and transportation (Carmichael &

Tomasso 1984) have been placed among the most crucial

factors.

Water temperature is a critical factor for the successful

hatchery production of poikilotherm organisms such as fish

and it has significant effects on growth, differentiation and

survival rates. Concerning skeletal anomalies, existing stud-

ies demonstrate a significant effect of water temperature

during the early ontogeny of all the species examined so

far. In gilthead seabream, Polo et al. (1991) demonstrated

that water temperature during the embryonic and yolk-sac

larval stages affects the development of early defects such as

abnormalities of the primordial marginal finfold, jaws,

notochord and pericardial oedema. In the same species,
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Georgakopoulou et al. (2010) showed that water tempera-

ture up to the metamorphosis and juvenile phase has a sig-

nificant effect on the development of inside folded gill-

cover, haemal lordosis, as well as of the slight anomalies of

the caudal and dorsal fin. In Senegalese sole the effects of

temperature during the egg incubation stage were recently

evaluated by Dion�ısio et al. (2012) revealing that tempera-

tures higher than 18°C cause an increased incidence of

anomalies affecting the vertebral column.

In European seabass, relevant existing literature is limited

to the direct effects of water temperature on the develop-

ment of anomalies of the branchiostegal rays (Georgako-

poulou et al. 2007), gill-cover (Abdel et al. 2005) as well as

of haemal lordosis (Sfakianakis et al. 2006b). Although

haemal lordosis was initially attributed to the high water-

current velocity during the early juvenile stage of European

seabass (via the rheotactism and the following intense

swimming activity of the fish, Divanach et al. 1997), Sfaki-

anakis et al. (2006b) showed that the effects of temperature

prevail upon those of current velocity. The effects of tem-

perature on the development of haemal lordosis could, at

least partially, be explained by the temperature-driven

phenotypic plasticity of European seabass in respect to

body shape (Koumoundouros et al. 2001; Georgakopoulou

et al. 2007), muscle anatomy and swimming performance

(Koumoundouros et al. 2009).

The investigation on the deleterious effects on skeleto-

genesis of inappropriate rearing temperatures is actually

enhanced due to the practice of using higher rearing tem-

peratures for fast-growing salmon. High water tempera-

tures seems to affect the normal development of bone in

salmon, whatever the life cycle stage at which it is applied,

even after egg incubation: caudal vertebrae anomalies were

found in salmon 4 months after the eggs were heat shocked

(6–12°C; Wargelius et al. 2005). In other similar cases, no

spinal anomalies but warped opercula, fin and jaws anoma-

lies were observed. Grini et al. (2011) described severe

vertebral compressions and fusions in the tail region in sal-

mon maintained for the first 6 weeks in seawater at 16°C.
The process underlying temperature-induced anomalies in

salmon is only hypothesized by Wargelius et al. (2010): in

fish reared at higher temperature, in the compressed verte-

brae, notochord, compact and trabecular bone, MMP13

was significantly upregulated, 44 weeks after seawater

transfer. Ytteborg et al. (2010) reported in high tempera-

ture reared salmon the down-regulation of extracellular

matrix genes (collagen a1, osteocalcin, osteonectin and

decorin) and Wargelius et al. (2009) the diminution of shh

and twist expression. Sonic hedgehog (shh) protein is

expressed in the notochord in the early embryo, it is

involved in axial skeleton patterning and it is used as a

marker for osteoblast proliferation (Wargelius et al. 2009).

Twist codes for a transcription factor expressed in precur-

sor skeleton cells and it is involved in the control of epithe-

lial-to-mesenchymal transition.

In fast growing conditions, salmon show some high

charge of compressed and fused vertebrae and decreased

bone quality, either in reducing the vertebral mineral con-

tent, yield–load or stiffness. Another hypothesized risk fac-

tor is linked to the possibility that fast growth conditions

determine a too great mechanical stress on differentiating

vertebrae due to chronic and unbearable muscle pressures

acting on the axial skeleton during intensive growth (Des-

champs et al. 2009). Sustained swimming at moderate

speeds was shown to induce many positive effects on

growth and swimming performances in salmonids, but lit-

tle is known about its effects on vertebral remodelling pro-

cesses and related hormonal regulation. Deschamps et al.

(2009) described that slow growth (e.g. at a constant tem-

perature of 7°C) favoured vertebral bone mineralization in

rainbow trout when compared with normal (e.g. seasonal

variations of temperature) and fast growth (e.g. at a con-

stant temperature of 17°C), because the low vertebral bone

area resulting from periods of fast growth (i.e. summer and

beginning of autumn) was not counterbalanced by a subse-

quent increase in bone deposition during slow-growing

periods (e.g. winter and spring). This may cause the

changes observed in vertebral features, interpreted as a

compromise between the necessity to mobilize vertebral

mineral ions in response to various physiological demands

and to maintain vertebral strength against mechanical con-

straints. However, the authors were not able to identify

whether this increase in bone area resulted from changes of

bone specific growth rate and/or bone mineralization rate

in larger specimens, neither they can exclude that other

concurrent factors (nutritional state in relation to mineral

balance or some genetic cause due to selection of the reared

trout for high growth rate through many generations) had

played a role in the strong demineralization of the middle

vertebral region.

Another solution recently adopted in salmon culture for

forcing growth, suppressing the nocturnal production of

melatonin and flattening out the diurnal pattern in melato-

nin secretion (observed under natural light conditions)

foresees the use of continuous light. Atlantic salmon after

6 months under continuous light revealed a lower mineral

content and mechanical strength in the vertebrae bone than

under natural light (Fjelldal et al. 2005). Wargelius et al.

(2009) hypothesized a mediation action exerted directly by

melatonin on bone by action on membrane-bound recep-

tors on osteoblast cells or through the function of melato-

nin in setting the suprachiasmatic circadian rhythm in the

brain, as observed in mammals. Studies in mammals have

reported that light manipulation changes the pattern of

osteoblast proliferation and bone mass in response to

changes in circadian pattern.
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Concerning the effects of current velocity on the devel-

opment of haemal lordosis, these were also documented in

species such as red seabream (Kihara et al. 2002) and

Atlantic cod (Baeverfjord et al. 2009).

As already mentioned, Izquierdo et al. (2010) formulated

the hypothesis that lordosis onset in red porgy could be

linked to the typical voracious behaviour of larvae belong-

ing to this species: the large occurrence of haemal lordosis

could be related to an insufficient feeding (with consequent

skeleton weakness resulting from malnutrition) coupled to

an excessive swimming effort of the larvae looking for food.

As far as hyperdense vertebrae are concerned, concausa-

tive factors have been considered by Helland et al. (2006)

and later by Witten and Huysseune (2009).

Spinal anomalies have been reported as side effects of

vaccination over the years in Atlantic salmon and factors

such as time and fish size at vaccination, water temperature

after seawater transfer, vaccine type, antigen concentration

and adjuvant type can influence the severity of side effects.

The operation for vaccination entails heavy mechanical

stress due to handling of fish during vaccination, grading,

pumping and transport. Fast-growing under-yearling

smolts (so-called 0+ smolts or autumn smolts) have a

reduced bone mineral content and lower mechanical

strength (Fjelldal et al. 2006, 2007). So the mechanical

stress for vaccination and selection may affect the integrity

of the spine, and/or may induce local inflammation or bone

microfractures that heal forming hyperdense vertebrae. At

present, some debate is running on what is the primary

cause of platyspondylic and ankylotic vertebra observed in

salmon after vaccination: the injection (mechanical injury)

or inflammation in the vicinity of the injection point

induced by oil-adjuvants in vaccine (like human rheuma-

toid arthritis and/or osteoarthritis). In this scenario, Gil

Martens et al. (2010) effectuated in 46 dph salmon: (i)

injection of bacterial lipopolysaccharides strain (BLS: Esc-

herichia coli 0111:B4) inducing a pro-inflammation pic-

ture; (ii) injection of phosphate-buffered saline (PBS,

placebo); (iii) commercial vaccination; and (iv) no treat-

ment. After injection, analyses of all the fish were carried

out to find the presence of markers of inflammation in

plasma and bone near the injection point. The results

obtained showed evidence of higher frequencies of vertebral

anomalies in the PBS (38%) than in the LPS (21%) group,

located in the vicinity of the injection point. Conversely,

among all the tested human markers for bone inflamma-

tion, only high levels of plasma prostaglandin E2 (PGE2)

and upregulation of immunoglobulin M (IgM) were found

in the LPS-injected groups. Furthermore, granulocytic leu-

cocytes that surrounded the spinal cord and thus also

appeared in the vicinity of the bone of the vertebral bodies

were observed in bone sections from all experimental

groups. The authors concluded that localized injection-

related processes could have triggered the development of

vertebral body anomalies. A successive trial (Gil Martens

et al. 2011) with a more potent local inflammation inducer

(Freund’s complete adjuvant) again failed to find unequiv-

ocal induced ankylosis and platyspondyly by inflammation

factors: all injected fish (placebo included) had more com-

pressions in the injection site than untreated fish, and only

the 7% of FCA-injected individuals showed peculiar severe

scoliosis associated with a mixture of bone anomalies in the

tail region. In conclusion, mechanical trauma due to the

injection seems more likely to be the causative factor of

compressed and fused vertebrae observed in vaccinated sal-

mon than inflammation. However, inflammation cannot

be excluded from the risk factors for these anomalies in sal-

mon: it is known from biomedical research that inflamma-

tion can alter the normal pattern of bone growth and that

bone remodelling is regulated by the interaction of systemic

hormones and local factors such as local cytokines, prosta-

glandins, growth factors and transcription factors (Gil Mar-

tens 2012).

The presence of some antibiotics, as enrofloxacin, oxytet-

racycline and flumequine (in Atlantic salmon and Arctic

charr Salvelinus alpinus: Toften & Jobling 1996; rainbow

trout: Madsen et al. 2001) in food was associated with

vertebral column anomalies.

Sorting methods

Selections for deformed fish are carried out regularly along

the whole chain, as fish farmers generally discard mal-

formed fish during growth to minimize feeding costs.

In Mediterranean aquaculture, deformed fish are

removed from the reared stocks well before they reach the

final consumer usually by a two-step process. In the first

step, early juveniles (usually at the mean weight of 0.3–
0.5 g) are subjected to salinity floating tests, during which

anaesthetized fish without an inflated swim bladder should

sink to the bottom of the test-container, whereas those with

an inflated swim bladder float on the surface. The method

was initially applied in anaesthetized larvae, in normal

salinity conditions (e.g. Chatain & Corrao 1992), but in the

next years the efficiency of the method was largely

improved by increasing the salinity of the test medium to

52–62 ppt. Nowadays, in most of the Mediterranean hatch-

eries, during the salinity test, anaesthetized floating fish are

also checked for the presence of severe skeletal anomalies

(mainly gill-cover anomalies).

At the second step of the removal of deformed fish from

the reared stocks, juveniles of 1–5 g mean weight (depend-

ing on the hatchery) are anaesthetized and one by one

examined on a light table by specialized personnel for the

presence of vertebral, gill-cover, fin and jaw anomalies. The

second manual step of the process results in a significant
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increase of the personnel cost and delays in the production

cycle (Koumoundouros 2010).

Strictly based on anatomical criteria, the distinction of

normal fish from those with an abnormal skeleton is just

an issue of comparative examination. At the hatchery level,

however, anomalies of interest are those with significant

effects on the external morphology of fish and not any

internal skeletal deformation. With the exception of gill-

cover anomalies and the non-inflated swim bladder, the

effects of a single type of skeletal anomaly on the external

morphology of fish show a continuous range from slight

internal aberrations, to severe anomalies with clear effects

on the external body shape (Loy et al. 1999, 2000; Koumo-

undouros et al. 2001; Gjerde et al. 2005; Sfakianakis et al.

2006a,b). As a scale of quality with a precise correlation

between the skeletal development and the external

morphology of the fish at the end of the hatchery and on-

growing phases is missing, nowadays the threshold

between commercially severe and non-severe anomalies is

empirically and subjectively defined by the hatcheries

(Koumoundouros 2010).

Elements of solutions

The only possible actual solution of the problem of skeletal

anomalies basically relies on the determination of the caus-

ative factors and to the subsequent application of appropri-

ate practices at the hatchery level. In parallel, it requires the

development of processes for the mass removal of the

deformed individuals from the cultured stocks, the estab-

lishment of procedures for the early assessment, verification

and improvement of quality, as well as the development of

a scale of quality for the precise distinction of commercially

severe anomalies from those of scientific interest only.

At the applied level of the commercial hatcheries, the

development of skeletal anomalies is a very complex prob-

lem, whose magnitude is determined not only by the aver-

age incidence of anomalous individuals, but also by the

large variability of incidence and anomalies typologies.

Data from the routine quality controls in some commercial

hatcheries demonstrate that the frequency of the various

types of skeletal anomalies often vary among the different

hatcheries, but also in the same hatchery at a seasonal or

annual basis. Moreover, this intra-hatchery variability is

evident among batches that are simultaneously reared, as

well as among the different groups of the same batch (in

hatcheries, the term batch describes the fish born from the

same batch of eggs; Fig. 3).

The variable development of skeletal anomalies reflects

the complexity of the ontogeny of the reared species, espe-

cially those with a small differentiation state at hatching

and a relatively long following larval period (e.g. gilthead

seabream, European seabass, common dentex, cod, Sene-

galese sole). From the existing literature, not all included

here, much evidence highlights how intensive rearing con-

ditions are by themselves causative factors for increased

anomaly rates compared with semi-intensive conditions.

However, space limitations due to coastal zone use conflicts

prevent the adoption of semi-intensive rearing conditions

in many farms for producing juveniles of a higher morpho-

logical quality.

One solution could be the theoretical adaptation of the

complexity of the followed rearing methodology to the

continuously changing requirements of the developing fish

(Mazurais et al. 2009; Georgakopoulou et al. 2010), taking

into consideration available (or improving) knowledge on

ecological, physiological, nutritional and morphological

features characterizing each species-specific life cycle (see

the review by Rønnestad et al. 2013). This increased vari-

ability reflects the large number of potential causative fac-

tors, the lack of adequate knowledge on the species

preferences for optimal development, the variability in raw

materials used for the hatchery production, as well as the

sensitivity of the rearing processes to human mistakes.

Finally, the fact that selective breeding programmes rarely

take into consideration the development of skeletal anoma-

Figure 3 Occurrences of skeletal anomalies

in 28 gilthead seabream lots of juveniles

reared in a commercial hatchery. All batches

were reared under the same methodology and

the same raw materials (G. Koumoundouros,

unpubl. data).
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lies, the involvement of the changing genetic background

on the sensitivity of the fish to the action of causative fac-

tors cannot be excluded.

In order to connect the development of skeletal anom-

alies with their large variability at the hatchery level, a

continuous awareness is required with respect to the

whole rearing process and the quality of the fish pro-

duced. Even when optimal conditions for the normal

development of fish species have been identified and

incorporated into the applied protocols, fish quality has

to be routinely monitored and continuously verified in

order to guarantee the conformity of the applied method-

ology with the normal development of the fish, and to

allow an early warning for fault/accidental deviations of

the complex hatchery processes and their subsequent cor-

rection. The successful application of this procedure pre-

supposes the precise monitoring of all stages of the

rearing process on a regular basis, and that the control of

fish quality is appropriate for early developmental stages,

before hatchery practices (such as pooling of different

lots, size grading etc.) mask the variability of anomalies.

Existing results from commercial hatcheries demonstrate

that the combination of such an approach (named ‘Loop

of Quality’ by Koumoundouros 2010) with the identifica-

tion of standard operating procedures and the implemen-

tation skills of the hatchery can result in significant

improvements of fish quality (Fig. 4).

The swim bladder inflation in many marine finfish spe-

cies occurs during a finite ‘window’ period of early larval

development (Woolley & Qin 2010). Therefore, optimal

rearing conditions are required for successful initial

inflation, particularly the absence of an oil film at the air

–water interface of the tank. The larvae at the time of

inflating swim bladder (6–12 dph in European seabass

and gilthead seabream) has not yet differentiated most of

fins or axis skeletal elements, so they cannot develop

enough force to break the oily film, preventing the larvae

access to air for gulping. Some strategies have been set

up for removing the superficial oily film, all conceived to

disrupt the oily surface layer: particular superficial skim-

mers or four points of aeration at the surface area and

an arm placed at the centre of the tank. All these devices

concentrate the oil film on a small area of the tank, so

enabling a manual removal. Despite using these devices,

some individuals or lots fail to inflate the swim bladder,

as recently demonstrated in gilthead seabream (Prestini-

cola 2012) and in Atlantic bluefin tuna larvae (Cataudella

et al. 2011a). The high mortalities and the inferior quality

of juveniles with a non-inflated swim bladder in the adult

stage still remain a major problem in intensive farming,

and the need to cull out the larvae without a functional

swim bladder from the reared lots remains a crucial point

in aquaculture management. As reported above, the sort-

ing method commonly used by commercial hatcheries is

based on the difference in buoyancy between larvae with

and without functional swim bladders (Chapman et al.

1988; Chatain & Corrao 1992). When the resulting

groups have been analysed in detail, however, the effi-

ciency of this sorting method for swim bladder assess-

ment was not demonstrated. In gilthead seabream, at

least, the selection carried out using this methodology by

the hatchery operators identified 45% of individuals with

and 55% without a swim bladder, but the observations

carried out on in toto stained juveniles (under stereomi-

croscope) did not confirm this ratio: 83% of analysed

juveniles were without and only 50 (equal to the 17%)

had a normally inflated swim bladder (Prestinicola 2012).

This difference may be due to artefacts due to the diaph-

anization of swollen tissues in the whole mount staining

protocol (that foresees the infiltration of glycerine in tis-

sue) or to the use of anaesthetic. Previous studies have

shown, in fact, that gases within the swim bladder tend

to be released when the larvae are anaesthetized (Massee

et al. 1995) and anaesthesia may cause a stress response

(Small 2003). Therefore, other studies targeted to analyse

each step of the methodology used to select individuals

with a normal swim bladder seem still necessary.

Main gaps in scientific knowledge and further
research needs

In Part 1 of this review on skeletal anomalies, some (few)

basic needs for scientific knowledge on skeletogenic

processes in reared fish are detailed. The other main gaps of

knowledge can be divided mainly into diagnostic and

causative items. Among the diagnostic tools that are

Figure 4 Trend of frequencies of severe skeletal severe skeletal anom-

alies in a commercial hatchery, before (dark bars) and after (grey bars)

the application of LoQ strategy. Data do not include the incidence of

fish without an inflated swim bladder (the rate was improved from

12% on year 3 to 2–4% in the years 4–8) (Koumoundouros, unpubl.

data).
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presently needed in order to reduce the rate of deformed

fish in cultured lots, standardization of the classification

and definition of criteria to categorize uniformly the differ-

ent typologies of skeletal anomalies in fish, mostly for lar-

vae and juveniles, is of great importance. Many different

terminologies are currently used to define some types of

anomaly, often without providing a detailed description. In

order to achieve this goal, a detailed description of the total

ontogenesis of each skeletal anomaly, with the identifica-

tion of timing windows, should be obtained, in order to

distinguish between the different anomaly typologies and

the ontogenetic steps of the same anomaly, as well as to

comprehend the anomaly fate (recover, aggravation, sub-

lethality, lethality). The ontogenetic pathway of many skele-

tal anomalies is rather unclear, as are the changes in the

vertebral architecture during growth in the different reared

species. Further, as some anomalies can develop directly

during osteogenesis, whilst others develop on a pre-existing

normal skeletal element, the capacity to discriminate

between these two forms is crucial for a better understand-

ing of the aetiology of skeletal anomalies. The possibility

that a unique classification system can be developed for all

the reared species and life stages should be definitely and

soundly clarified.

Another aspect that demands a common shared

approach is a method to assess the severity of axis devia-

tions: some authors measure the angle between the most

involved vertebrae in the deviation, centred in the interver-

tebral space at the most curved point; others consider as

axis anomalies only column deviations in which the

involved vertebrae present deformed or fused bodies, while

considering as vertebrae displacement or misalignment the

other deviations. Also, a common methodology for univo-

cal and objective identification should be established, par-

ticularly for larval stages where in toto staining is necessary

for observing skeletal elements.

Since systematic monitoring of skeletal anomalies in lar-

val batches is already performed for some species only

(European seabass, gilthead seabream), it should be

extended on a regular basis to the other commonly reared

species.

In order to study the relationships between rearing

conditions, bone condition and vertebral abnormalities,

terminology and observation methodologies should be

delineated through well-defined experimental studies, as

bone parameters appear to have a wide range of responses.

Further studies related to genetics, nutrition (including

the trophic behaviour of larvae and juveniles), mineral bal-

ance, biomechanics and cellular features related to bone

modelling and the hormonal regulation of bone metabo-

lism should be performed, taking into account knowledge

of human bone pathology, but also differences existing in

bone tissues between tetrapods and fish, and between basal

and advanced teleosts (see Boglione et al. 2013). The

applicability of existing knowledge on skeleton tissue differ-

entiation, modelling and remodelling gathered in model

fish species to reared fish should be verified extensively.

The main body of gaps resides basically in the knowledge

necessary to identify the causative factors. All the available

literature on this matter, to our knowledge, highlights how

experimental design aimed at investigating the effect of one

factor at a time on skeletal development mostly failed to

produce the same anomaly found in rearing conditions,

where multilevel factors interact on the developing organ-

ism in an unknown way, not reproducible in experimental

conditions. Besides the many factors suspected to cause

skeletal anomalies in reared European larvae and juveniles

reviewed here, many others have been identified as influ-

encing the skeletal anomaly pattern (frequency or typology;

i.e. colour, shape and volume of tank; stocking density;

oxygen level; water quality; light intensity and duration) in

the different reared species and/or life stage, that could not

have been treated in depth here.

So, greater interaction between researchers and produc-

ers should be established, in order to carry out multilevel

investigations on the causative factors on a productive, not

experimental, scale. The solution could be found possibly

only by integrating the rearing conditions, molecular,

genetic, physiological, anatomical and cellular data

obtained for the same fish. The integrated nature of all

(anomaly frequencies and typologies, environmental,

genetic, physiological, biomolecular, histological) data

should be considered in each study in order to address the

multi-factorial nature of the cause of skeletal anomaly. The

recent availability of new generation data analysis (e.g.

unsupervised artificial neural networks; see Russo et al.

2010, 2011) may allow integration of multidisciplinary and

multilevel data, even if it is characterized by non-linearity,

internal redundancy and noise, and by obtaining classifica-

tion, pattern recognition and empirical modelling. Such

investigations should be aimed in particular to obtain dee-

per insights into the mechanics of bone anomalies, the

anomalous mechanical load acting on developing skeletal

elements being one of the most credited causative factors

for many vertebrae anomalies, but the molecular pathways

linking mechanics and bone development remain largely

unknown. These integrative studies should be carried out

on each reared species, including candidate species, direc-

ted towards a comprehensive method of manipulating bio-

tic and abiotic factors to improve larval development and

to promote a ‘better’ skeletal quality.
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