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Abstract

In fish stock assessment, it is of the utmost importance to make optimal
use of existing stock assessment and fisheries data. The Kalman filter is
suggested as an efficient algorithm for synthetizing available apriori and
aposteriori information.

The prlnciple of the linear Kalman filter is presented. The extended
Kalman filter is introduced to salve the problem of combined state-parame­
ter estimation.

The use of the extended Kalman filter in VPA modelling is illustrated
with a simple numerical example.

The drawbacks and advantages of the extended Kalman filter are discussed.

Resume

Un des problemes primordiaux dans 1'evaluation du stock de poisson est
1'utilisation optimale des donnees existantes d'evaluation du stock et des
pecheries. On suggere que le filtre Kalman est un algorithme efficace pour
synthetiser les informations disponibles apriori et aposteriori.

On presente le principe essentiel du fIltre Kalman llnealre. On introduit
le filtre Kalman elargi pour resoudre le probleme de 1'estimation combinee
eta t-parametre.

L'utilisation du filtre Kalman elargi dans le contexte du modelage VPA
est illustre par un exemple numerique simple.

Les problemes et avantages de 1 'utilisation du filtre Kalman elargi sont
discutes.
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Introduction

Virtual population analysis VPA (GULLAND,1965) is the standard procedure
for obtaining the information on stock size and exploitation needed for the
management of fish stocks. In an ordinary VPA, assumed values are used for
the terminal fishing mortalities and the natural mortality. These assumed
values can introduce serious errors when the VPA is used for catch predic­
tion (POPE 1977). This is clearly disturbing, since one of the main tasks
of fishery science is to set catch quotas, i.e. to make catch predictions.
It is also troub1esome that the current procedure for estimating total a1- e
10wable catches obscures the effects of noise in the data base on the catch
predictions (POPE 1982).

New approaches to stock assessment (e.g. GUDHUNDSSON et al. 1982, NIELSEN
1982, POPE &SHEPHERD 1982) use additional data and clearly stated restricting
assumptions in order to solve the problems of VPA. These methods also allow
studies of the noise corruption in the data base, which represents a great
improvement on ordinary deterministic VPA. Another promising method is the
use of combined state and parameter estimation techniques developed within
systems theory. In this paper we present an introduction to the topic by
i11ustrating how the recursive state and parameter estimation technique
known as the extended Kalman filter (EKF) (e.g. EYKHOFF 1974, BECK 1979,
RINALDI et a1. 1979, MAYBECK 1979) could be app1ied to a system which can
be described by the VPA model.

When ordinary VPA is used, the available catch at age data are assumed
to be exact and hence the values obtained for stock size and fishing mortal­
ity track the data base exactly. When the EKF is used, due account is taken
of the noise in the different data bases and of the uncertainties involved
in the model used. Thus the estimates obtained are the result of a Weightinge
process. In the linear case the Kalman filter can be shown to yield optimal
estimates with respect to many statistical criteria when the underlying as­
sumptions concerning the nature of the noise terms are met (EYKHOFF 1974,
MAYBECK 1979).

The linear Kalman filter

Suppose that the system under study can be represented by a linear, sto­
chastic differential equation of the form:
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x(t) = F(t)x(t) + B(t)u(t) + G(t)w(t), (1)

where • denotes a time derivative, x(t) an n-dimensional state vector, and
u(t) an r-dimensional deterministic control(-input). F(t), B(t) and G(t)
are known coefficient matrices featuring system behaviour. and the effects
of the control and noise on the system, respectively. w(t) denotes white
Gaussian noise, with the properties:

where o(t-t-) is the delta function with the property:•
E(w(t» = 0
E(w(t)wT(t» = Q(t)o(t-t-),

o(t-t-) = 1

o(t-t-) = 0
for t=t­
otherwise

(2a)
(2b)

(2c)

Q(t) is a symmetrie matrix expressing system noise covariances.
The solution of equation (1) has the general form:

t tx(t) = ~(t,t )x(t ) + t J ~(t,l)B(l)U(l)dl + t J ~(t,,)G(,)dB(,), (3)
00 0 0

where the term B(,) denotes Brownian motion with derivative dB/dt = w(t).
The term ~(t,to) is called the state transition matrix, having the following
properties:

d(~(t,to»/dt =f(t)~(t,to)

~(to,to) = I (= identity matrix)
~(t3,tl) = ~(t3,t2)~(t2,tl)

Equation (3) can also be expressed in discrete form.

(4a)

(4b)

(4c)

•
x(t) = ~(t,t-l)x(t-l) + Bd(t-l)u(t-l) + Gd(t-l)wd(t-l) (5)

Bd(t-l), Gd(t-l), Qd(t-l) and wd(t-l) are analogous to the terms in the
eontinuous case. The subscript d denotes that the coefficient matrices
refer to the diserete form.

When the state transition matrix is known, the system state ean be eal­
eulated explieitly with equation (3), if the initial condition x(t

o
) is

stated.

Usually x(to) is not known exactly, but has a stochastic nature, with:

mean: Xo = E(x(to» (6a)
eovariance: Po = E«x(to)-xo)(x(to)-xo)T), (6b)

where Po is a symmetrie matrix. Superscript T denotes the transpose of the
matrix.

The system output vector at diserete time instants tl, t2, t3 •••• ean be
represented by the linear equation:
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z(t i ) = H(ti)x(ti ) + v(t). (7)

where z(~) is an rn-dimensional observation veetor. H(t i ) is an mxn-dimen­
sional matrix and v(t) is white Gaussian noise with the statisties:

E(v(ti» = 0

E(v(ti)vT(tj »
{

R(t i ) for t i = t j= o otherwise.

(8a)

(8b)

R(t i ) is asymmetrie mxm-dimensional matrix with the diagonal elements de­
eribing measurement aecuracy.

There are two independent sources of information: The equations (3) and ~
(6) represent the apriori information. whereas the observations give the
aposteriori information.

To reach the best possible estimate of the system. a proper algorithm is
needed. The aeeuraey of the estimate is also of interest.

A Bayesian approach. involves the following two tasks:

(i) max(p(x(t)lz(t-l»)
(ii) max(p(x(t)lz(t»)

To state the same verbally:
(i) Solve the maximal probability of the system state at time t. if obser­

vation at time t-l is known. and a model of the system is available.
(ii) Determine the maximal probability of the state estimate just after the

new observation at time t.

The solution to this problem was first derived by KAL~~N (1960) and KALMAN
and BUCY (1961). Comprehensive treatments of the subjeet have been given
e.g. by EYKHOFF (1974). YOUNG (1974) and BECK (1979).

The solution of the problem stated above is the linear Kalman filter.
It is a predietor-eorrector-type reeursive algorithm. which gives the opti- ~

mal synthesis of a prior; and aposteriori information. The algorithm ean
be redueed to the following 5 equations. whieh are given for both continuous
and discrete time models:

(a) Predietion(time propagationlof the state and eovarianee to time t. when
the observations at time t-l is known:

State (eontinuous model):

;(tlt-l) = ~(t.t-l);(t-llt-l) + t_1Jt~(t.T)B(T)U(T)d

State (diserete model):
. .
x(tlt-l) = ~(t.t-l)x(t-Ilt-l) + Bd(t-I)u(t-l)

( 9a)

(9b)
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Covariance (continuous model):
T t T TP(tlt-l) = ~(t,t-l)P(t-llt-l)~ (t,t-l) + t~lJ ~(t,1)G(1)Q(1)G (1)~ (t,1)d1

( 10a)

Covariance (discrete model):

P(tlt-l) = ~(t,t-')P(t-llt-,)~T(t,t.') + Gd(t-l)Qd{t-l)G~(t-l) (lOb)

The estimates of both state and covariance can be updated after new obser­
vations with the following equations:

Kalman-gain:

K(t) = P(t\t-l)HT(t)[H(t)P(tlt-1)HT(t) + R(t)J- 1

State update (both continuous and discrete models):.. .
x(tlt) = x{t/t-l) + K(t)[z(t) - H(t)x(tlt-l)J

Covariance update (both model types):

p(tlt) = P(tlt-l) - K(t)H(t)P(tlt-l)

The superscript -1 denotes the inverse of a matrix.

State-parameter estimation

( 12)

(13 )

( 14)•

In the linear Kalman filter both the linear model and constant parameters
are assumed. Therefore only the time propagation of the system uncertainty
and state estimate have to be calculated. This approach cannot be used for
VPA, where the fishing mortality has traditionally been treated as a discon­
tinuous parameter of the system. The state evaluation of the VPA system can
be represented by the equation:

(~) = (-m-n 0)( N)
C f 0 C ,

where N denotes fish stock, C denotes cumulative catch of the cohort and m
and f are the parameters natural and fishing mortality.

In reality both para~eters of the VPA model vary in time. Thus the matrix
F(t) is a function of time. 80th system parameters and state have to be es­
timated simultaneously.

One approach to realizing this is to augment the state vector x(t) with
the parameter vector ~(t) and use the result as the new state vector. We
obtain:



(2)

(3)

( 4)
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x*(t) = c··i-) (15)

Now the problem is to specify the dynamics of the parameters. They
might be specified as:

(a) time-independent: ä = 0
(b) as varying in a random walk fashion: &= ~(t)

Other definitions of vector a require more information on the parameters •

The extended Kalman filter (EKF)

The conbined state and parameter estimation leads to a new system
coeffient matrix F*(·), which consists of vector functions. As the func­
tions include products of the elements of x(t) and a(t), they are non­
linear.

It is possible to construct an optimal non-linear filter for the case of
combined state and parameter estimation. However this is often not practi­
cal because the calculations grow too laborious (RINALDI et al. 1979).

A possibility of solving non-linear problems is offered by the extended
Kalman filter, whose derivation has been presented in detail, e.g. by
MAYBECK (1982).

Briefly, the principles of the EKF are as follows (see BECK 1980):

(1) Linearization of the augmented state equations x*(t) about some nomi­
nal reference trajectory. For small perturbations a set of linear
dynamic equations are obtained by taking first-order Taylor series
expansion.
Linearization of the non-linear observation equation. When the nomi­
nal measurement trajectory is defined, a linear small perturbation
observation equation can be derived.
Application of a linear Kalman filter to the perturbational equations.
The choice of the reference trajectory is crucial to the operation of
the filter. If it is inaccurate, the linearization is no longer a
valid approximation. In the EKF the current state estimate is used as
the reference trajectory.

•
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A simple theoretical example

•

Consider the situation presented in figure 1. Low-noise measurements are
available for fish stock, catch and fishing effort. The task is to use them and
the VPA model to estimate the fish stock, catches and mortality parameters
shown as the "true solution" in fig. 1.

For simplicity, suppose further that:

(a) Fish stock can be estimated from population indices using the formula:

N(t i ) = k(ti)PI(t i ),

where N(t i ) denotes the fish stock and PI(t i ) the population index at
time t i • Assume further that k(t i ) = 1 for all values of t i •

(b) Fishing mortality is linearly dependent on the fishing effort according
to the formula:

E(t i ) = q(ti)f(t i ),

where E(t i ), q(t i ) and f(t i ) denote effort, catchability and fishing
mortality, respectively. For simplicity let q(t i ) = 5 for all values
of t i .

(c) Suppose that the parameters are constant at each time-propagation step.
The parameter dynamics equation has the form:

. 'f \ (0\
a = \~J = o!.

The estimation algorithm has the form:

and

o 0"o 0 I

1 0 I
o 1 !

. .
x*(tlt-1) =~(t,t-1)x*(t-1It-1),

• where:

• / N( t-1»)
x*(t-1It-1) - (C(t-1)- f(t-1)

m(t-1)

(

-m-f 0

~(t.t-1) = b 6
o 0

f.o~a.!:.i~n~e_t2.m~ E.rE.p~g~t.!.o~:

P(tlt-l) = $lin(tlt-l)P(t-1It-l)~1~n(tlt-l) + Qd{t-l),



!\'(1_C-{f ... m)1

--~where:

8

~lin is derived from:

~l in(t It-1 )

where:

~~. denotes the Jacobian matrix of the augmented state equation
1

r -1 .
~. denotes the lnverse Laplace trans form

P{t-1It-l) is a 4x4 matrix with diagonal elements deseribing state veetor
uncertainty and other elementSeross eorrelation uncertainties •

.!S.a.!.m~n.:.g~i!:!.:

K{t) = P{tlt-l)H*T{t){H*{t)P{tlt-l)H*T{t) + R(t»-I,

where:
H*{t) denotes a linearized observation equation eoeffient matrix:

H*(t) = (~ ~ ~ ~)

•

State and covarianee update equations result direetly from eqs. (12)-{13) by
substition.

The eriteria for ehoosing the initial values of the state and uncertain- ~

ti es P (010) Rand Qd were the following: •

(a) For the first· observation vector the value of natural mortality was
taken as m = .2.

(b) P(OIO) was estimated by assuming a eertain measurement noise for the

1st observation and by quessing the aecuraey of the natural mortality
estimate.
1t should be noted that being a eumulative quantity, initial eatch has

the value C = 0 and is an absolute value.
(e) The R{t) and Qd{t) matrices were supposed to be time-independent diagonal

matriees.
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The results for the example are shown in fig. 2. As can be seen, the
further the calculation is processed, the closer the prognostic and observed
values come to each other. The uncertainty of all the

o

elements of the state
vector, execept natural mortality, also diminishes during the estimation.
The increase of natural mortality uncertainty is due to both the choice of
Qd and the fact that no measurement directly updates the m values. Compari-
son between figures 1 and 2 also shows that the true solution of N and c Will be
approached as processing continues.

The example is, however, only one illustration of the algorithm, and
although it promises convergence with the true solution, extreme divergence
from it can also easily be demonstrated.

Discussion

Use of the EKF algorithm in fish stock assessment necessitates statisti­
cal tests of the assumptions behind the filter algorithm. It will also be
necessary to develop the filter further when a thorough performance analysis
has been carried out.

First, the mathematical model upon which the filter is to be based must
be shown to be adequate for the system (MAYBECK 1979). Thus there are no ~

priori reasons for using the VPA model. The VPA model does not necessarily
show correctly how the fishing effort is related to stock size and mortality
or how these are related both to each other and to the catch in the system
under study (cf. BECK 1982). The choice of model does not, however, greatly
change the procedure of applying an EKF algorithm and therefore the VPA i5
used as an example. Furthermore, if the main problem in fish stock assessment
is the available data base rather than the population model (LUDWIG and
HILBORN 1983), effort should be concentrated on tuning the filter and
analysing its performance. This process also reveals a great deal about the
underlying model (MAYBECK 1979). In principle, the EKF can also be used as
a tool in system identification (BECK J980).

The tuning of the filter involves the quantification of threeOmatrices
and one vector. These are the apriori estimation error covariance matrix
P(OIO). the system noise covariance mat~ix Q{t), the measurement noise
covariance matrix R{t) and the vector of apriori state parameter estimates
~*(OIO) (BECK 1980). All of these affect the results of the filter' and there­
fore the performance of the filter must be thoroughly analyzed.



10

The initial estimation error covariance matrix P(OIO) is generally
assumed to be diagonal (BECK 1980) and ~hould reflect the uncertainty of
the apriori state parameter estimates x*(OIO). ror the case of the esti­
mation of a constant signal x(t) from white n~ise-eorrupted signals, EYKHOFF
(1974) shows .that an erroneous assumption of x(OIO) in combination with a
small P(OIO) causes a slow approach to the true value. Thus it is probably
better to overestimate than to underestimate the apriori estimator error
covariance in the non-linear case as well.

The Q and R matrices are generally assumed to be diagonal (BECK 1980).
The diagonal elements of the measurement noise matrix R display the variance
of the available measurements. In principle, the system noise covariance
matrix Q(t) reflects the uncertainties of the model with respect to reality
(BECK 1979). It depends, however, very much on subjective judgement. BECK
(1980) suggests that the diagonal elements of the Q matrix for state parame­
ter estimates might be evaluated from the accuracy of the model dynamics
relative to the accuracy of the measurements. In the case of a VPA model
this means an evaluation of how well a year-class is thought to follow an
exponential decrease relative to the accuracy of the available population
estimates in the form fo catch per unit effort (CPUE) or some other popula­
tion index. If measurements of the fishing mortality (f) such as effort
data are used, an evaluation of the underlying model (f = g(E) • where E =
effort),relative to the measurement accuracy of E is needed. It should be
noted that CPUE data used as a measure of stock size and the corresponding
effort data used as a measure of fishing mortality are not independent ob­
servations and should therefore not be used together, since they would prob­
ably bias the results. On the other hand even quite noisy independent popu­
lation index data from exploratory fishing programs or echo sounding could
be used together with commercial effort data in order to improve the esti­
mates obtained from the filter.

A further problem is the relation of the Q and R matrices to time. It
is customary to assume that they are time-independent (BECK 1980). In
the VPA application it is, however, conceivable that these covariance matrices
vary with time. The quantification of the R matrix is not necessarily a prob­
lem, because estimates of measurement uncertainty can be obtained for each
sampling instant.

The Q matrix is more of a problem. If young age groups are included in
the assessment the assumption of an exponential decrease with constant parame­
ters for one year might be a very crude model indeed, although a similar mod­
el can be a fairly good approximation for older ages. Similar difficulties

•
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can be encountered when modelling fishing mortality as a function of effort.
This clearly shows that investigations of the validity of the models used
in fish stock assessments are badly needed.

The statistical properties of the noise terms should be investigated.
They are assumed to be white Gaussian, but the effects of non-white noise
and the possibilities of using noise colouring filters in the process model
should also be studied (EYKHOrr 1974).

The validity of the linearization in the VPA-EKr must be questioned,
since there are no guarantees for convergence when the original model is
non-linear (RINALDI et al. 1979, BECK 1980, 1982). It is possible that the
perturbations around the reference trajectory, which is crucial in 'the devel­
opment of the EKr, cannot be considered small if there are great and rapid
changes in the parameter values, e.g. due to selective fishing gear. A
possible solution to this problem is the use of shorter time steps than one
year. If, for example, catch data are obtained more frequently than.stock
size or fishing mortality estimates, the Kalman filter can be designed to
take into account the different sampling frequencies (~~YBECK 1979). Another
possibility is to use a different linearization procedure than that around
a reference trajectory (EVANS 1982). The sensitivity of different forms of
the filter to perturbations can be analyzed through Monte-Carlo simulations.
Covariance analysis will also be necessary in analyzing the performance of
the filter.

Once a well performing EKr has been achieved, efficient use can be made
of the available fish stock assessment data. Population index data and
effort data can be used in the filter either directly or according to some
specified function. Thus separate regression methods for off line tuning
of VPA could be avoided. In this respect the EKF resembles the integrated
models of NIELSEN (1982) and GUD~UNDSSON et al. (1982) •

Analysis of the results obtained from the Kalman filter gives opportu­
nities to test e.g. the assumption of time-invariant natural mortality (m).
lf the assumptions turns out to be invalid, m can be modelled as a parameter
exhibiting random walk, or if the data are available, as a function of preda­
tor density, thus extending the VPA-EKF to the multispecies case.

For short time periods, both fand m can be considered constant and a
linear Kalman filter can be used for catch (i.e. state) prediction, which
is needed when the total allowable catches (TAG) are set at status quo. The
validity of the assumption of time-invariant fand mcan be tested and thus
changes in the mortality rates can be detected. When a linear Kalman filter
is used for catch prediction an estimate of the uncertainty involved is also
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obtained in the form of the covariance matrix P(tlt-l)~ The Kalman filter
can therefore be used to approach the problem of the variance of the TAC
estimates recently addressed by POPE (1982). It must be noted. however.
that the matrix P(tlt) cannot be interpreted as an ~osteriori measure of
the true estimation error covariances (BECK 1980).

It can be concluded that the Kalman filter is an attractive tool in many
fields of fishery science. As regards its application to the VPA model. it
is not yet clear whether it ultimately creates more problems than it solves.
but it clearly gives an alternative view of the model and opportunities to
perform a thorough sensitivity analysis. The Kalman filter approach is also~
a way of arriving at a stochastic VPA. which shows the necessity of having
not only good catch data but also information on the noise of the data. This
is valuable. because improved knowledge of the noise in the data base is
necessary for the rational management of fish stocks. whether one wishes to
use the Kalman filter or not.
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