Simulation of long-term morphodynamics of the Western Scheldt

Gerard Dam (UNESCO-IHE/Svašek Hydraulics/Dam Engineering) Mick van der Wegen (UNESCO-IHE, Deltares) Robert-Jan Labeur (TU-Delft) Dano Roelvink (UNESCO-IHE, Deltares) Bram Bliek (Svašek Hydraulics)

29 juni 2015

Research question

What is the value of long-term morphological modelling in estuaries using a process-based model?

(long-term = decades – century timescale)

29 juni 201:

General view on performance of long-term morphology of process-based models

Morphological models drift away from reality over time due to:

- -Build up of errors;
- -Non-lineair interactions that are unpredictable over time;
- -Processes are missing (simplification of system).

29 juni 2018

Process-based model to hindcast long-term morphology in Western Scheldt

Morphological process-based model:

FINEL2d model by Svašek Hydraulics:

- 2Dh simulation of water and sediment transport based on finite elements method;
- Only tidal forcing; small constant river discharge; no waves
- Engelund-Hansen sediment transport formula
- 1 fraction of sand
- Roughness constant in time and space
- MORFAC: 24.75
- Measured non-erodable layer
- Parameterisation of spiral flow
- Extensive calibration on water motion

29 juni 201 [10]

Brier-skill score (Sutherland et al., 2004)

BSS =
$$1 - \frac{\langle (Y - X)^2 \rangle}{\langle (B - X)^2 \rangle} = 1 - \frac{\langle error^{-2} \rangle}{\langle signal^{-2} \rangle}$$

Where:

Y=Bed level prediction at time T

X=Bed level observation at time T

B=Bed level at t=0

And the <> denote the arithmetic mean.

29 juni 2015 [21]

Brier-skill score (Sutherland et al., 2004)

BSS =
$$1 - \frac{\langle (Y - X)^2 \rangle}{\langle (B - X)^2 \rangle} = 1 - \frac{\langle error^{-2} \rangle}{\langle signal^{-2} \rangle}$$

Rating (van Rijn et al., 2003):

Where: <0 : Bad 0-0.3 : Poor Y=Bed level prediction at time T

X=Bed level observation at time T 0.3-0.6: Reasonable/fair

B=Bed level at t=0 0.6- 0.8: Good And the <> denote the arithmetic mean. 0.8-1.0: Perfect

Conclusions

•Research question: Is it possible to model long-term morphology using process-based models? In this case: YES!

Reasons:

- •Tide is dominant forcing in Western Scheldt
- •Geometry plays an important role
- •Western Scheldt mainly consists of fine sand
- •Furthermore: short-term morphology seems to be unreliable! requires 20-30 years before positive BSS scores are obtained.
- •On short timescales other processes might be important (storms), but are overruled on the long term

29 juni 201

Why does the morphological model show good behaviour over this 110 year period?

Theory

An estuary under constant forcing strives for minimum energy dissipation (Langbein, 1963).

This leads to less gradients in shear stress and sediment transport (Rodriquez-Iturbe et al, 1992).

Eventually resulting in morphological equilibrium (Cowell and Thom, 1994, Woodroffe, 2002).

These are indictators of self-organising behaviour of the system (Philips, 1999)

29 juni 2015 [35]

Theory

An estuary under constant forcing strives for minimum energy dissipation (Langbein, 1963).

This leads to less gradients in shear stress and sediment transport (Rodriquez-Iturbe et al, 1992).

Eventually resulting in morphological equilibrium (Cowell and Thom, 1994, Woodroffe, 2002).

These are indictators of self-organising behaviour of the system (Philips, 1999)

29 juni 2015 [36]

Energy dissipation

- Energy dissipation is calculated using hydrod. model for
- - Computed bathymetries from the morphol. model
- Measured bathymetries
- Energy dissipation is integrated
- · over the entire basin
- - over a complete neap-spring cycle

$$Pcell = \left(c_f \rho_w \left(u^2 + v^2\right)^{1.5}\right) \bullet area$$

29 juni 201

Conclusions

- •Long-term morphology is predictable using a process-based model.
- •Reasons:
- •Estuarine morphology is ruled by self-organisation and is not chaotic:
- Both reality and model show:
- •- Less energy dissipation over time
- •- Less morphological activity over time (equilibrium)
- •Morphology is changed in such a way that the system become more efficient in transporting water in and out of the estuary; (predictable!)
- Model results are further enhanced by:
- geometry of the basin; presence of non-erodable layer; well

Process-based models are excellent tools to investigate long-term morphology in estuaries