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Introduction

The hydrodynamics of shallow continental seas like the North Sea is

dominated by long waves, tides and storm surges. with current velocities

of the order of 1 m/s • The currents generate strong three-dimensional

turbulence and vertical mixing. resulting.in general. in a fairly homoge­

neous distribution of temperature, salinity and concentrations of marine

constituents over the water column.

Vertical gradients of concentrations may exist in localized area where

vertical rnixing is partly (and ternporarily) inhibited by stratification or

during short peLiods of time - a few hours following an off-shore dumping,

for instance - before vertical mixing is completed. However such cases are

very limited in space and time and. in most problems, it is sufficient to

study. in a first approach. the horizontal distribution of deoth-averaged

concentrations.

If c denotes the concentration of a given constituant. the three­

dimensional "dispersion" equation. describing the evolution of c in space

and time. can be written (e.g. Nihoul, 1975).

dC
rit + y. (c~) Q + I - y. (~c) + D (1)
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In eq. (1),

represents advection and can be separated in two parts corres­

~.(c~) and to the

denoting the hori-

'f. (Cl!)

ponding respectively to the horizontal transport
Cl

vertical transport -a-- (cv 3)
x3

zontal current velocity.

i)

ii) Q represents the rate of production (or destruction) of the consti­

tuent by volume sources (or sinks) •.

[In mest practicaL appLications, inputs and outputs are Located at the

boundaries - in whiah aase, they appear in the boundary aonditions

and no in Q -, or are LoaaLized quasi-instantaneous reLeases whiah

may be aonveniently taken into aaaount in the initial aonditions. In

the following, one shall assume that this is the aase and one shaLL

set Q = 0 J •

iii) I represents the rate of production (or destruction) of the consti­

tuent by (chemical, ecological, ••• ) interactions inside the marine

system and I is, in general, a function of coupled variables c' ,

eil , •••

[A marine aonstituent is said to be passive when its evolution is not

affeated by such interaations. In the foHowing, to simpZify the for­

muLation, one shalL restriat attention to passive aQnstituent and set

I = o. The generaLization of the theory to a system of interaating

aonstituents presents no j'undar7entaL diffiauHy (Nihoul and Adcun, 1977)].

iv) - 'f.(gc) represents "migration". (sedimentation, horizontal migration

of fish•••• , e.g. Nihoul, 1975).

[Migration, at Least in the most frequent aase of sedimentation, aan

easily be taken into aaaount (e.g. Nihoul and Adam, 1977). However, to

avoid overZoading the anaZysis, one shaZl assume, in the folZowing,

that the aonstituent is simpZy transported by the fZuid and that the

migration veLocity cr is zeroJ.

•
v) D represents turbulent diffusion and can be separated into a vertical

turbulent diffusion and a horizontal turbulent diffusion.

[The horizontaZ turbuZent diffusion is negZigibZe as aompared to the

horizontal advection. The horizontal dispersion whiah is observed in

the sea is mainZy the resuZt of the horizontal transport of the
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aonstituent cy irreguZar and variabZe aurrents aonstituting a rorm o~

'pseudo horizontaZ turbuZenae" extending to much Zarger saaZes than

the "proper" three-dimensionaZ turbulenae (e.g. NihouZ, 1975). In

that aase, D aan be simply written

(2)

where v is the vertiaaZ turbulent diffusivity) •

In the scope of the hypotheses made above, eq.(l) can be written, in

the simpler form

(3)

The velocity field v = u + V3~3 is given by the Boussinesq equations

and in particular, one has

(4)

Depth-averaged dispersion equation

Let

c = H -1 Ir c dX3 C C - C- (5): (6)
-h• H -1 Ir

!:l !:l dX3 !:l !:l - !:l (7): (8)
-h

with

Fe dX3 = 0 r!:l dx 3 0 (9): (10)
-h -h

and

H = h + l; (11)
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where h is the depth and C the surface elevation.

One has

- h

(12)

(13)

Integrating eqs. (1) and (4) over depth, inverting the order of inte­

gration with respect to x3 and of derivation with respect to t, Xl or x2

and using eqs.(12) and (13) to e1iminate the corrections due to the varia­

ble limits of integration, one obtains (e.g. Nihoul; 1975)

(14)

dH _
ät + y. (Hy) o . (15)

In the right-hand side of eq. (14), one should have the difference be­

tween the fluxes of the constituent at the free surface and at the bottom.

The hypothesis is made here that there is no exchange between the water

column and the atmosphere and between the water column and the bottom se­

diments.

In this case, combining eqs. (14) and (15), one gets

oe -­ät + u.Vc

where

(16)

(17)

•
~ contains the mean product of the deviations c and Q around the mean

values c and u. The observations reveal that this term is responsible for

a horizontal dispersion analogous to the turbulent dispersion but many

times more efficient. This effect is called the "shear effect" because it

is associated with the vertical gradient of the horizontal velocity ~

(e.g. Bowden, 1965 ; Nihoul, 1975).
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Parameterization of the shear effect

SUbstracting eq. (16) from eq. (1), one obtains

(18)

•
Because of the strong vertical mixing, one expects the deviation e to

be much smaller than the mean va1ue c. This is not true for the velocity

deviation ü which may be comparable to u ; the velocity increasing from

zero at the bottom to its maximum value at the surface. One may thus assu­

me that the first four terms in the 1eft-hand side of eq.(18) are negligi­

ble as compared to the sixth one ~.~C. The fifth term, representing ver­

tical advection, is undoubtedly even sma11er than the four neg1ected terms

and eq. (18) reduces to

The physical meaning of this equation is clear : weak vertical inhomogene i­

ties are constantly created by inhomogeneous convective transport and they

adapt to that transport in such a way that the effects of advection and

vertical turbulent diffusion are in equilibrium for them.

Integrating eq. (19) with the condition that the f1ux is zero at the

free surface, one obtains

•

- (J (Je)ü.Vc = -- u--
- - dX3 dX3

de
u ax-;

where

Integrating by parts and taking into account that r
and X3 = - h (cfr eq.10), one gets

(19)

(20)

(21)

(22)
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where ~ is the shear effect diffusivity tensor, i.e.

(23)

To determine ~, one must know the turbulent eddy diffusivity U and

the function ! ' i.e. the velocity deviation ~ •

Vertical profile of the horizontal velocity

The evolution equation for the horizontal velocity vector ~ can be

written, after eliminating the pressure (e.g. Nihoul, 1975)
•

dU

d~ + v. (~~) (Pa ) d dU)
- V - + g~ + - (v ---

- P dX3 dX3
(24)

where f is equal to twice the vertical component of the earth's rotation

vector, Pa is the atmospheric pressure, g the acceleration of gravity and

V the vertical turbulent viscosity.

In eq. (24), one has neglected the effect of the horizontal component

of the earth's rotation vector (multiplied by v 3 <K u) and the horizontal

turbulent diffusion (because horizontal length scales are always much

larger than the depth).

The observations indicate that, in shallow tidal seas, the turbulent

viscosity v can be written as the product of a function of t, Xl and Xz

and a function of the reduced variable ~ = Hol (X3 + h) (e.g. Bowden, 1965) •

Let •(25)

where a and Aare appropriate functions.

The asymptotic form of v for small values of ~ is well-known from

boundary layer theory

v = k u. (x3 + h) = k u. H ~ (26)

where k is the Von Karman constant and u. the friction velocity given by
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u~ II! bll

Henee

erH = ku.
and

• A(~) - ~ for ~ « 1 •

(27); (28)

(29)

(30)

In a weIl-mixed shallow sea, where the Riehardson number is small and

the turbulenee fully developed, it is reasonable (e.g. Nihoul. 1975) to

take

IJ - \) • (31)

•

This hypothesis will be reexamined later.

It is eonvenient to change variables to (t, Xl' x 2 ' ~) in eq. (24).

In the final result (Nihoul, 1977), the non-linear terms eombine with addi­

tional contributions from the time derivative to give three terms, related

respectively to the gradients of velocity, depth and surfaee elevation.

These terms are found negligible almost everywhere in the North Sea (Nihoul

and Runfola, 1979). Thus although depth-integrated two-dimensional hydro­

dynamic models of the North Sea may not diseard the non-linear terms 1 , if

one exeludes localized singular regions like the vieinity of tidal emphy­

dromic points, the "loeal" vertical distribution of velocity may be des­

cribed, with a very good approximation, by a linear model •

Then, the governing equation for the velocity deviation ü can be

written

(32)

1 ~ It can be shown that these terms are essential in determining the residual circulation (Nihoul and
Ronday, 1976b).
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where

is the wind stress (normalized with water density) •

It is possible to find an analytical solution of eq. (32) giving ~ in

terms of !s '!b and their derivatives with respect to time 1 the coeffi-

eients depending on the functions ses) , b(~) and fn(~)

by (Nihoul, 1977)

ses) = f )..~) d11
o

J
t 1 - 11

to""".rTrll d 11

with

11 f~W ds
0

df n
)..~ 0 at s 0 and s 1 •

(33)

(n=1,2 ••• ) defined

(34)

(35)

(36)

(37)

(38)

•

•One should note here that, in the definition of b(s) the lower limit

of integration is not set equal to zero but to ~o = zHO « where Zo is

the "rugosity length". Zo can be interpreted as the distance above the

bottom where the velocity is conventionally set equal to zero, ignoring the

intricated flow situation which occurs near the irregular sea floor and

willing to parameterize its effect on the turbulent boundary layer as simply

as possible. In the North Sea, the value of zO' which varies according to

the nature of the bottom, is of the order of 10-3 m (ln ~o ~ - 10) [e.g.

Nihoul and Ronday, 1976a].
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Although So « 1 , it cannot be systematically put equal to zero be­

cause the linear variation of the vertical eddy viscosity near the bottom

leads to a logarithmic velocity profile which is singular at s O. How-

•

ever, in the present description, the difficulty exists only for the func­

tion band the eigenfunction fes) may be determined on the interval [O,s].

In a shallow tidal sea like the North Sea, it is readily seen, compa­

ring the orders of magnitude of the different terms, that one obtains a

very good approximation with only the first two terms in the series expan­

sion of ~ , Le. (Nihoul, 1977)

b 1 •

+ - vJf 1 (s)
Cll a _u

(39)

where sand bare the depth-averages of sand b, sl and b 1 two

numerical coefficients (Sl = .( s f 1 ds b 1 .1'0' b f 1 ds) CI. 1 the

eigenvalue corresponding to f 1 (s) and where

T
-s

aH aH
(40) ; (41)

and similarly for ?o I

•
A dot denotes here a total derivative with respect to time

• dys dV s
[Ys = dt = d~ - + f ~3 A Ys

Knowing the function A(S), one can determine u by eq. (39), r by

eq. (21) and R by eq. (23) •

Parameterization of the bottom stress

The functions ~ , ~ and ~ depend on the vectors?s ' Yo and their

derivatives. These can be determined by eqs. (27), (29), (40) and (41)

from !s and !o •

The surface stress !s can be calculated from atmospheric data, the

bottom stress !o is not given and must be determined by the no-slip condi­

tion at the bottom, i.e.
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- u at ~o (42)

Eq. (42) provides a differential equation for !b in terms of ~s and u .

In shallow tidal seas like the North Sea, the terms including Ys and

Yb are generally negligible and can only play a part during a relatively

short time, at tide reversal (Nihoul and Runfola, 1979). The dominant

term is, in fact, the term containing the bottom stress. The effect of

the wind stress appears as a first order correction and the "memory"

effect involving the derivatives ~s and ~b as a second order correction •

One thus has •
~ - b ::b + 5 ::s

(zeroth order)

(first order)

(43)

(44)

(second order) (45)

Eq. (43) yields the well-known semi-empirical quadratic bottom friction

law. Indeed, combining eqs. (27), (29) and (43), one finds

Le.

eH

b
=> eH ~ ~ lIull

b -
(46)

(47) •
15 the so-called "drag coefficient".

At the first order, one gets another classical formula (e.g. Groen and

Groves, 1966; Nihoul, 1975) :

s
b

T
- s

(48)

The second order parameterization 15 better understood if the last term

in the right-hand side of eq. (45) 15 eliminated using eqs (32), (34), (35),
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(36) and (39). One has, indeed

OU
ät + f ~3 11 U

Is - I b

H

i.e. , using (46) to estimate oH ,

e k 2 s H oll
~)Tb

~

b2
II\;:II~ - !s + ( d~ + f ~3 !I

b (X1b

With a typical drag coefficient of the order of 2 10-3 (e.g. Nihoul

and Ronday, 1976), one finds, using characteristic values for the North Sea,

f ~3 11 1:1

•

dU
Thus, the "acceleration" terms containing a~ and f '::3 11 ~ (i.e. the

terms arising from the time derivatives of Ys and Yb) are not expected to

play an important role except perhaps during relatively short periods of

weak currents (when tides reverse, for instance). The total effect of the

acceleration terms depends reallyon the local conditions. Obviously,

(fig. 1) if the current velocity vector rotates clockwise during a tidal

v,

fig. 1.

v,
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period, the two terms tend to oppose each other and their global contribu­

tion may remain always very small. On the other hand, if the current velo­

city vector rotates counter-clockwise (as it is often the case in the

Southern Bight) the two terms reinforce each other and have adefinite

although limited - effect on the velocity profile and the related relation­

ship between the bottom stress and the mean velocity (fig.2, fig. 3).

u Im s-')

0.6

0.5

0.4

0.3

0.2

0.1

fig. 2.

Amplitude cf the mean velocity

15 degrees

10

5

0

-5

- 10

- 15

fig. 3.

Phase of the maan velocity

Comparison between the mean velocity 'l computed at the test point
52°30' N , 3°50 1 E i" the Nort.h Sea by a depth-averaged t.wo-dimensiol1l:il
model using an algebraic parameterization cf !o (fuH Une) end by
the tree-dimensional model subject to the condition cf zero velocity
at the bottom (dash Hne) [Nihoul and Runfola. 1979].

•
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Most hydrodynamic models of shallow seas restriet attention to the de­

termination of the depth-mean velocity ~. The two-dimensional time depen­

dent evolution equation for u is obtained from eq. (24) by integration over

depth. It includes the surface elevation ~ and the bottom stress !b and

thus constitutes with eq. (15) and eq. (43) (or 44) a closed system for the

depth-averaged circulation (e.g. Nihoul, 1975).

The determination of the vertical velocity profile can be carried si­

multaneously using eq.(39).

One can go a step further and devise a three-dimensional model based

on the depth-averaged equation, the local depth-dependent equation for the

velocity deviation ~ and the refined parameterization of the bottom stress

given by eq. (49) the acceleration corrections being taken into account

when required in the numerical calculation. (Nihoul and Runfola, 1979).

The model gives H, ~, !b' Q, E and IJ.
Substituting in eq.(16) one obtains explicitly the dispersion equation

for the mean concentration c .

Coefficients of the shear effect dispersion

Shear effect dispersion is described by eq. (16) where ~ is given, in

terms of the functions rand u, by eqs. (22) and (23). The functions r

and U can be determined by eqs. (21), (25), (31) and (39) provided the func­

tion A is known. Thus the parameterization of the shear effect - as weIl

as the determination of the vertical profile of velocity - reduces to the

choice of a single scalar function.

The function

(;(1 - 0.5 (;) (50)

appears to cover a wide range of situations in the North Sea and other

shallow tidal seas (e.g. Bowden, 1965 ; Nihoul, 1977).

In this case, the eigenfunctions and the eigenvalues of eqs. (36), (37)

and (38) are given by

n(2n + 1)

(51)

(52)
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where P2n is the Legendre polynomial of even order 2n.

Integrating eq. (39), one obtains, in this case,

with

S(~) + ~b B(~) + F(~) (53)

B(~)

4 In 2(~ - 1) + 2(2 - ~)ln(2 - ~)

- 2 In 2(~ - 1) + ~ In ~ -(2 - ~)ln(2 - ~)

(54)

(55)

F(~) =~ (~3 - 3 ~2 + 2 ~)36 (56)

The shear effect diffusivity tensor can then be written, using eqs. (25)

and (31)

( r r
~ crI""" d~

t o

1E. y sYs + I.2J2. (': s ':b +~b~s) + l1:!2..
~b~b(J (J (J

+ ~ (v V + 2 ~s~b + v v + 2 ~ b ':' s) (57)
(J2 ~ s .. s - s - s

+ !ll (y b ? s + 2 '!b~b + Ys':'b + 2 ?b 'fb)
0 2

+
Yff

(~s + 2 ~b) (~s + 2 Yb) •-;;3

with

={ 52 =( 5F
d~ - 0.015 (58), (59)

Y 5S T d~ 0.048 Y sf T
t o t o

={ SB ={ BF
d~ - 0.031 (60) , (61)

Ysb T d~ 0.090 Ybf T
to t o

=( B2 =( F2
d~ 0.005 (62), (63)

Y bb T d~ 0.196 Y ff T
to t o
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Application to the Southern Bight of the North Sea

In the Southern Bight of the North Sea, the depth is small and the

bottom stress Ib ' maintained by bottom friction of tidal currents, wind

induced currents and residual currents is always fairly important. One

can estimate that, in general, the characteristic time 0. ' is one order

of magnitude larger than the characteristic time of variation of ~s and

~b (Nihoul and Ronday, 1976 : Nihoul, 1977).

The terms of eq. (57) which contain the derivatives ~s and ~b - the

coefficients of which are already smaller than the others - may then be

neglected.

The shear effect diffusivity tensor reduces then to

R
::

(64)

with

B, - 1.2 (65) (66) (67)

In weak wind conditions (~b < 10- 2 u), the first term in the bracket

is largely dominant and, using eq. (43), one obtains, with a good approxima­

tion

•
H

a--~!!

u

with

a - 0.14

(68)

(69)

(70)

However, in weak wind conditions, the approximation which consists in

neglecting the derivatives y and y is less justified and, furthermore,

one may question the validity of eq. (50). If the wind is too weak to main­

tain turbulence in the sub-surface layer, one may expect, in some cases, a

turbulent diffusivity which, instead of growing continuously from the
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bo~tom to the surface, instead passes through a maximum at some interme­

diate depth to decrease afterwards to a smaller surface value. This type

of behaviour is described by the family of curves

A = 1;(1 - 01;) (71)

Eg. (50) corresponds to the case 0 = 0.5. Values of 0 from 0.5 to 1 cor­

respond to lower intensity turbulence in the surface layer and the limiting

value 0 1 would correspond to the case of an ice cover and the existence,

below the surface, of a logarithrnic boundary layer analogous to the bottom

boundary layer.

In the Southern Bight of the North Sea, it is reasonable to assume

that 0 does not differ significantly from 0.5 and, in any case, never rea­

ches extreme values close to 1. Nevertheless, to estimate the maximum

error one can make on n , it is interesting to compute the coefficients

ß" ß2 and ß3 for some very different values of O.
One finds

6 0.5 0.7 0.9

ß, 1.2 1.5 2

ß2 0.6 0.8 1.3

ß3 0.3 0.5 I

" 0.14 0.17 0.23

The increase of the coefficients 6" 62 , 63 and a with 0 is obviously

associated with more important variations of u over depth i.e. with larger

values of Ü.

One should note also that the existence of a vertical stratification,

even a weak one, reduces the turbulent diffusivity (\1 = nv with n < 1)

and contributes similarly to increase the value of n (e.g. Bowden, 1965).

In the Southern Bight of the North Sea, eventual modifications of the

magnitude (n < 1) or of the form (0 > 0.5) of the turbulent diffusivity

are not likely to be very important and eg. (68) can presumably be used with

a = 0.14 or some slightly higher value obtained by calibration of the model

with the observations.

•
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Vertical concentration profile

When c has been calculated, it is possible to compute the deviation

c byeq. (20). Changing variable to ~ and using eqs. (25) and (31), one

gets

oe r 'Je
T -os 0

with, from eq . (9) ,• rc d~ o .
0

(72)

(73)

Restricting attention to the dominant terms, one finds

'Je

-1

er

fig. 4.

+1
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Wind

u ..

•

1

fig. 5.

where

H(I;;) = 4 {P(I;;) + ln (2- 1;) ln t + ln 2 (4 ln 2 - 1 - ln 1;;) - 2} (75)

G(I;;)

and

2 12 L2(t) + ln 2; I; ln t + ln (2) ln (2) + 21 (76)
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(77)

DUo (1- x) (78)

•
The funetions Hand Gare shown in fig.4. They are both negative near

the surfaee and positive near the bottom. This is what one should expeet

from a physieal point of view. Higher veloeities near the surfaee earry

water masses farther. If this transport is direeted towards inereasing

mean eoneentrations the eorresponding inflow of lower eoneentration fluid

deereases the loeal eoneentration below the mean value e. If the trans-

port in the upper layer is direeted towards deereasing mean eoneentrations,

the eorresponding inflow of high eoneentration fluid inereases the loeal

eoneentration abovc the mean value c. The opposite situation oeeurs near

the bottom. This is illustrated in fig. 5 showing the eoneentration

profiles at two points situated downstream and downwind and respeetively

upstream and upwind on the same isoeoneentration eurve following a dumping.

The eombination of eq~. (16) and (42) with a three-dimensional hydro­

dynamie model provides a three-dimensional dispersion model for the ealeu­

lation of the evolution with time and the spatial - horizontal and vertieal ­

distribution of any passive buoyant marine eonstituant.
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