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-2 - ABSTRACT

1 Abstract

A modular probability model for simulation of fishery surveys is constructed and applied to the
three arbitrary selected North Sea fish species Gadus morhua, Melanogrammus aeglefinus and
Merlangius merlangus. Statistically it is based on the incomplete beta function

1 P e
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where a, b >0,

Spec o, € [0,1]

which is also known as the beta cdf or more precisely as the cumulative distribution function
of a beta-distributed random variable. Because of its flexibility this function is appropriate for
fitting empirical frequency distributions of various types. Its form is determined by the two
shape parameters a and b. Although ML estimators generally have good statistical properties
unfortunately in this case the ML technique is computationally somewhat more difficult since

1
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for ab >0

This means, that the beta pdf or density function fﬂ (specyy, ; a,b) has no simple closed form
which could easily be solved with respect to a and b. Hence, for estimating the parameters a
and b the numerically simpler method of moments combined with an iterative version of the
minimum chi-square method is used. Especially the later procedure is per definition more likely
to give significant results with goodness-of-fit tests of the chi-square type than the ML method.

The probability model is called modular which means the incomplete beta function is fitted
compartmentwise to frequency distributions of the above mentioned three fish species. These
compartments are identified in earlier steps by using pattern recognition procedures for
detection of variance-homogenous post-strata. The entire model is based on IYFS data from
the ICES for the years 1983 to 1988.
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2 Introduction

To start with, a bn'ef overview of the compiete con-
cept which hopefully sets the topic qf the paper into i{il'(smga)ita
the right context: the fitting process of the B-distribu-

tion depicted in this paper is only one part of a more
complex analysis strategy to optimize the sampling
and analysis design of the International Young Fish
Survey (IYFS). The catch data to be processed here
come from the IYFS of the years 1983 to 1988 and
are re-stratified by means of a variance optumzmg ' re-stratification
pattern recognition procedure in an earlier step which - —
results in variance homogenous post-strata. This re-
strgtlﬁcatxon step is strong}y based on fon'na,I deﬁm— c;?ﬁﬁ‘é{éﬁ?fég{ﬁg,‘,;
tions with respect to statistical terms of stratification =
as well as on catch information of 14 fish species
which have been selected by means of an eco- -statisti-
cal criterion, the so called constancy [Balogh 1958]
This means that all following statistical operatxons will
be carried out in the light of clustered catch positions - —
and therefore lead to a modular probablhty model deéﬁ%:é;gvggéggz"
which is nothing more than a multi-subarea probabili- —
ty model. The entire analysis strategy is schematically
summarized by Fig. 1.

&
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Fig. 1 General concept of the
complete procedure of opti-
mizing the IYFS.

In stock assessment, a knowledge of the expected

stock size is of partxcular interest; statxstlcally it is the expectation of the stock size which is in
some sense similar to its mean. Such average stock numbers are however of no value without
presentmg an estxmauon error. This can be deducted on the one hand from the vanabxhty of
the catches which is statlstxcally their variance and on the other hand from the evaluation of the
shape of the underlying empirical frequency distribution of the corresponding fish populauon
With this knowledge one can subsequently calculate the range of possible estimations of stock
size with the help of specific measures and thérefore the uncertainty of predictions.

To define the shape of empmcal hxstograms scientists in many cases assume the poisson, the
negativ binomial or related distributions as overall processes which may have generated the
catch data [Taylor, 1953; Bliss, 1956; Bliss, 1971, Hairston et al, 1971; Matém, 1971, Taylor,
1971; Stiteler & Patil, 1971]. Or they cut off the zero catches and try to treat both categories
of data (zero and non-zero catches) separately [Pennington & Grosslein, 1978j. Where means
of catch nurnbers are calculated on the basis of statistical geographical strata the assumption of

B 1
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a normal distribution of the
strataspecific mean  catches
might be helpful since the cen-
tral . limit theorem (clt) can be
applied. As the clt has asympto-
tic properties it is important that
the means computed in this way
must be statistically consistent
[Hartung et al, 1987]). This is
however often not the case. For
instance in the Iaternational
Youngfish Survey (IYFS) on
average in 33% of the cases the
number of catch positions per
ICES rectangle is below three.
Stratawise arithmetic means the-
refore do not meet the asympto-
tic requirement of being calcula-

re-stratified
IYFS data

.

stratawise [(0.1]-
transformation of
catch data

]

stratawise fitting
of B-distributions
to selected species

3

goodness-of-fit
tests

4

calculation of
bootstrap variances
of the two model
parameters

)

STATISTIES

ted from large samples. Another

condition of the clt is that the

samples must be taken from Fig.2 The procedure of clusterwise fitting the B-dis-
tribution to [0,1]-transformed catch data and

non-degenerated and iid random
verifying the fits.

variables. This means the sam-
ples must come from homoge-
nous distributions and must be independent of each other as well as identically distributed. If
one considers the artifical grid of regular ICES rectangles as an overlay of sampling units over
the North Sza, the plausible impression intuitively arises that such an artifical structure would
destroy truely underlying homogenous distributions. It is very likely that neighbouring samples
taken on the basis of such strata are no longer independent of each other. Taking into account
the different proportions of zero catches and other strataspecific characteristics one would also
consider the stratawise empirical distributions as being non-identical. Plotted histograms of
original non-transformed catch data illustrate this clearly. Taking all this into consideration,
plotting the corresponding frequency distribution of the standardized strata means for one year
and one species would not give the typical bell-shaped normal distribution. Goodness-of-fit-
tests would confirm this result by 1ejecting the null hypothesis as being normally distributed.

To present a useful alternative to the theory of normally distributed catch data and/or means
in this paper a very flexible distribution which is easy to compute will be proposed, the beta
distribution (B-distribution). This distribution meets the premise of generality since it is
applicable to different species. years and areas. Its exceptional adaptability as well as the verifi-

s
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cation of its fits by optical impressions (plotting of histograms), goodness-of-fit-tests and boo-
strapping methods will be discussed here. The result is a ‘modular probabxhty or distributional
model on which simulation studies can be performed. The concept of ﬁttmg and venfying the
B-distribution is schematically sketched in Fig. 2.The modular probability model provides more
complete information about average catch numbers and their associated uncertainties. The latter
can be achieved by constructing confidence limits about estimated mean catches, thus enabling
one to rate the calculated mean; in other words, to get an idea of the range of possible mean
values. These confidence limits according to eq. (1) are expected to be much broader than
those of a superimposed normal or t-distribution.

This is due to an underestimation

' . . —— ag . —_— ag
. of the true variability of the cat- lspec, - — 4 _«; spec, + — u, 4]
} . ya T2 Jn 72
ches and a misinterpretation of
the ‘shape of the real empirical where 0))

frequency distribution in cases
! where the data are not normally
or at least symmetrically
distributed. Under these circumstances the normal distribution would not be suitable for repre-
senting the field situation, thereby resulting in misleading statements and interpretations.

= quantile of fy(spec |a,b) at a given «

Fig. 3 illustrates this exemplarily for Ga-
dus morhua, the y‘ear 1986 and cluster 1.
In other words, the true error around
such a mean is much larger than usely
thought. This can easily be shown by

. simply calculating the t- and the B-confi-
dence-limits corresponding to Fig. 3 and
comparing its sizes. For the t-distribution
an 95%-interval of size [12.86, 82.87] re-
sults and for the B-distribution an 95%-
interval of size [47.86, 5650.14] where the
term in square brackets means

20

16

12010

" histogram with fitted B-pdf

:% b

[Iowerlimit’ upperh'ml't]. -0.1 0.1 0.3 0.5 0.7 0.9 1.1
. . . {0.1)-transf. catch data

Immediately it can be seen that the B-

confidence-interval is approximately 80 Fig. 3 Histogram with fitted B-distribution of
- Gadus morhua (Cluster of catch posi-

times larger than that of the t-distribu- tions no. 3, 1986, TYFS).

tion. It should be emphasized that in case
of the B-distribution both quantiles u must be computed since the histogram in Fig. 3 is
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obviously not symmetrical.

Beside the applicaticn of the B-distribution there are other possibilities of describing the un-
derlying distribution, for instance by means of re-sampling methods or kerel and density
functions, respectively. The principle advantage of the probability approach is its ability to get
integrated into many statistics over maximum likelihood techniques.

Finally a comment to the mathematical notation in this paper: in order to be more transparent
within equations ”spec” stands as a shortform for catch numbers of any species.

3 Characteristic properties of the B-distribu—
tion

The B-distribution (sometimes called "incomplete beta function”) is a continuous distribution.
Its density function (pdf) has the form of eq. (2) [Rohatgi, 1976]

1 0 )
Jx(spec, | ab) = B(a,b)(SP“:""')l(l_“z’“’.u--)‘bl 0 < spec, oy <1 a,b>0(2)
[ trans

0 otherwise

and is obviously determined by

(0, spec, 0
the two shape parameters a and b, rans <
whereby both have to be greater P rane
than 0. The two coefficients are L f Q- wdu,

' Fy(Specm, | ab) = { B@b) 4
named form parameters since they 0 < spec, <1

are responsible for its flexibility
and its various possible shapes. In spec, . > 1

this respect it differs from most of 3)
the other distributions (eg. the

normal distribution). The normal distribution is fixed by its “mean” (expectation) and standard
deviation which describe its location and the width of its tails, respectively. It never differs
greatly from the principle form of a symmetric bell-shaped curve. The B-distribution however
changes its principle type depending on the catch data. In other words, it actually adapts itself
so close to real world data that it gives a good indication of the underlying process which has
generated these data, i.e. an idea about the "true” population of the data. Within simulation
studies it is essential to use definite functions. Obviously, in many cases the pdf can not be
definite. Therefore for Monte Carlo experiments it is necessary to use the cumulative version
of the pdf, the so called cumulative distribution function (cdf) which is given in eq. (3).

—
-

s o
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In both functional types (pdf as well as cdf) the term B(a,b) occurs. This expression gives the
B-distribution its name: it is the beta function which unfortunately does not allow a simple ana-
Iytical solution of the estimation problem in terms of maximum likelihood methods (ML estima-
tion). It can be seen .fromi‘eq. (4) that the pdf has no closed form [Rohatgi, 1976].

1 : ' )
Bab) = [ (Pec,,)*! (1 - spec,, ) dispec,,,)
0
4)
. Na) I'(®)
Na+b)

‘ Eq. (4) furthermore shows that the B-
distribution is connected to the gamma
distribution over the expression I'(). The
gamma pdf is a'general version of the
exponential distribution. It can be seen
that there are many analytical relations-
hips to other theoretical probability dis- | 5
tributions, like for instance the F, the '
binorhial, the negative binomial and the 2
uniform distribution [Boswell et al., 1979].
Boswell et al. [1979] even claim that every 1t
univariate distribution can be fitted by the | '
B-distribution. The only prerequisite is o - -
that it has to be unimodal. Under certain 0 0.2 0.4 0.6 0.8 1
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. circumstances it can also be fitted to bi- theoret. [0,1]-transf. catch data
modal histograms in the case where both
modi are close to the one and to the ot~ gjp 4 Diverse possible shapes of a fitted 8- .
her end. Fig. 4 demonstrates the excep- distribution [Boswell et al, 1979].
tional variability of different shapes which
are depictable by the B-distribution.

It can be inferred from this figure that if both a and b are larger than 1 and a = b (Fig. 4D.))
the curve results in a symmetrical shape - very similar to the normal (continuous) or the
binomial pdf (discrete). On the other hand if aand b are smaller than 1 and a = b (Fig. 4(A.))
it yields a bimodal distribution; it then has the form of a halved bathtub. If a=b=1
(Fig. 4(C.)) then it follows the uniform pdf U(0,1) (discrete or continuous). If a > b (Fig. 4(E.))
it produces a more right-skewed distribution; b > a (Fig. 4(B.)) results in a more left-skewed
curve - similar to that of an exponential (continuous), poisson (discrete) or negative binomial
type pdf (discrete). In other words, only the position of aand b relative to each other tells one
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something about the general shape of the curve,
thereby providing more information than one
can expect from calculating only the parame-
ters. This is in some sense similar but less of an
effort than comparing mean, mode and median
of any empirical frequency distribution and
reading its skewness.

16 ! i IR 1]

a=2.28472
b=2.56152

12

granm vwith fitted

histo
R-pdf

The normal pdf is also depictable by the B-
distribution which is shown in Fig. 5. This hi-

stogram based on 100 simulated data from a
N(0,1) is fitted by a B-distribution without ot .
much loss of information. The fit is confirmed A e R s O R e
by the corresponding chi-square-test on a

simulated data of N(O0,1)

5% significance level at 9 degrees of freedom
3, ) : : Fig. 5 A B-distribution fitted to 100 si-
(x2= 157771, p = 0.0716846); fitting the nor-
mulated data of N(0,1).
mal distribution to these data does not lead to ©.1)
a much better result at a 5% significance level

(x?=11.0541, p= 0.198654, df = 8).

When talking about the properties of any distribution in statistics then the depiction of cha-
racteristic quantities is meant. Two such important quantities are the expectation (eq. (5)) and
the theoretical variance (eq. (6)).

Elspec,,.] = 5 ‘: 3 (5)
VARIspec,,.) = a’ ©6)

@+b+1)(@@~+d

The expectation (often called first moment) of the distribution indicates the centre or the
theoretical mean of the distribution whereby the variance describes the range of possible values
around the expectation. In fitting a model on the basis of the moment estimation technique it
is necessary to also have the second moment of the distribution (eq. (7)) [Burkhart & Strub,
1974].

. _@+Da
El(spec, )] ETEN R TH (7)

The B-distribution is not that well known and therefore not frequently applied in the biological-
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ly oriented sciences. A possnble reason for this is that the catch data have to lie between 0 and
1 making a linear transformation necessary to shift them into the [0 1]-domain. This simple
operatxon wxll be shown later. The estimation of the model coefficients a and b is also time
consuming and requxres more effort when one is using the ML techmque or the minimum chi-
square method. The modular ﬁttmg of the B- dlstnbutxon to real stratified catch data, the
verification of the goodness-of-fit and the estimation of the variance over bootstrappmg techni- -
ques will be discussed in the following section.

4 The estimation of model parameters and
their variance as well as the evaluatlon of
the qoodness—of- flt

Various techmques of estimation can be used in model ﬁttmg Due to their good propemes the
ML methods are thus often preferred. Unfortunately in the current case the ML estimation is
numencally too time consuming since no analy‘ucal solution of the problem exists. Iterative pro—
cedures were therefore applied. Although the variance of the ML estimators is slightly smaller
[Strub, 1972; Burkhart & Strub, 1974] than when - applying for instance moment estimators,
further advantages of the ML estimation are not sngmﬁcant enough to justify its exclusive use.

For the current work the numerically much simpler moment estimation method seem to be
more suitable since there are approx1mate1y 270 model fittings for the period 1983 to 1988, for
the on average 15 correspondmg yearly strata (= clusters of catch positions) and the three
species Gadus morhua, Melanogmmmus aeglefinus and Alerlangzus merlangus. 2700 model
fittings will also be added due to variance estimations based on bootstrapping.

The reason why parameter estimation and goodness of-fit tests are usually two totally dxfferent
approaches is that the first is normally based on the entxre catch sample whereas the latter is
performed on grouped catch data which may lead to dxvergent results [Gurland & Hingz, 1971]
The minimum chi- square method may also be appropnate since its pnnc1ple is very similar to
that of a chi-square goodness -of-fit test: they both minimize the same test criterion or statistic.
In other words it may lead to more matching results of ﬁttmg and testmg than other estimation
techniques since it is also based on grouped data. Like the ML technique the minimum chi-
square method is computionally somewhat difficult and would only be applled should the

moment technique fail.

Before estimating the parameters a and b the catch data must be standardized. As mentioned
above this is the linear process of shlftmg them into the [0,1]- domam and will be achieved by
use of eq. (8) [Burkhart & Strub, 1974].

b et o 37 it NS e o A 2
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Spec - spec.,, ] (8)

SPC e =
i [w...—spec..

Fig. 6 shows that this transformation ge-
nerally does not change the principle sha-
pe of the frequency distribution. Otherwi-
se more complicated transformation tech-
niques would have to be used because of
an actual change in the variable [Mood et
al., 1988).

To come back to the moment estimation
technique and the derivation of the two
moment estimators, for the B-distribution
the first empirical moment will be needed.
This is relatively easy to be done by
equally setting the expectation with the
arithmetic mean of the transformed catch
data as in eq. (9) [Burkhart & Strub,
1974).

a4
é+b

E[spec, ] = Spec, o, = ©)

Since two ectimators must be derived the
second empirical moment of the B-dis-
tribution will also be needed [Burkhart &

Strub, 1974]. Eq. (10) below explains how.

El(spec, )] = spec?, ., =

n
® 4
Eal 1
O
=
e B L TGN N T
=
o
[}
e
- -
n
n
«
—
(8]
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o
n
e
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) 0.2 0.4 0.6 0.8 1
[0.1)]-transformed catch numbers

Fig. 6

A comparison concerning histograms of
(A.) real and (B.) [0,1]-transformed
catch data (1986, cluster of catch posi-
tions no. 3, Gadus morhua).

@+1)4d

@G +b+1)@+Db

(10)

Simple reshaping and inserting of the formulas (9) and (10) into each other gives eq. (11) and
eq. (12) i.e. the moment estimators for a and b [Burkhart & Strub, 1974]. In other words, for
computing the parameters a and bi.e. determining or fixing the form of the B-distribution it is
only necessary to compute the formulas (11) and (12).
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, pee, ) -
4= (s'pe__) spec, .., (11
SPEC pang = (SPEC g )’

b= SPCCrams = SPEC’ pns = (%mm)z + Wm SPEC’ g (12)
mczm - (fsp_e?m')z

Also note, the hats on the B-distribution coefficients denote statistically that these are not the
theoretical parameters but their estimators calculated from the transformed catch data. This
notation might be comparable with the difference between theoretical expectation and the
arithmetic mean computed from real world data.

After having fit the model
Eo{(lel® ~clf) -05)

to the transformed catch x’.,,., =

. . e
data the quality of the fit f=claw 1 el’,
must be evaluated. This can - where

generally be done by optical (13)
cl*, = upper class limit calculated from the catch data

inspectin or on the basis of the i-th frequency class

of goodness-of-fit tests. A . :
The first is a graphical pos- to cl*, corresponding value of the f-distribution

sibility to inspect the histo- _

gram and to see whether the drawn in curve of the estimated B-distribution describes the
frequency distribution best [D'Agostino & Stephens. 1986]. The latter is a set of statistical tests
2g. the tests of Kolmogorow & Smimow, of Shapiro & Wilks and ﬁnally the tests of the chi-
square type. '

clt,

The disadvantage of the first two tests is that their test statistic is not independent of the
distribution for which they check the goodness-of-fit. Unfortunately, to the authors knowledge
no tables for these two tests concerning the B-distribution exist. Also D’Agostino & Stephens
[1986] only present the usual test statistics and tables of testing the fit for the normal and the
exponential distributions. Whereby especially the Shapiro & Wilks test is designed for small
samples, the dilemma of the chi-square goodness-of-fit test is its asymptotic test statistic. This
means that this test is particularly constructed for large samples. To overcome this deficit i.e.
to make the test more robust against errors associated with smaller samples, the Yates correc-
tion will in accordance with eq. (13) additionally be carried out [Bleymiiller et al, 1979). If
either the uncorrected or the corrected chi-square test statistic indicates a rejection of the null
hypothesis (i.e. the transformed catch data would be considered as not B8-distributed) this is
taken as the final and definite result. As mentioned earlier in this section, the principle problem

~with this type of test is that it works with grouped catch data. This can generally lead to

R R LI C T L RN L S N TR WS G St et L s e AR A R T - s
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divergent fitting and verification results :

since the process of grouping the catch E ok ' . ‘ ' E
data is in some sense relatively arbitrary | | 8 R Ds ;= o1l

(also in case of a visual inspection of hi- tE: B. a=0.03297 E
stograms) [D’Agostino & Stephens, 1986: b=1.68914 ]
Gurland & Hinz, 1971). For pure pragma- % ;: R S ean y
tical reasons and since there is no com- [ ( w
pletely appropriate test. the goodness-of- L ]
fit test of the chi-square type will be ap- & ]
plied in its corrected and uncorrected }
versions. The afore mentioned together . :
with visual checks of the fit between hi-

stogram and estimated B-distribution o | === ]
curve forms a valid set of verification e JoLqA ‘016‘ e i 11
instruments. [0.1]-transf. catch data

Having calculated the empirical estimators Fig. 7 Bootstrapping: graph with (A.) maximum

of the B-distribution coefficients a and b parameters. (B.) original parameters and
it is necessarv to get an idea about their (C.) minimum parameters (Cluster of
possible ranges. In other words. it would ;Ztg)h positions no. 1. 1983, Gadus mor-

be very helpful to estimate their variances

and to be able to compute mean parameters. If there is only one sample for each vear. cluster
and species re-sampling techniques could be one aid to solve this problem. In particular the
bootstrapping method has some quite interesting properties which makes it a more powerful
instrument than the jackknife procedure. The trick is to copy the sample several times and to
take subsamples with replacement from this multiplied sample. The "sampling with replacement”
ensures that all subsamples are independent of each other. Against this background the fact
that all subsamples can be considered as equally likely enables one to use only a simple random
number generator based on the uniform distribution U(l,u) for taking subsamples [Beran. 1982:
Efron, 1983: Diaconis & Efron. 1983: Boos & Monahan. 1986; Hinkley & Schechtman, 1987].
The quantity /in the symbol means "lower limit” and u stands for "upper limit”. The main
advantage of bootstrapping is that as many subsamples of unlimited size can be taken. In
comparison the jackknife subsamples would be strongly delimited to (2 - 1) subsamples of
maximum size (n - 1) which is especially a crucial point in small sized samples. The expression
nin the term (n - 1) denotes the number of yearly catches (catch positions) per cluster. Fig. 7
depicts the graphical idea behind the bootstrapping for Gadus morhua. cluster no. 1 and the
vear 1983. The above curve (A.) represents the upper limit of the range (= maximum parame-
ters), the middle curve (B.) shows the original model of the B-distribution (= original parame-
ters) and finally the curve (C.) gives the lower limit of the possible range (= minimum parame-

ters).
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Eq. (14) sho:ws the pﬁnciple con- . . N,
struction of the corresponding VAR, (&) = 1 Y, Gy, - a_»
bootstrap variance which is based Moo i1
on the bootstrapping samples

examplarily for the parameter a where 4. = calculaied parameter 4, of the (14)
In case of b, a must be replaced bect i-th bootstrap sample !
by b within the formula. From ‘ i ~
this equation it can easily be seen i 1 « Q- ' A

‘ ‘ e . o T — . = mean of all 4,
that for each bootstrap sample , - Ny lz-l: o , e
the B-distribution will be fitted to N, = number of bootstrap samples

the bootstrapped catch data so-
that a sequence of estimated parameters a and b will be created. This sequence is used to
calculate a bootstrap mean and variance for each of the two parameters.

5 General summary of main results and con-
clusions

It can be shown that the B-distribution could be satisfactorily fitted to the stratified and [0,1]-
transformed catch data of Gadus morhuain 78% of the clusters, of Melanogrammus aeglefinus
in 80% of the cases and of Merlangius merlangus in 94% of the clusters for the years 1983 to
1988 (all percentages rounded). This will be confirmed by the corresponding goodness-of-fit
tests at a 5% significance and the associated degrees of freedom level, and by optical inspection
of the different histograms. At least the premise of generality seems to be fulfilled. This result
may lead to the intuitive imagination that especially for x\ferl'mgius merlangus the different
underlying populations per stratum might be B-distributed. Also in case the aggregauon
structure of fish populations may change in time (as Cochran [1977] suspects and it probablv
will be) the adaquacy of the B-distribution seems very high. -

Secondly it should be emphasized that without plotting the curve a lot information with regard
to the shape of the empirical distribution can be inferred oniy from the size constellation of the
two parameters aand b. A convenient conclusion is to interpret the parameter constellation as
a statistical index or coefficient for the spatial aggregation pattern of any fish species. Especially
Merlangius merlangus shows the strata-internal tendency to spread more regularly over the
clusters because in approx1mately 27% of the cases ais nearlv as large as band both parameters
are smaller than 1. The percent rates for the other mo species are: 14% (Gadus morhua) and
16% (Afelanogrammus aelgef' nus). It can also be shown that there might be a relationship

between the tendency to right-skewed graphs and the increasing uncertainty abqut the parame-
ter b since in those cases the coefficient of variation of b will decrease relatively to that of a
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A further interesting result is that the computation of B-distribution confidence limits gives
approximately 95% larger intervalls than by means of the t-distribution. That is, the obvious
variability of catches is much larger (and also not symmetric !) than usually assumed.

Simulation studies on the basis of the modular B-distribution model show that for the two
species Gadus morhua and Melanogrammus aeglefinus a sample size of 50 per stratum (cluster)
is adaquate enough. For Merlangius meriangus the sample size could be reduced to 20 per
stratum. Since within the IYFS exclusive fishing of a particular fish species is usually not
possible (due to the composition of species within the catch) a practical cons.quence of the
results concerning the sample size is to have at least 50 catch positions per stratum. The
simulation studies also indicate that one should not consider the North Sea to be one huge
homogenous system but to split it up into smaller subunits which could then be considered as
being representative for natural life areas of fish species. This latter result will be confirmed by
re-stratification experiments performed one step earlier (see Fig. 1).

Finally, it appears that the B-distribution is a readily applicable instrument which gives a
realistic image of underlying distribution and probability processes. respectively. Furthermore
the B-distribution is not only a valid approach for forming confidence limits but can also be
more or less easily integrated into many other statistical methods over ML techniques as for
example ANOVA, regression analysis. or where the normal distribution is usually applied.

6 References

Balogh, J. (1958): Lebensgemeinschaften der Landtiere. Akademie Verlag, Berlin. . . . .. .. 3

Beran, R. (1982): Estimated sampling distributions: the bootstrap and competitors. Annals of
SIAtISHE S WO 2 R RRDG . .ls i eoa it inys B s mire) = e oo b etne St o MR N e G o0t B 12

Bleymdiller, J., Gehlert, G., Gulicher, H. (1979): Statistik fir Wirtschaftswissenschatftler.
Verlag. ErahzVatien, Munchen o aacat O Sl e el calas an s U iotie Sl cL L, SR 11

Bliss, C. . (1956): The analysis of insect counts as negative binomial distributions.
Proceedings Tenth International Congress of Entomology, 2: 1016-1032. .......... 3

Bliss, C. |. (1971): The aggregation of species within spatial units. Statistical Ecology, Vol. 1.
Spatial Patterns and Statistical Distribution (Eds. G. P. Patil, E. C. Pielou, W. E. Waters). The

Pennsylvania State University Press. 311-335. ... ... 3

Boos, D. D., Monahan, J. F. (1986): Bootstrap methods using prior information. Biometrika,
i by s s e ST T T T L S e LS R e g B e S e e T R e B 12

Boswell, M. T., Ord. J. K.. Patil, G. P. (1979): Chance mechanisms underlying univariate
distributions. Statistical Ecology. Vol. 4: Statistical Distributions in Ecological Work (Eds. J. K.



'l IR R

-

.

-

..

L O it A R e e R AR L b b P R e e AL L g R T R LT T T B R e R & LY \‘:;.;‘("“‘;:%)&:\%%",—ﬁ"m§
* o T : : ¥ . e N

REFERENCES - - 15 -

Ord, G. P. Patil, C. Taillie). International Co-operative Publishing House, Maryland, U.S.A. 3-

Burkhart, H. E., Strub, M. R. (1974): A model for simulation of planted loblolly pine stands.
Vol. 30: Growth Models for Tree and Stand Simulation (Ed. J. Fries). Royal College of Fore—
stry, Sweden, 128-188. . ... ittt ittt entenetonsonssseasosonannanans 8-10

Cochran, W. G. (1977): Sampling techniques. Wiley Series in Probability and Statistics,
NEW YOIK. « oottt i ittt i tieasceanosonasassesnsesnesnossonseacasenens 13

D‘Agostino, A. B., Stephens, M. A. (1986): Goodness of fit techniques. Marcel Dekker Inc.,
NEW YOIK. oo ittt et ie et eteeteaeeatoeseseneesnsencnnsaasannnanns 11,12

Diaconis, P., Efron, B. (1983): Statistik per Computer: der Miinchhausen~-Trick. Spektrum
der Wissenschaft, Juli 1983: 56=71. ... iininiiiiiiiiitineinneenneneennns 12

Efron, B. (1983): Estimating the error rate of a prediction rule: improvementon
cross-validation. Journal of the American Statistical Association, 78: 316-331. ..... 12

Gurland, J., Hinz, P. (1971): Estimating parameters, testing fit, and analyzing untransformed
data pertaining to the negative binomial and other distributions. Statistical Ecology, Vol. 1:
Spatial Patterns and Statistical Distributions (Eds. G. P. Patil, E. C. Pielou, W. E. Waters). The
Pennsylvania State University Press. 1483=194. ... urettreeeneeannnnacaans 9,12

Hairston, N. G., Hill, W. H., Ritte, U. (1971): The inte_rpietation of aggregation patterns.
Statistical Ecology, Vol. 1: Spatial Patterns and Statistical Distributions (Eds. G. P. Patil, E. C.
Pielou, W. E. Waters). The Pennsylvania State University Press. 337-356. ........... 3

Hartung, J., Elpelt, B., Klésener, K.-H. (1987): Statistik. R. Oldenbourg Verlag,
Y 3T e T o T o 4

Hinkley, D., Schechtman, E. (1987): Conditional bootstrap methods in the mean-shift model.
Biometrika, 74: 85-93. ... ittt s i it s ettt e 12

Matérn, B. (1971): Doubly stochastic poisson processes in the plane. Statistical Ecology,
Vol. 1. Spatial Patterns and Statistical Distributions (Eds. G. P. Patil, E. C. Pielou, W. E.
Waters). The Pennsylvania State University Press. 195-213. ............cv... cees 3

Mood, A. M., Graybill, F. A., Boes, D. C. (1988): Introduction to the theory of statistics.
McGraw-Hill, New YOrK. . ... .ottt i tarinnnetseesoaasseaoannans 10

Pennington, M. R., Grosslein, M. D. (1 978): Accuracy of abundance indeces based on
stratified random trawl surveys. ICES C.M. 1978/D:13. ... it iiiiiienenns 3

Rohatgi, V. K. (1976): An introduction to probability theory and mathematical statistics.
Wiley, NewYork., .....ccceriiiinineennnn. R R 6,7

Stiteler, W. M., Patil, G. P. (1971): Variance-to-mean ratio and Morisita’s index as measures
of spatial patterns in ecological populations. Statistical Ecology, Vol. 1: Spatial Patterns and
Statistical Distributions (Eds. G. P. Patil, E. C. Pielou, W. E. Waters). The Pennsylvania State
University Press. 421=459. . . ...t iuineeeensesaaneansacssassncsensssssns 3



S @A KO B e LG YvmFe R T 4 aad TRREBZ A gl des T fhrewe 0 oena Sellaas Y Teete e AL TS e el T L e et

-16 - REFERENCES

Strub, M. R. (1972): A beta distribution approach to diameter class frequencies in planted
loblolly pine stands. M.S. thesis, Virginia Poly. Inst. and State Univ. Blacksburg, Virginia,
I N A 9

Taylor, C. C. (1953): Nature of variability in trawl catches. U.S. Fish Wildlife Service, Fishery
Bulletin, 84: 145166, . ..ttt ittt et ettt 3

Taylor, L. R. (1971): Aggregation as a species characteristic. Statistical Ecology, Vol. 1: Spa-
tial Patterns and Statistical Distributions (Eds. G. P. Patil, E. C. Pielou, W. E. Waters). The
Pennsylvania State University Press. 357 =377, vt tiiiieinnnnaionninnnnnnns 3




