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SUMMARY

In heavily exploited fish populations, imprecision in catch forecasts is often blamed on the
sensitivity of the forecast to recruiting fish. Recruitment is difficult to estimate precisely
and cannot usually be predicted from stock size. Using sensitivity analysis, this paper
investigates whether reducing exploitation levels improves the precision ofcatch and stock
forecasts. Although sensitivity to recruitment is reduced, the forecast becomes more
sensitive to other quantities such as current stock size and fishing mortality. As these are
more difficult to estimate in lightly exploited stocks, the precision of the forecast may
deteriorate as the level of exploitation decreases.

INTRODUCTION

The forecasting of catches is a common necessity in the management of a stock. Typically,
catches are forecast for one or two years ahead and these frequently form the basis of the
Total Allowable Catch (TAC) or quota set by regulatory bodies. Where TACs are the
principal management tool, the accuracy of the catch forecast is crucial to the success of
the management policy. Ultimately the precision ofany forecast will depend on the quality
of the data on which it is based. However, there is inevitably, with most assessments, a
degree ofsubjectivity or ''judgement'' in the choice ofinput values which will have an effect
on any forecast. For example, an assessment working group may have conflicting data on
the size ofa recruiting year dass. The group will have to decide on the basis ofits experience
the appropriate value to use and then proceed with the forecast. In these circumstances
it is important to understand how much the forecast depends on the particular value for
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recruitment which was chosen. Generally, there are a number ofinput values which are
subject to uncertainty and this multiplies the problem of evaluating which input values
are important. lt would be useful to have a simple means of determining the sensitivity
ofthe forecast to the input values so that greater care can be given to the estimation ofthe
important ones while those which contribute little can be left alone. This paper reports
the application ofa simple linear sensitivity analysis to the North Sea haddock to illustrate
the utility of the approach.

The North Sea haddock stock is heavily exploited and the consensus view is that fishing
mortality should be reduced (Anon, 1990). This judgment is, of course, made on biological
grounds. There is a potential problem with reducing fishing mortality in that forecasts
maybecome less accurate. Reducing fishing mortality will generally reduce the dependence
of the forecast on recruitment, improving its precision but it becomes more difficult to
estimate current stock size which counteracts this. When fishing mortality is low most
analytical methods such as Virtual Population Analysis (VPA) converge more slowly. This
introduces more uncertainty into the input values for the forecast. A lower fishing mortality
therefore makes the forecast more dependent on the survivors of the existing stock which
in turn is estimated with greater uncertainty. In these circumstances it may be more •
difficult to manage the stock at the target level of exploitation. This paper investigates
this problem using sensitivity analysis on steady state populations to show that in reducing
fishing mortality, the benefits of a lower dependence on recruitment may be more than
offset by greater uncertainty in the estimates of other input values.

METHODS

The standard ICES procedure for performing short term forecasts for North Sea haddock
is to estimate vectors ofpopulation size and fishing mortality from VPA for the most recent
year. These are then rolled forward with recruitment estimates to give estimates offuture
catches. When the fishing mortality vector is held constant in the forecast period, the so
called status quo forecast is obtained. The status quo forecast is a convenient reference
value and is the forecast used throughout this paper. A more detailed outline of the
procedure is given in Cook et al. (1991). In this paper, steadystate "per recruit" populations
have been generated using the current exploitation pattern for North Sea haddock scaled
to various levels ofrelative effort. Catch forecast therefore represent an "average" forecast
under the particular level of effort in steady state conditions.

a) Linear Sensitiyitv Analysis

Each time a forecast is performed on a stock it is ofinterest to know which are the important
input values. The important ones will vary from year to year because the magnitude of
the input values will change as recruitment, for example, fluctuates. This question can be
investigated using simple linear sensitivity analysis.

An output value or "state variable" from a model is the result of the input variables or
"parameters". The problem is to quantify the effect ofeach parameter on the state variable.
For a given set ofparameters, a, this can be investigated by considering the effect ofsmall
changes in the parameters on the state variable. Ifa small change in one ofthe par:ameters
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häs a large effect then the state variable is said to be higWy sensitive to that parameter.
Clcarly the magnitude ofthc effectWill bci relatcid to thc slopc oftbc funetion in tbe region
ofthc point o. A sensitivity coefficierit can therefcirc be defined as:

0; ö(g(O» (Laurec and Mesnil. 1987)
öO;

wherc g(O) is thc function for the stat.e vmable. It is straightforward to cialculate thcsc
coellcicnts and this method has becnused to irivestigate thc scnsitiVityofhaddockforecastS
in different years.

b) Fourier AInplitudeSerisitiYitY Test (FAST)

In thc irivesiigation of the effect of ch.ariging the ievel of exploitation on a stock, we ar~
interestcd not orily in how the sensitivity ofthe forecast changes büt also how the precision
ofthc forecast isaffected. The linear analysis gives a very simple measure ofthe effect oe
the magnitude of a parameter on the forecast. However, it is also nnportarit to kriow how
the unprecision iri the esiimate ofthe paraineter tmnshites into errors in the forecast.. This
coUld be estimat.ed iri a sirililar fashion to the linear senSitivity analysis by taking a linear
approXimation to the furiction at the point 0 and usirig ccinventional fonnUlac for the
summation ofvanances. TbiS approach reqüires that the iinprecision in the parameters
is small.which is often not the case in makirig forecasts. Another approach to overcome
this problemwould be to use Monte Carlo simulation; hut this is potentially very time
consuming when large nuinbers of parameters are involved. A middle way iS to use ihe
FAST (Cukier et al., ~978) which effectively perfonns a simUlation experiment with, the .
minimuni nUmber of realisationS by carefully choosing setS.of parameters from their
"probability distributions". Tbis is done in such a way thnt the vanability ~ the stUte
variable (the forec~t) can be identified with each parameter. A popular gwdc to FAST is
given in Hilden (1988).

In order to perform th~ analysis, the parameter values need to 1>e specified arid also their
range of"uncertamty". Thus a parameter with an unccrtamty of 1.25 would yield values
between phis or minus 25% ofthe nommal value. In this sttidy unccrtamties were chosen
tri rcf1ect about twicc thc coefficient ofvanation ofthe p~eter.

S~ce tbe pilrpose of thc study is to mvestig~~ the effect of reducing fisiürig mortality o~
the precision of the forecast, there is a need to relnte the level of fishiIig morl8lity to the
Uncertainty in the parameters. This has been dane by ConSidering the way in which thc
parameters are typicallY. estiiriated. This problem is most readily appreciat.ed by
considering the way iri which enors in the input \ralues to VPA arc propagated. ErrorS in
population size, N, are related by the weIl known formwa:

. (1)

whereDNis the errorinNaridFiSthefisliliigmortaIity. ÄsiDiilarfomUla canbe dev~loped
ror the error in F: . . .
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=
DN'+l(e-Ft-l)

F,N'+1
(2)

When there are errors in the catches then it is possible to show that equation (1) becomes:

(3)

The LHSs in these equations could be considered as the uncertainty in the estimates ofN
and F. These formulae have therefore been used to generate the uncertainty for each
parameter under different levels ofF. It is noteworthy that in equation (3), the right hand
term is very small for high values of F. Hence for a heavily exploited stock the errors in
the estimates depend mostly on errors in the catch. (The term in brackets is large for large
F). When F is small the expression in brackets is small and the estimates are dominated
by the cumulative error represented in the right hand term. This term propagates the
error in the estimate of input F to VPA.

RESULTS

Linear Sensitivity Analysis

Results from this analysis are given in Figures la-d and 2a-d for the forecast yield (Yt+n)
and spawning stock biomass (St+n) where n is the number ofyears ahead ofthe last data
year (t). Results are shown for status qua efIort (ie 1) and for a 60% reduction in efIort (ie
0.4). The figures reveal the fairly obvious result that as Fis reduced, the sensitivity to
recruitment is reduced. However, the sensitivity to other quantities is increased. Thus
although the forecast will be less sensitive to errors in the estimate ofrecruitment, it will
be more sensitive to estimates of present population size and fishing mortality. If the
precision of these estimates deteriorates as F decreases then the forecast will suffer.

FAST Analysis

Table 1 shows the uncertainty estimated for Fand N generated using equations (2) and
(3) for various levels of efIort. The error in the catch used in the equations is also given
and was estimated by performing a factor analysis on the catch at age data for haddock to
estimate the measurement error on each age group in the catch. The uncertainty for future
recruiting year classes (R3 and onwards) reflects the overall coefficient of variation of
recruitment in this stock.

Figure 3 shows the coefficient of variation of forecast yield for one, two, three and four
years ahead calculated from FAST. These CVs do not represent an estimate of the true
variability of the forecast but a relative estimate. They suggest that reducing efIort will
in general degrade the quality of the forecast. For the four year forecast, there is some
improvement in the CV for intermediate levels of effort. This is because there is a
substantial reduction in the effect ofrecruiting year classes (which have high uncertainty)
that more than offsets the higher uncertainty accruing to the other parameters in the
forecast. -
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Figure 4 shows the equivalent results for the forecast spawning stock biomass. Similar
changes are evident.

CONCLUSION

This paper examines the possible consequences of reducing the overall level of effort on
the precision of short term forecasts. Although the sensitivity of forecasts to recruitment
is reduced, this appears to be more than offset by a sensitivity to other input parameters
which may not be adequately estimated under lower levels of exploitation.
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TABLE 1

Uncertainties in the parameters for different levels of relative effort. Status qua
corresponds to a relative effort of 1. The estimated error in the catch (DCtJCt) from factor
analysis is also shown

Relative 1.00 0.80 0.60 0.50 0.40
effort

R1 1.66 1.76 1.91 2.02 2.18
NI 1.64 1.74 1.89 2.00 2.15
N2 1.50 1.59 1.74 1.85 2.00
N3 1.28 1.37 1.51 1.61 1.74
N4 1.34 1.44 1.59 1.68 1.80
N5 1.58 1.67 1.79 1.86 1.93
N6 2.00 2.00 2.00 2.00 2.00

FO 1.66 1.76 1.91 2.02 2.17
Fl 1.61 1.71 1.86 1.98 2.13
F2 1.34 1.44 1.59 1.70 1.85
F3 1.17 1.24 1.37 1.47 1.60
F4 1.20 1.29 1.43 1.52 1.64
F5 1.37 1.47 1.60 1.68 1.77
F6 2.00 2.00 2.00 2.00 2.00

R2 1.66 1.76 1.91 2.02 2.18
R3 2.50 2.50 2.50 2.50 2.50
R4 2.50 2.50 2.50 2.50 2.50
R5 2.50 2.50 2.50 2.50 2.50

Age "error"
in catch

0 1.40
1 0.82
2 0.55
3 0.22
4 0.20
5 0.29
6 0.29

R1 = recruitment at age 0 in year t
R2 = recruitment at age 0 in year t+1
R3 = etc

FO = fishing mortality at age 0
Fl =fishing mortality at age 1
F2= etc

.NI = number at age 1 in year t
N2 = number at age 2 in year t
N3 =etc



FIGURE LEGENDS

Figure 1 Sensitivity coefficients from linear analysis for two levels offishing mortality
(F). For definitions of parameter labels R1 etc see Table 1: a) catch forecast
in year t+1; b) catch forecast in year t+2; c) catch forecast in year t+3; d) catch
forecast in year t+4.

Figure 2 Sensitivity coefficients from linear analysis for two levels offishing mortality
(F). For definitions of parameter labels R1 etc see Table 1: a) SSB forecast in
year t+1;b) SSB forecast in year t+2; c) SSB forecast in year t+3; d) SSB forecast
in year t+4.

Figure 3 Coefficient ofvariation from FAST for forecast landings under different levels
ofrelative fishing mortality. The curves are for one, two, three and four years
ahead of the last data year t.
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Figure 4 Coefficient ofvariation from FAST for forecast spawning stock biomass under
different levels ofrelative fishing mortality. The curves are for one, two, three
and four years ahead of the last data year t .
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Fig. lc
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Fig. ld
HADDOCK CATCH PREDICTION
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Fig. 2a
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Fig. 2c
HADDOCK SSB PREDICTION
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Fig.3
North sea Haddock
Forecast landings
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Fig. 4
North Sea Haddock
Spawning stock biomass
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