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Abstract. The safety of dikes in The Netherlands, located in the delta of the rivers Rhine, Meuse and Scheldt, has been the subject
of debate for more than ten years. The safety (or flood risk) of a particular area may depend on the safety of other areas. This
is referred to as effects of river system behaviour on flood risk (quantified as the estimated number of casualties and economic
damage). A computational framework was developed to assess these effects. It consists of several components that are loosely
coupled via data files and Tcl scripts to manage the individual programs and keep track of the state of the computations. The
computations involved are lengthy (days or even weeks on a Linux cluster), which makes the framework currently more suitable
for planning and design than for real-time operation. While the framework was constructed ad hoc, it can also be viewed more
formally as a tuplespace. Realising this makes it possible to adopt the philosophy for other similar frameworks.

1. Flood risks in The Netherlands

Most rivers in The Netherlands are surrounded by
dikes to prevent the low-lying land from flooding. For
the past ten or fifteen years, the safety of these dikes
has been the subject of political and technical de-
bate: are the dikes high and strong enough? Should we
widen the area between the dikes so that there is more
room for the river water, thus lowering the water levels
and therefore the risk of flooding? It has also become
clear that the traditional approach to assessing the risk,
looking at the water levels in the river bed and deter-
mining whether it does or does not exceed the dikes’
crests is insufficient: if a dike breaks, the water will
flow onto the surrounding land, thereby lowering the
river levels downstream, but increasing the water level
at the land side of the dikes elsewhere, undermining
their strength, as the water flows into other (smaller)
rivers, increasing the local river level. The nett result
can be both positive and negative – these effects are
collectively known as effects of river system behaviour
on flood risk. The increase in river levels can be up to
1 m, while the (beneficial) decrease is limited to 10 cm
(cf. [11]).

*Corresponding author. E-mail: arjen.markus@deltares.nl.
**The Deltares Institute was formed in 2008 from two indepen-

dent institutes and parts from two others. One of these institutes was
WL|Delft Hydraulics.

The area considered in this study contains the two
major rivers in The Netherlands: the Rhine and the
Meuse (Figs 1 and 2). Their branches enclose a large,
agricultural region and run along two major cities,
Arnhem and Nijmegen. The total population is circa
two million people. All in all there are 11 dike rings
(an area protected against floods by dikes and higher
grounds).

The study we present here has the purpose to show:

• How effects of river system behaviour can be
evaluated in a practical way.

• How the risk of flooding in a such an area can be
estimated, not only the chance that a dike breach
occurs, but also the consequences in terms of eco-
nomic damage and potential loss of lives.

• As the problem at hand has a probabilistic aspect
– the intensity of a flood wave is impossible to
predict a long time in advance and the strength
of the dikes is only approximately known – nu-
merous computations are required to get insight
in the range of casualties and damage that can oc-
cur. These computations need to be properly man-
aged.

The results of the risk assessment using the compu-
tational framework described in this paper have been
presented elsewhere (cf. [12]). This paper focuses on
the practical aspects of the computations:
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Fig. 1. Geography of the area.

• Section 2 discusses related work as found in liter-
ature.

• Section 3 describes what components can be dis-
tinguished in the modelling of the river system
and the consequences of a flood.

• Section 4 describes the computational framework
and its practical implementation using PCs and a
Linux cluster.

• In Section 5 we present a more formal description
of the system in terms of a tuplespace. The pur-
pose is to highlight the underlying generic struc-
ture, and to show how similar systems could be
designed or described.

• Section 6 contains a few observations about the
framework: what lessons did we learn?

• Finally, Section 7 summarises the study.

2. Related work

Controlling large sets of computations has received
quite some attention in the literature, for instance in
general scientific settings, where very large compu-
tations are distributed over multiple computers, col-
loquially known as GRID computing. But also on a

Fig. 2. The two major rivers Rhine and Meuse in the study area. Colors are visible in the electronic version of this paper, DOI: 10.3233/SPR-
2010-0298.
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smaller scale, in interactive hydraulic and hydrologi-
cal modelling, the use of a set of computers for man-
aging a set of computations is being considered. Sulis
[14] presents an interactive system for determining the
optimal rules for reservoir management using a GRID
environment.

Prodan [13] describes a generic system called
ASKALON where the entire workflow (that is: the
set of input data, the various steps in the computa-
tion and the set of output data, as well as the rela-
tion between these) is analysed and scheduled in such
a way that optimal use is made of the available re-
sources.

Paramount to the approach he describes is that the
various steps are kept under tight control of the ser-
vices that schedule the various computational pro-
grams. Prodan presents a formal model for this system.
This way complex, hierarchical, workflows, contain-
ing iterations and decisions based on the outcome of
computational steps, can be handled. The workflows
are first converted into directed acyclic graphs. Then
each activity can be scheduled and monitored. If nec-
essary, the converted workflow or parts thereof can be
restructured or rescheduled.

To effectively predict the performance the system
also uses a training phase during which the execution
times of the activities are measured.

When comparing Prodan’s system to the tuplespace
approach presented here (Section 4), we will see that
the current system does not involve iterations and only
one decision (whether a particular computation has
succeeded or not and what to do when it failed). The
workflows are therefore much simpler. This, however,
is by no means a limitation of the tuplespace model.
Suppose, that the complete computation involves some
decision – if a dike is going to break under the given
circumstances, we can divert some of the water to an-
other river branch, reducing the pressure on the dike.
Of course we do not want to divert too much water,
as the dikes along the other branch might then fail.
This means the workflow involves a loop with an un-
certain number of iterations – we can only estimate the
amount of water that should be diverted by trial and
error.

The tuplespace model allows us to reschedule this
computation:

• After the computation, a separate program exam-
ines the results, concludes that some water must
be diverted.

• The input is adjusted to reflect this diversion.

• The file “done” is deleted from the working direc-
tory, so that the scheduling script will reschedule
the computation.

This process can be repeated indefinitely, with
no particular complications on the scheduling script.
In a similar way other decisions can be arranged
for.

An entirely different aspect of managing these com-
putations is the subject of an article by Balis et al.
[3]. They present a formal framework for monitoring
the activities in a workflow that are being run on ge-
ographically distributed computers. They contrast this
situation with the situation of running programs on a
cluster of computers in a single location. The purpose
of their GEMINI monitoring system is to gather use-
ful information about the progress of the computations
and to use that for improving the performance. The
practical problems of gathering this information in the
loosely coupled systems they target are much larger
than in the computing cluster that we used. The use
of locally created files to pinpoint important events in
the workflow seems an adequate and simple alterna-
tive, though in this study it was set up ad hoc. Never-
theless, the possibility to monitor the progress of these
computations is important in any computing environ-
ment.

3. Components in the analysis

To analyse the consequences of a dike breach in the
study area we set up a system comprising of the fol-
lowing components:

Component 1: Determination of hydraulic loads
without considering effects of river system behaviour.

Initially, hydrodynamic calculations are carried out
for the chosen geographical model, assuming absence
of river system behaviour effects. That is, the hydraulic
loads on the dikes are computed assuming that the en-
tire flood wave passes through the system without any
dike failure. These computations are carried out for a
range of peak discharges at the upstream boundary of
the system using the SOBEK modelling system. The
results are stored in a hydraulic database.

The numerical and hydrodynamic aspects of this
modelling system are described in detail by Dhondia
and Stelling [6]. It belongs in fact to a class of hydro-
dynamic models that emphasizes particular simplifica-
tions to the equations, so that a more efficient compu-
tation is possible (cf. [14]).
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Component 2: A representative set of Monte Carlo
realisations, conditional upon failure.

The general expression for a flood risk R for a cer-
tain time interval (0, t) is given by

R = E(D) =
∫

D(x)f (x) dx, (1)

where
x – the vector with all the stochastic parameters;
f (x) – is the joint probability distribution function

of x;
D(x) – is the capitalised value of the damage in

(0, t);
E(·) is – “expected value”.
Elements of the vector x which play a role in the

problem are: the river discharge, the wind speed, the
sea level, soil properties, dike lining, emergency mea-
sures, hydraulic roughness of inundated areas, behav-
iour of secondary dams, etc. These quantities are de-
fined for every point in time in (0, t) and for every point
in space.

The integral (1) can be evaluated using a Monte
Carlo procedure. In such a calculation a set of random
variables x is generated and the series of events that
takes place in the flood area, are determined. This is
a complex but fully deterministic analysis. All the wa-
ter levels, the waves, the dike strengths, etc., in the en-
tire area are known for the period under consideration.
If the combination x leads to an initiation of flooding
somewhere in the area, all consequences of this event
for the rest of the area can be considered.

At selected potential breach locations reliability
analyses per section are carried out using Crude Monte
Carlo runs steered by the Prob2B program (cf. [5]).
The realizations comprise properties of the dikes re-
garding the considered failure mechanisms as well
as peak discharges at the upstream boundary of the
geographical model. The loads on the analyzed dike
sections are interpolated using the hydraulic database
from the first component. Loads and resistances are
compared using performance functions for selected
failure mechanisms.

The result of this step is a representative set of real-
izations conditional upon failure (at least one dike sec-
tion fails) and the complementary set of realizations,
in which no failure and hence no flood damage occurs.
If there is a failure, all data will be stored for the third
component. The data consist of:

• Discharge time functions of the rivers Rhine and
Meuse.

• Strength properties for all potential breach loca-
tions.

• Breach properties, including possible random
quantities.

• The location of the failure.
• The failure mechanism.

Component 3: Hydrodynamic calculations, allowing
for effects of system behaviour.

In this part the hydrodynamic consequences (i.e., de-
termination of the flooding pattern) including the ef-
fects of dike failures and overflow of dikes are de-
termined for the representative set of realisations ob-
tained from component 2. This was done by means of
SOBEK computations.

The entire region is schematised as a two-dimen-
sional square grid with grid cell sizes of 100 m. The
computational cycle consists of the following steps:

• Propagation of the river water via the one-dimen-
sional network.

• Evaluation via the so-called RTC module (RTC
is the abbreviation of “real-time control”) of all
the relevant failure mechanisms as well as breach
development.

• Propagation of the river water through the two-
dimensional grid when a breach has occurred ac-
cording to the second step.

More specifically, a local dike breach is modelled as
a 1D branch, which is connected to 2D grid cells, re-
spectively located at the river side and at the dike ring
side of a dike breach location. The 1D branch accom-
modates a weir, which is lowered and broadened in ac-
cordance with the applied Verheij and Van der Knaap
[15] breach growth formula. Hence, dike breaches can
only occur at “1D dike breach branches”, while “2D
river dike grid cells” cannot fail but are overtopped as
soon as river levels exceed local crest levels. Details
can be found in [12].

The main output of the hydrodynamic model is the
flood pattern of each scenario (cf. Fig. 3). For each 2D
grid cell, SOBEK provides its maximum water depth,
its maximum flow velocity and the speed at which wa-
ter levels rise. This output data is used for determin-
ing the flood consequence (i.e., damage and victims)
of each scenario.

Component 4: Determination of flood consequence
(damage and victims).

Flood consequence is determined for the representa-
tive set of realizations conditional upon failure. More
precisely, the direct economic damage as well as the
expected number of human casualties is computed with



A.A. Markus et al. / A computational framework for flood risk assessment in The Netherlands 97

Fig. 3. Typical result of the flow computation – various dike rings are flooded. (Maximum flow rate for the Rhine is 18,900 m3/s and for the
Meuse 4,300 m3/s.)

the HIS-SSM program using the flooding patterns de-
termined in the previous component as main input (cf.
[8]).

No damage and no victims are assumed for the set
of Monte Carlo realizations, in which no dike failure
occurred (e.g., the complementary set of realizations).

Component 5: Determination of flood risk.
Using the results from the previous steps we can de-

termine the risk:

R = E(D|F )P (F ); (2)

D is the damage for an arbitrary scenario, P (F ) is the
system failure probability, which follows from the re-
liability analysis and E(D|F ) is the average damage.

4. The computational framework

The various components exist as separate programs
on different computers, as they were developed as
standalone applications by different groups: PCs in two
different locations and a Linux cluster, consisting of
some 75 nodes with a total of 150 CPUs. For this
project the programs were made to cooperate using ad
hoc methods, but little or no adaptation of the programs
themselves was necessary (cf. Fig. 4).

The Monte Carlo program to select the dike strength
parameters and the flow conditions was developed for
the purposes of this and similar projects, but we chose
the XML format as the means to transfer the selected
sets to the next step.

XML proved to be an easy-to-use format, as it fitted
the structure of the information very well (cf. Fig. 5):
within each scenario we had data for the floods, char-
acterised by the maximum flow rate per river and the
time difference between the occurrences of the maxima
and sets of strength parameters per dike breach loca-
tion. Each parameter is uniquely identified by its XML
tag, so that there could be no mistake which is which.
The Monte Carlo program was developed at a different
location (the TNO offices) than the location where the
hydraulic computations were to be done (the Deltares),
so an unambiguous format like XML is very attractive.

The hydraulic computations were done in two steps.
First the input was processed on a PC (parts of the
hydraulic modelling system have been written in Vi-
sual Basic and it was not feasible to convert these
for a Linux environment) and then the resulting pre-
processed input files were copied to a network disk:

• The difference between each scenario consists of
the upstream boundary conditions of the rivers
Rhine and Meuse, the computational period and
the dike strength parameters.
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Fig. 4. Overview of the programs in the framework.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Set-up of XML files for defining the scenarios to be computed by SOBEK -->
<proboxToSobek>

<scenario id="dr41run4">
<boundary id="RijnafvoerLobith" type="1">

<maxDischarge>18534.00374491226</maxDischarge>
<floodWaveShape>50</floodWaveShape

<delayPeakMeuse>0</delayPeakMeuse>
</boundary>
<boundary id="MaasafvoerVierlingsbeek" type="1">

<maxDischarge>3693.736532262028</maxDischarge>
<floodWaveShape>50</floodWaveShape>
<delayPeakMeuse>0</delayPeakMeuse>

</boundary>
<dikeBreach id="Dr41L7">

<evaluateBreaching>3</evaluateBreaching>
<d_aquifer>14.143837723240722</d_aquifer>
<l_piping>70.52933625966438</l_piping>
<d_topLayer>1.8176598219403994</d_topLayer>
<h_hinterDefault>7.988899434135852</h_hinterDefault>
<gamma_sat>18.098665835608376</gamma_sat>
...
<T0>0.1</T0>
<uc>0.2</uc>
<v1>0.2</v1>
<Tp>3.0</Tp>

</dikeBreach>
...

</scenario>
<scenario id="dr41run5>

...
</scenario>

</proboxToSobek>

Fig. 5. Fragment of the XML files used to transfer the scenario information.



A.A. Markus et al. / A computational framework for flood risk assessment in The Netherlands 99

• We used a Tcl program (cf. [1,2,16]) to read the
XML file containing the scenario details, prepare
the timeseries describing the upstream boundary
conditions, fill in the data in the input files and
copy everything into a new directory on the net-
work disk.

Using Tcl made these tasks very easy to implement
(see also the Appendix):

• The clock format command was of great use to
manipulate the date and time strings required for
the timeseries.

• Via the file command and its subcommands it is
easy to create and copy directories and files.

• The string map command was used to fill in
the timeseries (once constructed as a string with
the proper format) in the input file, as shown in the
code fragment in Fig. 6.

We took care of reading the XML file using the
tDOM extension which renders the XML file as a tree
of data (cf. [10]). Writing an XML file is easy, read-
ing it is more complicated. Fortunately there are many
tools available for that in almost any programming lan-
guage.

On the Linux cluster another Tcl program was run
automatically every ten minutes via the cron daemon.
This program monitored the progress of the computa-
tions:

• If there is a new directory with the input for a
new computation and we do not have too many
jobs running already, it schedules the computa-
tion. (We wanted to avoid filling up the entire
cluster, as it is used by others as well and our
computations took several days each.) To mark
the fact that it is scheduled, a file with the name
“scheduled” is created. This has two purposes:

◦ Mark the directory/computation as being sche-
duled.

◦ Monitor how long a job is scheduled (by look-
ing at the creation time of the file).

• If a computation has started running, the shell
script that starts it creates a file “running” – the
difference in creation time between this file and
the file “scheduled” is the time the job was sched-
uled but not running. When there are many jobs
running, there may not be a free slot for the job, so
this was an indication of the performance of the
cluster.

# main --
# Select the flood wave in question, construct the timeseries and
# insert into the boundary.dat file
#

set datafile [lindex $argv 0]
set rate [lindex $argv 1]
set template [lindex $argv 2]
set key [lindex $argv 3]
set reftime [lindex $argv 4]
set delay [lindex $argv 5]
set expand [lindex $argv 6]
set output [lindex $argv 7]

#
# Get the water levels as function of time for each maximum flow rate
#
source [file join [file dirname $argv0] .. templates floodwaves.data.$datafile]

#
# Construct the actual timeseries from that information
#
set sobekseries [constructTimeseries $reftime $delay $floodwaves($rate,data)]

#
# Fill it in the file with boundary conditions - replace the right keyword
#

set infile [open $template]
set contents [string map [list $key $sobekseries] [read $infile]]
close $infile
set outfile [open $output w]
puts -nonewline $outfile $contents
close $outfile

Fig. 6. Excerpt of the Tcl program to insert the constructed timeseries.
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• When the computation was completed or the com-
putational program stopped for some other rea-
son, the shell script creates a file “done”. This al-
lows us to monitor the run-time of the computa-
tions.

• The Tcl program checks each finished compu-
tation: sometimes the computation can become
unstable or some other numerical problem oc-
curs and then the hydraulic modelling program
may stop before completion. By examining one
of the output files from this program, it deter-
mines whether the computation was successful or
not (to mark this fact, it creates yet another file
“analysed”).

The one-but-last step in the sequence of programs
is to analyse the results of the hydraulic computation
to estimate the potential number of casualties and the
economic damage. To this end, a third Tcl program
is used, running on PC: it examines the directories
containing the successfully completed computations,
copies various files from the network disk to the local
work directory, and runs the HIS-SSM program. Then
the directory is marked with yet another file, “his-ssm-
done”.

Each computational step produces detailed informa-
tion of which only a part is required in the subsequent
step. For the analysis of the collection of computations
the results are condensed into:

• The potential number of casualties and economic
damage per subregion.

• An overview of the dike breach characteristics:

◦ Did failure occur due to loads from the river or
dike ring side?

◦ What failure mechanism was responsible?
◦ Time of the failure.
◦ Maximum breach width.
◦ Maximum discharge through the dike breach.

Most of these steps are highly automated, using
dedicated Tcl programs and cron tasks on the Linux
cluster for scheduling, but the configuration files for
the schematisation of a particular region requires hu-
man action: The input files contain information on
the hydraulic boundary conditions, location of poten-
tial breaches, considered failure mechanisms and as-
sociated strengh parameters as well as the delineation
of subareas for which the flood risk should be deter-
mined. The automatic procedures rely on keywords
in the modified input files: this modification must be
done manually and checking the correctness is es-
sential, as otherwise the computations will be use-
less.

5. A formal view

As we described in the previous section, the analy-
sis consists of various steps and even a single hydraulic
computation goes through a sequence of phases. Each
step and each phase is treated by a different program.
While the framework was constructed ad hoc, mostly
from existing components, we can describe the transi-
tion from one step to the next by means of a tuplespace
(cf. [4,7]).

Tuplespaces are a remarkably versatile yet simple
client-server concept. They consist of sets of ordered
collections of information, called tuples, and three ba-
sic operations, viewed from the client:

• out: the client puts a new tuple in the server’s data-
base.

• in: the client selects a tuple from the database that
matches a certain pattern. The tuple remains in the
database.

• read: like the in operation, but the tuple is re-
moved from the database.

In our system each individual computational step can
be identified by the following tuple:

• The job-ID.
• The state of the computation.

The job-ID identifies the precise input data and results:
Inputs:

• The set of dike strength parameters and flow con-
ditions (different for each scenario).

• The input describing the model area (fixed).

Outputs:

• The hydraulic results.
• The estimates of casualties and economic dam-

age.

In terms of tuplespaces, each individual computa-
tion can be regarded as a tuple of these two elements
(the inputs and outputs are not used for the selection)
and the various programs read tuples from the database
and produce new tuples. Table 1 describes all the steps
involved.

The various computational states a scenario has to
go through are more or less sequential, but the pro-
grams that are responsible for each of these stages can
work in parallel: there is no need to fully compute each
scenario from the beginning to the end, before start-
ing another one. But it is important that only one pro-
gram at a time handles a particular scenario, hence the
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Table 1

Program/step Operation Tuple/pattern

MC-program produces a scenario Out Scenario given, state: new

Preparation of hydraulic computation Read Select a tuple with pattern “state=new”

Preparation of hydraulic computation Out Scenario given, fixed input given, state: ready

Scheduling hydraulic computation Read Select a tuple with pattern “state=ready”

Scheduling hydraulic computation Out Scenario given, fixed input given, state: scheduled

Deciding to schedule a new In Select all scenarios with pattern “state=running”

hydraulic computation

Cluster scheduler Read Select a tuple with pattern “state=scheduled”

Cluster scheduler Out Scenario given, fixed input given, state: running

Hydraulic program started Read Select a tuple with pattern “state=scheduled”

Hydraulic program finished Out Scenario given, fixed input given, hydraulic results available, state: done

Analysing hydraulic result Read Select a tuple with pattern “state=done”

Analysing hydraulic result Out Scenario given, fixed input given, hydraulic results available, state: successful

Or: Out Scenario given, fixed input given, no useful hydraulic results, state: crashed

Estimating casualties and damage Read Select a tuple with pattern “state=successful”

Estimating casualties and damage Out Scenario given, fixed input given, hydraulic results available, estimates available,

state: complete

MC-program analysing Read Select a tuple with pattern “state=complete”

read operations: it takes the scenario out of the server
database and only when the program is finished, is it
put back, with a different state. By selecting only a tu-
ple whose state matches a particular pattern, we en-
sure that the computations are performed in the right
order.

In a more complex system the state that results in
a particular step may vary, guiding the further steps.
In our case, there is one somewhat trivial occasion
for this: the hydraulic computation could be unsuc-
cessful – the state crashed – the flow over a dike
breach might induce very large flow velocities, result-
ing in numerical instabilities, or there was a hard-
ware/network failure so that the computation could not
complete.

Such events required that we investigate the reasons
for the failure: a hardware failure meant re-scheduling
the computation, whereas a numerical problem has to
be solved in a different way.

While normally one thinks of a dedicated program to
function as a server, the network disk served very well
for this purpose. By keeping the files for the scenarios
in separate directories we created in fact a simple way
to store the tuples and have them available for each
client (except for the MC-program, as that did not run
on the same network):

• All technical problems of ACID-proof database
management systems are solved by the file server
responsible for the network disk.

• The state of the computation is represented by the
presence of certain files and no more than that.
The creation time of these files could in fact be
used to monitor the performance of the system.

As the run-time of each hydraulic computation was
monitored, we looked into the relationship between the
maximum flow rate during the simulated flood event,
which is also a measure of the period that is to be
simulated, and the run-time (cf. Fig. 7). Some com-
putations did not exhibit the expected dike breaches
(but the dikes would overflow without breaking) and
one question was whether that influenced the run-time.
The graph, however, does not reveal any obvious dif-
ferences between these two groups of computations,
showing that the occurrence of a dike breach in the
computation has no significant influence on the perfor-
mance.

The apparent clustering of the data points around a
maximum flow rate of 20,000 m3/s is due to the selec-
tion process of the scenarios: the higher the flow rate,
the larger the chance of a dike breach, but the lower the
chance that it will occur.

6. Lessons learned

An automated framework like the one described
here requires more “nurturing” than one might antici-
pate. This is due to:
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Fig. 7. Time required for a computation as function of the maximum flow rate for the Rhine during a simulated flood event. The normal flow rate
for the Rhine is 2000–3000 m3/s.

• The length of the individual computations: a lot
can happen in a few days, like a temporary net-
work failure, even though the machines compris-
ing the cluster and the cluster itself are very reli-
able.

• The number of computations: you simply do not
want to check each input file manually, after all,
that is one of the things the automation is for.

• The automation itself: preparing the input files for
the computations should be a smooth process and
once automated, it is. Problems arise when you
conclude that something has to be changed.

To elaborate the last point: in our case we wanted
a series of computations with an alternative, smaller,
model area. Because several months had passed, the
details of which files were used in which directory
were blurred. It was therefore very easy to forget to up-
date one or two of the basic input files, leading to er-
roneous computations. The procedure to create the in-
put sets should not only be automatic, it should also be
reproducible with different bases of input data.

While it may seem an open door, it is vital that all
programs involved have a “batch mode”: several of the

programs we used were developed for interactive use
on Windows, and therefore displayed a graphical user-
interface, even if the only action the user can take when
the program is running is to stop it. Such GUIs need
not hinder automation, but they should run in a mode
that requires no interaction from the user at all.

As the computations each took several days, being
able to monitor the progress was another important as-
pect:

• To be able to estimate the time left.
• To check if the computation produces reasonable

results.

Sometimes the computations did not show any dike
breaches contrary to our expectations. By examining
the intermediate results we were able to identify the
cause – slight differences in the geometrical data to se-
lect the computational parameters in the Monte Carlo
program and the data used in the hydraulic program.

All in all the most important lesson is:

Make sure that you can check exactly what input
was used for a computation, that you can check the
processing steps and that you can explain the re-
sults.
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This is nothing new, but with a large number of com-
putations and their respective sets of input and output
data, generated with as little human action as possible,
it is all the more important.

7. Conclusion

The framework we described in this paper, is a col-
lection of pre-existing modelling systems and auxil-
iary programs developed for just this framework. Com-
bining these tools led to a practical system by which
we have been able to assess the risk of flooding in a
part of The Netherlands, but it can be applied to other
river basins as well. The fact that it is a loose collection
of programs, where communication occurs via files on
disk and prescribed directory structures, makes it rela-
tively easy to set up and it makes it relatively easy to
check what is happening. Using external files for com-
munication between programs often means an impact
on performance, but that was no issue in this case.1

The current framework requires several days to
weeks for individual computations to complete. For an
operational system, where the available time to decide
on actions is at most several days, this is too long. The
performance of the framework can be improved in sev-
eral ways:

• Use of a dedicated cluster: such a cluster can
continuously run such computations, so that re-
sults for likely events are already available, when
a decision needs to be prepared. Linux clusters
are a practical and affordable alternative to, say,
a supercomputer, as each computation in itself
does not require much resources. It is the number
of computations that is responsible for the large
workload.

• Optimisation of the hydrodynamic computation:
this part takes the longest time and it may be pos-
sible to further improve the performance.2

• Selection of more likely flood events: the higher
the flow rate, the longer the flood event will be in
time (thus causing longer computations), but the
smaller the probability of it actually occurring.

1If the issue does arise, other techniques are available, such as
MPI, but it makes tracing errors more difficult.

2In a subsequent phase of the study we already found several ways
to improve the performance, so that the computations are now three
times faster. One improvement: the sleep() function in Linux, used
in the synchronisation of two programs, interprets its argument as
seconds, whereas the Windows version interprets it as milliseconds.

This is by far the greatest lesson to be learned: the
components of such a system must readily allow the in-
put and output to be inspected. If somewhere in the
system, either the results or the input is obscure, it is
all too easy for errors to propagate. It is also paramount
that the steps in the computation are repeatable, be-
cause at any point you may make a mistake, no matter
how careful you are or one of the computers you use
will develop a disk or network problem.

That is also the advantage of the use of pre-existing
components that you can trust and regarding the sys-
tem as a tuplespace: individual tasks with persistent
data files that describe them, so that you can restart the
whole computation or a part of it when the need arises.

Appendix

This appendix demonstrates some details in the
framework: the editing of the input files and the
scheduling of the various jobs.

A.1. Preparing the input files

The boundary conditions for typical flood waves
are available for each maximum flow rate at steps of
100 m3/s for a wide range of flow rates. In the pro-
gram the appropriate series is selected based on the
maximum flow rates for Rhine and Meuse from the
Monte Carlo simulation in component 2. This flow rate
is specified as a list of times (in days since the start of
the wave) and the flow rate at that moment. In Fig. 8
a simplified procedure produces the timeseries in the
format that is expected.

The result is then inserted into the input file using the
[string map] command. The variable key has the value
“@RIJN@” or “@MAAS@”. These strings are found
in the template file and are replaced by the timeseries
(see Fig. 9).

The result is seen in Fig. 10.

A.2. Scheduling the jobs

The scheduling program scans the directory (using
the Tcl [glob] command) holding all subdirectories
containing the scenarios for computations that have not
run yet and have not been scheduled yet. The criterium
is fairly simple: there should not be a file that indicates
the job is scheduled, is currently running or has already
been done.
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proc constructTimeseries {begin series} {
set sobekseries {}
set begintime [clock scan $begin]
set offset [lindex $series 0]

foreach {time rate} $series {
set seconds [expr {int(86400*($time-$offset))}]
set datetime [expr {$begintime+$seconds}]
set sobektime [clock format $datetime -format "’%Y/%m/%d;%H:%M:%S’"]
lappend sobekseries "$sobektime $rate <"

}

# Trick: using a list suppresses an end-of-line at the end!
return [join $sobekseries \n]

}

Fig. 8. Constructing the timeseries in the right format.

#
# Construct the actual timeseries
#
set sobekseries [constructTimeseries $reftime $delay $floodwaves($rate,data)]

#
# Fill it in in the file with boundary conditions - replace the right keyword
#
set infile [open $template]
set contents [string map [list $key $sobekseries] [read $infile]]
close $infile
set outfile [open $output w]
puts -nonewline $outfile $contents
close $outfile

Fig. 9. Insert the timeseries into the input file.

Template: After replacing the keyword “@RIJN@”:

D2LI id ’l_RijnafvoerLobith’ ty 1 q_ dt 1 0 0 D2LI id ’l_RijnafvoerLobith’ ty 1 q_ dt 1 0 0
TBLE TBLE
@RIJN@ ’2000/01/01;00:00:00’ 1000 <
tble d2li ’2000/01/01;07:02:21’ 1080 <

’2000/01/01;17:09:10’ 1330 <
...
’2000/01/12;12:56:00’ 7080 <
’2000/01/13;01:09:24’ 7440 <
’2000/01/13;13:06:31’ 7800 <
’2000/01/14;01:29:34’ 8160 <
’2000/01/14;22:48:08’ 8660 <
’2000/01/15;11:20:15’ 8900 <
’2000/01/16;06:00:25’ 8660 <
’2000/01/17;03:08:03’ 8160 <
’2000/01/17;14:27:10’ 7800 <
’2000/01/18;04:39:12’ 7440 <
’2000/01/18;19:35:54’ 7080 <
’2000/01/19;08:53:13’ 6830 <
...
’2000/02/02;23:32:29’ 1580 <
’2000/02/03;18:41:02’ 1330 <
’2000/02/04;09:51:24’ 1080 <
’2000/02/04;20:25:00’ 1000 <
tble d2li
D2LI id ’l_7’ ty 1 q_ dw 1 0 0

Fig. 10. Resulting input file (part).
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# main --
# Loop over the subdirectories and see if there is a subdirectory
# holding an interesting job
#
set env(SGE\_CELL) ...
... and other environment variables ...

foreach d [glob -nocomplain -type d *] {
if { [file exists [file join $d CMTWORK]] } {

if { ! [file exists [file join $d done]] } {
if { ! [file exists [file join $d running]] } {

if { ! [file exists [file join $d scheduled]] } {
if { [canSchedule] } {

scheduleJob $d
}

}

}
} elseif { ! [file exists [file join $d analysed]] } {

analyseJob $d
}

}
}

Fig. 11. Checking the status of the computation.

If such a subdirectory is found and there are not too
many computations running already, it is added to the
cluster’s work queue. If on the other hand a subdirec-
tory is found with a file “done”, the program checks
if it has already been analysed. The analysis is lim-
ited to the check whether it has finished normally (see
Fig. 11).
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