COMBINATION OF HERRING LARVAL ABUNDANCE ESTIMATES OF THE DIFFERENT NORTH SEA AREAS INTO A SINGLE SPAWNING STOCK INDEX

by
J. Santiago
Netherlands Institute for Fishery Investigations
P.O. Box 68, 1970 AB IJmuiden
The Netherlands.

COMBINATION OF HERRING LARVAL ABUNDANCE ESTIMATES of the different north Sea areas into a single SPAWNING STOCK INDEX

by
Josu Santiago (1)
Netherlands Institute for Fishery Investigations P.O.Box 68, 1970 AB IJmuiden The Netherlands

ABSTRACT

The International Herring Larval Surveys produce separate abundance indices for each of the North Sea subpopulations, while Virtual Population Analysis (VPA) only produces reliable stock biomass estimates for the North Sea as a unit. In order to allow the calibration of larval abundance against VPA spawaing stock size estimates, the ICES Herring Assessment Working Group have carried out separate VPA's for each of the subpopulations. But, because the catches used in these VPA's are of mixed origin, this solution might lead to misleading spawning stock size projections.

An alternative solution, firstly proposed by Corten (1978, 1980), is to combine the herring larval abundance indices of the various spawning areas into overall.figures for the North Sea, and to compare these values to the VPA estimates of total North Sea stock size.

This paper gives the results of the comparison between North Sea VPA spawning stock estimates and combined larval indices for the years 1972 to 1983. Length categories of <10 and $10-15 \mathrm{~mm}$ (<11 and $11-16 \mathrm{~mm}$ in the southern North Sea area) have been used to calculate two different larval abundance indices.
(1) Present address: Research Institute for Fish Science and Technology, A.Z.T.I. A.B., Sukarrieta (Bizkaia). Basque Country - Spain.

The aim of the Herring Larval Surveys programme is to provide adequate larval abundance figures in order to obtain fishery independent estimates of the spawning stock size. In spite of the fact that herring larval abundance data are available since 1967 and in some North Sea areas since 1955; appropriate annual indices are only obtainable from 1972 onwards (ANON., 1977a).

Herring Larval Surveys not only provide information about the total abundance of larvae per haul, but also the length frequency distribution of the captured larvae. The abundance per square metre is summarised in three length categories: $<10,10-15$ and $>15 \mathrm{~mm}$. Different categories are used in the southern North Sea area (<11, 11-16 and $>16 \mathrm{~mm}$) to account for the large size of these larvae at the moment of hatching.

The main procedure used to obtain larval abundance indices has been to integrate the abundance of the smallest size category in depth, space and time. Sampling standard areas and periods are defined in Anon., 1985b. An individual annual index is obtained for each of the North Sea spawning areas: northern (Orkney-Shetland), central (Bank) and southern (Downs) North Sea.

The ICES Herring Assessment Working Group until 1985 only used the smallest size category of herring larvae for stock assessment purposes because larval abundance in the earliest stages is less influenced by mortality and migration. However, the choice of this category has the disadvantage of increasing sampling errors because of the patchy distribution of larvac during the earliest stages. If the medium sized larval category is considered, sampling errors will be reduced but on the other hand, the risk of including a given cohort more than once in the larval abundance index will increase (Christensen, 1985).

Because mortality during the earliest stages is unknown, larval indices can only be used as a relative index of spawning stock size. For obtaining an absolute estimate of stock abundance from larval indices, the latter must be calibrated against independent estimates of spawning stock size, for example the Virtual Population Analysis (VPA) spawning stock estimates. But Herring Larval Surveys produce separate indices for each of the North Sea subpopulations, while VPA only produces reliable stock biomass estimates for the North Sea stock as a unit. To overcome this problem, separate VPAs have been carried out for each of the individual subpopulations using the catch data for Division IVa as referring to the Shetland-Buchan spawing stock, the catch data for Division IVb as referring to the Bank spawning stock, and the catch data from Divisions IVc and VIId and e, as referring to the Downs stock (ANON., 1977b). The ICES Herring Assessment Working Group adopted this solution although it was realized that the catches used in these VPAs are of mixed origin. A major part of the catch is taken outside the spawning season, when the various subpopulations have mixed. But it was thought that the error due to this was small.

Because of the poor fit of the VPA spawning stock estimates <l0mm larval abundance regressions in most areas (ANON, 1986a), new methods for calculating adequate indices of spawning size from larval surveys have been propposed (ANON., 1986a; BURD, 1985; CHRISTENSEN, 1985; LASSEN \& PEDERSEN, 1985). Utilizing the length frequency distribution of herring larvae, they try to correct for the loss of larvae due to mortality and emigration. Not much attention has been paid to the degree of reliability of the separate VPA spawning stock estimates, to explain the lack of correlations.

In order to avoid the use of separate VPAs, Corten (1978, 1980) combined larval production estimates of the various spawning areas into one overall figure for the North $S e a$ and compared the total larval production to the VPA spawning stock size estimates of the total North Sea stock.

The present report gives the results of the comparison between North Sea VPA spawning stock estimates and combined larval indices for the years 1972 to 1983, considering the North Sea herring population as a single unit. Few modifications have been done to the procedure proposed by Corten (1978, 1980). Length categories of <10mm and $10-15 \mathrm{~mm}$ (<11 and $11-16 \mathrm{~mm}$ in the southern North Sea area) have been used to calculate two different larval indices.

MATERIALS AND METHODS

Herring Larval Survey data were supplied on magnetic tape by the Marine Laboratory, Aberdeen, Scotland. Methodology of Herring Larval Surveys is described in Anon., 1985a.

- Calculation of larval abundance indices for individual spawning grounds.

The calculation was done basically following the procedure proposed in Anon. 1984, 1985b. However some modifications have been introduced:

- The Orkney-Shetland standard area given in Anon. 1985 b was modified. The new area includes those stations that have been sampled in at least half the years in the database (Figure 1).
- Single missing values were extrapolated in all years with incomplete coverage following the 'Nearest Neighbour Method'. A minimum of three real data values were required for each estimation. Such interpolated values were never used for further extrapolation of other individual rectangles. Only in years with a samplinge coverage less than 30%, this procedure was not followed and the interpolations were done following the 'Ratio Method' described in Anon., 1985b.
- Periods with incomplete coverage after the single missing values estimation, were filled using the 'Ratio Method' defined in Anon., 1985b. The abundance of the closest years were used to calculate the ratio between larval abundance of the unsampled and the total areas.

The procedure was applied both to <10 and $10-15 \mathrm{~mm}$ larval abundance indices (<11 and $11-16 \mathrm{~mm}$ in the southern North Sea area).

- Combination of larval production estimates for northern, central and
southern North Sea into one spawning stock index.

The larval production can be described as:

$$
P=W \cdot \operatorname{Fec} \cdot(1-N)
$$

$$
\begin{aligned}
\text { where } & P=\text { larval abundance, } \\
& W=\text { spawning stock biomass, } \\
& F e c=\text { fecundity in number of eggs per unit weight, } \\
\text { and } N & =\text { larval mortality. }
\end{aligned}
$$

For the North Sea herring:

$$
\begin{aligned}
& W_{t}=\sum_{i=1} \frac{P_{i}}{\operatorname{Fec}_{i}\left(1-N_{i}\right)} \\
& \text { where ' } t \text { 'indicates the total North Sea and ' } i \text { ' the } \\
& \text { different spawning areas. }
\end{aligned}
$$

In order to combine the different larval abundance indices into a single index for the whole North Sea, different fecundities have to be considered for each of the subpopulations. In the present report annual fecundity variations due to changes in the age composition of the spawning population, are also considered.

The mean fecundity depends on the age composition of the spawning stock, and also on the mean length per age group. Fecundity-length relationships used were taken from Van de Kamp (1981):

$$
\begin{aligned}
& \text { Northern North Sea....Fec }{ }_{1}=-84796+7.711 \cdot L^{3} \\
& \text { Central North Sea....Fec }=-80812+6.962 \cdot L^{3} \\
& \text { Southern North Sea....Fec } 3=-45909+4.084 \cdot L^{3}
\end{aligned}
$$

Mean length at age data were available from the Dutch market sampling (Table l); for the northern and central North Sea, data from July and August were used, and for the southern North Sea data from October and November. The age composition of the different spawning subpopulations was extracted from the 1986 Herring = Assessment Working Group Report (ANON., 1986b). Stocks were taken at the lst of January, and the corresponding correction factors to mortality were applied to account for the individuals that died before the spawning season. The estimated age composition for the different years and spawning areas is shown in Tables $2 a-c$, together with the calculation of the mean number of eggs per kilogram of spawning stock.

Following the model outlined above, and considering N_{i} constant and the same in the different spawning areas, the North Sea herring spawning stock biomass can be described as:

$$
W_{t}=\frac{1}{1-N} \cdot \sum_{i=1} \frac{P_{i}}{\mathrm{Fec}_{i}}=\frac{1}{1-N} \cdot I_{t}
$$

where I_{t} represents the spawning stock biomass index for North Sea calculated from larval surveys.

This model assumes that larval growth and mortality are constant from year to year and the same in the different North Sea areas. It also assumes that all hatching periods are completely covered and larval migration is negligible.

- Comparison of the indices to VPA spawning stock estimates.

Ordinary predictive regressions have been utilized in the different comparisons. The VPA spawning stock biomass estimates were taken from Anon., 1986b. Only years prior to 1984 were considered in the comparisons because it was thought that only for those years VPA estimates had converged sufficiently.

RESULTS

Table 3 shows the larval abundance estimates of the different North Sea spawning areas both for the smallest size category and for the medium sized larvae. In order to compare our approach with the procedure utilized by the LCES Herring Larval Working Group until 1985, regressions of $\langle 10 \mathrm{~mm}$ larval abundance indices on VPA individual spawning stock size estimates have been done. These regressions are presented in Figures 2 a-c. The correlations found are highly significant ($p<0.01$) . The hypothesis that the regression lines go through the origin is rejected in the case of the regressions for the northern and southern North Sea subpopulations (p<0.05).

Before the integration of the individual indices into one overall figure is possible, fecundity estimates are needed. The calculation of such estimates is shown in Tables 2 a-c. Highly significant differences are found between the number of eggs per kilogram of spawning stock of the different North Sea areas ($p<0.01$). Although there are not significant differences between years, separate fecundity values have been used in each year in order to correct for annual varlations in age composition of the spawning subpopulations.

Following the model outlined above, annual spawning stock biomass indices have been calculated for the total North Sea (Table 4). Their regressions on North Sea VPA spawning stock biomass estimates are shown in Figures 3 a-b. The correlation is significant ($0.01<p<0.05$) when the spawning stock index is obtained from 10-15mm larval abundance (1l-16mm for the Downs subpopulation) and highly significant ($p<0.01$) when the spawning stock index is based on the smallest size category. The latter regression line goes through the origin ($p>0.05$), wich agrees with the obvious fact that if the stock is zero, larval production will be nil and vice versa.

Abstract

Spawning stock biomass projections ('expected' values) for the years 1972 to 1985 have been calculated for the different North Sea areas using the old procedure and the one propposed in the present paper (Figure 4). The central North Sea spawning stock biomass estimates are very similar using both methods. But important differences are found in the values for the northern and southern North Sea subpopulations. The sign of these differences might reflect the influence of using mixed catches as input values for the separate VPAs.

DISCUSSION

Anon (1977a) and Saville (1978, 1981) have suggested that the individual larval production estimates for different spawning areas are not necessarilly additive to give a total estimate for the North Sea herring stock, because of variation between stocks in larval growth and mortality rates and in fecundity. But it seems possible to avoid these problems if it is assumed that the effect of the variation in growth and mortality between areas on the larval abundance variance is negligible, and if fecundity estimates are available.

Christensen et al.(1985), Hempel \& Schnack (1971), Karasiova (1981), Wood \& Burd (1976) studied daily growth rates of North Sea herring in different spawning areas. These rates ranged from 0.14 $0.35 \mathrm{~mm} /$ day. Lassen \& Pedersen (1985) calculated growth rates for the Orkney-Shetland subpopulation from 1974 to 1983. The annual values ranged from $0.06-0.31 \mathrm{~mm} /$ day. Therefore, if it is assumed that larval growth rate is the same for the different subpopulations, it seems that the range of variation between populations will not be bigger than the variation within one subpopulation.

Christensen (1985) reviewed information on daily growth and mortality rates of herring. The values that he presented illustrate how variable mortality estimates for herring larvae are. Although no doubt exists that the extra yolk of larger eggs may provide a higher survival potential to the resulting larvae (BLAXTER\& HEMPEL, 1963), larval mortality is not only influenced by starvation, but also by predation and the modifying effects of physical factors (SISSENWINE, 1984). Little is known about wich proportion of larval mortality is caused by the different factors. But mortality estimates obtained by Christensen using a new larval production model (Anon., 1986a) suggest that the bias introduced by assuming the same larval mortality does not have to be larger in case of the combined North Sea subpopulations than in case of a single subpopulation. The mortality values calculated in Anon., 1986 show the same range of larval mortality in $=$ different years in the same spawning area as in different areas.

In the method used in the present report it has been assumed that larval mortality and growth rates are constant from year to year and the same for the different North Sea subpopulations. This assumption is probably far from the reality. But considering the range of variation of the data available on larval growth and mortality, it is concluded that these sources of variability will not affect significantly the overall larval abundance variance. This seems to be true when the smallest size category of larvac is considered, because a highly significant correlation is found between the spawning stock biomass estimated from VPA and the index, and this regression practically goes through the origin (Figure 3 a). But the regression between North Sea herring spawning stock biomass and the index obtained from $10-15 \mathrm{~mm}$ larval abundance is less significant (Figure 3 b). This is probably due to the following reasons:

- The larvac of this category will have sustained higher values of mortality and their abundance will be more influenced by variations in mortality than that of the smallest size group.
- The probability of including into the index a given cohort more than once is bigger when $10-15 \mathrm{~mm}$ category is considered than in the case of $<10 \mathrm{~mm}$ larvac.

Because the three North Sea herring subpopulations mix at a common feeding area in the central and northern North Sea and a major part of the catch is taken outside the spawning season when the various subpopulations have mixed, the individual regressions shown in Figures 2 a-c probably lead to misleading spawning stock projections. The comparison of 1972 to 1985 spawning stock size projections using both methods reflects an overestimation of the biomass of the northern North Sea stock and an underestimation for the southern North Sea subpopulations when separate VPA spawning stock size estimate-larval index regressions are applied (Figure 4). The differences between estimates can be explained by the migration pattern of the North Sea herring. The northern North Sea catches would include individuals from the central and southern North Sea subpopulations. And the migration of the central North Sea subpopulation to the north could be virtually counterbalanced by the immigration of Downs herring.

In the present paper it has been considered that the relation between spawing stock biomass and larval abundance is linear. This is probably true at least over the range of low stock sizes in years prior to 1983. But more pairs of values out of the range mentioned are needed in the figure in order to prove the applicability of a linear relationship. Density - dependent factors might affect the linearity after some spawning stock level has been reached, and then spawning stock size projections from larval surveys would not be reliable anymore.

I thank Mr. A. Corten for his comments and advice, and all the staff of the Netherlands Institute for Fishery Investigations (R.I.V.O.), IJmuiden, The Netherlands, for all the facilities provided. I am also grateful to Mr. B. Hall of the Marine Laboratory, Aberdeen, Scotland, who kindly supplied us the Herring Larval Surveys data on magnetic tape. Support was provided by the Research Institute for Fish Science and Technology (A.Z.T.I. A.B.), Sukarrieta, Basque Country.

REFERENCES

Anon., l977a. Report of the Working Group on North Sea Herring Larval Surveys. ICES Coop. Res. Rep. 68.

1977b. Report of the Herring Assessment Working Group for the area South of $62^{\circ} \mathrm{N}$. ICES Coop. Res. Rep. 87.
1984. Report of the Working Group on Herring Larval Surveys South of 62° N. ICES C.M. 1984/H:69.

1985a. Manual for the International Herring Larval Surveys South of 62° N. Version: July 1985. ICES. Copenhagen.

1985b. Report of the Working Group on Herring Larval Surveys South of $62^{\circ} \mathrm{N}$. ICES C.M. 1985/H:3.

1986a. Report of the Working Group on Herring Larval Surveys South of $62^{\circ} \mathrm{N}$. ICES C.M. 1986/H:--.

1986b. Report of the Herring Assessment Working Group for the area South of $62^{\circ} \mathrm{N}$. ICES C.M. 1986/ Assess:--.

Blaxter, J.H.S. \& G. Hempel, 1963. The influence of egg size on herring larvae (Clupea harengus L.). J. Cons. Perm. Int. Explor. Mer, 28: 211-240.

Burd, A.C., 1985. The use of herring larval catch in stock assessment. ICES C.M. 1985/H:49.

Christensen, V., 1985. Estimation of Herring Larval Production. ICES C.M. 1985/H:60.

Christensen, V. et al, 1985. Investigations on the Relationship of Herring Larvae, Plankton Production and Hydrography at = Aberdeen Bank, Buchan Area, September 1984. ICES C.M. 1985/L:23.

Corten, A., 1978. The Use of Herring Larval Abundance Data for Estimating the Stock Size of North Sea Herring. ICES C.M. 1978/H:7.
1980. The Use of Herring Larval Abundance Data for Estimating the Stock Size of North Sea Herring (II). ICES C.M. $1980 / \mathrm{H}: 37$.

Hempel, G. \& D. Schnack, 1971. Larval abundance on spawning grounds of Bank and Downs herring. Rapp. P.-v. Reun. Cons. int. Explor. Mer, 160: 94-98.

Karasiova, E.M., 1981. Some results of studying of rate of growth of larval North Sea herring. ICES C.M. 1981/H:25.

Lassen, H. \& S.A. Pedersen, 1985. Growth, Mortality and Larvae Production in the Shetland area estimated from the International North Sea Herring Larval Surveys in 1972-1983. ICES C.M. 1985/H:48.

Saville, A., 1978. Some comments on herring larval distribution and abundance in the North Sea. Rapp. P.-v. Reun. Cons. int. Explor. Mer, 172: 172-174.
1981. The estimation of spawning stock size from fish eggs and larval surveys. Rapp. P.-v. Reun. Cons. int. Explor. Mer, 178: 268-278.

Sissenwine, M.P., 1984. Why do Fish Population Vary?. In 'Explotation of Marine Communities', ed. R.M. May, pp. 59-94. Springer-Verlag. Berlin, Heildelberg, New York, Tokyo.

Van de Kamp, G., 1981. Ei-aantallen van Noordzeeharing. Rapport ZE 81-03.R.I.V.O., IJmuiden, The Netherlands.

Wood, J. \& A.C. Burd, 1976. Growth and mortality of herring larvae in the central North Sea. ICES C.M. 1976/H:8.

Table 1. Mean length at age.

Year	2	3	4	5	6	7	8	9
1972	22.3*	24.8	27.3	28.8*	29.2*	30.3*	30.8*	29.5*
1973	-	25.6	26.9	28.1	29.4*	29.6	30.0	-
1974	-	25.7	27.6	28.3	29.0	29.9	30.0	31.0*
1975	-	26.2	28.0	28.7	29.0	30.0	30.1*	30.9*
1977	-	26.3	27.7	28.7	29.1	30.0	29.8	30.0*
1978	- -	26.5	28.1	28.8	29.1	29.1*	30.0\%	29.9*
1881	-	26.3	27.3	28.5	29.6	29.7	30.2	30.8*
1982	-	25.5	27.3	28.1	29.3	29.9	30.2	31.0
1933	-	24.7*	27.3	28.5	29.1	29.8	30.0	30.5
MEAN	22,3ई	25.9	27.5	28.5	29.2	29.9	30.0	30.2

a - Ceritral North Sea

1972	22.3	25.6	27.5	28.4	29.0	30.2*	31.8*	31.3*
1973	22.6	25.7	26.6	28.3	29.2	29.2*	-	-
1974	19.4*	25.9	27.6	28.7	29.3	29.9*	-	30.3*
1975	21.9	25.3	27.5	28.7	27.2	29.8	33.3\%	31.3*
1975	22,6	24.9	27.3	28.7	29.8	29.8*	31.0*	30.5*
1979	-	27.1*	28,4*	28.9	30.8*	30.6*	31.3*	31.8*
1981	22.2	25.9	28.4*	30,04	29,3*	31.3	31.8*	-
1982	20.7	24.3	26.5	27.4*	-	30.84	31.3*	-
1983	19.5	24.1	26.1	26.8*	-	30.8*	-	-
1994	20.5	25.8	27.8	28.7	20.3*	31.1*	-	31.2
KEAM	21.5	25.3	27.1	28.6	29.3	30.5		(1)

c - Southern Nortin Ses

1972	23.4	24.6	26.5	27.6	29.3	$29.2 *$	$29.3 *$	-
1973	23.2	24.8	26.3	27.5	$29.7 *$	29.2	$28.8 *$	-
1974	$23.3 *$	24.8	25.6	27.7	$28.4 *$	$29.8 *$	$29.6 *$	-
1975	$23.5 *$	$24.9 *$	26.9	$27.5 *$	$29.8 *$	-	-	-
1976	24.2	24.9	26.7	$29.9 *$	-	-	-	-
1979	$26.3 *$	27.6	-	-	-	-	-	-
1980	24.7	26.0	28.7	29.1	30.2	$30.8 *$	$31.1 *$	$31.8 *$
1981	$23.8 *$	25.3	27.6	29.2	$30.1 *$	30.7	$30.8 *$	-
1982	23.0	25.1	26.9	28.5	30.0	31.0	$31.2 *$	30.3
1993	23.9	25.1	27.0	27.6	29.1	$30.5 *$	$30.3 *$	-
MEAN	23.7	25.4	27.0	28.2	29.4	30.3	$30.4 \$ 11$	

- The ssmbol ' $\mathbf{k ' ~}^{\text {' indicates that the mean lensth estimate is based on less than }}$ 10 observations.
- The ssabol 'f' indicates that the estimates denoted with the '*' symbol have been used in the calculations.
(1) Heari length of 8 and 9 year olo herring.

Table 2a. Calculation of the number of eggs per kilogram of spawning stock for the northern North Sea area.

Sfalking stock (hillions)									NUKBEE OF EGGS (x E3) FEE KLGE OF S. STOCK
	stock	Ase							
Year	(es tori)	3	4	5	6	7	8	97	
1972	2.07	947	176	106	39	7	2	1	1.32
1973	1.47	393	291	72	40	15	4	1	196
1974	0.89	168	136	104	23	12	6	3	189
1975	0.65	166	68	58	42	7	2	3	190
1976	1.05	465	80	33	31	27	2	2	196
1977	0.88	155	173	52	22	23	22	1	191
1978	1.08	107	137	116	45	18	20	50	196
1979	1.12	146	96	122	105	40	16	0	$\pi 96$
1980	1.31	102	127	86	109	94	36	19	201
1981	1.38	172	86	100	63	85	72	34	198
1982	1.92	460	153	72	80	48	67	76	19%
1983	3.07	927	360	120	54	58	34	109	187
1984	5.33	2098	638	215	67	35	33	62	183
1985	5.46	1527	1172	323	96	30	16	33	196

No esg/fish $\quad 49175 \quad 75569 \quad 93707107185121326123401127593$

Table 2b. Calculation of the number of eggs per kilogram of spawning stock for the central North Sea area.

Table 2c. Calculation of the number of eggs per kilogram of spawning stock for the southern North Sea area.

Table 3. Larval abundance indices (x E9) for the different North Sea spawning areas.

Year	Orknes-Shetland	Buchan	-10mm		
			NORTHERN NS	CENTFAL NS	SOUTHEFN NS
1972	6240	46	6286	447	74
1873	2468	9	2477	2933	16
1974	1321	313	1634	3742	9
1975	444	457	911	434	7
1976	958	1	959	301	4
1977	1943	273	2216	825	1
1978	4184	333	4517	1846	64
1979	6439	201	6440	738	271
1980	4243	20	4283	688	498
1981	4165	22	4187	1446	2216
1982	3786	831	4617	1436	2479
1983	4418	4488	8706	3340	858
1984	3703	4369	8072	4192	780
1985	9930	4236	14196	15232	2171

10-15mm

Year Orkrey-Shetlaris Fuschan NORTHEFN NS CENTRAL NS SOUTHERN NS

1972	2363	21	2384	536	88
1773	1685	9	1694	945	73
1974	1435	157	1582	1391	9
1975	1078	50	1128	1054	11
1976	380	23	403	237	24
1977	2646	63	2709	847	10
1978	1014	177	1191	705	35
1979	5543	1252	6795	962	177
1980	8069	492	8561	879	766
1981	3036	582	3618	2035	3559
1982	4577	992	5569	586	1213
1983	5129	2880	7989	1870	1410
1984	3349	2945	6294	4924	1477
1985	4024	5337	9361	7423	1875

Table 4. Spawning stock indices (P / Fec) obtained from < 10 mm and $10-15 \mathrm{~mm}$ larval abundance ($\langle 11 \mathrm{~mm}$ and $11-16 \mathrm{~mm}$ in the southern North Sea) .

$<10 \pi m$

YEAF NORTHERN N.S. CENTRAL N.S. SOUTHERN N.S. TOTAL

1972	3.45	0.35	0.08	3.88
1973	1.33	2.57	0.02	3.92
1974	0.86	2.97	0.01	3.84
1975	0.48	0.30	0.01	0.79
1976	0.49	0.20	0.00	0.69
1977	1.16	0.50	0.00	1.66
1978	2.30	1.24	0.07	3.69
1979	3.29	0.51	0.30	4.10
1980	2.12	0.46	0.52	3.10
1981	2.11	1.00	2.49	5.60
1982	2.42	1.06	2.56	6.04
1983	4.76	2.57	0.89	8.22
1984	4.41	3.28	0.84	8.53
1985	7.24	10.29	2.78	20.31
\cdots	$-\cdots$			

10-15mmi

YEAR NORTHERN N.S. CENTRAL N.S. SOUTHERN N.S. TOTAL

1972	1.31	0.43	0.09	1.83
1973	0.91	0.83	0.11	1.85
1974	0.84	1.10	0.01	1.95
1975	0.59	0.72	0.01	1.32
1976	0.21	0.16	0.03	0.40
1977	1.42	0.52	0.01	1.95
1978	0.61	0.48	0.04	1.13
1979	3.47	0.67	0.18	4.32
1780	4.26	0.59	0.80	5.65
1981	1.83	1.41	4.00	7.24
1982	2.92	0.43	1.25	4.60
1983	4.27	1.44	1.47	7.18
1984	3.44	3.85	1.57	8.86
1985	4.78	5.02	2.40	12.20
$-\cdots$	-			

Figure 1. Stratum areas for periods I and II in the Orkney-Shetland area.

Figures 2 a-c. Larval indices for northern (a), central (b) and southern North Sea (c) plotted against separate VPA's spawning stock biomass estimates. The symbols '**' indicates that correlations are highly significant.

Figures 4 a-c. Spawning stock biomass projections ('expected' values) from the regressions obtained using the old procedure (0---0) and the proposed by Corten (1978, 1980) and this report ($0-0$).

