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- 2 - ABSTRACT

1 Abstract

A modular probability model for simulation of fishery surveys is constructed and applied to the
three arbitrary selected North Sea fish species Gadus morhua, MeJanogrammus aegJefinus and

MerJangius merJangus. Statistically it is based on the incomplete beta function

.-.-
F~(sp«_ I a,b) = _1_ ! ,,0-1 (1 - "r1 dIl

B(a)J) 0

~ a.b>O.

which is also known as the beta cdf or more precisely as the eumulative distribution funetion

of a beta-distributed random variable. Beeause of its flexibility this funetion is appropriate for

fitting empirieal frequeney distributions of various types. Hs fonn is detennined by the two

shape parameters a and b. Although ML estimators generally have good statistical properties
unfortunately in this case the ML teehnique is eomputationally somewhat more diffieult sinee

1

B(a,b) ;, !(spec-/,-I (1 - spec".,)b-I d(spec".,)
o

Jor a,b > 0

•

This means, that the beta pdf or density funetion Fa (specfJD ; a,b) has no simple closed fonn •

whieh could easily be solved with respect to a and b. Henee, for estimating the parameters a
and b the numerically simpler method of moments combined with an iterative version of the

minimum chi-square method is used. Especially the later procedure is per definition more likely

to give significant results with goodness-of-fit tests of the chi-square type than the ML method.

The probability model is ealled modular which means the incomplete beta funetion is fitted

compartmentwise to frequency distributions of the above mentioned three fish species. These

compartments are identified in earlier steps by using pattern recognition procedures for

detection of variance-homogenous post-strata. The entire model is based on IYFS data from

the leES for the years 1983 to 1988.



,----------- --- -- -------------------------1

INTRODUCTION - 3 -

·2 Introduction
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Fig. 1

To start \\ith, abrief overview of the complete con­

cept which hopefully sets the topie of the paper iota

the right context: the fitting process of the ß-distribu­
tion depicted in this paper is only one part of a more

complex analysis strategy to optimlze the sampling
and analysis design of the International Young Fish
Survey (lYFS). The catch data to be processed here

come from the IYFS of the years 1983 to 1988 and

are re-stratified by means of a variance optimizing

pattern recognition procedure in an earlier step which

results in variance homogenaus post-strata. This re­

strätification step is strongly based on formal defmi­

tions \\ith respect to statistical terms of straÜfication
as weil as on catch information of 14 fish species

which have been selected by means of an eco-statisti­
cal criterion, the so cailed constancy [Balogh, 1958].

This means that all following statistical operations will
be carried out in the light of c1ustered catch positions
and therefore lead to a modular probability model

which is nothing more than a multi-subarea probabili­
ty model. The entire analysis strategy is schematically

summarized by Fig. 1.

In stock assessment, a knowledge of the expecied

stock size is' of particular interest; statistically it is the expectation of the stock size which is ~
some sense similar to its mean. Such average stock numbers are however of no value without

presenting an estimation error. This can be deducted on the one hand from the variability of
the catches which is stati~tically their vaiiance and on the other hand from the evalwiÜon of the
shape of the underlying empirical frequency distribution of the corresponding fish population.
With this knowledge one can subsequenÜy calculate the range of possible estimations of stock

size \\ith the help of specific measures and therefore the uncertainty of prp.dictions.

'.

To define the shape of empirical histograms, scientists in many cases assurne the poisson, the

negativ binomial or rclatcd distributions as overall processes which may have generated the
catch data [Taylor, 1953; BUss, 1956; Bliss, 1971; Hairston et aJ., 1971; Matern, 1971; Taylor,

1971; Stiteler & Patil, 1971}. Or they cut off thc zero catches and try to treat bath categories
of data (zero and non-zero catches) separately [Pennington & Grossiein, 1978]. Where means
of catch numbers are calculated on thc basis of statistical geographical strata the assumptian of
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The procedure of clusterwise fitting the ß-dis­
tribution to [0,1 ]-transfonned catch data and
verifying the fits.

•
(J I~_S_'I'_A_'I'_I_S_'I'_I_C_S_

re-stratified
IYFS data

stratawise [0.1]­
transformation of
catcb data

strataw~se f~tting

of IJ-distribut~ons

to selected species

Q
goodness-ot-t~t

tests

Q
calculation of
bootstrap va[~ances

of the two model
parameters

a normal distribution of the

strataspecific mean catches

might be helpful since the cen­

tral limit theorem (clt) can be

applied. As the clt has asympto­

tic properties it is important that

the means computed in this way

must be statistically consistent

[Hartung et al.,. 1987]. This is
however often not the case. For

instance in the bternational

Youngfish Survey (lYFS) on

average in 33% of the cases the

number of catch positions per

lCES rectangle is below three.
Stratawise arithmetic means the­

refore do not meet the asympto­
tic requirement of being calcula­

ted from large sampies. Another

condition of the clt is that the

sampies must be taken from Fig. 2

non-degenerated and iid random

variables. This means the sam-

pIes must come from homoge-

nous distributions and must be independent of each other as well as identically distributed. If

one considers the artifical grid of regular lCES rectangles as an overlay of sampling units over

the North S~a, the plausible impression intuitively arises that such an artifical structure would

destroy truely underlying homogenous distributions. It is very likely that neighbouring sampies

taken on the basis of such strata are no longer independent of each other. Taking into account

the different propartions of zero catches and other strataspecific characteristics one would also

consider the stratawise empirical distributions as being non-identical. Plotted histograms of

original non-transformed catch data illustrate this clearly. Taking all this into consideration,

plotting the corresponding frequency distribution of the standardized strata means for one year

and one species would not give the typical bell-shaped normal distribution. Goodness-of-fit­

tests would confirm this result by I ejecting the null hypothesis as being normaily distributed.

To present a useful alternative to the theory of nonnally distributed catch data and/or means
in this paper a very flexible distribution which is easy to compute will be proposed, the beta
distribution (ß-distribution). This distribution meets the premise of generality since it is
applicable to different species. years and areas. Hs exceptional adaptability as well as the verifi-
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(1)

"l-.!. = qwmtile oll~(specla.b) at a givelt u
2

This is duc to an underestimation
of the tme variability of the cat­

ches and amisinterpretation of
the .shape of the real empirical

frequency distribution in cases
where the data are not normally
or at least symmetrically

distributed. Under these circumstances the normal distribution would not be suitable for repre­
senting the field situation. thereby resuiting in misieadin& statements and interpretations.

cation of its fits by optical impressions (plotting of histograms), goodness-of-fit-tests and boo­
strapping methods will be discussed here. The result is a modular probability or distributional
model on which simulation studies can be performed. The concept of fiitU;g and' verifying the
ß-distribution is sch~matically sketched in Fig. 2.The modular probability model provides more
complete information about average catch numbers and their associated uncertainties. The latter
can be achieved by constructing confidence limits about estimated mean catches, thus enabling
one to rate the calculated mean; in other words, to get an idea of the range of possible mean

values. These confidence limits according to eq. (1) are expected to be much broader than
those of a superimposed normal or t-distribution.

•
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Fig. 3 illustrates this exemplarily for 0;1­

dus morhua, the year 1986 and cluster 1.

In other words, the tme error around
such a mean is much Iarger than usely

thought. This can easily be shown by
simply calculating the t-' and the ß-confi­
dence-Iimits corresponding to Fig. 3 and
comparing its sizes. For the t-distribution
an 95%-interval of size [12.86, 82.87] re­
sults and for the ß-distribution an 95%­

interval of size [47.86, 5650.14] where the
term in square brackets means

•

Histogram Viith fitted ß-distribution of
Gadus morhua (Cluster of catch posi­
tions no. 3, 1986, IYFS).

Immediately it can be seen that the ß­
confidence-interval is approximately 80 Fig. 3

times larger than that of the t-distribu­
tion. It should bc emphasized that in case

of the ß-distribution bath quantiles u must be computed since the histograin in Fig. 3 is
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(3)

0< spec".. < I

.-.-
_1_ f "..-I (1 - U)"'I du ,
B(a.b) 0

1 ,

o ,and is obviously determined by

the two shape parameters a and b,

whereby both have to be greater

than O. The two eoeffieients are

named form parameters sinee they

are responsible for its flexibility

and its various possible shapes. In

this respect it differs from most of

the other distributions (eg. the

normal distribution). The normal distribution is fixed by its "mean" (expeetation) and standard

deviation which deseribe its loeation and the width of its tails, respeetively. It never differs

greatly from the principle form of asymmetrie bell-shaped eurve. The ß-distribution however

changes its principle type depending on the catch data. In other words, it actually adapts itself

so e10se to real world data that it gives a good indication of the underlying process which has

generated these data, Le. an idea about the "true" population of the data. Within simulation
studies it is essential to use defmite functions. Obviously, in many eases the pdf can not be

definite. Therefore for Monte Carlo experiments it is necessary to use the cumulative version
of the pdf, the so called cumulative distribution function (cdf) which is given in eq. (3).

The ß-distribution (sometimes ealled "ineomplete beta funetion") is a eontinuous distribution.

Hs density funetion (pdf) has the form of eq. (2) [Rohatgi, 1976]

3 Characteristic properties of the ß-distribu­
tion

Finally a comment to the mathematieal notation in this paper: in order to be more transparent

within equations "spee' stands as a shortform for eateh numbers of any species.

Beside the applieaticn of the ß-distribution there are other possibilities of deseribing the un­

derlying distribution, for instanee by means of re-sampling methods or kernel and density

funetions, respeetively. The prineiple advantage of the probability approach is its ability to get

integrated into many statisties over maximum likelihood teehniques.

obviously not symmetrieal.

- 6 - INTRODUCTION

j
_1_ (speC"..,)..-1 (1

f,($peC_ I a,b) = B(a,b)

o otlterwise
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In both functional types (pdf as well aso cdO the term B(a,b) oecurs. This expression gives the
ß-distribution its name: it is the beta function which unfortunately does not allow a simple ana­

lytieal solution of the estimation problem in terms of maximum likelihood methods (ML estima­
tion). It can be seen from eq. (4) that the pdf has no closed form [Rohatgi, 1976].

1

B(a,b) =f (spec",.J.-t (1 - spec".)"-t d(spec".)
o (4)

•

•

IXa) I'(b)

IXa+b)

Eq. (4) furthermore shows th.at the ß­
distribution is eonneeted to the gamma

distribution over the expression F(.). The
gamma pdf is a general version of the

exponential distribution. It can be se~n

that there are many analytical relations­
bips to other theoretieal probability dis­
tributions, like for instance the F, the
binomial, the negative binomial and the
uniform distribution [Boswell et w., 1979].

Boswell et w. [1979] evenclaim that every
univariate distribution can be fitted by the

ß-distribution. The only prerequisite is
that it has to be unimodal. Under certain

circumstances it can also be fitted to bi­
modal bistograms in the ease where both

modi are elose to the one and to the ot­
her end. Fig. 4 demonstrates the exeep­
tional variability of different shapes whieh
are depictable by the ß-·distribution.

....
6't:l

ll.
I A. : a=0.2. b=0.2
~ B. : a=O.9. b=5.0
CII 5 C. : a=1. O. b=1.0
;:l D. ; a=5.0. b=5.0
a E. : a=5.0. b=O.9

. ..-l...
«I 4>

3

2

1

0

0 0.2 0.4 0.6 0.6 1

theoret. [O.1]-transt. catch data

Fig.4 Diverse possible shapes of afitted ß- ..
distribution [Boswell et w., 1979].

It can be inferred from this figure that if both a and bare larger than 1 and a ~ b (Fig. 4(D.»
the eurve results in a symmetrieal shape - very similar to the normal (eontinuous) or the

binomial pdf (diserete). On the other hand if a and bare smaller than 1 and a = b (Fig. 4{A»
it yields abimodal distribution; it then has the form of a halved bathtub. If a = b = 1

(Fig. 4(C.» then it follows the uniform pdf U(O, 1) (diserete or eontinuous). If a > b (Fig. 4(E.»

it produees a more right-skewed distribution; b > a (Fig. 4(B.» results in a more left-skewed
curve - similar to that of an exponential (continuous), poisson (discrete) or negative binomial

type pdf (diserete). In other words, only t~e position of a and b relative to eaeh other teIls one
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Fig. 5 Aß-distribution fitted to 100 si­
mulated data of N(O, 1).

When talking about the properties of any distribution in statistics then the depiction of cha­

racteristic quantities is meant. Two such important quantities are the expectation (eq. (5» and

the theoretical variance (eq. (6».

samething about the general shape of the curve,

thereby providing more information than one

can expect from calculating only the parame­

ters. This is in some sense similar but less of an

effort than comparing mean, mode and median

of any empirical frequency distribution and

reading its skewness.

The normal pdf is also depictable by the ß­

distribution which is shown in Fig. 5. This hi­

stogram based on 100 simulated data from a

N(O,l) is fitted by aß-distribution without
much lass of information. The fit is confirmed
by the corresponding chi-square-test on a

5% significance level at 9 degrees of freedom

(x2= 15.7771, P= 0.0716846); fitting the nor­

mal distribution to these data does not lead to

a much better result at a 5% significance level
(x2- 11.0541, P = 0.198654, df= 8).
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simulated data of NeO.t)

(5)

•

•
ab

(a + b + 1) (a + b-Y
(6)

The expectation (often called first moment) of the distribution indicates the centre or the
theoretical mean of the distribution whereby the variance describes the range of possible values

araund the expectation. In fitting a model on the basis of the moment estimation technique it

is necessary to also have the second moment of the distribution (eq. (7» [Burkhart & Strub,
1974].

2j (a .. 1) a
B(.spec..-> .. (a .. b .. 1) (a .. b) (7)

The ß-distribution is not that weH k.nown and therefore not frequently applied in the biological-
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ly oriented sciences. A possible reason for this is that the catch data have to lie between 0 and
1 making a linear transformation necessary to shift them lnto the [O,lJ-domain. This simple
operation will be shown iater. The estimation of the model coefficients a and b is also time
consuIlliitg ~d requires more effort when one is using the ML technique or the rillnimum chi­

square method. The modular fitting of the ß-distribution to real stratified catch data, nie
verification 'of the goodness-of-fit and the estimation of the variance over bootstrapping teclmi­
ques will be discussed in the following section.

•

•

, . .
4 The estimation of model parameters and

their variance as weil as the evaluation of
the qoodness-of-fit

Vanous techniques of estimation can be used in model fitting. Due to their good properties the
~iL methods are thus orten preferred. Unfortunately in the current case the ML estirriation is
numerically too time consuming since no analytical solution of the problem exists. Iterative pro­
cedures were therefore applied. AIthough the variance. of the ML estimätors is slightly smaller
[Strub, 1972; Burkhart & Strub, 1974J than when· applying for instänce moment estimators,
further advantages of the ML estimation are not slgnificant enough to justify Hs excluslve use.

For the current woil the numerically much simpler moment estimation method seem to be

more suitable since there are approximately 270 model fittings for the period 1983 to 1988, for
the on average 15 corresponding yearly strata (- clusters of catch positions) arid the tim~e

species Gadus morhua, MeJanograminus aegJermus and AferJangius merJangus. 2700 model
fitÜngs \';ill also be added due to variance estimaÜons based on bootstrapping.

The reason why parameter estimation and goodness-of-fit tests are usually tV.,0 totally different
approaches is that the first is nonnally based on the entire catch sarnple whereas the latter is
performed on grouped catch data which may lead to divergent results [Gurland & Hinz, 1971].
The minimum chi-square method mayaiso be appropriate sirice its principle is very similar to
that of a chi-square goodness-of-fit test: they both mWmize the sameiest criterion or statistic.
In other words, it may lead to more matching results of fitting and testing than other estimation
techniques since it Is also based on grouped data. Like the ML technique the minimum chi­

square method is computionally somewhat difficult and wou~d only be applied should the

moment technique faU.

Before estimating the parameters a and b the catch data must be standardized. As mentioned
above this is the linear process of shifting them into the [O,l]-domain and v.ill be achieved by
use of eq. (8) [Burkhart & Strub, 1974].
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(8)

Fig. 6 shows that this transformation ge­

nerally does not change the principle sha­

pe of the frequency distribution. Otherwi­

se more complicated transformation tech­

niques would have to be used because of

an actual change in the variable [Mood et

al., 1988J.
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To come back to the moment estimation

technique and the derivation of the two
moment estimators, for the ß-distribution

the first empirical moment will be needed.

This is relatively easy to be done by

equally setting the expectation with the

arithmetic mean of the transformed catch

data as in eq. (9) [Burkhart & Strub,

1974].

E[sp« 1 = sp« = _d_ (9)
"... "- A ~

a + 0
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A comparison conceming histograms of
(A.) real and (B.) [O,l]-transformed
catch data (1986, cluster of catch posi­
tions no. 3, Gadus morhua).

Fig.6

Since two e~timators must be derived the

second empirical moment of the ß-dis­

tribution will also be needed [Burkhart &

Strub, 1974]. Eq. (10) below explains how.

E(spec".i] .. sp«2._ = (d + 1) d
(6 + 6 + 1) (6 + G>

(10)

Simple reshaping and inserting of tl1e formu1as (9) and (l0) into each other gives eq. (11) and
eq. (12) Le. the moment estimators for a and b [Burkhart & Strub, 1974]. In other words, for

computing the parameters a and b Le. determining or fixing the form of the ß-distribution it is
only necessary to compute the forrnu1as (11) and (12).
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(11)

G= [SiiiCm- -~-. - (SiiiC" ..i + SiiiCm-~-I
spec1_ - (speclraI.i

(12)

Also note, the hats on the ß-distribution coefficients denote statistically that these are not the
theoretical parameters but their estimators calcuIated from the transformed catch data. This

notation might be comparable v.ith the difference between theoretical expectation and the
arithmetic mean computed from real world data.

(13)

1 = ~ « Ic.l··, - c·''',1 - O.~ t]
X t:#1W. LJ I-

'>ehlr 1 C• • I

c.'.-, = upper dass limit calcuJaud /rom the eateh data
0/ tM i-th frtt[Ueney dass

cl.·, = to cJ.·, corresponding value 0/ the }-distribution

After having fit the model
to the transformed catch

data the quallt)" of the fit

must be evaluated. This can
generally be done by optical

inspecti"'n or on the basis

of goodness-of-fit tests.
The first is a graphieal pos­

sibility to inspect the histo-
gram and to see whether the drav.n in CUlve of the estimated ß-distribution describes the

frequency distribution best [D'Agostino & Stephens. 19S6]. The lutter is a set of statistieal tests
ego the tests of Kolmogorow & Smimow, of Shapiro & Wilks and finally the tests of the chi­

square type.•
The disadvantage of the first two tests is that their test statistic is not independent of the
distribution for which they check the goodness-of-fit. Unfortunately, to the authors knowledge

no tables for these two tests concerning the ß-distribution exist. Also D'Agostino & Stephens
[1986] only present the usual test statistics and tables of testing the fit for the normal and the

exponential distributions. Whereby especially the Shapiro & Wilks test is designed for small

sampies. the dilemma of the chi-square goodness-of-fit test is its asymptotic test statistic. This
means that this test is particularly constructed for large sampies. To overcome this deficit te.
to make the test more robust against errors associated with smaller sampIes, the Yates correc­

tion \\i11 in accordance v.ith eq. (13) additionally be carried out [Bleymüller et al., 1979]. If
either the uncorrected or the corrected chi-square test statistic indicates a rejection of the null

hypothesis (Le. the transformed catch data would be considered as not ß-distributed) this is
taken as the final und definite result. As mentioned earlier in this section. the principle problem

. with this type of test is that it works \\ith grouped catch data. This can generally lead to
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;~~~ ...
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A. a=0.14614
b=2 28430

B. a=0.03297
b=1. 68914

C. a=0.01440
b=0.77447

[O.lJ-transf

10.8

catch data

o 60.4
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i\A.
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o 0.2

5

3

z

1

o

divergent fitting and verification results

since the process of grouping the catch

data is in some sense relatively arbitrary

(also in case of a visual inspection of hi­

stograms) [D'Agostino & Stephens, 1986:

Gurland & Hinz, 1971). For pure pragma­

tical reasons and since there is no com­

pletely appropriate test, the goodness-of­

fit test of the chi-square type will be ap­

plied in its corrected and uncorrected

versions. The afore mentioned together

with visual checks of the fit between hi­

stogram and estimated ß-distribution

curve fonns a valid set of verification

instruments.

Bootstrapping: graph with (A.) maximum
parameters, (B.) original param~ters and
(c.) minimum parameters (Cluster of
catch positions no. 1. 1983. Gadus mor­
hUa).

Fig.7Having calculated the empirical estimators

of the ß-distribution coefficients a and b

it is necessary to get an idea about their

possible ranges. In other words. it would

be very helpful to estimate their variances

and to be able to compute mean parameters. If there is only one sampie for each year. cluster

and species re-sampling techniques could be one aid to solve this problem. In particular the

bootstrapping method has some quite interesting properties which makes it a more powerful

instrument than the jackknife procedure. The trick is to copy the sampie several times and to

take subsampies with replacement from this multiplied sampie. The "sampling with replacement"

ensures that all subsampIes are independent of each other. Against this background the fact

that all subsampies can be considered as equally likely enables one to use only a simple random

number generator based on the unifonn distribution U(l,u) for taking subsampIes [Beran. 1982:

Efron, 1983: Diaconis & Efron. 1983; Boos & Monahan. 1986' Hinkley & Schechtman. 1987).

The quantity J in the symbol means "Iower limit" and u stands for "upper limit". The main

advantage of bootstrapping is that as many subsampies of unlimited size can be taken. In

comparison the jackknife subsampIes would be strongly delirnited to (n - 1) subsampies of

maximum size (n - I) which is especially a crucial point in small sized sampies. The expression

n in the tenn (n - I) denotes the number of yearly catches (catch positions) per cluster. Fig. 7

depicts the graphical idea behind the bootstrapping for Gadus morhua. cluster no. 1 and the

year 1983. The above curve (A.) represents the upper limit of the range (= maximum parame­

ters). the middle curve (B.) shows the original model of the ß-distribution (= original parame­

ters) and finally the curve (c.) gives the lower limit of the possible range (= minimum parame­

ters ).
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(14)d...., = calczdated pa1'tl1tIdeT cf, 0/ the
i-rh bootstrap sample

, 1l'

- 1 -d . = - 'C'" d" = IJteQ1l 0/ aJl cf '
-- N ~ boGt, boGt,

boGt I-I .

Eq. (14) shows the principle con­

struction of the corresponding

bootstrap variance which is based

on the bootstrapping sampies

examplarily for the parameter a.

In case of b, a must be replaced

by b within the formula. From

this equation it can easily be seen

that fOf each bootstrap sampie

the ß-distribution will be fitted to

the bootstrapped catch data so

that a sequence of estimated parameters a and b will be created. This sequence is used to

ca1cUIate a bootstrap mean and variance for each of the two parameters.•
5 General summary of mairi results and con­

clusions

It can be shown that the ß-distribution could be satisfactorily fitted to the stratified and [0,1)­

transformed catch data of Glldus morJwa in 78% of the clusters" of AfeJanogrllI12111us lleglefmus

in 80% of the cases and of J\1erlangius merJangus in 94% of the clusters for the years 1983 to

1988 (all percentages rounded). This will be confirmed by the corresponding goodness-of-fit

tests at a 5% significance and the associated degrees of freedom level, and by optica1 inspection

of the different histograms. At least the premise of generality seems to be fulfilled. This result

may lead to the intuitive imagination that especia1ly for i\ferl/l11gius merlangus the different

underlying populations per stratum might be ß-distributed. Also in case the aggregation

structure of fish populations may change in time (as Cochran [1977] suspects and it probably

\\111 bel the adaquaey of the ß-distribution seems very high.

Seeondly it should be emphasized that without plotting the curve a lot information with fEigard

to the shape of the empirical distribution can be inferred only from the size eonstellation of the

two parameters a and b. A convenient conclusion is to interpret the parameter constellation as

a statistieal index or eoefficient for the spatia1 aggregation pattern of any fish species. Especially

J.\rerJangius merlangus shows the strata-internal tendeney t'o spread more regularly over the

clusters because in approximately 27~/o of the eases ais nearly as large as band both parameters

are smaller than 1. The pereent rates for the other tv,o species are: 14% (G:ldus morhua) and

16% (Afel:Jnogmmmus /lelgeflnus). lt can also be shovm that there might be a relationship

between the tendeney to right-skewed graphs and the increasing uncertainty about the parame­
ter b since in those eases the coefficient of variation of b \\i11 decreasf! relatively to that of a.
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A further interesting result is that the computation of ß-distribution confidence limits gives

approximately 95% larger intervalls than by means of the t-distribution. That is, the obvious

variability of eatehes is mueh larger (and also not symmetrie !) than usually assumed.

imulation studies on the basis of the modular ß-distribution model show that for the two

species Gadus morhua and MeJanogrammus aegJefmus a sampie size of 50 per stratum (cluster)

is adaquate enough. For MerJangius merJangus the sampie size eould be redueed to 20 per

stratum. Sinee within the IYFS exclusive fishing of a particular fish species is usually not

possible (due to the composition of species within the catch) a practical cons~quence of the

results conceming the sampie size is to have at least 50 eateh positions per stratum. The

simulation studies also indieate that one should not consider the North Sea to be one huge

homogenaus system but to split it up into smaller subunits which could then be considered as

being representative for natural life areas of fish species. This latter result will be confirmed by

re-stratifieation experiments performed one step earlier (see Fig. I).

Finally, it appears that the ß-distribution is a readily applicable instrument which gives a

realistic image of underlying distribution and probability processes. respectively. Furthermore

the ß-distribution is not only a valid approach for forming confidence limits but can also be

more or less easily integrated into many other statistical methods over ML techniques as for

examp1e ANOVA, regression analysis. or where the normal distribution is usually applied.
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