NOAA Technical Memorandum NMFS

A REPORT OF CETACEAN ACOUSTIC DETECTION AND DIVE INTERVAL STUDIES (CADDIS) CONDUCTED IN THE SOUTHERN GULF OF CALIFORNIA, 1995

Jay Barlow
Karin Forney
Alexandra Von Saunder
Jorge Urban-Ramirez

NOAA-TM-NMFS-SWFSC-250
U.S. DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration
National Marine Fisheries Service
Southwest Fisheries Science Center

The National Oceanic and Atmospheric Administration (NOAA), organized in 1970, has evolved into an agency which establishes national policies and manages and conserves our oceanic, coastal, and atmospheric resources. An organizational element within NOAA, the Office of Fisheries is responsible for fisheries policy and the direction of the National Marine Fisheries Service (NMFS).

In addition to its formal publications, the NMFS uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series, however, reflect sound professional work and may be referenced in the formal scientific and technical literature.

NOAA Technical Memorandum NMFS
This TM series is used for documentation and timely communication of preliminary results, interim reports, or special purpose information. The TMs have not recelved complete formal review, editorial contral, or detalled editing.

A REPORT OF CETACEAN ACOUSTIC DETECTION AND DIVE INTERVAL STUDIES (CADDIS) CONDUCTED IN THE SOUTHERN GULF OF CALIFORNIA, 1995

Jay Barlow ${ }^{1}$
Karin Forney ${ }^{1}$ Alexandra Von Saunder ${ }^{1}$ Jorge Urban-Ramirez ${ }^{2}$
${ }^{1}$ Southwest Fisheries Science Center National Marine Fisheries Service, NOAA 8604 La Jolla Shores Drive La Jolla, California 92037
${ }^{2}$ Departamento de Biologia Marina Universidad Autonoma de Baja California Sur Ap. Post 19-B, B.C.S. 23081, Mexico

NOAA-TM-NMFS-SWFSC-250

U.S. DEPARTMENT OF COMMERCE

William M. Daley, Secretary
National Oceanic and Atmospheric Administration
D. James Baker, Under Secretary for Oceans and Atmosphere

National Marine Fisheries Service
Rolland A. Schmitten, Assistant Administrator for Fisheries

A Report of Cetacean Acoustic Detection and Dive Interval Studies (CADDIS) Conducted in the Southern Gulf of California, 1995

(McArthur Cruise Number: AR-95-08, SWFSC Cruise Number: 1601)
Jay Barlow, Karin Forney, Alexandra Von Saunder, and Jorge Urban-Ramirez

INTRODUCTION

This report describes a study conducted in Mexico aboard the National Oceanographic and Atmospheric Administration (NOAA) research ship McArthur during two months in summer/fall 1995. The primary purpose of this research was to learn how to better estimate the abundance of long-diving whales during ship line-transect surveys. These whale species, including beaked whales and dwarf and pygmy sperm whales, dive for such long periods of time that there is a high probability that they will never surface within the visual range of observers searching from a moving survey vessel with 25 X binoculars. The project was called CADDIS (Cetacean Acoustic Detection and Dive Interval Studies) and focused on two potential approaches to improve abundance estimates: 1) acoustic detection of diving animals, and 2) collecting dive interval data on those species to serve as a basis for a model-based abundance correction factor. This research was sponsored by the National Marine Fisheries Service (NMFS): both the Southwest Fisheries Science Center (SWFSC) and Office of Protected Resources.

The CADDIS research was conducted primarily in the southern Gulf of California, Mexico. The northern boundary of the survey was the 29th parallel; the southern boundary was a line extending from Cabo San Lucas, Baja California Sur to Cabo Corrientes, Jalisco ($20^{\circ} 22.0^{\circ} \mathrm{N}, 105^{\circ}$ $40.3^{\prime} \mathrm{W}$). This area was chosen for two main reasons: prior surveys showed the area to have a very high density of small long-diving whales of the genera Mesoplodon, Ziphius and Kogia (Mangels and Gerrodette 1994), and the area has consistently calm seas which enables dive intervals to be observed and accurately measured. The timing of the survey was similarly chosen as the season with the consistently lowest winds in the southern Gulf.

In addition to the primary mission of improving survey methods for long-diving whales, many ancillary projects were also included in the cruise plans. Faculty and students from two Mexican universities in the area collaborated on photo-identification studies of blue whales, pilot whales, killer whales, and sperm whales during the survey. Researchers from Mexico also aided in the collection of biopsy samples for genetic studies of whale population structure. Oceanographic data were collected to better understand the habitat of cetaceans in the southern Gulf and the physical environment. This report describes the experimental procedures and summarizes the cetacean observations made during this project. A separate report will be published which describes the oceanographic and other biological studies completed during the survey.

METHODS

Survey Methods

The survey vessel, NOAA Ship McArthur, was commissioned in 1966 and is 53.3 meters in length, 11.6 meters in breadth, and 3.7 meters in draft. During the survey, the ship maintained a cruising speed of approximately 10 knots. Methods consisted of first searching for species of whales that were of particular interest for the various projects: 1) beaked whales, dwarf and pygmy sperm whales, sperm whales, and blue whales for dive interval studies; 2) beaked whales, dwarf and pygmy sperm whales, and sperm whales for acoustic detection studies; and 3) blue whales, sperm whales, killer whales, pilot whales, fin whales and Bryde's whales for photo-identification and biopsy studies.

Search effort consisted of the typical rotation of visual observers through four observation stations that has been used on many previous SWFSC marine mammal surveys (Mangels and Gerrodette 1994; Hill and Barlow 1992) during daylight hours which were approximately 0630L to 1730L. The four observation stations were located on the flying bridge deck at a height of 10.7 meters above the sea surface, allowing a maximum ship-to-horizon sighting distance of about six nautical miles. The visual observer stations consisted of two observers searching for cetaceans with pedestal-mounted Fujinon ${ }^{1}$ 25X binoculars (on the port and starboard sides), a data recorder position amidship (who searches by naked eye and 7X binoculars), and an independent observer. The "independent observer" also searched by naked eye and 7X binoculars but did not announce the presence of cetaceans until they were clearly missed by the other observers. The data recorder logged the sighting cue, bearing, distance from ship, and species for each sighting on a laptop computer linked to the McArthur's GPS (Global Positioning System) for navigational data.

Once an individual of one of the target species was found, sea conditions, time of day, and other factors were evaluated to determine whether dive interval studies should be initiated or whether a small boat (a Rigid-Hulled Inflatable Boat - RHIB) could be launched from the ship to obtain acoustic recordings, individual-identification photographs, or biopsy samples. Black and white photographs of some cetaceans were taken with 35 mm cameras with $100-400 \mathrm{~mm}$ lenses for the ID work. Bolts with special tips were shot from crossbows to extract skin biopsy samples from animals, when possible, for genetic studies of stock structure.

The search for these species was not random or systematic, but was planned on a day-by-day basis to optimize the chances of encountering target species and of finding weather conditions that were good for conducting these studies. Although searching was conducted and data were recorded using line-transect survey methods, these data cannot be used to estimate marine mammal abundance in the southern Gulf of California because of this directed mode of search. For example, due to the disruptive nature of recording pinniped sightings in such a high-density area, pinnipeds were omitted
${ }^{1}$ Mention of brand names does not imply endorsement by the National Marine Fisheries Service.
from search effort, for better cetacean effort. Transects should, however, provide a good measure of relative cetacean abundance along the transect lines that were surveyed.

Acoustic Methods

Little is known about the sounds made by beaked whales and dwarf and pygmy sperm whales, so we prepared for this cruise by obtaining hydrophones and recording equipment that spanned a wide range of frequencies. Hull-mounted (fin-shaped) hydrophones $(5 \mathrm{KHz}-200 \mathrm{KHz}$ frequency range) were installed underneath the McArthur and were used to record nearby animals, including bowriding dolphins. Hand-deployed (trout-shaped) hydrophones ($500 \mathrm{~Hz}-200 \mathrm{KHz}$) were deployed from small boats in the vicinity of beaked whales and pygmy sperm whales. A towed fish with a finshaped hydrophone ($500 \mathrm{~Hz}-100 \mathrm{KHz}$ frequency range) was towed from the ship in the vicinity of pygmy sperm whales and sperm whales to determine the practical range of detection if a towed fish were deployed during a line-transect survey. When this hydrophone was towed, the ship surveyed at a reduced speed of 8 knots. All of these hydrophones (and integral pre-amplifiers) were designed and built by Don Norris of Biomon ${ }^{2}$, Santa Barbara, CA. Signals were further amplified with custommade amplifiers before recording. Sonobuoys were also deployed in the vicinity of some species, and signals were recorded on digital audio tape (DAT).

Acoustic data were recorded either on analog tape or were directly digitized and recorded on hard disk using custom software on two computer systems. The tape recording system was a Racal ${ }^{2}$ Stor 4 provided by Steve Dawson (during Leg 1 only) and provided tape speeds up to 60 inches per second (with a frequency response above 200 KHz). Acoustic data were digitized with an external Ariel ${ }^{2}$ ProPort Model 656 Analog I/O Module (operating in 12-bit High-speed Mode at 384 k samples/s) and were stored on a Sun ${ }^{2}$ SPARKstation 20 workstation (with a single 60 MHz processor, 1 Mb cache and 64 Mb of RAM). Acoustic data were also recorded on a Dolch ${ }^{2} 100 \mathrm{MHz}$ Pentium ${ }^{1}$ computer (with a 2 Mbyte hard disk and a DataTranslation ${ }^{2}$ DT-3908 analog-to-digital conversion board) at continuous rates of up to 400 k samples per second.

Dive Interval Methods

Visual dive interval studies were conducted when whales of interest were sighted under acceptable viewing conditions, which were evaluated based on sea state, swell height, and light levels, as well as body size, behavior, and group size for the sighted animals (Table 1). Dive studies were only initiated if viewing conditions were judged to allow for a high probability of resighting the group. Dive studies were terminated if sighting conditions deteriorated to the extent that animals were not likely to be resighted reliably, or if a species-specific maximum time limit (Table 1) had been exceeded since the last sighting (and the animals were assumed to have been lost). The primary target species were Baird's beaked whale (Berardius bairdii), Cuvier's beaked whale (Ziphius
${ }^{2}$ Mention of brand names does not imply endorsement by the National Marine Fisheries Service.
cavirostris), Mesoplodon beaked whales, sperm whales (Physeter macrocephalus), pygmy sperm whales (Kogia breviceps), and dwarf sperm whales (Kogia simus). Dive studies were also conducted on blue whales (Balaenoptera musculus) and short-finned pilot whales (Globicephala macrorhynchus).

During the course of the dive interval studies, the vessel was held at a distance of $0.5-1.0 \mathrm{nmi}$ from the last known position of the animals, depending on species (Table 1). Visual observers conducted the dive interval studies from the flying bridge of the McArthur. The number of active observers varied for each sighting, depending on the species and observation conditions. Unless there was a large degree of certainty that the animals would surface in front of, and not behind, the ship (based on distance to the last known position and travel direction of the animals), two additional observers were assigned to search by naked eye or with 7 X binoculars within the two 90° quadrants behind the vessel. In some cases, 1-3 additional observers searched on an opportunistic basis, generally in the direction of the projected next surfacing location. To reduce the potential effects of fatigue during dive studies, the observers rotated through the $2-4$ searching positions at $30-40$ minute intervals, and each observer rested for 1.5-2 hours following each complete rotation. To maintain continuity, the data recorder generally recorded for 1.5-2 hours and then rested for 1.5-2 hours.

Dive data were recorded with a special computer program designed to record and display dive information. This program included a graphic display of the sighting locations, and the distance and bearing relative to the vessel. The display was continuously updated based on the vessel's GPS position and manually-entered heading. In the data record, the first observed sighting of a surface series was marked as the 'Up' time, and a terminal dive (based on a steeply arching roll or the raising of flukes) marked the 'Down' time. If more than one animal were present, these times indicated the first animal up and last animal down, respectively. An exception to this rule occurred if single individuals within a group were readily identifiable based on prominent scars or coloration, dorsal fin shape, or other highly distinctive features. In these cases, the distinguishable animals were assigned separate sighting numbers and tracked independently. Up to three different groups could be simultaneously followed and individually recorded using different sighting numbers and plot symbols.

Itinerary

The survey was conducted 06 September through 08 November, 1995. The cruise consisted of two legs, thirty days each. The main port call was in Mazatlan, Mexico with several other weekly stops in La Paz, Mexico to exchange scientific personnel at the Pichilingue Ferry Terminal. The personnel were transferred by small boat launched from the McArthur. The dates for these observer exchanges were September 12, 19, and 26, October 3, 10, 17, 24, and 31. The ship's itinerary is listed below with the port call arrival and departure dates.

Leg I:
06 SEP Depart San Diego, California
05 OCT Arrive Mazatlan, Mexico

Leg II:

10 OCT
08 NOV

Depart Mazatlan, Mexico Arrive San Diego, California

Participants

The survey was a joint research project between the United States and Mexico under the MEXUS-Pacifico agreements. Scientists from both countries participated in the survey. The scientific complement consisted of 13-15 scientists with different affiliations, as shown below, with the dates in which they participated. Week $1=6-12$ Sep., Week $2=12-19$ Sep., Week $3=19-26$ Sep., Week $4=26$ Sep. 3 Oct., Week $5=3-10$ Oct., Week $6=10-17$ Oct., Week $7=17-24$ Oct., Week $8=24-31$ Oct., Week $9=31$ Oct. -8 Nov.

Name

Dr. Jay Barlow
James Cotton
Richard Rowlett
Wesley Armstrong
Robert Pitman
Valerie Philbrick
Karin Forney
Dr. Barbara Taylor
Luis Alberto Hurtado
Zully Ojeda
Oscar Cecena-Ojeda
Miguel Palmeros
Ernesto Vazquez
Juan Carlos Salina
Isabel Hernandez
Jorge Urban Ramirez
Alberto Guillen
Luis Enriquez
Dr. Susan Chivers

Affil.	Obs.\#	Position
SWFSC	015	Chief Scientist
SWFSC	007	ID Specialist
SWFSC	073	ID Specialist
SWFSC	076	ID Specialist
SWFSC	004	ID Specialist
SWFSC	089	Oceanographer
SWFSC	086	Dive Time Leader

Week $1 \begin{array}{lllllllll}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$

x	x	x	x	x	x	x	x	x
x	x	x	x	x	x	x	x	x
x	x	x	x	x	x	x	x	x
x	x	x	x	x	x	x	x	x
x	x	x	x	x	x	x	x	x
x	x	x	x	x	x	x	x	x
		x	x	x	x	x		
							x	x

SWFSC 034 Dive Time Leader
ITESM 130 Observer
ITESM 131 Observer
INP 132 Observer
UABCS 124 Observer
UABCS 125 Observer
UABCS 126 Observer
UABCS 127 Observer
UABCS 122 Observer
UABCS 128 Observer
UABCS 129 Observer
SWFSC 029 Observer

X x x

Alexandra VonSaunder
Dr. Peter Bromirski
Dr. Steve Dawson
Don Ljungblad
Todd Chandler

S

SWFSC --- Acoustic Researcher
x x x x x x x x x
SWFSC --- Acoustic Researcher
x x x x x
SWFSC 115 Acoustic Researcher x x x x x
SWFSC 106 ID Photographer x

Note: Participant affiliation key: ITESM -Instituto Tecnologico y de Estudios Superiores de Monterey, Campus Guaymas, INP -Instituto Nacional de la Pesca in Mexico City, and UABCS Universidad Autonoma de Baja California Sur, in La Paz, B.C. Sur.

RESULTS

Effort and Sightings

A total of $6,120 \mathrm{~km}$ of tracklines were surveyed in line-transect mode ("on-effort") during 56 actual survey days (Table 2). Less than $1 / 4$ of this effort was in excellent survey conditions (Beaufort Sea State 2 or lower), but these conditions accounted for more than one third of the sightings (Table 3). Transect lines surveyed during Leg 1 and Leg 2 are shown in Figures 1 and 2 (respectively). A total of 504 "on-effort" and "off-effort" sightings were made during the survey. The complete sighting record is presented in Table 4, which includes the time, position, and estimated school size for all sightings listed by species. Figures 3 through 16 show the geographical locations of each sighting for each species. The sighting information is summarized in Table 5, which presents a breakdown of the pure and mixed schools and the average school size for each category sighted. Thirty-four different sighting categories (i.e., unidentified ziphiid, or species) of cetaceans were recorded during the CADDIS95 survey. The most commonly sighted delphinids were bottlenose dolphins, Risso's dolphins, spotted dolphins, and the two species of common dolphins (Table 5). The most common medium-sized whales were Cuvier's beaked whales, pygmy sperm whales, and various species of mesoplodont beaked whales (Table 5). Most unidentified dolphin sightings were of small groups seen very briefly and at a distance greater than 3.0 nautical miles. The most common large whales were sperm whales, Bryde's whales, and fin whales (Table 5). A variety of cetaceans were seen in mixed-species groups (38 of the total sightings were mixed school sightings), most notably spotted and spinner dolphins, bottlenose dolphins and Risso's dolphins, and bottlenose dolphins and short-finned pilot whales (Table 6).

Cetaceans were photographed during the survey when possible, for the purpose of stock and individual identification. Photographs were catalogued in a database at SWFSC for reference and analysis. The photographic record is available to other agencies and institutions by duplication through the SWFSC.

Acoustic Detection

Our attempts to acoustically detect members of the genera Ziphius, Mesoplodon, and Kogia were disappointing. We were not able to obtain any unambiguous recordings from these species. There were several signals received on hull-mounted hydrophones that could have been echo-location-type clicks from these species, but the ship itself produced sounds (probably from propeller cavitation) that were remarkably similar in wave-form and frequency to echo-location clicks, so it is difficult to be certain of what was recorded.

The most promising signals recorded in the vicinity of Cuvier's beaked whales (Ziphius cavirostris) were obtained on 23 October 1995 when three animals that we had been following for several hours surfaced within 100 m of the ship. Three long (10 msec), reverberant echo-location-type signals were recorded at this time from a hull-mounted hydrophone (with periods of 4 s and 9 s between pulses). Frequencies extended from the lower range of this hydrophone (5 KHz) to
approximately 45 KHz , with a peak frequency of approximately $15-20 \mathrm{KHz}$. Nothing was heard or recorded on many other occasions when we were in the close vicinity of this species. For example, on 20 September 1995, we encountered a group of three Cuvier's beaked whales, launched the RHIB, and lowered a hydrophone in the location where the animals were expected to surface. The three surfaced within 100 m of the small vessel (oriented with their melons pointing toward the vessel), submerged, and resurfaced on the other side of the vessel. No acoustic signals were received or recorded during this encounter. Similarly, we had several close encounters with members of the genus Mesoplodon (probably all M. peruvianus and a yet-undescribed Mesoplodon spp. A), and nothing definitive was heard or recorded.

The most promising signals recorded in the vicinity of pygmy sperm whales (Kogia simus) were obtained on 29 October 1995. Observers sighted an unusually large group of 7-9 animals rafting at the surface. The group was relatively stationary, thus the ship was guided slowly to their close proximity. Several clear echo-location-type signals were recorded from a hull-mounted hydrophone when these animals were within 500 meters of the ship. The strongest signals were recorded at regular intervals of $1.2-1.5$ seconds when the animals were approximately 200 meters away and oriented with their melons pointing toward the vessel. Frequencies extended from the lower range of this hydrophone (5 KHz) to approximately 75 KHz , with a peak frequency of approximately $15-40$ KHz . Nothing was heard or recorded on many other occasions when we were in the close vicinity of this species.

We obtained several high-quality analog recordings of Baird's beaked whales using the handdeployed hydrophones in their immediate vicinity on 7 September 1995. This group of approximately 11 individuals was seen approximately 40 nmi west of Isla Cedros on the eastern side of Baja California ($28^{\circ} 10^{\prime} \mathrm{N}, 115^{\circ} 45^{\prime} \mathrm{W}$). A wide variety of pulsed signals were recorded that varied from single echo-location-type clicks to long, rapid click sequences (Dawson, Barlow, and Ljungblad, in press). Almost all the signals showed a dominant frequency peak at 23 KHz with a secondary peak at 42 KHz . Whistles were also recorded from a sonobuoy during this time but were probably made by a group of common dolphins that passed through the area

We obtained very good signals from sperm whales using hull-mounted, hand-deployed and towed hydrophones. Our experience with this species showed that they could be reliably detected at ranges of 2-3 nmi using towed or hand-deployed hydrophones, but could only be detected at very close ranges ($<0.25 \mathrm{nmi}$) using the hull-mounted hydrophone. The hull-mounted hydrophones were also only effective when the ship was traveling relatively slowly (less than 6 knots). Limitations of the hull-mounted hydrophone were clearly related to high noise level of the ship, in particular, the impulsive sounds (clicks) that were probably caused by propeller cavitation.

Whistles and echo-location clicks were recorded from almost all of the delphinid species that were encountered: long-beaked and short-beaked common dolphins, spotted dolphins, spinner dolphins, bottlenose dolphins, killer whales, short-finned pilot whales, Risso's dolphins, roughtoothed dolphins, and (possibly) striped dolphins. These broad-banded signals (from 10 KHz up to 200 KHz) were primarily received on the ship's hull-mounted hydrophones and were recorded on the

Sun ${ }^{3}$ workstation and on the Dolch ${ }^{3}$ computer. Most of the smaller delphinids were recorded at very close range ($<200 \mathrm{~m}$) as they approached the vessel or were bow-riding. Pilot whale clicks could be heard at greater ranges, up to approximately 1 kilometer. These signals were archived by Dr. Peter Bromirski and will be analyzed and made available by him in the future.

Dive Interval Observations

Species for which dive data were collected included Baird's beaked whale, Cuvier's beaked whale, Mesoplodon beaked whales, pygmy/dwarf sperm whales (Kogia spp.), blue whale, and one large group of short-finned pilot whales (Table 8). Additional studies were attempted on sperm whales, but in the course of these studies it was determined that multiple groups of sperm whales were in the area and therefore it was not possible to follow a single group reliably. A summary of the dive and surface times is presented for all species in Table 9. Cuvier's beaked whales had the longest dives and spent the smallest percent of time at the surface. Histograms of observed dive durations for Cuvier's beaked whales, Mesoplodon spp. and Kogia spp. are presented in Figure 17. Groups with one or more calves are graphed separately from those without calves.

DISCUSSION

Acoustic Detection

Several conclusions can be drawn from our failed attempts to acoustically detect small longdiving whales (Kogia, Ziphius, and Mesoplodon). Our primary conclusion is that it is not feasible or practical to use acoustic detection to improve ship survey-based estimates of their abundance. Furthermore, we conclude that these species do not typically produce sounds (at least not during daylight hours and in the vicinity of boats) that are of sufficient amplitude to be detected by our diverse array of instruments. As we were able to record sounds from virtually all other odontocetes that we encountered, this group of species appears to be less acoustically active than most odontocetes. It is possible that the presence of our vessels changed their acoustic behavior and that they are normally as "vocal" as most cetaceans; however, this would be of little practical value for improving ship census methods. We do believe, however, that all these species are probably producing and using underwater sounds to some extent. Our visual observers frequently noted that groups that were previously separated by 1 kilometer or more would apparently aggregate underwater and surface together. It is difficult to understand how they could do this without some form of underwater communication via sound. Nonetheless, the sounds that they are (apparently) producing appear to be of no value to us in our efforts to acoustically detect them.

In contrast, the sounds produced by sperm whales are loud and easily recognizable at ranges of 2-3 nautical miles using a towed hydrophone. Hull-mounted hydrophones (which are logistically

[^0]much easier to use on a line-transect survey) do not appear to be practical due to the high levels of ship noise (but might be given further consideration for detecting submerged groups from a much quieter vessel). Sperm whales appear to produce sounds consistently when diving. As many others have suggested before, this species appears to be ideally suited to acoustic census methods. [Our laboratory applied many of the lessons learned during this CADDIS study and conducted a combined visual and acoustic census of sperm whales in the eastern temperate North Pacific in spring 1997.] Some potential may also exist for acoustically detecting Baird's beaked whales during ship surveys; however, they did not appear to be as consistent in producing sounds as are sperm whales, and the frequency range of their sounds (total range is $15-65 \mathrm{Khz}$, with a definite peak at 23 KHz) cannot be expected to propagate as far as sounds made by sperm whales (total frequency range is $500 \mathrm{~Hz}-20$ Khz , with a peak at $2-4 \mathrm{KHz}$).

Dive Interval Data

The southern Gulf of California, with relatively high densities of beaked whales and Kogia spp. and frequently calm seas, has provided a unique opportunity to obtain dive interval data on these elusive and little-known animals. The data collected during these visual dive studies are the first step toward developing correction factors for animals missed during line-transect surveys (Barlow and Sexton, 1996). However, visual dive studies have some important potential problems that could affect the quality and accuracy of the data. To minimize the potential for errors in this study, a number of subjective judgements regarding the quality of the data were made, based primarily on the data record and on observations made in the field.

One serious problem is the potential for confusing groups of animals when multiple groups of one species are in an area (a large group with smaller subgroups). In particular, this is likely to be a problem for Kogia, Baird's beaked whales, and sperm whales, which often occur in loosely associated groups. During the course of the dive studies conducted on this cruise, an attempt was made to collect data only when a high degree of certainty regarding group identification was possible. In a number of cases, dive data were collected, but later discarded when it became clear that surfacings from different groups may have been recorded. When conducting visual dive interval studies, it is therefore extremely important to note group composition and any distinctive features of individuals in the group. The computerized data entry and tracking program also proved invaluable in distinguishing groups based on location.

A second important source of error in visual dive interval studies occurs when surfacings are missed. If the first surfacing of a surface series is missed, this causes an upward bias in the estimate of dive duration and a downward bias in the estimated time at the surface. A more serious error occurs if an entire surfacing series is missed, which would cause two dives plus the missed surface period to be counted as a single, longer dive. Although in this study an attempt was made to ensure that all surfacings would be detected (by conducting studies only in adequate conditions and by having a sufficient number of observers searching), it is nonetheless likely that some first surfacings were missed, and there may be small biases in the dive data presented here. Additionally, there are a number of dives of very long duration (Figure 17) that could possibly represent two dives with a missed surface period.

LITERATURE CITED

Barlow, J., and S. Sexton. The effect of diving and searching behavior on the probablility of detecting track-line groups, g_{0}, of long-diving whales during line-transect surveys. NOAA Administrative Report LJ-96-14.

Dawson, S. M., J. Barlow, and D. Ljungblad. (In press). Sounds recorded from Baird's beaked whale, Berardius bairdi. Mar. Mamm. Sci.

Hill, P. S. and J. Barlow. 1992. Report of a marine mammal survey of the California coast aboard the research vessel McArthur July 28-November 5, 1991. NOAA Technical Memorandum NOAA-TM-NMFS-SWFSC-169. NTIS \#PB93-109908. 103pp.

Mangels, K. F. and T. Gerrodette. 1994. Report of cetacean sightings during a marine mammal survey in the eastern tropical Pacific Ocean aboard the NOAA ships McArthur and David Starr Jordan July 28 - November 2, 1992. NOAA Technical Memorandum NOAA-TM-NMFS-SWFSC-200. 74pp.

Table 1. Sighting Conditions - Sighting condition criteria for species on which dive interval data were collected. Dive studies were initiated and terminated on the basis of the likelihood of resighting the animal(s) given the combined effects of sea state, swell height, species, group size, and body size.

Species	Sighting Cues for Species	Beaufort Sea State Criteria: Start Max		Swell Height (ft)	Approach Distance (nmi)	
Blue whale Balaenoptera musculus	Distinct blow, large size, highly visible.	0-5	5	0-5	0.5-1.0	30
Sperm whale Physeter macrocephalus	Distinct blow, large size, often raft at surface and are highly visible.	0-5	5	0-5	0.5-1.0	90
Dwarf sperm whale Kogia simus	No visible blow, small size, very inconspicuous.	0-2	2	0-2	0.5	60
Baird's beaked whale Berardius bairdii	Bushy blow, large size, often raft at surface and are highly visible.	0-4	5	0-5	0.5-1.0	90
Cuvier's beaked whale Ziphius cavirostris	No visible blow, medium size, low rolling behavior.	0-4	4	0-3	0.5-1.0	90
Mesoplodon beaked whales (M. perwvianus, M. spp.)	No blow, small body, low rolling behavior.	0-2	3-4	0-3	0.5-1.0	90
Short-finned pilot whale Globicephala macrorhynchus	No or small blow, medium body size, rafting or rolling behavior.	0-3	3	0-4	0.5-1.0	30

Table 2. Kilometers of effort by day - A list of distances per day during which visual observers were on watch for target species.

Leg 1 Effort	
Date	
	Km
6 Sep 95	79.4
7 Sep 95	146.1
8 Sep 95	222.0
9 Sep 95	200.5
10 Sep 95	186.1
11 Sep 95	83.5
12 Sep 95	103.7
13 Sep 95	161.0
15 Sep 95	99.3
16 Sep 95	225.3
17 Sep 95	64.9
18 Sep 95	120.1
19 Sep 95	176.6
20 Sep 95	55.0
21 Sep 95	86.5
22 Sep 95	149.8
23 Sep 95	29.6
24 Sep 95	44.5
25 Sep 95	75.5
26 Sep 95	90.3
27 Sep 95	137.0
29 Sep 95	90.2
30 Sep 95	32.9
1 Oct 95	90.1
2 Oct 95	181.2
3 Oct 95	104.2
4 Oct 95	88.1

Leg 2 Effort	
Date	Km
10 Oct 95	102.7
11 Oct 95	194.9
12 Oct 95	136.1
13 Oct 95	108.5
14 Oct 95	115.5
15 Oct 95	84.0
16 Oct 95	54.9
17 Oct 95	88.7
18 Oct 95	82.5
19 Oct 95	11.1
20 Oct 95	50.0
21 Oct 95	106.2
22 Oct 95	38.8
23 Oct 95	82.8
24 Oct 95	74.6
25 Oct 95	121.9
26 Oct 95	157.5
27 Oct 95	74.5
28 Oct 95	107.4
29 Oct 95	97.1
30 Oct 95	151.9
31 Oct 95	110.0
1 Nov 95	108.2
2 Nov 95	78.8
3 Nov 95	79.3
4 Nov 95	134.0
5 Nov 95	159.6
6 Nov 95	163.7
7 Nov 95	122.8

Total 6121.3

Table 3. On-effort sighting summary - A list of sightings made while visual observers were on watch, by Beaufort Sea State and by Observer Number.

	Kilometers of Effort	No. of Sight	Sightings per 1000 Km
By Sea State (Beaufort)			
0	31.7	11	346.67
1	192.2	24	124.89
2	1226.5	127	103.54
3	1136.4	76	66.88
4	2657.9	153	57.56
5	761.6	50	65.65
6	115.0	4	34.79
By Observer Number			
4	3041.5	100	32.88
7	3012.8	72	23.90
15	29.1	0	0.00
73	3003.1	77	25.64
76	3085.6	105	34.03
86	688.7	18	26.14
106	25.8	0	0.00
119	487.6	5	10.25
122	727.4	16	22.00
123	587.8	4	6.81
124	356.0	3	8.43
125	346.9	7	20.18
127	247.7	4	16.15
128	147.1	3	20.39
129	205.3	3	14.61
130	849.0	12	14.13
131	708.7	8	11.29
132	40.0	0	0.00
133	191.4	4	20.90
134	342.6	2	5.84
135	351.4	2	5.69
Total	6121.3	445	72.70

Table 4. Sightings - A listing of all sightings (on- and off-effort) from the cruise, by species.

Mesoplodon peruvianus
01259

4 oct 95
832
N20:33.20
W105:23.69
1
4
2
on

Stenella attenuata (offshore)

02		31	11	Sep 95	623
02	10	44	11	Sep 95	1624
02		49	12	Sep 95	646
02	10	71	13	Sep 95	756
02		77	13	Sep 95	1543
02		128	18	Sep 95	640
02		129	18	Sep 95	651
02		158	19	Sep 95	1720
02		172	21	Sep 95	1701
02		204	27	Sep 95	828
02		208	27	Sep 95	1414
02		244	2	Oct 95	801
02		248	2	Oct 95	1253
02	10	256	3	Oct 95	1119
02	10	257	3	Oct 95	1635
02		273	10	Oct 95	1512
02		278	11	Oct 95	620
02		280	11	Oct 95	712
02	10	282	11	Oct 95	1023
02		301	14	Oct 95	1047
02		302	14	Oct 95	1309
02	10	307	15	Oct 95	1322
02		312	16	Oct 95	736
02	16	374	22	Oct 95	1605
02	10	393	26	Oct 95	759
02	10	397	26	Oct 95	1412
02	18	411	27	Oct 95	821
02		412	27	Oct 95	950
02		446	30	Oct 95	1714
02		457	31	Oct 95	1621
02	10	461	1	Nov 95	1131
02	10	463	1	Nov 95	1344
02		466	1	Nov 95	1512
02	18	471	1	Nov 95	1717

W110:59.58	0	73	65	On
W110:26.15	2	73	275	On
W110:06.36	3	123	39	On
W109:31.73	3	4	68	On
W110:02.67	5	7	28	On
W110:59.11	2	76	150	On
W110:59.10	2	76	30	On
W111:12.49	3	86	200	On
W109:55.08	2	133	15	On
W109:30.09	4	7	115	On
W109:29.87	2	4	125	On
W110:23.94	4	7	115	On
W110:09.94	3	7	73	On
W107:22.76	4	7	925	On
W107:17.53	4	7	900	On
W106:40.56	4	73	30	On
W106:53.16	3	73	6	On
W106:50.22	2	7	40	On
W106:37.79	4	73	82	On
W106:25.51	4	73	75	On
W106:39.38	4	76	63	On
W109:31.72	2	76	125	On
W109:17.39	3	7	88	On
W109:58.77	3	129	150	On
W109:34.93	2	76	55	On
W109:07.89	4	73	645	On
W108:24.91	4	4	119	On
W108:32.78	4	73	6	On
W109:24.45	4	76	45	On
W109:55.87	4	7	225	On
W109:48.31	5	76	100	On
W109:59.90	5	73	190	On
W109:53.70	4	7	450	On
W109:42.50	5	4	33	On

Delphinus (unid. spp.)

05			1	6	Sep	95
05			9	8	Sep	95
05	22		10	8	Sep	95
05			23	9	Sep	95
05			58	12	Sep	95
05			100	16	Sep	95
05			106	17	Sep	95
05			107	17	Sep	95
05	18		109	17	Sep	95
05			142	18	Sep	95
05			214	29	Sep	95
05			360	21	Oct	95
05			369	21	Oct	95
05			395	26	act	95
05			436	30	Oct	95

1852	N31:34.13
658	N28:08.61
723	N28:04.96
1453	N23:43.62
1503	N22:42.69
1555	N26:50.72
634	N27:48.18
635	N27:48.09
717	N27:41.36
1450	N26:08.68
906	N26:43.06
948	N25:51.79
1729	N25:19.69
1015	N23:00.61
827	N23:24.74

W117:02.83	2	7	30	On
W115:42.15	5	76	200	On
W115:38.12	4	4	915	On
W113:13.13	4	4	600	On
W109:32.18	2	73	35	On
W110:30.02	2	76	30	On
W111:00.31	2	125	50	On
W111:00.32	2	4	400	On
W111:00.34	1	76	100	On
W111:00.49	4	76	160	On
W111:17.30	4	76	75	On
W111:05.51	2	76	500	On
W110:50.31	4	129	120	On
W109:26.80	2	73	400	On
W109:20.67	3	76	100	On

Code	Other Codes	Sighti Number		Date	Time	Latitude	Tongitude		Obs.	School	Ef-
05		451	31	Oct 95	1133	N24:39.55	W110:27.17	3	73	15	On
05		477	2	Nov 95	1429	N23:40.71	W111: 42.43	5	119	175	On
05		490	5	Nov 95	802	N26:20.39	W114:04.02	4	73	440	On
05		496	5	Nov 95	1725	N27:21.91	W115:11.94	3	4	35	On
Stenella longirostris orientalis											
10	02	44	11	Sep 95	1624	N22:44.00	W110:26.15	2	73	275	On
10		61	12	Sep 95	1556	N22:46.07	W109:23.35	2	76	6	On
10		62	12	Sep 95	1559	N22:46.23	W109:22.84	2	76	90	On
10		63	12	Sep 95	1625	N22:46.96	W109:19.59	1	76	50	On
10		64	12	Sep 95	1630	N22:47.44	W109:18.69	1	7	55	On
10	02	71	13	Sep 95	756	N23:55.54	W109:31.73	3	4	68	On
10	90	160	20	Sep 95	71.9	N27:20.76	W111:08.51	2	125	250	On
10		203	27	Sep 95	826	N25:18.57	W109:30.07	4	76	285	Off
10	02	256	3	Oct 95	1119	N22:22.79	W107:22.76	4	7	925	On
10	02	257	3	Oct 95	1635	N22:14.49	W107:17.53	4	7	900	On
10		262	4	Oct 95	1410	N20:31.55	W105:41.98	5	4	1	On
10	02	282	11	Oct 95	1023	N21:14.68	W106:37.79	4	73	82	On
10		303	14	Oct 95	1424	N21:15.16	W106:47.16	4	76	68	On
10	02	307	15	Oct 95	1322	N22:30.37	W109:31.72	2	76	125	On
10		314	16	Oct 95	910	N23:28.44	W109:19.43	2	128	40	On
10	02	393	26	Oct 95	759	N22:42.96	W109:34.93	2	76	55	On.
10	02	397	26	Oct 95	1412	N23:22.91	W109:07.89	4	73	645	On
10		400	26	Oct 95	1530	N23:27.91	W108:58.28	4	76	30	On
10	02	461	1	Nov 95	1131	N22:52.17	W109:48.31	5	76	100	On
10	02	463	1	Nov 95	1344	$\mathrm{N} 22: 42.26$	W109:59.90	5	73	190	On
Stenella coeruleoalba											
13		45	11	Sep 95	1632	N22:43.90	W110:24.56	2	4	15	On
13		309	15	Oct 95	1432	N22:33.45	W109:40.16	2	4	12	On
13	77	316	16	Oct 95	939	N23:30.69	W109:19.87	2	4	72	On
13		437	30	Oct 95	837	N23:26.28	W109:20.55	3	131	23	On
Steno bredanensis											
15		32	11	Sep 95	624	N23:03.28	W110:59.44	0	4	7	On
15		35	11	Sep 95	847	N23:02.36	W110:57.14	0	76	17	On
15		270	10	Oct 95	1244	N22:43.91	W106:31.05	4	76	9	On
15		318	16	Oct 95	1017	N23:32.66	W109:18.95	2	4	5	Off
15	18	417	27	Oct 95	1631	N24:02.97	W108:58.97	4	76	15	Off
15		439	30	Oct 95	941	$\mathrm{N} 23: 32.62$	W109:23.18	2	76	12	Off
Delphinus capensis (long-beak)											
16		147	18	Sep 95	1558	N25:58.55	W111:02.02	2	4	650	Off
16		333	18	Oct 95	1417	N26:30.27	W111:23.34	3	7	630	On
16		334	18	Oct 95	1510	N26:33.61	W111:25.47	2	129	20	Off
16		339	18	Oct 95	1541	N26:37.94	W111:28.40	2	7	800	On
16		344	20	Oct 95	849	N28:30.12	W112:50.42	5	7	311	On
16		345	20	Oct 95	1028	N28:24.42	W112:45.95	6	7	345	On
16		346	20	Oct 95	1111	N28:21.17	W112:45.62	6	129	100	Off
16		373	22	Oct 95	1433	N24:05.76	W109:51.68	4	4	156	On
16	02	374	22	Oct 95	1605	N24:16.05	W109:58.77	3	129	150	On
16		380	24	Oct 95	948	N24:26.55	W110:29.81	5	76	50	On
16		385	25	Oct 95	1006	N23:06.40	W109:23.64	4	7	190	On
Delphinus delphis (short-beak)											
17		2	7	Sep 95	925	N28:53.48	W115:54.06	4	73	48	On
17		5	7	Sep 95	1159	N28:44.88	W115:51.32	4	86	40	On
17		14	8	Sep 95	1123	N27:36.47	W115:11.93	5	4	350	On

Code	Other Codes	Sighting Number		Date		Time	Latitude	Longitude	Bft.	$\begin{array}{r} \text { Obs. } \\ \text { no. } \end{array}$	School size	$\begin{array}{r} \text { Ef- } \\ \text { fort } \end{array}$
17		25	10	Sep	95	1421	N24:07.55	W113:02.81	4	4	45	On
17		27	10	Sep	95	1520	N24:03.91	W112:51.79	3	4	300	On
17		465	1	Nov	95	1436	N22:40.29	W109:55.00	4	122	410	Off
17		472	2	Nov	95	652	N23:24.47	W111:15.63	5	76	33	On
17		481	3	Nov	95	722	N25:13.45	W113:15.01	4	122	55	On
17		487	4	Nov	95	1350	$\mathrm{N} 24: 13.16$	W112:30.51	2	76	1200	On
17		488	4	Nov	95	1352	N24:13.55	W112:30.65	2	4	25	Off
17		495	5	Nov	95	1651	N27:18.97	W115:06.85	4	76	235	On
17		501	6	Nov	95	1642	N28:38.13	W115:40.39	4	4	283	On
17		503	7	Nov	95	851	N29:19.46	W116:19.26	5	76	558	On
17		504	7	Nov	95	1308	N29:46.77	W116:46.63	5	76	500	On
17		506	7	Nov	95	1622	N29:58.29	W117:01.09	5	76	17	Off

Tursiops truncatus

18		22	9	Sep	95	1203	N23:35.16	W113:32.68	4	123	20	On
18		54	12	Sep	95	1229	N22:40.97	W109:48.59	4	7	15	On
18		82	16	Sep	95	652	N25:17.58	W110:30.16	2	7	8	On
18		85	16	Sep	95	703	N25:19.63	W110:30.16	2	76	8	On
18		88	16	Sep	95	1000	N25:51.61	W110:30.14	3	73	14	On
18		93	16	Sep	95	1448	N26:39.39	W110:30.35	2	7	85	On
18		94	16	Sep	95	1458	N26:41.01	W110:30.28	2	76	36	On
18		95	16	Sep	95	1520	N26:44.82	W110:30.15	2	125	2	On
18		96	16	sep	95	1527	N26:46.07	W110:30.12	2	4	15	On
18		97	16	Sep	95	1531	N26:46.58	W110:30.10	2	4	30	On
18		98	16	Sep	95	1546	N26:49.20	W110:30.05	2	125	25	On
18		99	16	Sep	95	1553	N26:50.46	W110:30.02	2	130	6	On
18		102	16	Sep	95	1607	N26:52.94	W110:29.97	2	76	3	On
18		103	16	Sep	95	1610	N26:53.47	WI10:29.95	2	76	2	On
18	05	109	17	Sep	95	717	N27:41.36	W111:00.34	1	76	100	On
18		110	17	Sep	95	721	N27:40.63	W111:00.30	1	76	20	On
18		111	17	Sep	95	729	N27:39.31	W111:00.26	1	130	200	On
18		112	17	Sep	95	741	N27:37.30	W111:00.22	1	76	75	On
18	21	113	17	Sep	95	819	N27:31.09	W111:00.06	2	73	55	On
18	36	137	18	Sep	95	1300	N26:21.14	W111:00.04	3	73	54	On
18	21	149	19	Sep	95	850	N27:19.81	W111:30.06	5	7	80	n
18		151	19	Sep	95	11.34	N27:44.62	W111:29.98	4	130	8	On
18		155	19	Sep	95	1543	N27:48.90	W111:22.47	3	7	10	On
18		156	19	Sep	95	1554	$\mathrm{N} 27: 47.25$	W111:21.17	3	73	10	On
18		157	19	Sep	95	1634	N27:41.68	W111:17.12	3	76	3	On
18	46	180	24	Sep	95	658	N27:28.51	W111:39.95	4	133	170	On
18	36	183	24	Sep	95	1556	N27:18.51	W112:03.10	3	73	325	Off
18	36	187	25	Sep	95	1258	N27:28.85	W112:11.07	4	127	200	On
18	36	189	25	Sep	95	1430	N27:19.05	W112:01.90	4	127	105	On
18	21	194	26	Sep	95	647	N27:19.56	W111:12.57	3	73	90	On
18	21	199	27	Sep	95	735	N25:27.20	W109:29.88	4	130	40	On
18		201	27	Sep	95	75.5	N25:23.80	W109:29.94	4	7	120	On
18		211	29	Sep	95	641	N26:22.91	W111:00.60	4	73	35	On
18		212	29	Sep	95	717	N26:28.11	W111:04.60	4	76	22	On
18		217	29	Sep	95	1045	N26:49.59	W111:28.32	4	7	80	Off
18		220	29	Sep	95	1748	N27:07.80	W111:39.73	4	7	110	On
18		223	30	Sep	95	649	N27:33.45	W111: 49.55	5	7	155	On
18		241	1	Oct	95	1554	N27:01.35	W111:37.23	4	4	23	On
18		243	1	Oct	95	1720	N26:49.33	W111:26.42	4	73	500	On
18		264	4	Oct	95	1607	N20:46.99	W105:46.55	5	76	19	On
18		277	10	Oct	95	1729	N22:00.77	W106:49.48	3	76	7	On
18		279	11	Oct	95	700	N21:46.12	W106:51.37	2	76	3	On
18		321	17	Oct	95	1023	$\mathrm{N} 24: 32.36$	W110:30.07	4	4	28	On
18		326	18	Oct	95	1005	N26:02.21	W上11: 15.34	2	7	66	On
18		327	18	Oct	95	1030	N26:03.37	W111:14.86	3	73	75	On

Code	Other codes	Sighting Number		Date	Time	Latitude	Longitude		Obs. no.	School size	$\begin{array}{r} \text { Ef- } \\ \text { fort } \end{array}$
18	46	340	19	Oct 95	701	N27:10.88	W111:35.71	5	76	112	On
18		350	21	Oct 95	706	N26:08.99	W111:08.88	2	76	27	On
18		356	21	Oct 95	853	N25:57.55	W111:01.96	2	73	16	On
18		357	21	Oct 95	900	N25:56.76	W111:02.78	2	131	40	On
18		362	21	Oct 95	953	N25:51.28	W111:04.73	2	4	35	On
18	36	365	21	Oct 95	1259	N25:47.27	W110:58.73	3	76	65	On
18		372	22	Oct 95	1308	N24:06.00	W109:42.06	3	7	304	On
18		382	24	Oct 95	1147	N24:38.53	W110:22.58	5	73	25	On
18		386	25	Oct 95	1048	N23:03.40	W109:26.41	2	73	9	On
18		387	25	Oct 95	1059	N23:03.61	W109:28.07	2	73	35	On
18		388	25	Oct 95	1101	N23:03.41	W109:28.36	2	73	65	On
18		390	25	Oct 95	1154	N22:58.43	W109:35.92	2	4	25	On
18		394	26	Oct 95	851	N22:51.32	W109:35.08	2	4	130	On
18	02	411	27	Oct 95	821	N24:18.16	W108:24.91	4	4	119	On
18	21	413	27	Oct 95	1006	N24:12.17	W108:35.36	4	131	157	On
18	15	417	27	Oct 95	1631	N24:02.97	W108:58.97	4	76	15	Off
18		441	30	Oct 95	1358	N24:03.07	W109:42.59	3	73	7	On
18		442	30	Oct 95	1509	N24:08.95	W109:31.95	4	124	20	On
18		448	31	Oct 95	1041	N24:31.57	W110:30.67	3	73	2	On
18		450	31	Oct 95	1049	N24:32.72	W110:30.23	3	7	45	On
18		458	31	Oct 95	1628	N24:09.37	W109:55.19	4	7	225	On
18		460	1	Nov 95	1013	N22:58.33	W109:35.70	2	122	148	On
18	02	471	1	Nov 95	1717	N22:37.63	W109:42.50	5	4	33	On
18	77	480	2	Nov 95	1646	N23:48.47	W111:51.67	4	4	75	On
18		484	3	Nov 95	1210	N24:45.18	W113:11.77	3	122	10	On
Grampus griseus											
21		41	11	Sep 95	1357	N22:44.59	W110:32.09	3	76	2	On
21		57	12	Sep 95	1439	N22:41.29	W109:36.21	2	7	12	On
21		59	12	Sep 95	1531	N22:44.45	W109:27.55	2	73	10	On
21		78	13	Sep 95	1551	N24:46.06	W110:02.98	4	86	22	On
21		79	13	Sep 95	1750	N24:57.98	W110:08.29	4	4	5	On
21		83	16	Sep 95	655	N25:18.32	W110:30.19	2	76	28	On
21		86	16	Sep 95	709	N25:20.71	W110:30.09	2	7	11	On
21		90	16	Sep 95	1424	N26:35.22	W110:30.51	2	73	85	On
21		91	16	Sep 95	1429	N26:36.05	W110:30.45	2	73	20	On
21	18	113	17	Sep 95	819	N27:31.09	W111:00.06	2	73	55	On
21		114	17	Sep 95	842	N27:27.36	W110:59.96	2	130	20	On
21		115	17	Sep 95	844	N27:26.91	W110:59.98	2	7	11	On
21		116	17	Sep 95	849	N27:26.14	W110:59.96	2	125	10	Off
21		117	17	Sep 95	858	N27:24.86	W110:59.82	1	7	19	Off
21		122	17	Sep 95	1228	N27:22.33	W110:59.96	0	76	1600	On
21		123	17	Sep 95	1247	N27:18.97	W110:59.66	0	7	10	On
21		131	18	Sep 95	837	N26:46.74	W110:59.34	2	73	90	On
21		132	18	Sep 95	838	N26:46.63	W110:59.34	2	73	20	On
21		134	18	Sep 95	857	N26:43.44	W110:59.42	2	7	12	On
21	18	149	19	Sep 95	850	N27:19.81	W111:30.06	5	7	80	On
21		152	19	Sep 95	1415	N27:54.07	W111:25.81	4	76	30	On
21		154	19	Sep 95	1537	N27:49.82	W111:23.08	3	7	5	On
21		161	20	Sep 95	743	N27:16.61	W111:08.53	2	73	5	On
21		175	22	Sep 95	1514	N27:17.45	W111:00.10	4	76	188	On
21		177	23	Sep 95	638	N27:21.96	W111:15.07	4	76	50	On
21		188	25	Sep 95	1327	N27:25.94	W112:07.73	4	76	26	On
21	18	194	26	Sep 95	647	N27:19.56	W111:12.57	3	73	90	On
21.		197	26	Sep 95	1643	N26:52.86	W110:55.89	4	7	200	On
21	18	199	27	Sep 95	735	N25:27.20	W109:29.88	4	130	40	On
21		200	27	Sep 95	739	N25:26.52	W109:29.91	4	73	70	On
21		202	27	Sep 95	811	N25:21.21	W109:30.05	4	7	30	On
21		225	30	Sep 95	757	N27:44.57	W111:49.01	4	76	50	On

Code	Other codes	Sightin Number		Date		Time	Latitude	Longitude B		$\begin{array}{r} \text { Obs. } \\ \text { no. } \end{array}$	School size	$\begin{aligned} & \text { Ef- } \\ & \text { fort } \end{aligned}$
21	77	250	2	Oct	95	1339	N24:24.41	W110:08.05	3	76	425	On
21		299	14	Oct	95	846	N21:06.99	W106:21.05	3	76	30	Off
21		300	14	Oct	95	1003	N21:06.96	W106:22.24	4	131	45	On
21		322	17	Oct	95	1222	N24:51.82	W110:23.60	3	76	51	On
21	18	413	27	Oct	95	1006	N24:12.17	W108:35.36	4	131	157	On
21		418	28	Oct	95	729	N23:59.40	W108:56.90	2	4	6	On
21		443	30	Oct	95	1516	N24:09.58	W109:30.77	4	7	8	On
21		444	30	Oct	95	1518	N24:09.71	W109:30.54	4	73	15	On
21		445	30	Oct	95	1638	N24:11.13	W109:26.81	4	4	300	On
Lagenorhynchus obliguidens												
22	0577	10	8	Sep	95	723	N28:04.96	W115:38.12	4	4	915	On
22		11	8	Sep	95	851	N27:59.23	W115:32.39	4	73	85	On
Globicephala macrorhvnchus												
36		8	8	Sep	95	649	N28:09.12	W115: 43.72	5	76	31	On
36		69	12	Sep	95	1825	N22:55.14	W109:17.83	1	73	25	Off
36		74	13	Sep	95	1314	N24:35.03	WIO9:58.24	5	4	40	On
36		136	18	Sep	95	1022	N26:30.25	W110:59.98	3	4	49	On
36	18	137	18	Sep	95	1300	N26:21.14	W111:00.04	3	73	54	On
36		170	21	Sep	95	1305	N24: 40.34	W110:23.70	4	4	35	On
36	18	183	24	Sep	95	1556	N27:18.51	W112:03.10	3	73	325	Off
36	18	187	25	Sep	95	1258	N27:28.85	W112:11.07	4	127	200	On
36	18	189	25	Sep	95	1430	N27:19.05	W112:01.90	4	127	105	On
36		191	25	Sep	95	1625	N27:06.11	W111:54.06	4	7	50	On
36	18	365	21	Oct	95	1259	N25:47.27	W110:58.73	3	76	65	On
36		485	3	Nov	95	1213	N24:44.67	W113:11.86	3	4	43	On
36		492	5	Nov	95	1232	N26:53.89	W114:36.05	2	76	25	On
36		493	5	Nov	95	1331	N27:00.41	W114:44.35	2	119	15	On
36	77	499	6	Nov	95	1207	N28:12.36	W115:45.74	4	7	33	On
36		500	6	Nov	95	1246	N28:14.27	W115:42.63	4	4	25	On
orcinus orca												
37		72	13	Sep	95	814	N23:58.56	W109:33.59	3	86	2	On
37		323	17	Oct	95	1516	N25:15.48	W110:29.49	4	129	14	On
37		366	21	Oct	95	1336	N25:43.91	W110:58.85	3	129	5	Off
37		424	28	Oct	95	1155	N23:47.51	W109:19.39	2	73	2	Off
37		426	28	Oct	95	1242	N23:44.30	W109:25.94	1	73	1	On
37		494	5	Nov	95	1448	N27:08.45	W114:54.38	4	4	3	On
37		502	6	Nov	95	1652	$\mathrm{N} 28: 39.42$	W115:41.42	4	4	5	On
Physeter macrocephalus												
46		30	10	Sep	95	1719	N23:58.85	W112:29.40	3	7	2	On
46		50	12	Sep	95	701	N22:41.90	W110:03.59	4	7	13	On
46		173	22	Sep	95	835	N26:37.27	W110:59.17	4	4	1	On
46		179	23	Sep	95	922	N27:23.50	W111:31.14	4	127	20	On
46	18	180	24	Sep	95	658	N27:28.51	W111:39.95	4	133	170	On
46		216	29	Sep	95	1000	N26:51.01	W111:23.65	4	7	25	On
46		221	29	Sep	95	1751	N27:08.19	W111:40.04	4	7	18	On
46		222	30.	Sep	95	642	N27:32.24	W111:49.58	5	7	39	On
46		224	30	Sep	95	711	N27:37.04	W111:49.47	4	4	15	On
46		227	1	Oct	95	659	$\mathrm{N} 27: 36.98$	W111:48.70	4	122	3	On
46		228	1	Oct	95	701	N27:36.59	W111:48.59	4	122	1	On
46		229	1	Oct	95	707	N27:35.69	W111:48.33	4	122	1	On
46		230	1	Oct	95	710	N27:35.24	W111: 48.18	4	122	1	On
46		231	1	Oct	95	718	N27:33.92	W111:47.69	4	130	1	On
46		232	1	Oct	95	802	N27:27.22	W111:44.69	4	4	1	On
46		233	1	Oct	95	806	$\mathrm{N} 27: 26.63$	W111:44.36	4	4	3	On
46		235	1	Oct	95	1052	$\mathrm{N} 27: 10.60$	W111:38.98	4	4	4	On

Code	Other codes	Sighti Number		Date		Time	Latitude	Longitude B		Obs. no.	Schoo size	$\begin{aligned} & \text { Ef- } \\ & \text { fort } \end{aligned}$
46		236	1	Oct	95	1058	N27:09.55	W111:39.21	4	122	18	On
46		237	1	Oct	95	1108	N27:07.78	W111:39.55	4	122	2	On
46		238	1	Oct	95	1532	N27:04.28	W111:40.21	5	122	1	Off
46		239	1	Oct	95	1538	N27:03.43	W111:39.35	5	122	3	Off
46		240	1	Oct	95	1540	N27:03.23	W111:39.15	5	122	10	Off
46		306	15	Oct	95	638	N22:25.05	W109:17.96	3	73	10	On
46	18	340	19	Oct	95	701	N27:10.88	W111:35.71	5	76	112	On
46		416	27	Oct	95	1357	N24:03.87	w108:48.17	4	76	15	On
46		421	28	Oct	95	936	N23:54.58	W109:04.67	2	76	7	On
46		429	28	Oct	95	1646	N23:54.12	W109:42.11	3	7	6	Off
Kogia simus												
48		39	11	Sep	95	1114	N22:51.44	W110:43.68	1	4	1	On
48		119	17	Sep	95	923	N27:22.81	W110:59.50	0	76	1	Off
48		120	17	Sep	95	951	N27:22.32	W110:59.24	0	76	2	Off
48		125	17	Sep	95	1249	N27:18.53	W110:59.66	0	7	2	On
48		126	17	Sep	95	1323	$\mathrm{N} 27: 17.43$	W110:58.94	0	7	1	Off
48		166	20	Sep	95	1258	N26:52.80	W111:09.00	2	4	1	Off
48		186	25	Sep	95	719	N27:32.01	W112:08.47	2	4	3	On
48		210	27	Sep	95	1648	N24:26.40	W109:36.42	2	4	4	Off
48		247	2	Oct	95	1142	N24:34.14	W110:11.98	2	4	1	On
48		249	2	Oct	95	1300	N24:28.12	w110:09.45	3	73	2	On
48		260	4	Oct	95	947	N20:34.17	W105:25.14	1	130	1	Off
48	80	268	10	Oct	95	939	N22:45.89	W106:30.95	1	76	6	On
48		288	12	Oct	95	946	N20:34.18	W105:37.46	2	73	1	On
48		375	23	Oct	95	1021	N23:39.57	W109:26.92	2	4	1.	On
48		420	28	Oct	95	835	N23:56.44	W109:01.05	2	7	1	Off
48		430	29	Oct	95	642	N24:01.45	W109: 43. 32	2	73	2	On
48		431	29	Oct	95	922	N23:54.97	W109:43.40	2	131	1	On
48		432	29	Oct	95	929	N23:54.03	W109:42.98	2	4	5	On
48		433	29	Oct	95	932	N23:53.61	W109:42.80	2	15	10	Off
48		435	29	Oct	95	1406	N23:44.22	W109:37.35	1	76	5	On
48		455	31	Oct	95	1424	N24:25.52	W110:08.97	4	73	2	On
ziphiid whale												
49		15	8	Sep	95	1426	N27:06.28	W114: 47.33	6	73	1	On
49		153	19	Sep	95	1439	N27:50.62	W111:23.51	4	86	1	On
49		159	19	Sep	95	1801	N27:29.52	W111:08.22	2	86	4	On
49		171	21	Sep	95	1507	N24:48.48	W110:07.28	4	4	1	On
49		281	11	Oct	95	1005	N21:18.06	W106:37.73	4	73	1	On
49		396	26	Oct	95	1132	N23:12.19	W109:24.51	4	131	1	On
49		423	28.	Oct	95	1100	N23:48.02	W109:18.13	2	124	3	On
49		434	29	Oct	95	1304	N23:52.07	W109:41.02	2	76	1	On
Mesoplodon spo.												
51		3	7	Sep	95	1000	N28: 47.71	W115:52.74	4	7	4	On
51		73	13	Sep	95	855	N24:05.50	W109:37.77	3	123	1	On
51		205	27	Sep	95	906	N25:16.82	W109:31.77	4	4	1	On
51		206	27	Sep	95	1348	N24:31.90	W109:29.98	3	76	1	On
51		370	22	Oct	95	641	N24:08.88	W109:33.46	1	73	2	On
51		428	28	Oct	95	1554	N23:54.10	W109:40.96	3	73	3	Off
Ziphius cavirostris												
61		118	17.	Sep	95	907	N27:23.19	W110:59.77	1	73	7	Off
61		124	17	Sep	95	1249	N27: 18.53	W110:59.66	0	7	3	On
61		164	20	Sep	95	1001	N26:56.70	W111:06.61	1	73	1	On
61		165	20	Sep	95	1124	N26:54.27	W111:06.63	2	4	3	Off
61		176	22	Sep	95	1706	N27:21.59	W111:13.53	4	130	3	On
61		178	23	Sep	95	718	N27:23.46	W111:22.49	4	76	2	On

Code	Other Codes	Sighting Number		Date		Time	Latitude	Longitude B	Bft.	$\begin{aligned} & \text { Obs. } \\ & \text { no. } \end{aligned}$	$\begin{aligned} & \text { Schoo } \\ & \text { size } \\ & \hline \end{aligned}$	$\begin{array}{r} \text { Ef- } \\ \text { fort } \end{array}$
61		190	25	Sep	95	1457	N27:15.93	W112:00.07	4	130	2	On
61		195	26	Sep	95	800	N27:08.44	W111:05.43	3	73	3	On
61		196	26	Sep	95	1402	N27:03.26	W111:02.25	4	130	2	On
61		209	27	Sep	95	1547	N24:27.23	W109:36.01	2	133	2	On
61		261	4	Oct	95	1324	N20:33.55	W105:34.04	5	76	1	On
61		295	13	Oct	95	849	N20:31.38	W1.05:44.02	3	128	3	On
61		296	13	Oct	95	1328	N20:31.02	W105: 46.79	3	134	1	On
61		297	13	Oct	95	1722	N20:52.18	W106:08.85	3	7	2	On
61		317	16	Oct	95	956	N23:32.91	W109:19.29	2	76	5	Off
61		320	16	Oct	95	1627	N23:39.27	W109:22.63	2	4	3	On
61		376	23	Oct	95	1050	N23:37.69	W109:26.78	2	73	3	Off
61		377	23	Oct	95	1112	N23:37.11	W109:26.79	2	34	1	Off
61		379	23	Oct	95	1553	N23:33.56	W109:13.33	0	73	2	Off
61		419	28	Oct	95	749	N23:57.78	W109:00.02	2	73	1	On
61		427	28	Oct		1445	N23:53.32	W109:38.40	3	124	2	

Berardius bairdii
63
63
63

Balaenoptera spp.

70	18	9	Sep 95	812	N23:59.55	
70	56	12	Sep 95	1335	N22:41.15	
70	75	13	Sep 95	1432	N24:38.00	
70	81	15	Sep 95	1555	N24:48.18	
70	141	18	Sep 95	1448	N26:09.12	
70	162	20	Sep 95	903	N27:03.27	
70	181	24	Sep 95	1454	N27:24.52	
70	182	24	Sep 95	1536	N27:18.41	
70	192	25	Sep 95	1632	N27:05.33	
70	198	26	Sep 95	1747	N26:43.26	
70	226	30	Sep 95	827	N27:49.57	
70	246	2	Oct 95	1120	N24:37.65	
70	253	2	Oct 95	1721	N24:05.22	
70	332	18	Oct 95	1341	N26:25.04	
70	342	20	Oct 95	654	N28:44.32	
70	343	20	Oct 95	721	N28:41.78	
70	358	21	Oct 95	938	N25:52.76	
70	367	21	Oct 95	1558	N25:33.72	
70	368	21	Oct 95	1628	N25:28.96	
70	399	26	Oct 95	1526	N23:27.49	
70	407	27	Oct 95	634	N24:26.96	
70	462	1	Nov 95	1315	N22:43.26	
70	464	1	Nov 95	1427	N22:41.54	
70	467	1	Nov 95	1512	N22:38.25	
70	468	1	Nov 95	1517	N22:38.01	
70	75	469	1	Nov 95	1538	N22:36.77
70	475	2	Nov 95	830	N23:32.49	

W115:44.93	5	86	11	On
W115:44.78	5	4	3	Off
W116:55.68	5	119	10	On

Balaenoptera edeni

72	
72	1
72	1
72	3
72	32
72	
72	

| 36 | 11 | Sep 95 |
| ---: | :--- | :--- | :--- |
| 55 | 12 | Sep 95 |
| 76 | 13 | Sep 95 |
| 80 | 15 | Sep 95 |
| 145 | 18 | Sep 95 |
| 163 | 20 | Sep 95 |
| 310 | 16 | Oct 95 |
| 324 | 18 | Oct 95 |

849	$\mathrm{~N} 23: 02.08$
1328	$\mathrm{~N} 22: 41.51$
1440	$\mathrm{~N} 24: 39.50$
1443	$\mathrm{~N} 24: 36.11$
1558	$\mathrm{~N} 25: 58.55$
924	$\mathrm{~N} 26: 59.62$
728	$\mathrm{~N} 23: 20.47$
728	$\mathrm{~N} 25: 50.10$

$W 110: 56.79$
WIO9:45.26
W110:01.31
W110:29.23
W111:02.02
W11I:08.02
$W 109: 17.28$
$W 111: 16.83$

4	2	Off
76	1	On
86	1	On
125	1	On
4	1	Off
130	1	On
76	1	On
76	1	Off

	Other Codes	SightingNumber		Date		Time	Latitude	Longitude	Bft.	Obs. no.	School Efsize fort	
Code												
72		325	18	Oct	95	956	N26:01.31	W111:15.60	3	73	1	On
72		329	18	Oct	95	1117	N26:07.57	W111:10.17	3	76	1	On
72		331	18	Oct	95	1147	N26:11.99	W111:12.70	3	76	1	On
72		336	18	Oct	95	1531	N26:36.46	W111:27.42	2	76	1	On
72		337	18	Oct	95	1538	N26:37.52	W111:28.09	2	76	1	On
72		338	18	Oct	95	1540	N26:37.72	W111:28.25	2	76	2	On
72		359	21	Oct	95	944	N25:52.18	W111:06.06	2	76	2	On
72		364	21	Oct.	95	1022	N25:48.83	W111:00.80	2	4	1	On
72	75	391	25	Oct	95	1508	N22:41.86	W109:39.72	4	73	4	On
72		403	26	Oct	95	1601	N23:30.77	W108:53.98	5	4	5	On
72	70	407	27	Oct	95	634	N24:26.96	W108:09.30	3	76	2	On
Balaenoptera borealis												
73		355	21	Oct	95	843	N25:58.35	W111:01.69	2	131	1	Off
Balaenoptera physalus												
74		127	17	Sep	95	1819	N27:09.32	W110:58.98	1	76	1	On
74		138	18	Sep	95	1309	N26:19.59	W111:00.45	3	73	1	On
74		144	18	Sep	95	1539	N26:01.07	W110:59.87	2	4	1	On
74		146	18	Sep	95	1558	N25:58.55	W111:02.02	2	4	4	Off
74		167	20	Sep	95	1321	N26:53.09	W111:11.17	2	7	1	Off
74		168	21	Sep	95	956	N24:25.04	W110:28.99	1	130	2	Off
74		184	24	Sep	95	1609	N27:18.36	W112:05.32	3	133	1	Off
74		308	15	Oct	95	1355	N22:31.40	W109:33.40	2	76	2	On
74		389	25	Oct	95	1110	N23:02.57	W109:29.72	2	76	1	On
74		456	31	Oct	95	1505	N24:20.14	W110:04.26	4	122	1	On
Balaenoptera musculus												
75		20	9	Sep	95	932	N23:49.33	W113: 45.51	5	73	2	On
75		42	11	Sep	95	1401	N22:44.54	W110:31.47	3	123	2	On
75	72	391	25	Oct	95	1508	N22:41.86	W109:39.72	4	73	4	On
75	70	469	1	Nov	95	1538	N22:36.77	W109: 49.03	4	119	4	On
75		470	1	Nov	95	1714	N22:37.54	W109:43.08	5	4	1	On
75		476	2	Nov	95	939	N23:37.89	W111:38.24	5	122	3	On
75		478	2	Nov	95	1448	N23:42.19	W111:45.28	5	7	1	On
75		482	3	Nov	95	730	N25:12.16	W113:15.08	4	122	1	On
75		486	3	Nov	95	1435	N24:38.29	W113:19.46	3	73	1	Off
Megaptera novaeangliae												
76		459	1	Nov	95	649	N23:06.41	W109:23.83	3	73	3	On
unid. dolphin												
77	2205	10	8	Sep	95	723	N28:04.96	W115:38.12	4	4	915	On
77		12	8	Sep	95	902	N27:57.54	W115:30.86	4	4	2	On
77		13	8	Sep	95	906	N27:56.98	W115:30.37	4	4	8	On
77		16	8	Sep	95	1513	N27:04.22	W114: 46.54	6	4	6	On
77		17	8	Sep	95	1843	N26:29.96	W114:18.18	5	76	3	On
77		19	9	Sep	95	841	N23:58.82	W113:50.18	5	7	40	On
77		26	10	Sep	95	1515	N24:04.12	W112:52.73	4	4	15	On
77		28	10	Sep	95	1532	N24:03.31	W112:49.51	3	4	30	On
77		29	10	Sep	95	1600	N24:02.17	W112:44.27	3	7	80	On
77		34	11	Sep	95	838	N23:03.38	W110:58.45	0	76	55	On
77		37	11	Sep	95	937	N23:00.20	W110:55.03	0	86	50	On
77		38	11	Sep	95	1059	N22:53.29	W110:45.89	1	73	6	On
77		40	11	Sep	95	1321	N22:46.16	W110:38.69	3	4	12	On
77		43	11	Sep	95	1622	N22:44.04	W110:26.63	3	86	3	On
77		46	11	Sep	95	1703	$\mathrm{N} 22: 43.35$	W110:19.59	2	7	30	On
77		47	11	Sep	95	1721	$\mathrm{N} 22: 43.53$	W110:15.97	7-2	86	50	On
77		48	11	Sep	95	1824	N22: 42.38	W110:08.34	2	4	6	On

Code	Other Codes	Sighting Number		Date		Time	Latitude	Longitude B		Obs. no.	School size	$\begin{aligned} & \text { Ef- } \\ & \text { fort } \end{aligned}$
77		51	12	Sep	95	1054	N22:43.55	W110:05.94	4	76	10	On
77		52	12	Sep	95	1102	N22:43.31	W110:04.67	4	86	3	On
77		53	12	Sep	95	1146	N22:42.05	W109:56.68	4	76	5	On
77		60	12	Sep	95	1533	N22:44.60	W109:27.15	2	86	3	On
77		66	12	Sep	95	1704	N22:53.13	W109:17.84	1	4	20	On
77		67	12	Sep	95	1706	N22:53.34	W109:17.81	1	86	2	On
77		70	13	Sep	95	636	N23:42.65	W109:24.17	1	86	1	On
77		84	16	Sep	95	701	N25:19.30	W110:30.17	2	7	10	On
77		87	16	Sep	95	740	N25:26.42	W110:29.95	2	125	2	On
77		89	16	Sep	95	1111	N26:04.65	W110:29.91	3	7	20	On
77		92	16	Sep	95	1443	N26:38.45	W110:30.39	2	76	50	On
77		101	16	Sep	95	1559	N26:51.41	W110:29.99	2	76	15	On
77		104	16	Sep	95	1656	N27:01.34	W110:30.82	2	73	15	On
77		105	16	Sep	95	1819	N27:14.61	W110:39.15	2	73	15	On
77		130	18	Sep	95	656	N27:05.19	W110:59.12	2	130	1	On
77		133	18	Sep	95	848	N26:44.82	W110:59.40	2	125	12	On
77		135	18	Sep	95	949	N26:35.69	W110:59.45	2	76	1	On
77		139	18	Sep	95	1441	N26:10.19	W111:00.77	4	76	30	On
77		140	18	Sep	95	1446	N26:09.42	W111:00.63	4	76	20	On
77		143	18	Sep	95	1518	N26:04.14	W110:59.84	2	4	1	On
77		148	19	Sep	95	737	N27:08.51	W111:29.94	5	7	1	On
77		150	19	Sep	95	938	N27:25.99	W111:29.19	4	86	50	On
77		185	25	Sep	95	701	$\mathrm{N} 27: 33.87$	W112:10.59	2	127	5	On
77		193	26	Sep	95	640	N27:20.65	W111:13.28	3	4	50	On
77		207	27	Sep	95	1354	N24:30.80	W109:29.89	3	4	15	On
77		213	29	Sep	95	724	N26:29.08	W111:05.51	4	7	10	On
77		218	29	Sep	95	1618	N26:56.72	W111:30.78	4	4	5	On
77		219	29	Sep	95	1623	N26:57.45	W111:31.38	4	122	20	On
77		242	1	oct	95	1717	N26:49.72	W111:26.78	4	122	25	On
77		245	2	Oct	95	1108	N24:39.44	W110:14.32	3	130	35	On
77	21	250	2	Oct	95	1339	N24:24.41	W110:08.05	3	76	425	On
77		251	2	Oct	95	1339	N24:24.41	W110:08.05	3	76	30	On
77		254	3	Oct	95	638	N22:58.35	W107:58.35	4	73	18	On
77		255	3	Oct	95	715	N22:53.62	W107:53.66	4	7	1	On
77		269	10	Oct	95	1014	N22:45.39	W106:31.37	1	76	2	Off
77		271.	10	Oct	95	1342	N22:38.60	W106:33.78	4	135	200	On
77		272	10	Oct	95	1357	N22:36.09	W106:35.05	4	4	30	On
77		274	10	Oct	95	1547	N22:17.33	W106:43.00	4	73	200	On
77		275	10	Oct	95	1618	N22:12.27	W106:45.04	4	76	200	On
77		276	10	Oct	95	1709	N22:04.01	W106:48.21	4	76	4	On
77		284	12	Oct	95	715	N20:32.94	W105:26.48	2	4	2	On
77		289	12	Oct	95	1112	N20:37.49	W105:28.83	2	128	2	On
77		294	13	Oct	95	839	N20:31.43	W105:42.00	3	7	3	On
77		304	14	Oct	95	1608	N21:20.98	W106:53.35	4	73	25	On
77		305	14	Oct	95	1620	N21:22.54	W106:54.24	4	73	10	On
77		315	16	Oct	95	935	N23:30.02	W109:19.73	3	4	5	On
77	13	316	16	Oct	95	939	N23:30.69	W109:19.87	2	4	72	On
77		319.	16	Oct	95	1501	N23:30.70	W109:21.31	2	73	3	On
77		347	20	Oct	95	1558	N27:39.72	W112:26.47	6	129	250	Off
77		349	21	Oct	95	646	N2 6:10.12	W111:12.14	2	76	2	On
77		361	21	Oct	95	952	N25:51.45	W111:04.99	2	4	5	On
77	98	363	21	Oct	95	954.	N25:51.22	W111:04.64	- 2	4	43	On
77		381	24	Oct	95	1115	N24:39.09	W110:27.45	5	73	25	On
77		392	26	Oct	95	735	N22:39.06	W109:35.01	3	4	20	On
77		404	26	Oct	95	1644	N23:33.23	W108: 48.35	5	73	40	On
77		405	26	Oct	95	1649	N23:33.70	W108:47.67	75	4	100	On
77		406	26	Oct	95	1702	N23:34.94	W108:45.78	5	73	20	On
77		408	27	Oct	95	724	N24:22.66	W108:16.55	5. 4	4	8	Off
77		409	27	Oct	95	727	$\mathrm{N} 24: 22.45$	W108:16.96	64	76	15	

Code	Other Codes	Sighting Number		Date		$\frac{\text { Time }}{812}$	$\frac{\text { Latitude }}{\text { N24:18.86 }}$	Longitude	Bft	Obs. no.	School Efsize fort	
77		410	27	Oct	95			W108:23.59	- 4	4	-	On
77		415	27	Oct	95	1354	N24:03.89	W108:47.60	4	7	4	On
77		425	28	Oct	95	1206	$\mathrm{N} 23: 47.23$	W109:19.83	1	7	22	On
77		438	30	Oct	95	922	N23:29.90	W109:21.98	2	76	17	On
77		447	31	Oct	95	1031	N24:30.08	W110:31.27	3	7	15	On
77		449	31	Oct	95	1046	N24:32.32	W110:30.38	3	122	12	On
77		452	31	Oct	95	1234	N24:37.96	W110:20.90	3	76	20	On
77		453	31	Oct	95	1331	N24:31.70	W110:13.56	4	76	100	On
77		473	2	Nov	95	716	N23:26.42	W111:18.99	4	76	3	On
77		474	2	Nov	95	731	N23:27.62	W111:21.02	4	4	1	On
77	18	480	2	Nov	95	1646	N23:48.47	W111:51.67	4	4	75	On
77		483	3	Nov	95	1054	N24:58.13	W113:10.70	4	119	1	On
77		489	4	Nov	95	1521	N24:17.91	W112:36.90	2	4	3	On
77		491	5	Nov	95	1228	N26:53.48	W114:35.55	2	73	115	On
77		498	6	Nov	95	1138	N28:08.53	W115:45.55	4	73	40	On
77	36	499	6	Nov	95	1207	N28:12.36	W115:45.74	4	7	33	On
unid. small whale												
78		174	22	Sep	95	1329	N27:02.11	W111:08.09	4	4	1	On
78		258	4	Oct	95	731	N20:37.03	W105:20.89	2	99	1	Off
78		267	10	Oct	95	902	N22:49.96	W106:30.84	2	4	2	On
78		414	27	Oct	95	1255	N24:06.61	W108:37.81	4	7	1	On
unid. large whale												
79		4	7	Sep	95	1052	N28:47.01	W115:51.82	4	86	1	Off
79		65	12	Sep	95	1647	N22:50.05	W109:18.18	1	86	1	On
79		351	21	Oct	95	711	N26:08.72	W111:07.96	2	4	1	On
Kogia simus/breviceps												
80		33	11	Sep	95	624	N23:03.21	W110:59.35	0	73	1	On
80		121	17	Sep	95	954	N27:22.22	W110:59.28	0	7	2	Off
80		169	21	Sep	95	1257	N24:39.48	W110:24.90	4	4	1	On
80	48	268	10	Oct	95	939	N22:45.89	W106:30.95	1	76	6	On
Mesoplodon sp. A												
83		68	12	Sep	95	1714	N22:54.81	W109:17.65	1	76	1	On
83		298	14	Oct	95	757	N21:06.85	W106:21.37	3	7	1	On
83		371	22	Oct	95	746	N24:07.38	W109:32.91	0	73	3	Off
Stenella attenuata (unid. subsp.)												
90	10	160	20	Sep	95	719	N27:20.76	W111:08.51	2	125	250	On
90		263	4	Oct	95	1425	N20:31.33	W105:44.25	5	73	100	On
90		265	4	Oct	95	1620	N20:49.00	W105: 46.90	5	7	50	On
90		266	10	Oct	95	840	N22:53.92	W106:29.23	2	4	150	On
90		283	12	Oct	95	705	N20:33.10	W105:24.56	3	4	75	On
90		285	12	Oct	95	734	N20:32.77	W105:29.89	2	76	30	On
90		286	12	Oct	95	832	N20:31.90	W105:39.92	2	73	23	On
90		287	12	Oct	95	931	$\mathrm{N} 20: 33.29$	W105:39.80	2	73	13	On
90		290	13	Oct	95	621	$\mathrm{N} 20: 36.37$	W105:17.84	2	4	40	On
90		291	13	Oct	95	624	N20:35.96	W105:18.19	2	4	11	On
90		292	13	Oct	95	802	N20:32.45	W105:35.21	3	134	2	On
90		293	13	Oct	95	809	N20:32.33	W105:36.47	3	7	9	On
90		383	24	Oct	95	1717	N24:12.38	W109:36.53	5	76	20	On
90		422	28	Oct	95	948	N23:53.31	W109:05.70	2	76	250	On
unid. cetacean												
96		252	2	Oct	95	1406	N24:20.11	W110:06.41	3	4	1	On
96		341	20	Oct	95	648	N28:45.06	W113:03.43	5	4	2	On
96		398	26	Oct	95	1513	$\mathrm{N} 23: 26.93$	W109:00.90	4	131	1	On

Species Name
Other Code Codes
96

unid. Whale											
98	21	9	Sep 95	949	$\mathrm{~N} 23: 46.85$	W113:47.90	5	76	2	Off	
98	24	9	Sep 95	1716	$\mathrm{~N} 24: 05.20$	W112:55.54	5	7	1	On	
98	234	1	Oct 95	921	$\mathrm{~N} 27: 15.01$	W111:39.31	4	7	1	on	
98	77	363	21	Oct 95	954	$\mathrm{~N} 25: 51.22$	W111:04.64	2	4	43	on
98	479	2	Nov 95	1641	$\mathrm{~N} 23: 48.09$	W111:50.87	4	73	1	on	
98	497	6	Nov 95	907	$\mathrm{~N} 27: 48.77$	W115:36.28	4	4	2	On	

Balaenoptera borealis/edeni

99	311	16	Oct	95	733	N23:21.35	W109:17.34	3	7	1	On
99	313	16	Oct	95	855	N23:26.01	W109:18.76	2	76	1	On
99	328	18	Oct	95	1040	N26:04.56	W111:13.46	3	135	1	Off
99	330	18	Oct	95	1130	N26:09.58	W111:11.26	3	129	1	Off
99	335	18	Oct	95	1519	N26:34.75	W111:26.26	2	7	1	On
99	348	20	Oct	95	1629	N27:37.26	W112:24.27	6	129	2	Off
99	352	21	Oct	95	720	N26:08.42	W111:06.59	2	73	1	On
99	353	21	Oct	95	739	N26:07.16	W111:03.78	2	135	1	On
99	354	21	Oct	95	803	N26:03.83	W111:01.91	3	7	1	On
99	378	23	Oct	95	1526	N23:33.30	W109:16.55	0	73	2	On
99	384	25	Oct	95	941	N23:09.85	W109:21.75	5	4	1	On
99	401	26	Oct	95	1548	N23:29.58	W108:55.89	4	4	2	On
99	402	26	Oct	95	1555	N23:30.20	W108:54.96	5	76	3	On
99	440	30	Oct	95	1009	N23:36.96	W109:24.78	4	73	1	On

Table 5. Sighting Summary - A list summarizing all species sighted and number of times each species was sighted on the cruise.

Species		No. Schools Sighted			Average
Code	Name	Pure	Mixed	Total	School size
01	Mesoplodon peruvianus	1	0	1	2.0
02	Stenella attenuata (offshore)	21	13	34	105.8
05	Delphinus (unid. spp.)	17	2	19	183.8
10	Stenella longirostris orientalis	9	11	20	135.4
13	Stenella coeruleoalba	3	1	,	27.2
15	Steno bredanensis	5	1	6	10.1
16	Delphinus capensis(long-beak)	10	1	11	298.0
17	Delphinus delphis (short-beak)	15	0	15	273.2
18	Tursiops truncatus	53	17	70	51.8
21	Grampus griseus	35	6	41	83.1
22	Lagenorhynchus obliquidens	1	1	2	152.3
36	Globicephala macrorhynchus	10	6	16	52.7
37	Orcinus orca	7	0	7	4.7
46	Physeter macrocephalus	25	2	27	12.9
48	Kogia simus	20	1	21	2.4
49	ziphiid whale	8	,	8	1.6
51	Mesoplodon spp.	6	0	6	1.9
61	Ziphius cavirostris	21	0	21	2.5
63	Berardius bairdii	3	0	3	8.1
70	Balaenoptera spp.	25	2	27	1.1
72	Balaenoptera edeni	17	2	19	1.4
73	Balaenoptera borealis	1	0	1	1.0
74	Balaenoptera physalus	10	0	10	1.5
75	Balaenoptera musculus	7	2	9	1.8
76	Megaptera novaeangliae	1	0	1	3.0
77	unid. dolphin	86	6	92	38.6
78	unid. small whale		0	4	1.3
79	unid. large whale	3	0	3	1.0
80	Kogia simus/breviceps	3	1	4	1.4
83	Mesoplodon sp. A	3	0	3	1.7
90	Stenella attenuata (unid. subsp.)	13	1	14	67.7
96	unid. cetacean	4	0	4	1.3
98	unid. whale	5	1	6	7.7
99	Balaenoptera borealis/edeni	14	0	14	1.3

Table 6. Mixed Schools - A list of sightings of all schools observed with more than one species of marine mammal in the group.

Schools of Mixed Species Composition						
Species 1			Species 2		pecies 3	Total
	OFESH SPOT	10	EAST SPINR			10
	OFESH ${ }^{-}$SPOT	16	LONG \bar{B} COMM			1
	OFFSH_SPOT	18	TURSIOPS			2
05	UNID_COMM	18	TURSIOPS			1
	EAST SPINR	90	UNID_SPOT			1
13	STRIPED	77	UNID_DOLPH			1
15	STENO	18	TURSIOPS			1
18	TURSIOPS	21	GRAMPUS			5
18	TURSIOPS		UNID_DOLPH			1
21	GRAMPUS		UNID_DOLPH			1
	P WHT SIDE	05	UNID_COMM	77	UNID_DOLPH	1
	S $\bar{H} R T$ PILOT	18	TURSIOPS			5
	SHRT PILOT		UNID_DOLPH			1
	SPERM WHAL	18	TURSIOPS			2
48	DWARESPERM		KOGIA_SPP			1
	BRYDES WHL		UNID_RORQL			1
	BLUE WHALE		UNID RORQL			1
	BLUE WHALE	72	BRYDES WHL			1
	UNID_WHALE	77	UNID_DOLPH			1

Table 7. Photo-Identification Studies - Report of the photographs taken for identification purposes, to match with photograph database at UABCS. When individuals match to photo in the database, they are "identified". UABCS did not have previous photographs of sperm whales, but had 78 individuals in the photo record for killer whales, and had 243 individuals in the photo record for pilot whales.

Species Photographed Animals Photographed No. Of Matches Sight No.

| Physeter macrocephalus | 44 | 1 | 216 to $340 *$ |
| :--- | :---: | :---: | :---: | :---: |
| Orcinus orca | 12 | 1 | 366 |
| Globicephala macrorhynchus | 36 | 0 | none |

*CADDIS sighting number 216 of two individual sperm whales (29 Sep. 1995) matched with another CADDIS sighting, number 340 (19 Oct. 1995).
Table 8. Dive Interval Data - Chronological record of dive interval data, including date, sighting number (SI \#), species identification, group size (GS), the presence of calves. (CLF; $Y=y e s, N=n o ; N R$ $=$ not recorded), range of Beaufort sea states (BEAUF), range of swell heights in feet (SWELL), clock times at surface (UP) and for dives (DOWN), and durations of dives (DIVETIME) and surface periods (SURFTIME). Times are in the format HH:MM:SS.
DOWN DIVETIME SURFTIME
$\begin{array}{ll} & 00: 08: 24 \\ 00: 06: 00 & 00: 04: 23 \\ 00: 06: 41 & 00: 08: 31 \\ 00: 17: 13 & 00: 03: 26 \\ 00: 12: 27 & 00: 03: 30 \\ 00: 38: 14 & 00: 09: 52 \\ 00: 15: 28 & 00: 01: 24\end{array}$
00.05:33
$00: 02: 48$
00:00:52 00:02:59 $\underset{\sim}{7}$
$\ddot{\circ}$
0
$\ddot{\circ}$
0 N
ñ
$\ddot{-}$
0
0
0
0 00:01:01
00:00:59 $0: 00: 52$
$0: 01: 01$
$0: 01: 55$
$00: 00: 45$
00:00:24 00:02:06
\circ
$\stackrel{N}{N}$
\ddot{O}
0
0
0

\circ
O
\ddot{H}
\sim
\ddot{H}
\sim
正 27

Date	SI \#	SPECIES	GS	CLF	Beauf	Swell	UP	DOWN	DIVETIME	SURFTIME
							13:30:17	13:31:01	00:39:17	00:00:44
							14:04:21	14:06:47	00:33:20	00:02:26
							15:34:53	15:36:40	01:28:06	00:01:47
091795	125	Kogia simus	2	N	0-1	0-0	12:52:28	12:56:32		00:04:04
							13:13:16	13:15:35	00:16:44	00:02:19
							13:26:56	13:28:20	00:11:21	00:01:24
092095	164	Ziphius cavirostris	1	N	2-3	0-3		10:01:57		
							10:43:57	10:44:30	00:42:00	00:00:33
							11:24:00	11:33:32	00:39:30	00:09:32
092095	166	Kogia simus	1	N	2-2	3-3	12:57:31	12:58:18		00:00:47
							13:02:18	13:05:16	00:04:00	00:02:58
092095	165	Ziphius cavirostris	3	N	1-2	0-3	13:12:04	13:16:22		00:04:18
							14:36:03	14:38:08	01:19:41	00:02:05
							15:18:36	15:21:12	00:40:28	00:02:36
							15:50:54	15:52:51	00:29:42	00:01:57
092095	165b	Ziphius cavirostris	2	N	1-1	1-1	16:14:47	16:17:07		00:02:20
							16:35:19	16:37:25	00:18:12	00:02:06
092295	176	Ziphius cavirostris	3	N	4-4	2-2	17:06:31	17:07:31		00:01:00
							17:45:28	17:47:16	00:37:57	00:01:48
092595	186	Kogia simus	3	Y	1-4	0-2	08:29:50	08:30:30		$00: 00: 40$
							08:51:25	08:52:38	00:20:55	$00: 01: 13$
\cdots.							09:11:27	09:14:13	00:18:49	00:02:46
-							09:35:09	09:36:13	00:20:56	00:01:04
							09:48:06	09:48:17	00:11:53	00:00:11
							09:51:38	09:52:17	00:03:21	00:00:39
							09:59:34	10:00:24	00:07:17	00:00:50
							10:07:33	10:08:28	00:07:09	00:00:55
							10:33:20.	10:34:50	00:24:52	00:01:30
							10:41:41	10:42:04	00:06:51	00:00:23

 00:11:21 00:01:24 00:42:00 00:00:33 $00: 39: 30 \quad 00: 09: 32$ 12:57:31 12:58:18 00:00:47 $13: 02: 18 \quad 13: 05: 16 \quad 00: 04: 00 \quad 00: 02: 58$ $\begin{array}{ll} & 00: 04: 18 \\ 01: 19: 41 & 00: 02: 05\end{array}$
 00:29:42 00:01:57 $00: 02: 20$ $00: 18: 12 \quad 00: 02: 06$ 00:01:00 $00: 37: 57 \quad 00: 01: 48$ 00:00:40
 $\begin{array}{cc}6 & \ddot{1} \\ H & 0 \\ \ddot{N} & \ddot{0} \\ 0 & 0 \\ \ddot{8} & \ddot{8} \\ 0 & 0\end{array}$ H
H
H
\because
$\ddot{0}$
0
$\ddot{0}$
$\ddot{8}$
0 o
m
$\ddot{0}$
0
$\ddot{0}$
0 \circ
0
$\ddot{0}$
0
0
0
0 $\begin{array}{ll}1 & 0 \\ 0 & 0 \\ \ddot{0} & . \\ 0 & -1 \\ 0 & \ddot{8} \\ 0 & 0 \\ 0 & 0\end{array}$ M
N
$\ddot{1}$
0
0
0
0
0 $00: 20: 55$
$00: 18: 49$
$00: 20: 56$
$00: 11: 53$
$00: 03: 21$
$00: 07: 17$
$00: 07: 09$
$00: 24: 52$
$00: 06: 51$

							10:45:32	10:46:58	00:03:28	00:01:26
							11:05:24	11:06:43	00:18:26	00:01:19
							11:10:56	11:11:50	00:04:13	00:00:54
							11:18:06	11:18:52	00:06:16	00:00:46
							11:22:53	11:24:03	00:04:01	00:01:10
							11:27:47	11:29:41.	00:03:44	00:01:54
092695	195	ziphius cavirostris	3	N	2-3	0-1	08:00:50	08: 03:38		00:02:48
							08:36:18	08:37:40	00:32:40	00:01:22
							09:07:51	09:09:11	00:30:11	00:01:20
							09:37:33	09:39:54	00:28:22	00:02:21
							10:08:46	10:11:18	00:28:52	00:02:32
							10:44:17	10:46:23	00:32:59	00:02:06
							11:20:35	11:25:26	00:34:12	00:04:51
092795	209	ziphius cavirostris	2	Y	1-4	1-2		15:47:54		
							16:09:38	16:11:44	00:21:44	00:02:06
							16:33:27	16:36:34	00:21:43	00:03:07
							16:56:21	17:00:02	00:19:47	$00: 03: 41$
							$17: 17: 17$	17:19:06	$00: 17: 15$	$00: 01: 49$
100495	259	Mesoplodon peruvianus	2	Y	1-3	1-1		08:36:23		
							09:03:57	09:04:37	00:27:34	00:00:40
							09:19:44	09:20:41	00:15:07	00:00:57
							09:36:48	09:39:03	00:16:07	00:02:15
							09:57:53	10:00:59	00:18:50	00:03:06
							10:17:36	10:20:30	00:16:37	00:02:54
							10:46:09	10:48:15	00:25:39	00:02:06
							11:10:16	11:14:18	00:22:01	00:04:02
							11:51:32	11:54:22	00:37:14	00:02:50
101095	268A	Kogia simus	6	Y	0-1	0-1	09:52:26	09:53:42		00:01:16
							10:06:57	10:08:29	00:13:15	00:01:32
							10:28:08	10:30:17	00:19:39	00:02:09
							10:33:39	10:34:30	00:03:22	00:00:51
							11:02:48	11:04:43	00:28:18	00:01:55

$00: 21: 44 \quad 00: 02: 06$

 $00: 17: 15 \quad 00: 01: 49$ $00: 27: 34 \quad 00: 00: 40$
 00:16:07 00:02:15 00:18:50
 $00: 25: 39 \quad 00: 02: 06$
 00:37:14 00:02:50 $\begin{array}{ll}00: 01: 16 \\ 00: 13: 15 & 00: 01: 32 \\ 00: 19: 39 & 00: 02: 09 \\ 00: 03: 22 & 00: 00: 51 \\ 00: 28: 18 & 00: 01: 55\end{array}$ N
$\ddot{0}$
0
$\ddot{0}$
0
0

 09:57:53 10:00:59 10:17:36 10:20:30
 11:10:16 11:14:18 11:51:32 11:54:22 09:52:26 09:53:42

1-2
1-1
0-1

Table 8. (continued)
Date SI \# SPECIES

Date	SI \#	SPECIES	GS	CLF	Beauf	Swe 11	UP	DOWN	DIVETIME	SURFTIME
101095	268B	Kogia simus	2	Y	0-3	0-1	11:08:20	11:11:59	00:03:37	00:03:39
							11:22:53	11:26:05	00:10:54	00:03:12
							11:33:10	11:36:03	00:07:05	00:02:53
							11:50:31	11:53:39	00:14:28	00:03:08
							10:38:03	10:38:52		00:00:49
							10:46:47	10:48:37	00:07:55	00:01:50
							11:28:19	11:29:03	00:39:42	00:00:44
							12:00:45	12:00:57	00:31:42	00:00:12
							12:29:45	12:30:37	00:28:48	00:00:52
101395	295	Ziphius cavirostris	3	N	2-3	0-3	08:49:25	08:50:25		00:01:00
							09:23:00	09:24:45	00:32:35	00:01:45
							09:48:53	09:52:46	00:24:08	00:03:53
							11:04:16	11:06:02	01:11:30	00:01:46
101695	$317 A$	Ziphius cavirostris	5	Y	1-2	2-3		09:56:30		
							10:21:32	$10: 22: 43$	00:25:02	00:01:11
							10:52:00	10:53:12	00:29:17	00:01:12
							11:16:59	11:19:06	00:23:47	00:02:07
							11:40:22	11:44:04	00:21:16	00:03:42
101695	317 B	Ziphius cavirostris	2	N	1-1	2-2	12:46:02	12:47:35		00:01:33
							13:11:33	13:12:55	00:23:58	00:01:22
							13:32:23	13:33:46	00:19:28	00:01:23
102295	370	Mesoplodon spp.	2	N	1-1	1-1		06:42:20		
							06:59:17	07:03:26	00:16:57	00:04:09
102295	371	Mesoplodon sp. A	3	N	1-4	1-1	07:45:38	07:49:01		00:03:23
							08:01:57	08:05:11	00:12:56	00:03:14
							08:17:22	08:24:09	00:12:11	00:06:47
							09:03:24	09:05:48	00:39:15	00:02:24
							09:18:02	09:20:49	00:12:14	00:02:47
							09:52:20	09:52:47	00:31:31	00:00:27

Table 8. $\begin{gathered}\text { (continued) } \\ \text { Date } \# \text { sPECIES }\end{gathered}$

							10:16:38	10:19:17	00:23:51	00:02:39
							10:39:42	10:41:02	00:20:25	00:01:20
							10:59:40	11:01:09	00:18:38	00:01:29
102395	375	Kogia simus	1	N	2-4	0-1		10:23:04		
							10:25:35	10:26:59	00:02:31	00:01:24
							10:37:17	10:38:43	00:10:18	00:01:26
							11:30:55	11:31:22	00:52:12	00:00:27
102395	376	Ziphius cavirostris	3	N	1-2	0-0	10:48:52	10:49:20		00:00:28
							11:23:14	11:25:37	00:33:54	00:02:23
							11:58:23	12:00:54	00:32:46	00:02:31
							12:32:20	12:34:53	00:31:26	00:02:33
							(interval	excluded	to uncer	tainties)
							13:09:19	13:10:57		00:01:38
102395	379	Ziphius cavirostris	2	N	0-2	0-. 5	15:54:39	15:56:03		00:01:24
							16:19:45	16:21:33	00:23:42	00:01:48
							16:48:58	16:50:19	00:27:25	00:01:21
							17:08:38	17:09:29	00:18:19	00:00:51
							17:32:57	17:36:55	00:23:28	00:03:58
102995	430	Kogia simus	1	N	1-2	2-2		06:50:02		
							07:01:22	07:03:34	00:11:20	00:02:12
							07:27:56	07:30:13	00:24:22	00:02:17
							07:33:37	07:35:35	00:03:24	00:01:58
							07:38:14	07:39:14	00:02:39	00:01:00
							08:01:27	08:04:47	00:22:13	00:03:20
							08:05:54	08:06:21	00:01:07	00:00:27
							08:24:27	08:25:54	00:18:06	00:01:27
							08:27:18	08:27:43	00:01:24	00:00:25
							08:29:43	08:30:19	00:02:00	00:00:36
							08:32:35	08:34:23	00:02:16	00:01:48
102995	430b	Kogia simus	1	N	1-2	2-2		06:50:46		
							07:03:09	07:04:10	00:12:23	00:01:01

Table 8. (continued)

$$
\text { N } \quad 5-5
$$

n
n
$\ddot{\sim}$
0
$\ddot{0}$
0
0

0
0
-
-
$\ddot{8}$
$\ddot{8}$ ∞
$\underset{\sim}{n}$
$\underset{\sim}{\sim}$
0
$\ddot{\circ}$ 00:06:46 00:01:16 00:03:31 N
N
\cdots
0
0
0
0

 00:03:53 00:07:44 00:01:37 00:04:11 00:10:01 00:01:03 00:03:13 14:58:20 15:02:58 15:06:51 15:07:59 15:15:43 15:18:21 15:19:58 15:26:44 15:30:55 15:32:11 15:42:12 15:45:43 15:46:46 15:55:08 07:50:43 08:12:33 n
\cdots
\cdots

\cdots
∞
0
0 $\begin{array}{cc}0 & \text { H } \\ \stackrel{H}{n} \\ \ddot{0} & \ddot{0} \\ 0 & 0 \\ \ddot{o} & \ddot{0} \\ 0 & 0\end{array}$

$\begin{array}{ll}07: 31: 10 & 07: 31: 53 \\ 07: 33: 37 & 07: 36: 08 \\ 07: 57: 32 & 08: 00: 46 \\ 08: 02: 53 & 08: 03: 47 \\ 08: 08: 41 & 08: 09: 53 \\ 08: 28: 25 & 08: 29: 32 \\ 08: 31: 10 & 08: 33: 09\end{array}$
$00: 11: 46$
$00: 08: 35$
$00: 11: 27$
$00: 09: 24$
$00: 05: 40$
$00: 17: 57$
$00: 11: 22$
$13: 38: 51 \quad 13: 41: 17 \quad 00: 11: 22$

$3-3$
$3-3$
Balaenoptera musculus
$\begin{array}{ll}10: 49: 42 & 10: 51: 11 \\ 10: 57: 27 & 11: 00: 15\end{array}$
12:01:18 12:04:48
12:55:55 12:58:32
13:04:12 13:07:02
13:24:59 13:27:29
$12: 21: 05$
$12: 32: 24$
$12: 32: 24$
$12: 46: 31$

$00: 06: 16$
00:03:5
00:03:13

15:58:21 15:59:20
m
m
m
3-3
4-4
4-4
7
\vdots
7
z
1
1
$5-5$
$5-5$
N
N
$12: 01: 18$
$12: 16: 34$
$12: 29: 40$
$12: 43: 51$
$12: 55: 55$
$13: 04: 12$
$13: 24: 59$
$13: 38: 51$
14:58:20

$$
\begin{aligned}
& z \\
& r
\end{aligned}
$$

$$
r
$$

$$
H
$$

110295
110295

$09: 28: 30$	$09: 30: 44$	$00: 09: 00$	$00: 02: 14$
$09: 45: 37$	$09: 47: 14$	$00: 14: 53$	$00: 01: 37$
$09: 55: 49$	$09: 58: 27$	$00: 08: 35$	$00: 02: 38$
$10: 13: 30$	$10: 14: 18$	$00: 15: 03$	$00: 00: 48$

$00: 02: 05$	
$00: 00: 33$	$00: 00: 50$
$00: 00: 22$	$00: 03: 08$
$00: 04: 22$	$00: 01: 48$
$00: 01: 57$	$00: 02: 43$
$00: 00: 12$	$00: 05: 24$
$00: 02: 50$	$00: 04: 01$
$00: 03: 59$	$00: 04: 06$
$00: 00: 16$	$00: 00: 56$
$00: 01: 02$	$00: 09: 20$
$00: 00: 15$	$00: 00: 18$

00：04：33
00：01：13 N
\sim
\sim
\sim
\sim
0
\ddot{O}
0
 8ெ：00：00
LT：Z0：00 a
0
$\ddot{4}$
$\ddot{4}$
0
$\ddot{0}$
0
0
 N
$\underset{N}{N}$
$\ddot{0}$
0
0
0
0 05：00：00 6T：00：00
ع0：工0：00
 H
H
-
-
0
0
0
0 $00: 04: 27$
$00: 02: 40$

		○ ${ }^{\circ}$
$\ddot{\infty}$	$\ddot{\square} \ddot{\gamma} \ddot{0} \ddot{+}$	
m		\checkmark
\rightarrow		
－		
	M．	

$$
\begin{array}{ll}
00: 09: 00 & 00: 02: 14 \\
00: 14: 53 & 00: 01: 37 \\
00: 08: 35 & 00: 02: 38 \\
00: 15: 03 & 00: 00: 48
\end{array}
$$

 00：01：11
 00：01：11 N
$\underset{\sim}{1}$
-
0
0
0
0 ∞
$\ddot{0}$
$\ddot{\sim}$
$\stackrel{1}{1}$
0
$\ddot{0}$
0 ∞
$\underset{\sim}{\infty}$
$\underset{M}{M}$
$\stackrel{1}{2}$
$\ddot{\circ}$
0
 00：02：32 $00: 27: 11$
$00: 16: 03$

$$
3-3
$$

12：24：08 12：26：13

14：34：00 14：38：33

品
in

$$
110395486
$$

$$
4-4
$$

$$
\varepsilon-\varepsilon
$$

z

$$
H
$$

$$
\begin{aligned}
& \begin{array}{l}
n \\
3 \\
7 \\
7 \\
0 \\
0 \\
0 \\
E \\
E \\
\pi \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
\hline
\end{array}
\end{aligned}
$$

19
1
m

Date	SI \#	SPECIES	GS	CLF	Beauf	Swell	UP	DOWN	DIVETIME	SURFTIME
							15:58:50	16:02:39	00:11:33	00:03:49
							16:11:08	16:19:41	00:08:29	00:08:33
							16:31:51.	16:35:20	00:12:10	00:03:29
							16:54:55	16:59:23	00:19:35	00:04:28

$$
\begin{aligned}
& \text { Table 9. Dive Interval Summary - Summary of dive interval data obtained on CADDIS } 1995 \text {. The \% time } \\
& \text { at the surface was calculated for both mean and median times using the following formulae: Mean } \% \\
& \text { time at surface }=\text { Mean surface time / (Mean surface time }+ \text { Mean dive time), and Median } \% \text { time at } \\
& \text { surface }=\text { Median surface time / (Median surface time }+ \text { Median dive time). }
\end{aligned}
$$

Species	Data summary		Dive durations (minutes)					Surface durations (minutes)					\% time at surface	
		\# surface periods	Mean	Median	Min.	Max.	Std Dev	Mean	Median	Min.	Max.	Std Dev	Mean	Median
Baird's beaked whale	12	15	15.9	12.2	6.0	38.2	8.8	5.0	4.4	1.4	9.9	2.5	24.0	26.5
Cuvier's beaked whale	38	48	32.4	25.0	17.3	88.1	15.4	2.3	2.0	0.4	9.5	1.5	6.5	7.2
Mesoplodon spp.	17	18	21.6	18.7	12.2	39.3	8.0	2.6	2.7	0.5	6.8	1.4	10.9	12.7
Kogia spp.	59	67	13.1	7.9	1.1	52.2	10.8	1.5	1.2	0.2	4.1	0.9	10.1	13.2
Blue whale	39	43	6.7	3.9	0.5	21.8	5.7	2.6	2.4	0.3	8.4	1.8	27.9	38.5
Short-finned pilot whale	10	11	1.6	0.6	0.2	4.4	1.5	3.2	2.7	0.3	9.3	2.5	66.6	83.2

Figure 17. Frequencies of dive durations for beaked whales and pygmy/dwarf sperm whales.

```
Appendix A. CRUISE3 Data Entry Codes
Event Field Field # Values or Codes
B = begin effort
    Cruise # 1 4-digit cruise number
E = end effort
R = resume effort
S = marine mammal sighting
    Sight # 1 sighting number
    Obs ID 2 Observer code (see Table 2) for
    observer who made sighting
                                    1=bird, 2=splash, 3=mammals, 4=ships,
                                    5=other or unknown, 6=blow and 7=helo
                                    3=crew, 4=observer 25X, 5=observer not
                                    25X, 6=other or unknown, 7=helo and
                                    8=independent observer
            Bearing 5
            Reticle 6
                Distance 7
                                    relative bearing from ship to animals
                                    reticle distance to sighting, in tenths
                                    nautical miles to sighting, in tenths
A = auxiliary sighting information
    Sight # 1 sighting number
    W. Temp 2 degrees centigrade, in tenths
    Photo 3 Y/N
    Birds 4 Y/N
    SpplCode . 5 see Appendix E
    Spp2Code 6 see Appendix E
    Spp3Code 7 see Appendix E
# = observer estimates (entered during nightly editing)
    Obs ID 1 see Table 2
    BestSS 2 observer's best school size estimate
    HighsS 3 observer's high school size estimate
    LowSS 0bserver's low school size estimate
    %Spp1 5 % of animals of species 1
    %Spp2 6 Of animals of species 2
    %Spp3 % of animals of species 3
P = observer positions
\begin{tabular}{llll} 
Left & 1 & Obs ID (see Table 2) at left bino \\
Right & 2 & Obs ID (see Table 2) at right bino \\
Recorder & 3 & Obs ID (see Table 2) at recorder
\end{tabular}
```

```
V = viewing conditions
```

Beaufort 1 Swell Ht 2 SwellDir 3 W. Temp 4

N = navigation
Course I speed 2
W = weather
Rain/Fog 1
Horz Sun 2
Vert Sun 3
Wind Dir 4 Visbilty 5
$t=$ turtle sighting
Obs ID I

Spp 2

Bearing 3
DistNMI 4
\#Turtles 5
AssocJFR 6
see Appendix B numeric value, in feet relative to North degrees centigrade
ship heading relative to North ship speed, in knots
$1=$ no rain or fog, $2=f o g, 3=r a i n, 4=r a i n$ and fog, 5=haze, but not rain or fog see Appendix C
see Appendix C relative to North nautical miles of visibility

Observer code see Table 2 for observer who made sighting
LO $=$ olive ridleys, $\mathrm{CC}=$ loggerheads
$\mathrm{CM}=$ green turtle, $\mathrm{DC}=$ leatherbacks
$E I=$ Hawksbill, UNK = Unknown
relative bearing from ship to animals nautical miles to sighting, in tenths numeric value J=jellyfish, F=floating object, R=red tide
$C=$ Comment

Code	Alpha Code	Species or classification	Common name
01	MESOP_PERU	Mesoplodon peruvianus	Pygmy beaked whale
02	OFFSH_SPOT	Stenella attenuata (offshore)	Offshore pantropical spotted dolphin
03	UNID_SPINR	Stenella longirostris (unidentified subspecies)	Unidentified spinner dolphin
04	CLYMENE	Stenella clymene	Clymene or short-snouted spinner dolphin
05	UNID_COMM	Delphinus sp.	Unidentified common dolphin
06	COAST_SPOT	Stenella attenuata graffmani	Coastal spotted dolphin
07	SOTALIA	Sotalia fluviatilis	Tucuxi, Guiana dolphin
08	ORCAELLA	Orcaella brevirostris	Irrawaddy dolphin
09	SPECTACLED	Australophocaena dioptrica	Spectacled porpoise
10	EAST_SPINR	Stenella longirostris orientalis	Eastern spinner dolphin
11	WBEL_SPINR	Stenella longirostris hybrid	Whitebelly spinner dolphin
12	WHITE-BEAK	Lagenorhynchus albirostris	White-beaked dolphin
13	STRIPED	Stenella coeruleoalba	Striped dolphin, streaker
14	A_WHT_SIDE	Lagenorhynchus acutus	Atlantic white-sided dolphin
15	STENO	Steno bredanensis	Rough-toothed dolphin, steno
16	LONGB_COMM	Delphinus capensis	Baja neritic common dolphin, long-beaked common dolphin
17	SHRTB_COMM	Delphinus delphis	offshore common dolphin, short-beaked common dolphin
18	TURS IOPS	Tursiops truncatus	Bottlenose dolphin
19	HEAVISIDES	Cephalorhynchus heavisidii	Heaviside's dolphin
20	HECTORS	Cephalorhynchus hectori	Hector's or pied dolphin
21	GRAMPUS	Grampus griseus	Risso's dolphin, grampus
22	P_WHT_SIDE	Lagenorhynchus obliquidens	Pacific white-sided dolphin
23	PEALES	Lagenorhynchus australis	Peale's dolphin, blackchin
24	HOURGLASS	Lagenorhynchus cruciger	Hourglass dolphin
25	DUSKY	Lagenorhynchus obscurus	Dusky dolphin
26	FRASERS	Lagenodelphis hosei	Fraser's or Sarawak dolphin
27	LISSO BOR	Lissodelphis borealis	Northern right whale dolphin
28	LISSO_PER	Lissodelphis peronii	Southern right whale dolphin
29	BLACK_DOL	Cephalorhynchus eutropia	Black or Chilean dolphin
30	COMMERSONS	Cephalorhynchus commersonii	Commerson or piebald dolphin
31	MELON_HEAD	Peponocephala electra	Melon-headed whale, electra dolphin
32	PYGMY_KLLR	Feresa attenuata	Pygmy killer whale, slender blackfish
33	FALSE_KLLR	Pseudorca crassidens	False killer whale
34	GLOBI_SP	Globicephala sp.	Unidentified pilot whale
35	LONG_PILOT	Globicephala melas	Long-finned pilot whale, Atlantic pilot whale
36	SHRT_PILOT	Globicephala macrorhynchus	Short-finned pilot whale
37	KILLER_WHA	Orcinus orca	Killer whale
38	SOUSA_CHIN	Sousa chinensis	Indo-Pacific hump-backed or white dolphin
39	SOUSA_TEUS	Sousa teuszii	Atlantic hump-backed dolphin
40	HARBR_PORP	Phocoena phocoena	Harbor porpoise, herring hog
41	VAQUITA	Phocoena sinus	Vaquita, Gulf of California harbor porpoise
42	BURMEISTER	Phocoena spinipinnis	Burmeister or black porpoise

BL_FINLESS
DALLS_PORP
BELUGA
SPERM_WHAL
PYGMYSPERM
DWARFSPERM
ZIPHIID_WH
HYPERO_PLN
MESOP_SP
MESOP_CARL
MESOP_HECT
MESOP BOWD
MESOP EURO

MESOP_BDNS
MESOP_GNKO
MESOP_GRAY
MESOP_DENS

MESOP LAYA
ZIPHI_CAVI
BERARD_ARN

BERARD_BAI
TASMA_SHEP MESOP_PACI

N_RIGHT_WH BOWHEAD_WH PYGMY_RGHT GRAY WHALE UNID_RORQL MINKE_WHAL BRYDES_WHL SEI WHALE FIN WHALE BIUE_WHALE HUMPBACK_W UNID_DOLPM UNID_SM_WH UNID_LG_WH KOGIA_SP MESOP_STEJ MESOP_MIRU MESOP_SP_A HYPERO AMP NARWHAL
S_RIGHT WH FRANCISCAN C_A_SPINNR

UNID_SPOT
UNID SPOT

Neophocaena phocaenoides
Phocoenoides dalli
Delphinapterus leucas
Physeter macrocephalus
Kogia breviceps
Kogia simus
ziphiid whale
Hyperoodon planifrons
Mesoplodon sp.
Mesoplodon carlhubbsi
Mesoplodon hectori
Mesoplodon bowdoini
Mesoplodon europaeus
Mesoplodon bidens
Mesoplodon ginkgodens
Mesoplodon grayi
Mesoplodon densirostris
Mesoplodon layardii
Ziphius cavirostris
Berardius arnuxii
Berardius bairdii
Tasmacetus shepherdi
Mesoplodon pacificus
Eubalaena glacialis
Balaena mysticetus
Caperea marginata
Eschrichtius robustus Balaenoptera sp.
Balaenoptera acutorostrata
Balaenoptera edeni
Balaenoptera borealis
Balaenoptera physalus
Balaenoptera musculus
Megaptera novaeangliae
unid. dolphin
unid. small whale
unid. large whale
Kogia simus/breviceps
Mesoplodon stejnegeri
Mesoplodon mirus
Mesoplodon sp. A
Hyperoodon ampullatus
Monodon monoceros
Eubalaena australis
Pontoporia blainvillei
Stenella longirostris
centroamericana
Stenella attenuata/plagidon
Stenella attenuata (unid. subsp.) Unidentified pantropical

91	AT_SPOTTED	Stenella frontalis
92	GANGES_DOL	Platanista gangetica
93	INDUS_DOL	Platanista minor
94	INIA	Inia geoffrensis
95	LIPOTES	Lipotes vexillifer
96	UNID_CETAC	unid. cetacean
97	UNID_OBJCT	unid. object
98	UNID_WHALE	unid. whale
99	SEI/BRYDES	Balaenoptera borealis/edeni
PU	UNID_PINNI	unid. pinniped
UO	UNID_OTARI	unid. sea lion
EJ	STELLAR_SL	Eumetopias jubatus
ZC	CA_SEALION	Zalophus californianus
UA	UNID_FURSL	unid. fur seal
AT	GUAD_FURSL	Arctocephalus townsendi
CU	NO_FURSEAL	Callorhinus ursinus
US	UNID_SEAL	unid. seal
MA	N_ELEPHN_S	Mirounga angustirostris
PV	HARBR_SEAL	Phoca vitulina

RECENT TECHNICAL MEMORANDUMS

Copies of this and other NOAA Technical Memorandums are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22167. Paper copies vary in price. Microfiche copies cost $\$ 9.00$. Recent issues of NOAA Technical Memorandums from the NMFS Southwest Fisheries Science Center are listed below:

NOAA-TM-NMFS-SWFSC- 240 Documentation of California's commercial market sampling data entry and expansion programs.
D.E. PEARSON and B. ERWIN
(April 1997)
241 The Hawaiian monk seal in the Northwestern Hawaiian Islands, 1995.
T.C. JOHANOS and T.J. RAGEN
(June 1997)
242 Plankton sampling during the whale habitat and prey study 10 July4 August 1996.
W.A. ARMSTRONG and S.E. SMITH
(July 1997)

243 Benthic Invertebrates of four Southern California marine habitats prior to onset of ocean warming in 1976, with lists of fish predators.
J.R. CHESS and E.S. HOBSON
(August 1997)
244 Fishes collected by midwater trawls during two cruises of the David Starr Jordan in the Northeastern Pacific Ocean, April-June and September-October, 1972
J.L. BUTLER, H.G. MOSER, W. WATSON, D.A. AMBROSE, S.R. CHARTER, and E.M. SANDKNOP
(September 1997)
245 Mapping benthic habitats and ocean currents in the vicinity of Central California's Big Creek Ecological Reserve M. YOKLAVICH, R. STARR, J. STEGER, H.G. GREENE, F. SCHWING, and C. MALZONE
(September 1997)
246 The physical oceanography off the Central California coast during May-June, 1996: A summary of CTD data from pelagic juvenile rockfish surveys.
K.M. SAKUMA, F.B. SCHWING, K. BALTZ, D. ROBERTS, and S. RALSTON (September 1997)

247 Killer whales of California and Western Mexico: A catalog of photo-identified individuals.
N.A. BLACK, A. SCHULMAN-JANIGER, R.L. TERNULLO, and M. GUERRERO RUIZ
(September 1997)
248 U.S. Pacific Marine Mammal Stock Assessments: 1996
J. BARLOW, K.A. FORNEY, P.S. HILL, R.L. BROWNELL, JR., J.B.

CARRETTA, D.P. DeMASTER, F. JULIAN, M.S. LOWRY, T. RAGEN, and R.R. REEVES
(October 1997)
249 Analysis of agency costs attributable to the recovery plan for Sacramento River winter-run chinook salmon.
C. THOMSON
(October 1997)

[^0]: ${ }^{3}$ Mention of brand names does not imply endorsement by the National Marine Fisheries Service.

