International Council for the Exploration of the Sea
O.1. 1986 / B:18

Ref. G.
Sess. V.

ASSESSMFNT OP OPTIMUM MSSH. SIZE IN TRATHL'S CODEND FOR ARCTO-NORWEGIAN COD PISHERY
by

Digitalization sponsored by Thünen-Institut

Blinov V. V.,

All-Union Research Institute of Marine Pisheries and Oceanography (VNIRO), Moscow, USSR

ABSTRACT

A new method is presented for the assessment of the optinum mesh elze in trawl's codend. It is based on representation of relative fishing mortality at age as sum of four funstions of age: one being of codend's selectivity. Selectivity and intensity parameters were changed in the model irdependentiy. Losses, and gains
catches were calculated using selectivity cohort theory proposed by the author earlier. Calculations ware made for North-brotio cod fishery when varying mesh aize values from 91s to 157 me. Calculation variants ware analyaed using three criteria. The existing mesh size level for ood Ilehery B 125 ma is proved to be optimum for the period of 1962-8990 years and must be thus "freszed". :

RELSME

Il est proposé une nouvelle méthode pour l'éstimation des dimensions optimum de maille des aacs de chalut. Elle est basé aur la représentation de la mortalité rélative de pêohe en fonotion de 1 'âge sous forme de, le somme des 4 fonctions d'áge des poissons, dont l'une représente la sélectivité du esc. Les paremétrea de la sélectivité et de l'intensité de lapéche dana la modélo ae changealent de façon indépendante. Les pertes et les avantages dans les prises étaient calculées au moyen de la théorie de select*vité des cohortes proposée plus tôt par lieuteur. Les calculs sont faits pour la pêche a la morue arctique-norvégienne au changement des dimensions de maille de 91 a 157 mon. Les variantes des calculs étaient analysées a partir de trois critéres. Il est prouvé que les dimensions de maille existantes pour la pêche à la morue $B=125 \mathrm{~mm}$ est optimum pour la période 1962-1990, ciest pourquoi elles doivent être "congelées".

INTRODUCTION

Selectivity and intensity of fishery as being its regulation factors should be considered as being parameters and functions that have to be optimized by using a certain complicated and atructured model of the "Btock-fishery" type. To get better accuracy and adequacy when modelling a system one should choose discrete type model. Regulation effects are ususlly seemed to correlate with variables and parametera responaible for abundance and blomass dynamics, and optimization of catch regulation parameters has to be Iollowed by optimization of fishing and apawing stock paremeters.

4 method for optimization of trawl codend's mesh size hes been developed in the papers (Hoydal,1977; Hoydal et al..1980; 3parre, 1980). This method has not however taken into account for aspecta of general and combined optimization of fishing and spawing atock aizes and catch.

New methods for astimation of effect of change in trawl fishery selectivity have been developed in the papers (Blinov,i98i, (984,1985a,b). Algorithms of those methods oan be used in prognostic modela to analyse and optimize etock size and catch level. The main problem is to separate adequately numerical variables of selectivity and intensity of fishery. A method for trensformation of $P(1)$ function ia presented below that was brieily desoribed earlier in the papers (Blinot, 1985a,b). This approach gave a possibility to test, separately or in combination. faotors of regulation of the Arato-Norwegian cod fishery. Resulta of modeling and analyse of criteria over the set of variants of posaible chances in cod fishery selectivity were given and optimum trawl-codend's mesh size for cod fishery was determined.

relative instant pishing mortality

Different authore tried to find in different forms relationshipe between trawl selectivity parameters, fishing effort and fishing mortality rate F (see Beverton, Holt,1957; Pope, 1974; Doubleday,1576). Por example; Pore's and Doubleday's methode were based on proportionality of the type:

$$
\begin{equation*}
F=a \cdot s \cdot f \tag{1}
\end{equation*}
$$

where S-selectivity coefficient; f - fishing effort, Q - constant.

As one can see from the expression. (1), the selectivity coefficient written in the explicit form does not depend on age of fish and can be considered asa part of the whole constant a. To the author's mind it would be better to take into account for the selectivity process when forming a function F (1), where i - age of the fishes, by the expression of the type (see Beverton, Holt, 1957; Blinov, 1981):

$$
\begin{equation*}
F=\mu \cdot F_{s t} \tag{2}
\end{equation*}
$$

whers. F_{st} - stable F value that typically valid for middle and old ages, μ - a fraction of fiehes at ages retained by trawles codend. The function $\mu(i)$ was considered as being the cumulative one in the previous paper (Blinov, 1981). Indeed, the point how to interpret the $\mu(i)$ function needs further study in the frame-work of trawl sampling theory.

The multipli ative function for representation of $\mathrm{P}(1)$ has been used in the papers (Hoydal,1977; Hoydal et al.,1980; Sparre, 1980):

$$
\begin{equation*}
F=F_{\text {max }} \cdot z(i) \cdot \mu(i) \tag{3}
\end{equation*}
$$

where $P_{\text {max }}$ - maximum fishing mortality rate that is usually
occured for one of the oldest age group, そ(i)-fraction of fishes aged i being available for the fishery. The P value, in ite turn, has been formed by such additive terms as landing F_{L} and discard of fishes amall in length F_{D}, 1.e, $F=F_{L}+F_{D}$. These magnitudes es being all functions of age are then diatributed among types of fisheries (and vessels as well). Such an approach ignified progress in the problem owing to detalizing influence on P values of different types of fisheries and various mortality factor S for fiahes. But multiplicative form of ralationakip (3), where functions $\mu(i)$ and $r(i)$ have koth dome-115e form, seem not to be ovident enough.

To clarify the point it abould beprimaribasid that the right decreasing part of ${ }^{\text {th }} \mathrm{F}(1)$ curve that is responsible for general availability of the fishery to the stocle and for trawl's catchability in relation to the most aged fishes, is considered sometimes as being formed by selectivity processes. From methodological mack-ground trawl codend's ability to retain fishes of definite lengths (agea) despite of length composition of fished population before trawl's mouth provided fishes of all lengths (ages) do present there, that is usually considered as seloctivity.

Fishes by the rest parts of bottom trawl for the exception of codend are treated by trawl's catchability thsory. So fishing mortality curve as being a function of age of fishas can be constructed by using another background.

When analysing the ICES WG data on cod (see, for example, Anon, 1979,1986) onecan find that the $F(1)$ function for cod in any ygar of fishery j has as a rule a dome-iike form with marimum puint that corresponds to the oldest fishes that can be likely oxplained by
norwegian hand-line and long-1ine fisheries of the cod spawning atock. The function $F_{j}(i)$ being divided by its maximum value $F_{m a x}(j)$ ia transformed to the function $F R_{j}(l)$ that changes from 0 to 1 . and keeps domelike form (see Fig. 2,3).

Thus, the function

$$
\begin{equation*}
F R_{j}(i)=F_{j}(i) / F_{\max }(j) \tag{3a}
\end{equation*}
$$

is normalized and that form is the special one for the year j The function $F R(i)$ can be represented in the form of sum of four functions in the following way:
$F R_{j}(i)=S E L_{j}(i)+D I S C_{j}(i)-G A P_{j}(i) \ddot{O} D I S P_{j}(i)$
Here DISC j signifies a function describing surplus catch young fish over that determined by codend's selectivity curve. That is due to meshes in condends being blockaded by fish bodies and due to other reasons as well. But the moat valuable constrtrent of the DISC $_{j}$ function is determined by amount of discarded fish. The function $G A P_{j}$ characterize averaged retaining ability of trawl e relative to middle-aged fishes, $S E L(i)=\mu(i)$ - selectvity curve describing trawl codend's retention of fishes (it is usually applied to the fishery during a number of years that corresponds to fixed mesh size in trawl's codendej. The function DI describes a process of dispersion of old: fishes among the stock and their relatively leas availability to the fishery in the year of J.

Typical functions incorporated in to the right aide of the expression (4) ere shown in the pigs. 1a,b; 2,3. The DISC function gives nonzero values for ages 1-3 only whereas GAP and DISP functions are often distributed over 5-9 ages. Transformations (Ba) and (4) are made for $F(i)$ values obtained for instance, by
the VFA method for a certain reference (base) year beginning with that a retrospective or prognostic analysis is supposed to bs carried out.

Thus, selectivity and intensity of fishery appeared to be spitted into separate parts as the expressions (3a) and (4) reveal: intensity of the fishery was separated by means of using multipleDative form of the expression (factor $P_{m a x}$), while selectivity function SBL (1) has an additive form. When changing the values of $I_{\text {max }}$ and SEL(i) as the fishery is modelled one can separately or jointly investigate intensity and selectivity effects produced onto the results of the fishery and their importance because as they can be considered stock and catch regulation parameters that nosed to be optimized.

VIRTUAL POPULATION ANALYSIS REVERSED

The new method of cohort analysis reversed of selectivity (CAROS) has been proposed in the previous papers (Rlinov, i984; 1985a) to consider the selective part of a stock. This method is convenient for manual calculations but gives remarkable errors nevertheless, so there is need to improve it. The model and corresponding program "ICES-3" always used below for calculation stock and catch numbers at age is the improved version of the problem. Here the VPA relationships in Gulland's form are used (Pore, 1972):

$$
\begin{align*}
& C_{j i}=N_{j i} \frac{F_{j i}:\left(1-\exp \left(-\left(F_{j i}+M(i)\right)\right)\right.}{F_{j i}+M(i)} \tag{5}\\
& N_{j(i+1)}=N_{j i} \cdot \exp \left(-\left(F_{j i}+M(i)\right)\right) \tag{6}
\end{align*}
$$

where $N_{i,} N_{i+1}$ numbers of piahes aged i and $i+1, F_{j i}$ fishing mortallty rate of i-th age group of the stock in j-th jear of fishery, $M(i)$ - natural mortality rate of i-th age group of the atock.

The expressions (5) and (6) are used for calculations forwatime 1.e. fishes getting more aged are assessed in number by and by, it is plausible by analogy to CAROS method to call for the sake of definitness this direction calculations carried out ingas VRA reversed, or VPAR.

Abundance of selzotivity cohorts at afe and catches taken from those cohorta are written by analogy to the expressions (5) and (6):

$$
\begin{equation*}
C_{i i(S E L)}=N_{j i(S E L)} \frac{F_{j i}\left(1-n \times x p\left(-\left(F_{j i}+M(i)\right)\right)\right.}{F_{j i}+M(i)} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
N_{j(i+1)(S E L)}=N_{j i(S E L)} \exp \left(-\left(F_{j i}+M(i)\right)\right) \tag{8}
\end{equation*}
$$

Algorithm of selectivity cohort analysis is given in the paper (Blinov, 1984). If the expressions (5) and (6) in the paper (Blinov, 1384) were changed for the expressions (7) and (8) written above; we would have a method that can be called as VPA of selectivity reversod, or VPAROS.

matural hortality fate and recruitment of cod

ICSS Worxine Group is well known to use constant and equal values for ell ages of cod of natural mortality rates is (Anon., 1979, 1986). In 60-ies years $M=0.3$ and in 70-ies: $M=0.2$ have been taken whereas contemporary understanding of elimination of fishes from the stock due to natural causes (eee, for example,

Tiurin, 1972) is based on conaidering it as being a funation of age of Iish, i.e. a function $M(1)$ that is beletved to be of concave. type. Values of that function over the regiona corresponding to the youngest and oldest ages are reached or exceeded the level, M = 1., and the minfmum being more often flatted hits to the middle ages of IIshes.

In the paper by Burisov V.M. (1976) the computation by Tiurin's method efthandance of cod individuals eliminated due to natural reasons has been made. In our work (Blinov, 1977) a model for such a type of elimination was delivered and some general type of the function $M(i)$ was proposed. Here again, coefficiente of the function $M(1)$ were fitted on basis of the calculation results obtained In the cited work by Borisov V.M. In the present work one of the coefficients has been corrected that aimed getting results for the entire run provided that these results would not be in contradiction The second part of the results obtained in that run has been presena ted in the paper (Blinov, 1985b).

We thus recomend for use the following function $u(1)$ for the arcto-norwegian col:

$$
\begin{equation*}
M(i)=-\ln [6.9(\exp (-0.2 i)-1.1 \exp (-0.3))] \tag{9}
\end{equation*}
$$

Ais expression was used in the modeling procese as being an alternative to the constant value $M=0.2$ that has been taken by the wa.

In Chis fundamental work Iretjak V.L. (1983) proposed the expresaion $M(1)$ that however gives very low values within wide range of cod age groupa. This expression needs moreover to be eet on a more rigoroua theoretical basie. So in our calculationa we have not taken Tretjak's expression.

As is well known (Anon., 1986) a number of year classes unt111

1983 year were poor and cod recruitment was at a low level.- only several hundreds of millions of 3-year olds. During this run of modelling a constant low level of cod recruitment was used as it has been done by Ulltang (1979): we used $N_{3}=310 . m 111 \stackrel{\text { Of }}{1}$ ndisiduals. Thus, the results of this run of modeling shouid be related to the atate of the cod stock with constant multiyear recruitment of very low level.

BRIEF DESCRIPTION OF ALGORITHM CF THE PROURAMM "ICES-3"
The outputa of the model and the prugram "ICES-3" are prognostic parameiers of catch and stock (1.0. parameters of exploitation regimen of the atocic) when changirg (separately, or jointiy) aelectivity and intensity of the fishery and at the same time posaibly changing in recruitment'a level and natural mortality rate for fishes at different eges. The model and progran can be u3ed for retrospsctive enalyses.

When taking the WG data on $F(1)$ values for a certain "base" year of fishery, the function $F_{B A S E}(i)$ is tranaformed by use of (3a) and (4). Calculations of stock and catch parameters by using the expressions (5) and (6) for prognostic years of pishery are made by the pregram "ICES-3" in two varianta: 1) for fishery with exiating (old) selectivity $S E L(i)=P_{O L D}(i)$ and 2) for fishery with new eelectivity SEL(i) $=P_{\text {NEW }}$ (1), where $P_{O L D}$ (i) and $P_{\text {NEW }}{ }^{(1)-}$ values taken from old and new selectivity curves for fishes of i-th aqe. Any belectivity curve of trami's codend that differs from that for baae yciar (both for increasing or decreasing mash eize) can be taken to be valid to the calculation prozedure. The following variants o: changing in intensity of fishery
are taken into accounts fishery with the same intensity that was otserved in the base year; fishery with any constant intersity for all age groups of the stock; fishery. With the intensity that is changed yearly by the value ΔF until it reaches constant (optimal, in a : case) level of $F_{\text {opt }}$ values for all age groupe of the stock. The lather values that have been recommended by the wa for given selectivity of fishery (see Anon. ; 1979) were used in our calculations.
 were used as start ones in the expressions (5) and (6). The rest. of fishes in atock at the end of this year's fishery was calculatod by the formula (6). Number of fishes eliminated by natural cauees is determined as being the difference between initial number and aum of catch in number and the rest of the atock.

Spawning atook numbers at age are calculated using values of the maturity ogive by Ponomarenko V.P. et al., (1980). Spawning stock biomass at age and that for the entire unit are also calcu1ated. For those purpose mean weighte of fishes at age (Ancn., 1986) are used and biomass of fiahes at age for catch, stock and amount of fishes eliminated due to natural causes are computed as well.

Then all stock and catoh parameters for two variants of som leotivity of the fishory have beon assessed, a comparison of thess veriants was performed by computing losses and gaine in catchsa by means of the sub-program that realized the VPAROS method.

SOME OPTIMIZATION CRITERTA POR THE EXPLOITATION OF CONAERCIAL YISH STOCKS

A set of fish eriteria for optimum exploitation of comercial
fish stocks must surely include in explicit form such criteria that reveal variations in epawning stock sbundance, biomass and structure.

The most simple criterion is keeping constant, apawning stock bionass (provided given structure of the atock). The expression (4) permite to organize computational process of seeking for buch a catch in the current season that the next year spawing stock would reach a certain given value. For that is used an increment

$$
\begin{equation*}
\Delta \dot{F}_{j}(i)=\Delta F^{\prime} \cdot F R_{j}(i) \tag{10}
\end{equation*}
$$

where ΔF^{\prime} - varying computation step. Performing itsrations a new value of fishing mortality rate F_{N} is obtainęd by using the expression(from the old one $F_{O L D}$):

$$
\begin{equation*}
F_{N(j)}=F_{O L D}(j)(i) \pm \Delta F^{\prime} \cdot F R_{j}(i) \tag{11}
\end{equation*}
$$

When using variabléstep ΔF^{\prime} one can sustain calculation velue for spawning atock biomass. $B_{s p}$ to be at a given level within a certain fixed accuracy and finally to determine the allowable catch. This problem was solved by our optimization program "ICES-4".

Catch optimizing process for the prognostic year j described above corresponds to the oriterion $Z=Y \rightarrow \max$ provided $B_{j+1}=$ = const, latter prognostic leveis B_{j+1} being thereby set from biological considerations.

Among outputs of the program "ICES-3" there are three ones being the most important: commercial $B_{S t}$ and spawning stock $B_{S p}$ biomasses, biomass of catch Y. Concepta for rational exploitation should be evidently related to these parameters. Note that they are not independent and so criteria composed by using some combinations of these magnitudes do hava to be single-valued.

As a basis to form criteria for option of optimum regimen of
exploitation (optimization criteria) of the commercial fish atock bearing in mind that we deal with the complicated oystem it is reasonable to set the following qualitative considerationes 1) increasing in catches is limiting from above due to possible vulnam rable impaat to the stock while low catches may point out to irrational utilization of the atock due to the fact that elimination fishes by natural causes is increasing; 2) rise in the commercial stock aize without a corresponding rise in catches seems to be relatively high elimination of fishes due to natural causes and lowering in relative amount of feeding items and ebsolute one utilized by other epecies that are belived to be of high ixportance and rationally exploited; 3) decreasing in commercial stock size when catch is fixed, due to decreasing of spaming stock number and the reproduction system of the atock may therefore be violateds 4) sharp decreasing in the cormercial stock size and catch may occur to be not profitable because the ecologic niche would be occupied by some other fish epecies (particularly by unexploited ons); 5) increasing in opaming stock blomase should not colnside with decreasing of the commercial stock biomass that would inevitably result. In sharp decreasing in catches; 6) decreasing of paming stock biomass should not conside with increasing in catches.

Regulation measures that use. : Ifshery selectivity and intensity changes are well known to be directed to gain summed multiyear Catch increased and simultaneously to save (or even enlarge) summed numbers of spawners over these yeard So, amons optimization criteria for exploitation regimen ought th be oriteria of cumulative typs. that reveal properties of the system "stock-fishery" during a series of years.

Por instance, the ratio

$$
\begin{equation*}
\varphi_{n}=\sum_{j=1}^{n} Y_{j} / \sum_{j=1}^{n} B_{s p}(j+1) \tag{12}
\end{equation*}
$$

where n - number of prognostic yeara (or time delay in jears for retrospective analysia). As the criterion φ_{n} is increasing, catches are relatively also increasing compared to spaming atock size that asy result in overfishing. As the criterion φ_{n} is on the contrar. deoreasing, catches are relatively decreasing accompanied by the more auspicious atate of the spawing stock. However, drastic dec-. reasiru in φ_{h} values would correspond to irrational exploitation of the stock (underfishing).

One may recommend another criterion of cumulative type that includes all three atock and catoh parameters: W_{h} criterion defined as ratio of catch and spawning stock biomass summed over a geries of n years of fiahery to summed commercial stock biomasa:

$$
\begin{equation*}
\omega_{n}=\sum_{j=1}^{n}\left[Y_{j}+B_{s p(j+1)}\right] / \sum_{j=1}^{n} B_{c s(j)} \tag{13}
\end{equation*}
$$

where "CS" - commercial stock.
The expression (13) contains in the numerator a sum of catch and spawning stock biomasses to maximize which is the aim of fishery regulation. Then the numerator in (13) is sustained constant (or near it) increasing in the commerial stock size would mean irrational expioitation of the atock. When the commercial stock is decreasing without decreasing in catches the apawning stock is also decreasing in aize that may become dangeroue for reproduction potential of the stock. When values of the criterion \boldsymbol{W}_{n} are lowering that results in decreasing in catches and biomass of the spawners while relatively constant level of the commercial stock size is austained.
that also means irrational exploitation of the stock.
The qualitative analysis of the oriteria (12) and (i3) given above creates a basis for the maximin formulation of the problem, namely: maxmin φ_{n}, maxmin ω_{n} as being the aims of stock aize regulation for the period of n years.

ANALYSIS OF PISHERY SELECTIYITY POR THE ARCTO-NORWEGIAN COD USING THE CRITERION Tfc

A èet of retrospectivs and prognostio calculation runs hes been carried out uaing the programm "ICES-3" in which atock and catch parametere for the arcto-norwegian cod have been determined when changing selectivity of the cod fishery $\frac{\text { In }}{\mathrm{F}} \mathrm{all}$ these calculations fishery intensity was kept at the base year level.

Input data for the calculations were taken from the followinc sources: codend's selectivity curves for the sovict trawla made of sapron nets having mesh sizes as во $B=91,98,110,120,130,200$ mm (Anon., 1564; Treahchev, 1974), for B = 130 mm (Ponomarenko ot al., 1.78), for mesh sizes $B=125,130,140,150,157 \mathrm{~mm}-$ data obtained by PINRO.

The years of 1962, 1968 and 1978 are taken as the base ones: all mat-eriala of the WG (Anon., 1979), in partisular, fiahing mortality considered as function of cod age $F_{B A S E}(i)$, are used for the base yeare. Resulta obtained by application of the expreseions (3) and (4) to the base year data (and for 1979 as well) are shown In the figs.: 1ab; 2,3. Por the base years 1962 and 1968 the calculations are retrospective ones. For the base 1978 year the prognoatic regimen a rather great prognoatic time interyal $n=20$ yean that was taken by analogy with Ulltang's computations (1979).

The following transitions of fishery selectivities corresponding to changes in mesh size from B_{0} to the now one $B_{1}: 91 \rightarrow 98$, $91 \rightarrow 110,110 \rightarrow 120,110 \rightarrow 130,110 \rightarrow 200$ man have been atudied and the resulta have taken into accountrall stock parameters that were really acted during the period of 1962-1968 years. In the prognostic regimen taking 1978 as the base yoar the following transitions have been studied: $120 \rightarrow 125,120 \rightarrow 130,120-140,120-$ $150,120 \rightarrow 157 \mathrm{rm}$. Ail these variants have been computed ueing both conatant natural mortalfify $M=0.2$ andrfunction $M(1)$ given by the expression (9).

To analyen variants of changing in cod fishery selectivities the oriterion of full compensation of losses in catches $T_{f e}$ described earlier (Blinov,1984,1985a,b) has been used. The border value for $T_{f g}=8$ years was thereby useds if in a caloulation varianthlnequality $T_{f c}>8$ years appeared to be valid that transition variant was considered not to be advisable.

Calculation values of the criterion $T_{f c}$ for all variants of transition of the fishery when vessels began to use tramle with new codend's mesh size B_{1} are shom in the Fig.4. The ine that Joints crosses corresponds to the calculation variants input data of which have been used in Treehchev's computations (1974). The only value for $B_{1}-98 \mathrm{~mm}$ was obtained using data from (Anono 1964). However, in all these cases $M=0.3$ and $F=0.8$ have been taken as the Working Group has used those years. As one can conclude from the deacription of the model the iatter one allows to make calculations taking variable values of $P(1)$ instead of the constant ono $P=0.8$. Results of these varlante are ahown by circles in the pig.4. We see that the only transition $91 \rightarrow 98$ appeared
to. be advisable whereas for all cther variante valuea of $T_{f c}$ were eztremely high. One cen conclude of that the value M-0.3 has likely been then overestimated giving espacially unrealiatic resulte when the effect of change in fishery eelectivity was calculated by Gulland's method.

The values of $T_{f c}$ criterion for prognostic variante of transition beginning from 1978 when the mesh size $B_{0}=120 \mathrm{~mm}$ has been used to larger mesh sizes are shown in the Fig. 4 by aquares and triangles, the latter ones are thereby related to constant value of M for all cod age groups, $M=0.2$, and the first ones - to the function $\mathbf{M}(\mathrm{i})$ given by the expression (9). As we see in both cases values of the $T_{f c}$ oriterion increase while the new mesh size B_{1} is increasing reaulted in the most sharp incrgase for dote that correspond to tie function $u(i)$.

In order to obtain values of the funciion $T_{f c}\left(B_{1}\right)$ in the region $100-120 \mathrm{~mm}$, a set of retrospective calculations for the base 1962 and 1968 years has been performed with uee of the expressions (3a) and (4) beforehand and the function (9) as well, i.e. provided $M=M(i)$ and $F=F_{B A S E}(i)$ as if the above method was known those years. The results of these calculations are show in the Pig. 4 by tranaparent and half shaded rhombs. In both cases the input mesh size $B_{0}=91 \mathrm{~mm}$ was taken. As we can see, the transitions oi the fiehery to the mesh sizes $B_{1}=98 \mathrm{~mm}$ and 100 mm epppeared to bo true and valid. In this way the function $T_{f c}\left(B_{1}\right)$ became continued to the lower range of $B_{1}-s .$. The aolld line that avercges all dots in the Pig. 4 crosses the border that was said about earlier in the range between $B_{i}=120$ and 125 mm . Thus, this is the runge of optimurn values of the criterion $T_{f c}$, indeed. As far the $T_{f c}$ criterion
reveals only technical end economical importance of the resulation measures when changing in fiehery selectivity is concerned (see Blinov; 1984,9985), so in order. to judge finally about cod fishery selectivity level it is necessary to draw to the analysis the criteria that reveal biological atates of the stock.
afllysis or cod pisiery selbctivity.
uSing the caiteria φ_{n} and ω_{n}
The criteria φ_{n} and ω_{n} defined above reveal interdependence between parameters incorporated to these oriteria and they belong besides to the relatioships of cumulative type, i.e. they accumulate multiyear information on changing of some model's outputs. Such oriteria are very useful in assessment practice when one obtain digital parameter's level for the exploitation regimen of the commercial stocks and of the total allowable catches due to the fact that fiahery changings that are concerned of young age groups of the stock do influsnce onto stock parameters during all subsequent years of their life in fishery.

The analysis of the modelling results obtained rith the use of φ_{n} and ω_{n} criteria in the maximin formulation is precented below. In our case there are two contral parameterse new mesh siz B_{i} and the altyemative $H=0.2$ or $M(1)$ by the expresion (9)。 Por convenience sake consider a parameter σ that chooses one of the alternatives, 1.e. $\sigma=1$ if $M=M$ (i)and $\sigma=1 f M=0.2$. The rule for the enalysis iss the variants that hit into the crosssection region, which is formed by overlapping optimum regions of all criteria, should be treated as being the aim for stock size and fishery regulation. A variant of transition of the cod fishery
to a new mesh size in trams's coded B_{1} when using oriteria φ_{h} and ω_{n} would be consiriered as being the optimum one if the oftimum conditions determined by the criterion $T_{f c}$ are proved to be resiny fidifiled and the following expressions are valid:

$$
\begin{align*}
& \varphi_{n(o p t)}=\max _{B_{1}} \min _{\sigma}\left\{\varphi_{n}\right\} \tag{14}\\
& \omega_{n(o p t)}=\max _{B_{1}} \min _{\sigma}\left\{\omega_{n}\right\} \tag{15}
\end{align*}
$$

Minimization of the criteria φ_{n} and ω_{n} by the $\underset{\text { parameter han }}{\boldsymbol{\sigma}}$ the following anise. Values of natural mortality rate of fishes. in the stock are redistributed over age groups, when the expression (9), instead of the constant value $M=0.2$, is ucod in the modelings procedure, in the way: young and old ages are assumed to be gllmimated with more high rate than that for the middle age groups. So; any averaging procedure by using the expression (9) (for example, with relighting by numbers at age) gives somewhat higher mean rate of cod elimination due to natural causes than that determined by the constant vile $\mu=0.2$. That means that provided the fixed values of Y_{j} and $B_{S p}(j+1)$ the denominator in the expressions (12) and (13) should have the higher value resulting in lowering the values of φ_{n} and ω_{n}.

Calculation values of the criterion φ_{20} for the 20-year forecast. are shown in the Pig.5. As we sea a value $B_{1}=120 \mathrm{~mm}$ corresponds to the point of maximin according to the expression (14). All the regt, more higher, values of B_{1} result in decreasing of
 no need to increase $\frac{1 n}{\text { in trawl codends over } 120 \mathrm{~mm} \text { when } \operatorname{cod} \text { fisitury }}$ is carried out. The same conclusion one can produce if the ()$_{20}$
oriterion is considered.(see the Pig.6.).
It also follows from the Pig. 5 that if the spaming atock seems to have a somewhat better atate, the latter is reached by means of valuable decreasing in catches. A family of curves $\omega_{20}\left(B_{1}, 5\right)$ decreasea analogously to that of $\varphi_{2_{0}}\left(3_{1}, \sigma\right)$ that give rise to a concluaion, that during the period considered catch and apawning etock biomase are increasing with a significant lag compared to the commercial stock biomass. In these circumstances a fraction of fishes eliminated due to natural causes increases that gives an evidence for irrational exploitation of the commercial cod stock. As we can see from the Pig.6, this procese takes place both for the variants determined by the value $M=0.2$ (adopted by the WG) and for those determined while using the expresaion (9) that is recommended in the presont work.

Thus, we can conclude that within the limits in which cumulative criteria φ_{20} and ω_{20} take into account.biological preperties of the commercial cod stock, optimum values of these criteria appeal to the recomendation not to increase inner mesh size in trawl codends made of capron more than 120 mm when cod fishery is carrisd out. by those eears. The mesh size of $B=120 \mathrm{~mm}$ is well known to be officially introduced aince 1981, so the results of the present work should be understood as the proposition to "preazew this regulation parameter at the existing level and perfora cod Iishery regulation by means of changing antensity of the fishery. 1.0. charging in ifshing effort exerted on the cod etock.

CONCLUSIONS

1. The large scape of experimental material covering the
period of 20 years when the investigations of capron trawl codend'a selectivity relative to the arcto-norwegian cod have been carried out by PINRO, was laid as inputs when system modelling of the process was performed using the apecial program "ICSS-3". Ths criterion of full compensation of losses in catches was applied to the resulto of the modelling described to give the definite optimum range of Lesh aizes in tiraml codends: $B=120-125 \mathrm{~mm}$.
2. When putting into comparison the old and new selectivity date for late and recent years if one uses the expression (9) proved that all valculation values of the $T_{f c}$ criterion have been aurely put in order to give an evident and clear relationship which is of increasing type - the criterion $T_{f c}$ being as a function of the new mesh eize B_{1}. On this basis the expresaion (9) is recomended to assess stock numbers and totai allowable catches for the arcto-norwegian cod.
3. The maximin formulation of the φ_{n} and ω_{n} criteria (expressions (14) and (15), when the analysis of changing in cod fishery selectivity is performed, allowed to take into account changes in biological parameters of the stock and catches. Then examining optimum valuea of theae criteria over the oalculation variants obained in the system modelling described abore it was possible to digest the optimum mesh size in capron trawl codend's for cod fishery $B=120 \mathrm{~mm}$.
4. If all three criteria are combined in the analysis it was possible to obtain the only value $B=120 \mathrm{~mm}$ in the cross-section of the optimal criteria regions that have overlapped each other. Because the existing mesh size is officially taken as being $B_{\text {(}}=$ - 125 mm , the mein result of this paper is to "freezs" the existing
mesh oize for cod fishery and further increasing in the value of B is not advisable.

The resh aize value $B=120 \mathrm{~mm}$ should be considered as tho minimum one in the optimum range when blologicai atate of the stock is not eetting worse. The mesh size value $B=125$ mould be treated es maximum ai swable one when the level of rational fishery is jet sustainad for e long time while biological and technical peinte are concerned. Thus, by the present work we recomend finally to "freeze" the fresent irner mesh bize in capron trawl codenda for cod fishery et the exiafing level of $B=125 \mathrm{~mm}$.

RBPERENCES

Anon., 1964. Keport of the mesh selection Working Group, 1959-1960, Coop.Res.Rep., 2.

Anon., 1979. Report of the Lrctic Plsheries Working Group. ICES C. M. 1979/G:20.

Anon., 1986. Heport of the Arctic Pisheries Working Group. JCES C.M. 1986/asвезs:4, pp.1-53.
Beverton R.J.H., Holt S.J. 1957 . On the dynamice of exploited ifo fopulation. Pish.Inv., 2(19), 533 p.

Blinov V.V., 1977. Modeling of natural mortality rate at age for young fishes. Vopr.Ichtiol., N 3, pp.572-578.
blinov V.V., 1981. The estimation method of the effect on catchea of changes in trawl's selectivity. Napo Scr.Doc. $81 / \mathrm{YI} / 58$, Ser. N 342.

Blinov V.V., 1984. On 1mproving methode of estimation and optimiza=
tion of fishery seleotivity. Rybnoe hqzjajatwo, N 3, pp.55-57. Blinov V.V., 1985a. Eetimation of the optimum mesh size in traxl'm codend on basis of mathematical modeliing of "stock-fishery" syatems. Rybnoe hozjajatwo, N 5, pp.62-64.
Blinor V.V., 1985b. Long-term exploitation of fieh stocks as being optimized by using syatem modeling methods. Inz "Theory cf commercial fiehery and ftehing gear designing", Mosoow, VNIRO, pp.105-128.

Borisov V.M., 1976. Results of application of Tiurin's method for estimation of natural mortality in the arcto-norwagian cod stock. Voprosy 1chtiol., 1ss. 5, pp.889-899.

Doubleday R.G., 1976. A least equares approach to analyeing catoh at age data. ICT:AP, Res.Bull., N 12.

Hoydal K., 1977. A method of Mesh Assesment Making it Posaible to check Growth Parameters and Evaluate Effective Mesh Size in Operation. ICES C.M., 1977/F:51.

Hoydal K., Rørvik C.J., Sparre P., 1980. A method for estimating the effcctive mesh sizes and the effects of changes in Gear Parameters. ICES CB. 198C/G:20.

Ponomarenks V.P., Nikeshin K.N., Sakhno V.A., 1978. On selectivity of trawls with a mesh aize of 120 and 135 am in codends when fishing cod in the Barente Sea. ICBS C.K. 1978/Bi9.

Ponomarenko V.P., Ponomarenko I.Ya., Yaragina I.A., 1980. Growth and maturation of the Lofoten-Barents Sea cod. ICES C.M. 1980/G:25.

Pope J.G., 1972. An investigation of the accuracy of virtual population analyais using cohort analysis. ICNAF Rea. Bull., pp.65-74.

Pope J.G., 1974. A possible alternative analyais for the calculation of fish mortality from catch at age data. ICNAP Res.Doc. 74/20, Ser. N 3166.

Sparre P., 1980. A goal function of fishery (Legion analysis). ICES C.M. 1980/G:40.

Tiurin P.V., 1972. "Normal" curves of survival and natural mortality rate as bsing the basis for fishery regulation. Izd. GOSNIORH, v. 71, pp. 71 - 128.

Treahchev A.I., 1974. Scientific Ioundations of fiehery selectivity. Izd. "Piahohevaja promyshl.". M., pp. 446.
Tretyak V.L., 1983. A method of eatimating the natural mortality rates of fish at different ages (exemplified by the ArctoNorwegian cod stock). Proce of Soviet-Norwegian Symposium on reproduction and recruitment of Arctic Cod; Leningrad, . 26-30 sept. 1983, IMR, Bergen, Norway, pp.241-274.
Ulltanc $\varnothing_{0} ; 1979$. Some coments to the problem of adjusting TACs to mesh size changes. ICES C.M. 1979/G:56.

LEGENDS TO THE FIGURES

Fig. 1. Pishing F and relative fiahing mortality $P R$ rates and the constituents of the PR depending on age of the Barents Sea cod for base yearsz a) 1962; b) 1968.

Fig. 2. Fishing P and relative fishing mortality $P R$ rates and the constituerte of the PR. In dependence on age of the Barents Sea cod for the base 1978 year.

Fig. 3. Pishing. F and relative fishing mortality $P R$ rates and the constituents of the latter depending on age of fish (Barentis Sea cod) for the base 1979 year.

Fig. 4. Criterion of full compensation of losses in catches $T_{f(}{ }^{*}$ years, depending on new inner mesh size in trawl's codends B_{1}, mm.
Fig. 5. Criterion φ_{20} in dependence on new mesh aize B_{1}, man, for two alternative functions of natural mortality rates for the Barents Sea cod: $M=0.2$ and $M=M(1)$ using the expresaion (9) of the present work.

Pig. 6. Criterion W_{20} in dependence on new mesh size B_{1}, mm, for two alternative functions of natural mortailty rates for the Barents Sea cod: $M=0.2$ and $M=M(1)$ given by the expression (9) of the preaent work.

rIG. 1a

IIG. 1b

IIG. 3

PIG. 3

7IG. 4

7ra. 3

120. 6

