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1. Introduction
1.1 Participants

Gérard Y. Conan Canada
Marsha Daniel Iceland
Eduardo Ferrandis Spain
Kenneth G. Foote Norway
Knut Korsbrekke Norway
Rainer Oeberst Germany
Lars-Erik Palmén Sweden
Pierre Petitgas France
Jacques Rivoirard France
John Simmonds U.K. (Scotland)
Gunnar Stefdnsson Iceland
Pat Sullivan US.A.
Gordon Swartzman US.A.
W.G. Warren Canada

1.2 Terms of reference

The terms of reference are given in C. res.
1990/2:11:

A Workshop on the Applicability of Spatial
Statistical Techniques to Acoustic Survey Data,
with Dr. G. Stefansson (Iceland) as Chairman and
Dr. G. Y. Conan (Canada) as Vice-Chairman, will
be held in Reykjavik from 5-9 September 1991 at
national expense to:

a. present data analyses prepared in advance;

present comparisons of methods prepared in
advance;

c. discuss analyses, methods, and comparisons
of methods;

prepare plans for an ICES Cooperative
Research Report.

1.3 Background

The acoustic data under analysis consist
mainly of the mean area backscattering
coefficient. The meaning of this is explained here.

The fundamental quantity that is measured in
echo integration surveys (MacLennan 1990) is the
mean volume backscattering coefficient s,. This

is the cumulative backscattering cross section in
the sampled volume V; (Stanton et al. 1987). For
a single ping, or sounding,

1 n
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(1.1)
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where G, in this section only, is used to denote
the backscattering cross section of the j-th

scatterer of n in V. In the limit of a large number
of scatterers or pings,

o
S 12
=P (1.2)
where p is the number density of scatterers with
respect to volume, and o is the mean
backscattering cross section of a scatterer.

While the dependence of s, on echo range or
depth z can be quite useful for some applications,
the data quantity is generally voluminous and
unwieldy for ordinary surveying work. A much
more useful quantity is the area or column
backscattering coefficient s, (Clay and Medwin
1977). This is the integral of s,(z):

22
so=Js.(2)de,
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(1.3)

where z, and z, are the limits of integration.
Strictly speaking, these define the inner and outer
radii of a spherical shell centered at the
transducer, for short pulses and in the transducer
farfield. For the highly directional transducers
that are almost universally employed in echo
integration work, most echoes come from the
central lobe of the beam patterns, hence echo
range is tantamount to depth.

The quantity s, is dimensionless, but is
typically very small, say of the order of 1077 to
1071, It is more conveniently expressed with
respect to 1 square nautical mile, or 1 NM 2
(Knudsen 1990). This quantity, denoted s4, is
derived from s, thus :
sa=4m18522%s, (1.4)
This is the basic quantity that is analyzed in echo
integration surveys. Its units are square meters of

backscattering cross sectional area per square
nautical mile.



The i importance of s, may be e'rnphasnzed. by

subsututmg Eq. (1.2) in Eq. (l 3) and the result
inEq.(1.4):
5A=PAC )
where p4 is lhe number densuy of fish with
respect to an area of 1 NM2, Ifa measurement of
Sa is represemauvc of a pamcular species and

size or age class of scatterer for which G is
known, then computauon of p, is immediate.

In the test data, SA
monospecific with respect ‘to the fish scatterer.
The various manipulations are pcrformcd mainly
on SAs wuhout division by G, this last step being
extraneous to the aim of the study. In one case,
that of Data set 6, the division has been performed
and the number further convcrtcd to mass density
wn.h respect to arca.

1.4 Nomenclature

~The following convention is used throughout
this work. Mecasurements made along transects
are of densxty This may be acousuc density, s,
or s4; number density wnh respect to volume, 0;

number density with rcspcct 10 arca, p4; Or mMass.

density with respect to arca. The result of
mtcgraung a dcnsxty field defined over an area
specifies the abundance of the animal.

1.5 Working Papers

* Working papers were available on some of the
topics. These are listed in Appendix A.

1.6 Acknowledgements

" The work described in this report would not
have been possible without the aid of several
individuals not included in the participant list. In
parucular, A. Aglcn L Rotungcn K. Sunnani, P.
Rcymsson A. Gudmundsdéttir and N. J.
thlmmson arc thanked for their contributions of

is assumed to be

2. Basic data analyses and survey
desngn ' .

Each survey nceds to be explored initially
with data display tools before analysxs begins. A
key to proper spatial analysis of survey data lics
in the graphical display and preliminary
cxploratory analysis of abundance and, where
relevant, ancnllary environmental data. Through
the comparison of several surveys, general
pattems may emerge that would suggest fruitful
gcneral approaches Even after initial processing,
an acoustic survey data set still provides much
data, mcludmg the deplh distribution of fish
abundance and the depth of the water column,
sometimes at the individual fish species - level.
The data are generally agglomerated further, as
seen in the data sets analyzed here, to produce a
total abundance estimate that applies throughout
the entire water column. In some cascs, depth has
been prov1dcd (although prcsumably it is
available or casy to obtain in all cases).

It is useful to present the survey tracks on a
map of the arca. A variety of means have been
used to show the spatial distribution of abundance
along the tracks mcludmg scaled - histograms
(Figure 2.1), scaled rectangles (Figure 22) and
scaled cxrclcs (Figure 2.3). These figurcs prcscnl
the data in an explicit spaual context, with
abundance propomonal to thc size or length.
Contour and gray‘scalc image plots were also
used to display. abundancc data (Figure 2.4).
While these permit more complctc spaual
coverage than the scaled transect plots, they can
introduce artifacts into the data resulting from the
mterpolauon uscd to cover unsuneycd areas

. between the survey tracks, such as apparent

smears or gradients of abundance. * Careful
attention  should be pand in intcrpreting such

. plots, to where the survey tracks aclually are:

Conﬁdencc in mlcrpolalcd prcdxcuons is often
low away from survcycd areas, cspccxally if the

. data are cxtrapolatcd out of the study arca. This

acoustic data. Z. Kizner is thanked for the .

contribution of simulated data. Fmally. E. Wade,
D. Stolyarenko and N. J. Williamson prepared
analyses which were available for the meeting.

was not done here but it is done and it is often
mlsleadmg An examplc is in Figure 2.5, which
shows a bilinear mlcrpolalnon of the Iceherl
survey as a 3-D plot. Here, rchons of low
acousuo density appear as four rcgularly spaced
areas at the bottom of the survcy ed area (front of
the plot) These areas arc mtcrscctcd by the
survcy transccts. Bemccn them arc arcas of
purportedly higher dcnsxly, Wthh are hxghcr
solely because they are not on the survey tracks



and so this interpolator produces spatial biases.
The same observation can be made for the high
abundance areas near the top of the surveyed area
(back of the plot). Color plots can be made
analogously to the transect, grayscale, contour
and 3-D plots.

The presence of ancillary information, such as
depth, can be informative in the analysis of
acoustic data. The gray scale and contour plots
for abundance (shown in Figure 2.4) have been
compared with depth gray-scales for the same
areca, which can help to suggest possible
relationships between these variables. For the
Bering Sea there appears to be a strong
relationship between depth and abundance. This
suggests further analysis using a spatial trend
detection model such as GAM or GLM to
correlate ancillary information with abundance.
This is discussed further in section 7.

A number of classical summary statistics may
be used in an exploratory sense as well. The
variogram, which is used in geostatistical
estimation procedures, is a good example. In a
restricted sense it represents the correlation
between sets of observations a distance h apart.
Patterns in variograms fit to the data can indicate
patterns in the data. Each of the the variograms
obtained from untransformed test data sets 1-3
(Figures 2.6, 2.7 and 2.8) represents a different
covariance pattern. The first indicates covariance
that continues to decrease with distance, possibly
indicating some large-scale pattern of variation in
the observations. The second indicates a pattern
more like a global nugget effect indicating no
pattern or covariance on any scale. The third
shows a covariance that initially decreases with
distance, only to increase later, indicating both
small-scale as well as large-scale interactions.
The variogram can also provide diagnostic
information about the existence of correlation in a
population at the spatial scale of the collected
data.

Fish depth profiles (showing the fish depth
distribution) can give important clues to species
and provide additional information to locate
trends in fish distributions. As such, these data
should not be summarized by a single measure,
such as column scatter strength or overall fish
abundance, until preliminary display is made.
The variogram and other simple statistics like
scatterplots of abundance versus ancillary
variables can help in preliminary data
examination and suggest further direction. An

important aspect of such preliminary analysis is to
point out the potential relative importance of
autocorrelation and trend (drift) to fish spatial
distribution and thereby suggest whether the
analysis should ignore or include these factors.
Graphical display of model predictions and
residuals can also be important after analysis to
indicate whether model assumptions were met
and the need for possible further analysis.

2.1 Multivariate data

In addition to density integrated through the
water column, survey data usually provide
information on the depth distribution of
abundance as well, which may be useful in
providing 1) a good indication of where an
abundance pattern has changed (i.e. change in
both the magnitude and depth distribution of
abundance) and 2) relationships of species
interactions and possibly help in species
identification. An example of display of such
data is given in Figure 2.9.

Developing tools for multivariate spatial data
analysis (as, for example, the Barent Sea data
shown in Figure 2.9) remains a challenge. Few
methods exist even for the display of such data,
let alone tests of statistical significance or
measures of trend. For example, how can the
depth profile of fish abundance be related to
covariates? The challenge is compounded if the
data are not all collected simultaneously or in the
same region, as, for example, using sea surface
temperature or ocean color data collected from
satellite images as covariates for fish abundance
in a nonparametric regression. That such
variables are important to fish distribution is
attested to by the use of spatial cross-correlation
between fish catch at satellite-collected sea
surface temperature data to successfully predict
areas of high catch. For at least two species
(Shinomiya and Tameishi 1988) these 'hot spots’
are on the edges of eddies of cold or warm water
breaking off from major ocean currents. In this
area, exploratory data analysis plays a central role
in helping to choose variables of importance, to
reduce the dimension of the problem to its bare
essentials, to suggest analysis tools, to
characterize an area, and to provide clues to
possible univariate measures that can serve as
surrogates for multivariate aggregates.



2.2 Model evaluation -

Just as graphlcal dlsplay is lmportant before

analysrs so is it important after analysis. The

model fit should always be graphically compared

with the ongtnal data. For models involving -

transformations of the ongmal data (e.g. GAM

and GLM) this companson should be made both

with . the transformed and the natural data.
Graphlcal dxsplays of the residuals through for
cxamplc two—sxdcd rcctangular hlstograms (e.g.

nght for a posmve and left - for a negative

rcsrdual) along the transects just like Figure 2.3,
but for rcsrduals can indicate lack of fit of the
model or the possnbllrty of having correlatcd

residuals. A vanogram on the residuals in a trend

model can also indicate the nced for further
analysis if sngmﬁcant corrclauon is shown. Othcr
statistical methods, such as cross- valrdauon can
be used to cvaluate the method applied.

2.3 Survey Design .

This section is provrdcd asa bnef ovcrvnew of
the choice within the dcsngn ofa survcy and thc

track layout It is mostly based on Slmmonds et.

al., 1991. Only the major clements in the ch01cc
of crunse track are considered. Other elements in
the survcy design such as blologtcal samplmg
rcquxrcmcnts and allocauon or estimating overall

'samplmg effort are lgnorod The survey design
- . consists of a scncs of choxccs of strategy. There is

no one single optlmum stratcgy for all ochcuvcs
The choices that are appropriate are determined
ﬁrstly by the objectives of the survey, secondly by
any knowledge of the stock distribution, and
thirdly, the analytical mcthod to be cmploycd for
data analysis. In all cases the use of appropnatc a

priori information wnll lmprovc the survey dcsrgn :

and the subscqucnt csumatcs However, care must
always be taken to ensure that any survey design
is capable of producmg adcquatc results if the fish
distribution or its bchavror differs from the
cxpcctcd It is unllkcly that a good survcy dcsrgn
can b¢ completely free of assumpuons and the
best results will be obtained by understanding the
fish stock and its distribution.

Objectives

There are a number of possible Ob_]CCll\CS

such as; an ovcrall abundancc estimate for a’

populauon oran area an esumatc of prccrsnon for-
that abundance, a map of the spaual distribution,
or possnbly the location of major explortable
concentrations. In addmon there may be
subsrdrary criteria that affect the chorce of
stratcgy. such as; the abscnce of bms in the
estlmate and mmlmum variance, mmrmlzauon of
mean squarc error, or that the estimatés are

‘obtamed with thc mlmmum number  of

assumptions. It is lmportant to be clcar about
both the objccuves and their relative 1mportancc

Deﬁmtron of survey area and Stratlﬁcatlon of
effort ’ .

SclccUng the boundanes of the survcy area is
tmportant Removal of areas that contain no fish

has consrdcrable beneﬁt For most stock -

dlsmbuuons there appears to be a lmk between
vanancc and mean density. Prcdrctmg in advance
arcas of high and low dcnsrty and allocating .
samplmg effort accordmgly can give considerable
gains in prccrslon Depth, hydrography, and a

knowledge of the distribution from previous -
- occasions are all possible strauﬂcauon criteria,

Adaptlve / Predetermmed Stralegles

Prcdctcnmncd strategics rcqurrc fewer
assumptions about the stock distribution. More
mformatxon is rcquxrcd to design an adapuvc
survey than to - use prcdctcrmmcd designs.
Adaptive strategies are pamcularly appllcablc
when the stock is htghly contagious in its spatial

* distribution but unprcdlctablc in location. A

numbcr of adapuvc mcthods have been used;
scoutmg or outline survcys followcd by intensive

" local surveys adapuvc tmnscct lengths, and

increased survcy effort in areas of high dcnsrty
Each of theése methods requires assumptlons about
the dlsmbuuon of the stock. If these assumpuons
do not hold, the csumatcs will be biased.
Adaptxvc stratcgrcs may prccludc calculatron of
survey precrslon without making further
1mponant assumptions.

.miii‘s"e’ct Direction

Choice of dtrccuon is controllcd by a numbcr
of factors. :

a Minimization of bctwccn transect variance.
This is relevant for arcas wnth amsotroprc
distributions and requires transocts to be
‘placed in the dircction with the greatest
' rates of change.



Direction of migration. To minimize errors
caused by systematic horizontal movement
of a population the survey should be
conducted with transects alternately with
and against the direction of migration. If
this is in conflict with criteria a) then an
‘interlaced’” survey design should be
considered.

Minimization of inter-transect time. In the
absence of other information the transects
should be across the short axis of an area.

Operational considerations such as weather
may necessarily override these
considerations, but may compromise the
results.

Systematic / Random track designs

The choice of track design is strongly
influenced by the objectives of the survey and the
method chosen for data analysis. However, some
basic guidelines can be given. If the overriding
requirement is for an estimate of total abundance,
in the absence of spatial periodicity, systematic
sampling generally provides the best estimate. If
the spatial correlation is ignored, then random
strategies should be employed to allow for
calculating the variance. But if spatial
information is modeled, random sampling is not
required for the variance calculation and
systematic sampling is believed to be more
efficient.

Parallel / Zigzag transects.

For random designs independence of transects
is essential. For this reason, parallel transects are
useful. For adaptive designs, both the transect
length and spacing will be changed by the use of
zigzag transects. This requires additional
assumptions that are difficult to justify and should
be avoided.

For systematic designs, the choice of transect
design is not so clear.

For parallel transects, a proportion of survey
time will be unusable if inter-transect data is
excluded from the data analysis. In most cases
where the boundaries of the survey area are
determined by the stock distribution, including
coastlines, this must be the case.

For zigzag transects, there is increased
correlation between data from the vertices. The
raison d'étre of systematic sampling is to ensure

efficient coverage of the sampled area.

For wide areas with long transects, and thus
low proportions of unusable time, parallel
strategies are preferred. For narrow areas,
considerable survey time will be wasted if
parallel transects are used. In these situations, the
increase in survey effort will improve the estimate
despite the loss of independence at the vertices.
However, because of the high correlation at the
vertices, it is important that they are not located
preferentially and, where possible, they must be
located outside the boundaries of the population.

3. Test data sets

3.1 Data sets 1-5 Norwegian fish
stocks

These data sets are derived from acoustic
surveys of Norwegian fish stocks. The presented
data are believed to be monospecific within each
set. The gross characteristics of the data are
summarized in Table 3.1. Further details,
including statistical features, are given below.
Maps showing transects and acoustic density
values are presented in Figs. 3.1-5.

Table 3.1. Gross charactenistics of test
data sets 1-5.
Interval
(NM)
Data Fishtype Region Inte- Ave- No.
set gration raging  data
1 Pelagic Coast S 5 664
2 Pelagic Fjord 1 1 96
3 Pelagic Coast 1 S 881
4 Pelagic Coast 1 S 986
5 Benthic Open 3-5 S 1712
Sea

Data set 1 This describes an unbounded fish
aggregation with concentrations on the survey
boundary. The observations are averaged over 5-
NM intervals, the transects are spaced at intervals
of about 15 NM. Data on longitude are relative.
The data were contributed by A. Aglen.

Data set 2 The distribution is bounded by
fjord walls, but is extremely patchy. Cross-fjord
samples are not available nor are more fine-
grained data on one small but exceedingly dense
concentration. The source of data is A. Aglen.



Data set 3 ’I‘he aggregation is mostly

bounded by the survey. Data are provrded at 1-
NM mtervals The parallel transects are locally
_ concentrated and strongly contrasted with low
values including zeroes. The source of the data is
L. Rgttingen.

Data set 4 This is the result of repeatmg the
- survey represemed by Data set 3 after one year.
The samplmg mterval and dlstance belween
" parallel transects retain _their prcvrous survey
values of 1 and 5- NM respecuvely The
swusucal characteristics are less extreme than in
Data set 3, but concentrations exist along
boundaries. L Rettingen also contributed this
data set. - ' ‘

~ Data set 5 Two ships collected the data on
 this survey, and the survey grids overlap in space

3.4 Data sets 10-15 Simulated data_

“Two fish aggregation density ﬁelds were
simulated over a square 300 by 300 matrix. The
first field was simulated by means of an algorithm

" devised by Z. Kizner and exercised on the basxs of

actual survey data for Myctophidae that were
collected . during a cruise of the Soviet vessel
VOZROZHDENIE in the waters north of South -
Georgla, 27 September - 16 October 1988. The

second ficld was derived from the first by a
transformation. A smoothed version of the ﬁrst :

- field is shown in Fxgs 3.8-9.

but not in time. The data are distinguished by -

survey grid. Considerable  differences are

observed with respect to time and space. The

source of data is K. Sunnani.

3.2 Data set 6 Berlng Sea walleye
poHock

The data were denved from the 1988 summer

survcy of the eastern Bering Sea shelf. The

survey regron showmg the 27 parallel transects is

shown in Fig. 3.6. Eachdata record consists of
posruon time, bottom depth, distance sailed, and

surface density. Bottom depths greater than 400

m are recorded as 400 m. The surface density
exprcsscs the fish density in terms of biomass per
unit arca. The units are kxlograms of fish mass per
square meter. The source of the data is N. J.
Williamson. :

3.3 Data sets 7-9 Icelandic herring

_ On the basrs of each simulated data field,
lhree vanants were derived: (1) without noise, (2)
with normally drstnbuted additive noise, with
standard deviation of 20, and (3) with
multiplicative, lognormally distributed noise, with
standard deviation of 0.1.

Survey data are simulated by supcnmposmg a
grid of ten equally spaced parallel transccts on the -
two density fields in each of the three variants.

The grid is indicated in Fig. 3.10. Data from the - "

first simulated densuy field in its three variants
are averaged over a series of three successive
values. Each of these simulated surveys consists
of 994 data. Data from the second simulated
density field are averaged over serics of five | -
successive  values. Each of the resulting
simulated surveys consists of 596 data.

4. Classical analyses -

In the classical approach to survey data

analysis, the data should be collected on a largely
“ uniform grid of either systematic. or stratified

A major parl of the stock “of Icelandnc‘

summer-spawmng hcrrmg was  surveyed
repeatedly in the reglon mdlcated in Fig. 3.7

under similar conditions. on the night of 25-26

November 1988. The three surveys reported hcre
had the following starting and ending times:

random design. The grid density nced not be *’
uniform over the whole survey arca but if.
different levels of survey effort are used then these

_ arcas must be treated scparately The survey grid

19:00-22:15, 22:40-02:05, and 03:15-07:00 local *

time. The horizontal resoluuou of the data is 0.1

NM. Bottom depth is grven as an ancrllary datum
associated with each™ acoustic "datum. P.
Reynisson contributed the “data’ which A.
Gudmundsdéttir prepared for distribution.

is constrained so that at least one tmnsect passes
through each element of arca used in the data
analysis. The data arc analyzed to give some
geographxcal or spaual drsmbuuon and an overall
estimate of abundancc The area is broken up into

. sub areas or strata. These may be large parts of

the arca or small rcctangular strata based on
lat/long posmons These strata arc not sclected
on the basis of the abundance values but rather on
the spaual vanabllny and should be determined



prior to the survey. Typically, the strata
dimensions have turned out to be between two to
four times the limit of sample correlation.

4.1 Method

The data from each stratum are analyzed
separately to give estimates for each stratum. At
the end of the analysis, the strata are combined to
give a total abundance and associated variance.
The data within each stratum are treated as
independent and identically distributed. The strata
are assumed to be independent. An arithmetic
mean and variance may be calculated for each
stratum. However, the amplitude distribution of
data found in each stratum may not be normal,
and a more efficient estimate of the stratum mean
may be possible. The data are examined visually
to check that the amplitude distribution is not
multimodal. A Maximum Likelihood estimation
procedure as described by Box and Cox (1964) is
used to estimate a suitable power transform to the
Gaussian distribution. This is combined with a
delta function (Aitchison 1955) to remove the
zero values. The Box-Cox transform is performed
separately on all strata, but the results are
combined to give significant results. If the results
of this test give a maximum for the power
transform between +0.5 and 0, a power transform
of 12 1/3 1/4 1/6 or In is selected. For each
stratum, the mean and variance of the transformed
data are calculated. As the distribution is
Gaussian, confidence limits may be calculated in
the transform domain. The inverse transform is
performed and the effects of the delta function
removed (see MacLennan and MacKenzie 1988).
An unbiased mean and variance are determined
for each stratum. The abundance of each stratum
is calculated using the area of each stratum,
taking into account the proportions of land and
sea as appropriate. The variance of the abundance
is the variance of the mean scaled by the area
squared. Finally, the total abundance and its
variance is calculated assuming independence of
strata. To check the process, the means calculated
by the arithmetic and transformed methods are
compared.

4.2 Data Sets analyzed

The choice of rectangular strata sizes and the
selected power transform for the data sets that

have been analyzed, are shown in table 4.1.

Table 4.1. Strata sizes and power transforms used
for data sets 1-5.

Strata Sizes
Data Latitude Longitude Power
set transform
1 05 1.0 1/6
2 1/12 1/6 in
3 0.5 1.0 12
4 0.5 1.0 1/6
5 0.5 1.8 In

The results of the data analysis are given in
section 8.3. With the exception of data set 2, the
survey designs and data distributions are suitable
for this analysis technique. In all these cases, it
was possible to select one power transform
unambiguously and the differences between
arithmetic and transformed means were
negligible. However, it was not possible to select
a unique transform for data set 2, since although
the Box-Cox test indicated that the best transform
was the logarithmic one, the confidence intervals
included other transforms. It is also interesting to
note that for data sets 1 and 4 the transform
estimate exceeded the arithmetic mean, for data
set 3 they were equal, and for data sets 2 and 4 the
transform estimate was less than the arithmetic
mean, indicating, at least from this small sample,
that there is no evidence of bias in this technique.

4.3 General Applicability

This technique, when applied on a grid
structure similar to those shown for data sets 1
and 3 to S5, provides some geographical
information, total abundance and variance
estimates along with confidence limits. It works
best with a systematic sampling strategy and
uniform sampling intensity. It is most applicable
to large ocean areas (data sets 1,3-6 and 10-15)
with little spatial correlation and non-stationarity
of the density distribution. It is relatively simple
to use and requires no real operator skill with the
exception of choice of area size. It is not suitable
for estimates of single schools (data sets 7-9) or
complex areas with highly aggregated
distributions (data set 2). The assumptions are that
the within stratum data are uncorrelated and the
strata are independent.



5. Kriging -

Spaual covariation can be uscd in the
estimation of fish dcnsny locally at a pomt or
globally over an area. A number of approaches
have been devclopcd for usmg spatial covariation

in this way and the gcosmtxstxcal literature is a -

particularly rich source of such applications

- (Matheron 1963 1965 1971; Journel' and

Huubregts 1978, Cressie 1989) These techmqucs
are now being applied . in fisheries research

' (Cnttenden 1989, Guillard, ez al. 1990, Sullivan

1991, Conan 1985, Conan et al 1988a 1988b,

Conan and Wade 1989, Gohin 1985, NlCOlﬂjSCn

and Conan 1987).

ESUmatcs such as that of fish abundancc ata
glvcn location, may be derived as a weighted
average of the obscrvations taken near the point
of interest. The observations are weighted in the
estimate accordmg to their corrclauon with other
observations and with the point or arca to be
esumated The shape of thc area of the eslimate
and the cowcrage of the survey will also affect the
wcnghxs through the compulcd correlations. The
corrclauon is generally given as a function ‘of
inter-point distance, and may be derived dxrcclly
from another mcasure of interpoint variation
known as the variogram (Matheron 1971, Journel
and Huubregts 1978). The variogram is often the
measure of choice because of its gcneraluy, since
it does not rcqunrc stationarity in the mean. The
vanogram is defined as half the cxpcctcd value of
the squared difference bctwecn wo random
variables that are located a distance *h* apart.

.. The estimation (or prcdxcuon) variance, ©,2,
is the expectcd deviation of the estimator from the
random variable describing the density at a point,

_thatis

- N . N 2
o.2=Var [zv'—zv] =E[[Zv -zv] ] 6D
Note that this may differ from the variance of
the estimator,

Var [zv;]=E[[ZV‘fE(zV‘)]2], coos (‘5".2)

a statistic more commonly used in. classical

a}=C (V-2 V)+C ) o (53)

where Vrcpresents the total area of interest and V.

represcnts the area sampled The average (noted
by bar) will depend on the welghung used in
computing the esumator

; 'Ilus formula contains the mean covariance
between two arbxtrary points mdependcntly

describing the volume, C v, the mean

covariance bctween a sample observation and an
arbltrary point dcscnbmg the volume, C(Vv) and

the_mean covariation bctween sample pomts :

C(v V).

Several alternative approachcs for csumaung
global' fish abundance using these principles are
presented “here. The gcncral methods will be
described first, followed by results and discussion.

A comparison of the results from this spatial "
geostatistical approach sometimes referred to as
ergmg, with other approachcs dlscussed m this

report is given in Section 8.

Appllcatlon I: Poini kriglng with possible

trend removal

. W.G. Warren appllcd pomt kngmg (WP6-7).
taking into account the followmg consndcmuons

For the Icelandic hcmng data, a dcns:ty

surface was dcscnbcd by taking as coordinates

the distance from the coastline and the dlstance -

parallel to the coastline from an arbitrary origin.
The non-zero data exhibited noticeable positive
skewness. The Box-Cox (1964) transformation
was used to determine a transformation that
would yield an approx1matc normal (Gaussian)

distribution.. The square-root lransformauon

appeared suitable for all three cases. -

A rectangular box with sxdcs parallcl and .

perpendicular  to the coastline  was then

constmctcd about thc palch separately for each o
survey. Each box was divided into rows and

columns to form cells of approxxmatcly equal
area.” The number of data points that fell into a
cell varied and for some cells this number was
zero. Trend removal was accomplished by an
unbalanced analysns of variance (ANOVA) with

. rows and columns as factors. . :

statistical approaches, but mappropnatc here -

except under the right conditions. In terms of the
co»ananccs, the estimation variance may be
computed as

. The ANOVA-cstimated ccll --valucs Wcrc '

. subtractod from the Uansformcd data values at

pomts falling within the appl'()prlalc cell. The
residuals were then used' .to /construct a
convenlxonal spherical vanogram where isotropy

was assumed. The global cstimate  is



approximated by computing the point estimates
over a grid on the area, multiplying by the mean
area about each point, and then summing. The
variance of the estimate is computed similarly
using the correlation between grid point estimates
that are derived from the spatial correlations.
Details relating to distance calculations, choice of
variogram, and the global approximation were
provided in working paper W6.

The simulated data were similarly analyzed
but no trend removal mechanism was applied.
The Box-Cox approach on the non-zero data
suggested that a logarithmic transformation would
be appropriate. The variogram was estimated in
two directions but no systematic difference was
found, so a single conventional spherical
variogram was computed by combining the two
estimates. Further details were provided in
working paper W7.

Application 2: Global block kriging

The estimate of the average density and
associated estimation variance over a global area
of interest is obtained from all points sampled, in
a one step procedure as described in Matheron
(1971). The information from the variogram, Y,
and from the respective distance between the
points and to the area, and the shape of the area
are used for calculating an estimation variance of
the form:

0'3=2.ZI Wi?(Vi,V)—,Zl _zlw.'wﬁ(vi.vj)“-?—(":v) (5.4)
i= i=lj=

where w; are the statistical weights attributed to
the n point samples v;, and V is the global area
studied. The variogram may or may not be
isotropic, i.e. identical in all directions. This
estimation  variance is  minimized by
differentiating with respect to each of the weights
and to a lagrangian parameter, A, in order to
optimize the estimate of the weighted average and
to avoid bias under the constrain Zw=1.

The resulting optimized variance or kriging
variance is:

O =IwY(vi . V)+A-¥(V.V) (5.5)

In the particular Gulfkrig software application
designed by Conan and Wade, the numerical
calculations of an average variogram over an area
V can be made over any irregular shape. If the
global area over which the estimate is to be made
is not predefined prior to calculations, it may be
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defined by first calculating contours of local
estimation variances by point kriging and then
chosing a contour beyond which it is felt that
extrapolating would be unsatisfactory.

The global kriging estimate can also be
approximated by calculating a large number of
point kriging estimates over a fine mesh grid, and
then averaging. This procedure is useful when the
number n of point observations is very large,
since a matrix of n +1 x n +1 must be inverted in
the direct estimate procedure.

In working paper W10, E. Ferrandis proposed
a simplified computational procedure for
calculating the statistical weights. This procedure
reduces the dimensions of the matrix to be
inverted to n by n.

Data sets 1 through 4, the Icelandic herring
data sets, and the simulated data sets were all
analyzed using the following methodology. No
trend removal or variance transformation was
applied to the data. Spherical isotropic variogram
models were fit to each data set and a global
estimate and its variance were derived by
ordinary kriging applied within an irregular block
defined by the variance contour around the area
studied.

The GulfKrig software developed by G.
Conan and E. Wade calculates global and local
(either block or point) estimates of abundance and
their variances using the method of ordinary
kriging.

Application 3

A third application by P. Petitgas and J.
Rivoirard was presented in working paper W9 and
is given as Appendix B. For the Icelandic herring
data set, since the data arc regularly located
throughout the field, the abundance is estimated
using a simple arithmetic mean. Furthermore,
since the field is large compared with the range of
the correlation, the mean covariance between two
arbitrary points independently describing the area
C(V,V) and the mean covariance between a
sample observation and an arbitrary point
describing the area C (V,v) are found to be small.
Thus, the estimation variance simplifies to the
mean covariation between sample points C (v,v)
which may be computed from the mean variance
among samples plus the mean covariance between
samples.

For data set 4 (Norwegian Herring) and for the
Bering Sea walleye pollock data (data set 6) a



different approach is taken. Assuming the
transects are parallcl and that each transect
traverses the entire width of the stock the
integrated transect values may be taken as being
one-dimensional observations on the stock. A
vanogram was then estimated in one dimension
and geosumsueal thecory was applied to the
overall abundance estimation and associated
variance computation. Observmg that the field is
small with respect to the range of covariation the
estimation variance musl now include the mean
covariance = between points and the mean
covariance betwccn points (in lD) and the sample
points. But since the problem is one dimensional
the computations are straightforward. -

Two-dimensional computations were
pcrformcd usmg Blucpack (1991), whereas one-
dimensional computations required no software.

6. Generalized linear models
6.1 Description of method

The basic GLM assumes that the structure of
the schools is of the form of a2 mean plus a random
error, where the mean is a function of location
(and potentially other variables), but the error
contains no structure. The mean is parametrized
as a function (the inverse link function) of some
lincar terms and the distribution of the
measurements is from the exponential family.

Generalized linear models are described in
scveral texts, including McCullagh (1983),
McCullagh and Nelder (1989), and Nelder and
Wedderburn (1972). A clear introduction to their
use, using the GLIM package (Baker and Nelder,
1978) is given in Aitkin et al (1989). GLMs can
also be fitted within the Splus package (Becker et
al. 1988, Anon. 1991).

6.2 Application of method
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Only the three herring data sets were

considered, since GLMs can only be expected to
work well with this type of acoustic data, when
there is a single aggregation of ﬁsh within a
limited arca. In all other data sets considered

(wnh the possxb]e exception of walleye pollock),
there tend to be aggregauons with low values in
between or around. Polynomials of reasonably
low order cannot fit such data well. An analysis

using GLMs on one of these data scts was
introduced briefly in Anon. 1990.

Assummg a gamma dcnsny and a log-lmk
seems a reasonable assumption, but hlgh-degrec
polynomials are needed to fit the data well.
Working paper W2 found that polynomials of up
to the 6th degree were needed for some of the
data, and even in this case, (pseudo-) R2-values
were only at the 0.5-level.

~ However, since there seems to be one large
"lump” in each aggregauon only the results from
ﬁmng a simple parabolmd as a function of
location for each data set arc presented in this
report.

~ The numbers obtained are given in section 8.
The arcas and gridpoints used were based on a
grid of 0.2 NM by 0.2 NM cells, which were
defined in such a fashion as to cover the survey
uncks with a minimal amount of extrapolation,
yet rctammg aroughly convex region.

6.3 Discussion

‘The actual values obtained (80775, 76933 and
81250) are quite close, the range of the three
being only 5% of their average. This is in stark
contrast to the “confidence bounds”, bascd on
integrating an cstimated one standard error in
each direction from the surface, all of which are
over 13% in each direction from the
correspondmg estimate. It must be noted that
these bounds arc only approximate and further,
they approxxmatc the 68% confidence interval,
corrcspondmg to one standard error in cach
direction. They are used only to obtain an
approx1matc "C.V." ratio (standard error/mean).
The approxlmalc 95% confidence interval will be
correspondingly wider.

It would scem, therefore, that although the
log-polynomials do not fit very well, there is
considerable smoothmg involved in the
mtegratmn and this is not appropriately reflected
in the varianceé estimate behind the confidence
bound.

Some concens were raised during the
meeting that the reverse transform (exponential),
required to cvaluate the surface on a grid for



integration, would introduce a bias. Although this
may be the case, it is not obvious what the precise
effect is, or how it should be corrected for, since
the equations used for estimating the parameters
in the GLM model are different from simply log-
transforming the data before fitting a model.
These equations are based on the differences
between the actual (untransformed) observations
and their means according to the model.

In lieu of the results in working paper W6, the
residuals from the GLM are expected to be
correlated, reducing the validity of the error
estimates.

7. Generalized additive models

7.1 Introduction

Generalized additive models are used here as
methods for detection of spatial trends. They can
be used as a tool in abundance estimation, but
more importantly as an aid to demonstrating or
quantifying relationships between the spatial
distribution of abundance and environmental
factors. In cases where the average value of a
variable changes explicitly over space, this
change is assumed to be a trend. A spatial trend
is assumed to mean a change in the average
density which is a function of the spatial location.
Besides detecting trends in abundance over space,
these changes can be related quantitatively not
only to spatial location but to environmental
factors such as depth and temperature. The
existence of such quantitative relationships
strengthens understanding of the factors that
influence the explicit spatial distribution of fish
species abundance and also gives a degree of
explanation of this distribution that may serve to
reduce the variance in abundance estimates by
providing additional information  about
abundance distribution through covariates that are
easy Lo measure.

Generalized additive models relate the
changes in abundance to spatial covariates,
without restricting the functional form of the
relationship  (Kaluzny, 1987; Hastie and
Tibshirani 1986, 1990). This method allows
nonlinear trends and includes covariates which
potentially determine the spatial patterns in the
data. Bootstrap methods give information on the
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variability around the trends and permutation tests
are used to determine the significance of trends.
The use of generalized additive models for
analyzing survey data is quite general in that the
surface which is fitted to the data is only restricted
to be a sum of smooth non-parametric functions.
The form of the functions is not restricted to
polynomials as in generalized linear models
(GLM; McCullagh and Nelder, 1989). The
functions are instead determined by a smoothing
technique that reflects local spatial trends, while
allowing trends over the entire space to be
observed (if they exist).

A Generalized Additive Model (GAM) is a
nonparametric generalization of multivariate
linear regression. Both methods relate the
dependent variable to possibly important
covariates. However, in GAM the covariates are
assumed to affect the dependent variable through
additive, unspecified (not linear) functions.
Scatterplot smooths (Chambers et al. 1983) in
GAM replace least square fits in regression. In
GAM, the data can come from any distribution in
the exponential family (which includes the
normal, Poisson and binomial distributions).
Because of the flexibility of GAM in detecting
and testing for trends in abundance, they are
valuable in uncovering factors influencing fish
distributions over several years. The theory and
method for applying GAM, using the gam
function in Splus (Chambers and Hastie 1991), is
given in Appendix C.

7.2 Application of GAM to data sets

The primary focus in the GAM analysis of the
data sets providled was on uncovering
relationships  between fish abundance and
environmental factors. Only depth was provided
as an ancillary variable (except for latitude and
longitude of the sampling locations) and that only
for the Icelandic herring and Bering Sea surveys.
Analysis was most fruitful for the Bering Sea
survey, where a significant trend for abundance
with depth was found. This analysis is presented
in Appendix C.



8. Comparisons across methods

8.1 Introduction
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In the followmg secuons the results from '

applying drﬂ'erem methods to each data set are
compared in terms of the estimated abundanice
and the estimated error in that number. The
density estimate and area  used are also
considered, since in some cases these severely
affect the results.

thm tables in the compansons subseetmns
(8 3. 86), A denotes the arithmetic mean, B
denotes the method based on the Box-Cox
transform, G1-G3  will denote different
geostatistical methods, S is used to denote the
spline approximation method, L denotes the
method based on generalized lincar models and T
denotes the approach of accumulaung along a
uansect followed by analyzmg the sample using
the ratio method (as described in Anon. 1990, p
80) .

8.2 Varlance estimation

When lhe results  from  the drffcrem.

computauons are compared several issues must
be borne in mind. One of these is the definition of
the quantity of i interest. The term "total abundance
estimate” can be - and has been - mterpreted in
different mathematical ways, resulung in entircly
different estimates of associated variances.

The approaches which have here been called
"classical”, as well as the GLM and GAM
melhods have as thelr underlymg purpose the
esumalmn ofa response surface which can be of
the form of a step function, a.polynomial in
location or an abundance -depth relauonshrp The
surfacc estimates the expected value of the
response at ‘cach location, . The associated
abundance estimate is the volume under that
surface. :

The method of pomt kngmg, however ﬁls a.

surface whlch esumates the unobserved
mdmdual responses at each location. The
associated abundance estxmate is also the volume
under the surface”, albeit a different surface.

A fundamental drﬂ‘erence in approach is Lhus
evident. This someumes has drastic consequences
for the variance esumate

Under the "classical® approaches including -
GLM and GAMs, the existence of autocorrelation
in residuals reflects a redundancy of information,
which reduces the effective degrees of freedom,
and  incrcases the variance in  the
mtegral/abundance estimate. Howevcr the
kriging school of thought is the exact opposite,
essentrally stating  that since there s
autocorrelation; there is better information to
1nterpolate between data pomts resulung in a
better estimate of abundance.

N A simple example will suffice io illustrate the
difference quite clearly. If the transects arc
parallel, they can be added up to reduce the
problem to one dimension. Suppose that there is
no lrend in the data, so that the expected value is
constant in the _ remaining drmensron The
classrcal” approach is to attempt to esumate thrs
smgle mean The kngmg approach is to esumate
the enure curve (whrch will not be a straight lme
due to the autocorrelations).

If the item of pnmary mterest is the expected
value, an increase in the autocorrelation will
obwously reduce the effective degrees of
freedom. In fact, as the autocorrelatron goes to L
the information in the data set is reduced to Jusl
one observation, as far as the estimation of the
expected value is concerned. -

N If the item of pnmary interest is the curve
nself along with the mtegral of that realization of
the process then an increased autocorrelauon will
lead to more information about the behavror

" between data points, thus reducing the varlance

In Lhe llmmng case, as the autocorrelation goes to
1, lhe curve will become perfectly known, as will
the abundance.

It must be noted that in cases when a grid is
regular, both approaches may simply be using lhc
arithmetic mean as an cstimator, but the variance
estimates may be totally dxlTerent with one giving
CVs as low as a few percent, the other yielding
CVs which commonly range from 20 to 50%. As

- is described above, this simply stems from the

choice between esumat.mg a mean surface and
predlcung an unobservcd surface Whethcr the
CVs are really as low or high as indicated is not
known a priori, but can be ascertained through
other methods, such as cross-validation.



It is therefore essential to precisely define the
quantity of interest: should it be the surface of
expected values or the unobserved measurements
between the transects ? This question can be at
least partly answered by investigating the source
of the  autocorrelation. The  acoustic
measurements involve several levels of variation,
which for convenience can be separated into
"process error" autocorrelation (the structured
variability of the resource) and "observation
error" autocorrelation (the structured variation in
the measurement instruments). If most of the
autocorrelation stems from the observation error,
then there is good reason to treat it as true error
and consider its effects negative ones.

Acoustic measurements are capable of
detecting sharp changes in density, so most of the
autocorrelation along and across transects will be
due to contiguous behavior of the resource. This
implies that when autocorrelations are observed
along and across transects, they include important
information about the resource itself and should
be utilized as best possible for the estimation of
the resource.

This leads immediately to the use of the
criteria and language used in kriging, specifically
with respect to the term "total abundance” which
is defined as the abundance that would have been
measured if the area had been completely covered
- not the expected value of that quantity.

In mathematical notation, the variance of
primary interest is the prediction variance,
Var [z:—z,] =E [(z;-z, )2] @.1)
where Z, is the double integral of the process and

Z, is an estimate. The variance used in the
alternate ("classical") approach is

Var [1;—1,] =E [(1:—1, )2] (8.2)
where 7, is an estimator of the integral of the
expected value of the process (the above
equations assume unbiasedness of the estimators).
As explained above, these two variances may be

totally different, even if the estimators are both
equal to the sample mean: [,=Z,=Z .

8.3 Data sets 1-5
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Tables 8.1-5 give, for data sets 1-5, the
estimated densities (s,), the corresponding C.V.
(defined here as 100 times the standard error of s,
over s4), the area used and the total abundance.
Analyses of these data sets were also given in
Anon. (1990), but many of the values have been
revised.

Table 8.1. Summary of the results of the analyses of
test data set 1.

ID Method S, CV  Area s A‘Aml Analyst

m’NM?> % 10°Nm? /10°

A Arthmetic 75
mean

B Box/Cox 68 9 S5 3.7 Simmonds
transf.

G1 Kriging 85 435 54 46 Conan &

Wade
S Spline 71 NA 53 4.0 Stolyarenko

It is noted that in table 8.1, methods G1 and S
both give higher abundance estimates than
method B, but the CV estimate in B is much lower
than for G1. It must be borne in mind that these
two CV-values are estimates of different
quantities, as described in section 8.2.

Table 8.2. Summary of the results of the analyses of
test data set 2.

ID Method A CV Area sA"Area Analyst

m’NM? % Nm? /10°

A Arithmetc 297
mean

B Box/Cox 48 37 49 24 Simmonds
transf.

G1 Kriging 443 4 47 209 Conan &

Wade
S Spline 259 N/A 51 13.2  Stolyarenko

In table 8.2, the CV of B is much larger than
that obtained in G1 (although these two have
different interpretations). The actual abundance
estimates also vary widely, with the Box-Cox
transform (B) giving the lowest, the spline
approximation (S) intermediate and global
kriging (G1) giving the largest estimate. It must
be pointed out that the areas used by the different
analysts are different, but this does not fully
explain the differences. The group noted that this
dataset is particularly difficult to analyze and few
methods would be applicable to this kind of data
(c.f. section 3 and Fig. 3.2), since it is to a large
extent due to the different area definitions.



Table 83. Summary of the results of the analyses of
test data set 3, . .
ID Method S, CV Area s At Arca Analyst
mYNM? % 10°Nm® /10
A Arithmetic 1793
mean
B Box/Cox 1327 7 - 55 13 Simmonds
transform :
G1 Kriging 1558 338 63 98 Conan &
. Wade
G2 2089 14 90 188 Guillad &
' ) . Gerdaux -
G3 1911 22 83 15.9  Amstrong
S Spline ' 7.8 S_tolyarenko
T Transects 3072 30 19 5.7 Williamson
as
strata

In test data set 3, the CV estimates vary
widely (table 8.3). The geostatistical methods
(G1-G3) give abundance estimates which are up
to two to three times the estimates obtained by lhe
other methods.

Table 8.4. Summary of the results of the analyses of
test data set 4.

ID Method N CV Area s,*Area Analyst.

m’NM? % Nm? /10°

A Arithmetic 774
mean

B Box/Cox 560 -9 6100° 34  Simmonds
transform . :

Gl Kriging 1062 51 .3000 32 Conan &

, . Wade

G2 1690 12%°1975 3.3  Petitgas .

S Spline - 35  Stolyarenko

T Tansects 1512 31 2200 33  Williamson
as : '
strata

In data sct 4, the difference between the
results from the geostatistical methods G1 and G2
is considerable. The main explanation for this
probably lies in definition of the area over which
the estimation was performed. The area is 1975
sq. NM for G2 and 3000 sg. NM for G1. In the
G2 approach, the zero values at the extremities of
the transects are interpreted as zeros exterior to
the fish spatial extension. Therefore, the area
over which the estimation- errors are- made is
reduced. In the G1 application, on the other hand,
a much larger surface was defined. Further,
estimation errors in areas were assumed, whereas
no error was assumed in the G2 application.
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The CV of T is very high in data sets 3 and 4.

- It is believed that thxs stems from llus method not

taking - into account the inter-transect spatial
correlation.

Table 8.5. Summary of the results of the analyses of
test data set 5.

ID Method s, CV Area s A*Arca Analyst

m*NM? % 10°Nm? /10*

A Arithmetic 14
mean .

B BoxCox 9 8 13 1100 Simmonds
transform : .

G1 Kriging 14 18 19 2660 Conan &

) Wade
S Spline 87.5 Stolyarenko

Three melhods were applled to this test data set.
The resulting estimates varied widely.

8.4 Data set 6 Walleye pollock

" Two estimates of transect mean density were

- provided, as indicated in table 8.6.

Table 8.6. Abundance estimates for walleye
pollock (data set 6)
ID Method: Abundance© CV,%  Analyst
Gl  See sect 13.220 23 Petitgas &
5(appl. 2) . Rivoirard
G2 Secebelow 13.019 35  Warmen

The G2 estimate is based on the total of the
mean densities over the number of elementary
samplmg units in each transect, Xd;, say.
However, the lengths, I, of the elementary
sampling units vary sllghlly and the G1 estimate
is based on Zhd;.

, ‘Although the original data set consist of 27
transects, a transmission glitch of some sort
erased one transect from some of the diskettes
sent to participants. This omission is unlikely to
have affected the results to any noticable extent.

. The Gl method is described in Section 5,
above. In G2, the transcct was also taken as the
samphng unit but the transects were treated as a
systematic sample with a random start. Variance
estimation was then accomplished by assuming a
polynomial trend on the transcct totals and

applying the formula given in Cochran (1977) as . -

extended by Kingsley and Smith (1980). A
quamc was judged to be appropriate. Details are
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given in working paper W8. Essentially, it was
assumed that the residuals, after removal of the
fourth-order trend, would be independent. The
slightly greater CV obtained in G2 relative to G1
suggests that some residual serial correlation may
have remained in the residuals.

8.5 Data sets 7-9 Icelandic herring

Five different analyses for each of the 3
surveys were available for the meeting. The
results are summarized in table 8.7.

Table 8.7. Summary of results of analyses of Icelandic herring
data. Abundances and averages divided by 1000.

Method ID |Statistic 1 2 3 Analyst
GLM L |[Abund. 80.8 76.9 81.3 Stefén-
sson
Mean 5072 434 532
Density
Area 14.1 17.7 15.3
CV, % 16 18 i
3D- S |Abund. 110.0 554 94.3  Stolyar-
Spline enko
Mean n.a.
Density
Area n.a.
CV, % na.

Block Gl |Abund. 1275 1176 1134 Wade
kriging

Mean 494 3.24 277
Density
Area 25.8 36.3 40.8

CV, % 19.9 18.6 225

Point G2 |Abund. 103.1 933 107.1 Warren
kriging
Mean 5.54 352 3.87
Density
Area 18.7 26.5 277
CV, % 16.6 n.a. n.a
Mean G3 Petitgas
abund. Rivoirard
Mean 953 325 3.59
Density
Area
cvh

¥ 12% for area 15.0, 14% for arca 33.5

No estimate of area size or mean density of
precision was provided with the application of S.

The methods of area estimation differed from
one method to the next:

e The boundaries for the GLM model
application (L) were chosen to include all
locations of observations.

« The areas for the application of point kriging
(G1) were determined as those locations for
which the estimated density was non-zero.

e Areas in the block kriging application (G2)
were defined as the outline of an variance
contour line of an arbitrary level (value not
specified). They correspond approximately to
the outline of the sample points plus a corridor
of width slightly smaller than the range of
influence.

o The area used in G3 was limited to the zone
that was swept. It was taken as 15 sq. NM for
all sets. An extension on each side of the
survey was also considered, giving an area of
33.5 sq. NM.

Consequently, the areas, as used for the GLM
model, were smaller than those used in point
kriging, which, in turn, were smaller than those
used in block kriging.

Application G2 provided a CV estimate for
survey 1 only. Little change in the mean density,
area and abundance estimates is anticipated by
using a finer grid for G2, but the CV estimates
may be somewhat reduced.

The GLM estimates of CV, obtained in the L
application, are not comparable in that they
represent the pointwise integration of one-
standard error confidence limits and should
therefore only be considered approximations.

Other choices of distribution, link function
and degree of polynomial in L gave alternative
abundance estimates ranging from 78225 to
103734, from 67514 to 96185 and from 74195 to
90543 for surveys 1, 2 and 3, respectively. With
high-degree polynomials, slight changes in area
definitions can drastically change the results.

The estimates of mean density are, not
surprisingly, inversely related to the estimates of
area. The relationship is, however, not that of
exact inverse proportionality so that the Gl
estimates of abundance turn out to be greater than
those of G2 which, in turn, are greater than those
of L.

The mean density estimates in G3 (the sample
means) are closest to those of G2 differing by



0.1%, 8.1% and 7.7% for surveys 1, 2 and 3,
respectively.

The spline approximation (S) abundance
estimates for surveys 1 and 3 are also closest to
those in G2 differing by 6.7% and 12.0%,
respectively. The S estimate for survey 2 is
clearly unrealistically low, since the data are
supposed to represent three surveys of the same
aggregation. By the same token, the fixed areas
assumed in G3 are also unrealistic since this
would imply abundances for surveys 2 and 3 of
approximately 60% that of survey 1.

Since the data sets represent three surveys of
the same aggregation, it was expected that the
abundance estimates obtained by any one method
would be consistent over the three surveys. Table
8.8 expresses, for each analysis, the range of the
three estimates of abundance as a percentage of
their mean. The differences between the estimates
are relatively small in relation to the estimated
CVs.

Table 8.8. Comparison of between-survey results

for Icelandic herring.
Application  Range (of 3) Mean (of 3) Range /

Mean
%

L 4317 79653 54
S 54600 86567 63.1
Gl 14173 119505 11.9
G2 13875 101178 13.7
G3 n.a.

The estimate of CV in G2 (survey 1) seems
comparable to that obtained in G3, and perhaps
somewhat less than that obtained in G1. This is
consistent with the conjecture that, in employing
ordinary kriging, somewhat greater precision
would be attained by removing any seemingly
well defined trend.

8.6 Data sets 10-15: Simulated data

For ease of tabulation, all total abundance
values have been scaled down by 100000. For all
six surveys the true abundance is 87.67 and the
mean density is 97.41. The population of survey 2
is that of survey 1 rotated through 90 degrees.

Three different analyses (or partial analyses)
of data sets 10-15 were available for the meeting.
The results are summarized as follows:

T

Table 8.9. Comparisons of results from simulated
data sets 10-15.

Data set 10 11 12 13 14 15

Simul- 1.1 12 13 231 22 2

ated

survey
ID/ Statistic
Method /
Analyst
A Mean

density 95.8 959 958 919 926 923
Arith. Abund. 86.20 8630 86.20 82.70 83.10 83.00
mean Cv n.a.

Diff.

from

true 1.7% 16% 17% 57% 52% 53%
S Mean

density 97.1 972 97.1 958 963 963
2D-spline [ Abund.

CvV
Stolyarenko | Diff.

from

true 28% 3.0% 28% 15% 20% 20%
Gl Mean

Density 945 944 941 947 0957 927
Kriging Abund. 85.06 8496 84.96 8523 86.13 83.43

(4 12.2% 10.4% 10.2% 12.8% 10.8% 8.8%
Wade Diff.

from

true 3.0% -3.1% -3.1% -2.8% -1.8% -4.8%
G2 Mean

density 102.59 na. na. 9732 94.89 96.98
Kriging Abund. 92.33 87.59 85.40 87.29

Ccv n.a.
Warren Diff.

from

true 53% 0.1% -2.6% -0.4%

Only estimates of abundance were provided
with the S method (no measure of precision).

The G2 abundance estimates for Surveys 2.2
and 2.3 are preliminary. They were based on a
smaller critical distance than intended; i.e. the
distance of data points used from the interpolated
locations.

The S estimates are all slightly above the true
abundance by an average of approx. 2.4%.
Conversely, the G1 estimates are all slightly
below the true value, by an average of 3.1%. The
G2 estimates are above the true value for survey 1
and below for surveys 2.1, 2.2 and 2.3.

W. Warren also presented estimates obtained
by treating the major transects as a systematic
sample (Kingsley and Smith 1980) with a single
random start, although clearly, a random start was
not employed. Not all the data were used, as the
short transects linking the ends of the long
transects were omitted. The results were as given




in table 8.10.
Table 8.10. Results based on assuming
a random start.
Data set 10 11 12 13 14 15
Simul. 1:1 12 13 2.5 22 23
survey
Abund. |94.36 94.51 9432 7575 75.13 7497
Diff. from| 7.6% 7.8% 7.6% -14.7% -143% -14.5%
true
Ccv 69% 69% 69% 49% 49% 49%

These results are interesting in that, as noted
above, the underlying population for survey 2 was
that for survey 1 rotated through 90 degrees. It
can be seen from Fig. 3.10 that the populations
consists of a "mountain range" running through
the center of the region and parallel to one pair of
sides. Consequently, the transects of survey 1 cut
across the "mountain range" thus giving transects
totals that exhibit relatively moderate variability
but with no clear trend. For survey 2, the transects
run parallel to the "mountain range" so that the
transect totals exhibit much greater variability but
also an essentially quadratic trend. Since, for
survey 2, a quadratic trend was assumed in the
variance estimation, this accounts for the smaller
CV estimates. The lower abundance estimates are
due, in part, to the omission of the short end
transects which cross the "mountain range".

8.7 Discussion

The above results are, perhaps, as notable for
the consistencies as for the discrepancies, most of
which can be explained, at least in part.

During discussion, the group considered the
described fish stocks and a number of others.
There was general agreement that some structure
could be assumed in all cases considered. There
was evidence of large scale changes in mean
density in most cases. In addition to these
"trends," additional spatial autocorrelation was
always expected to be present.

Based on these conclusions, the group agreed
that there was in many cases potentially great
benefit involved in utilizing the spatial structure
when estimating the abundance of the resource,
and, in particular, there is potential gain when
estimating the precision of that quantity.

There is no doubt that spatial analysis can
give a more realistic measure of precision of a
survey than classical methods and, under certain
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circumstances, a better measure of abundance or
mean density. It is not, however, a panacea. It
would be a fallacy to assert that there exists a
"black box" that can be used to process spatial
data and that will yield viable results under all
circumstances.

Depending on the severity of the trend, it may
need to be removed before applying covariance
techniques, although Journel and Rossi (1989)
have shown that equivalent results may, in some
cases, be obtained by using appropriate data
windows when applying techniques which do not
assume the existence of trend.

Spatial analysis can be viewed as a sequence
of steps at each of which a choice must be made
of the several options that are available (e.g.
transform or not, if so which transform ? Trend
removal or not, if so how? Should ancillary data
be used ? Do the two-dimensional data lend
themselves to being collapsed into one
dimension?). There are as yet no well defined
rules as to which choice would be best. While
general guidelines can be given, each situation
must be treated on its merits, and the viability of
the results depends, to some extent, on the skill
and experience of the analyst.

Spatial analysis cannot be divorced from
survey design. While in theory it is possible to
analyze spatially any configuration, spatial
analysis appears to be most effective under
systematic designs.

9. Conclusions and
recommendations

9.1 Applicability

The aim of the workshop was to examine the
applicability of spatial statistical techniques to
acoustic survey data, with particular attention to
global abundance estimation, variance estimation,
and mapping. This has been done with respect to
so-called classical or traditional statistical
techniques, generalized linear models (GLMs),
generalized additive models (GAMs), and
geostatistical or kriging techniques.

In the course of comparing the several
methods, workshop participants managed to
clarify a matter of long-standing contention,
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namely that of variance estimation. This is -

descnbed in dcuul in Section 8.2. In essence a-

distinction should be made between v1ewmg the
fish stock as a "pure” random process
(independent, ldenucally distributed random -
iid. - vanables) and vrewmg it asa process wrlh
structure. This affects the estimation of vanance
If the distribution of Lhe fish stock is a- purc
random process, the vanance is that of the mean

estimate. If the spatial distribution is structured,

ie. has autocorrelauon then the est1mated
vanance 1s based on the dlﬂ‘crcnce between the
process as observed, and as predicted making
explicit use of autocorrelation. * Insofar as fish
stocks do have structure in space and this can be
asccrtamcd by sampling along uansects crossmg
the aggregauon the second view must be the
prcferrcd one. Since the whole pomt of spaual
statistical techmques is to exploxt structure as
observed, these must at least be reccommended as
useful techniques.

. In fact, the general discussion conducted on
the basm of specific data analyses suppons a
stronger recommendation. ‘This is that spaual
statistical techmqucs be rcgardcd as integral in
the analysis of acoustic survey data. In other
words, .
Recommendation 1 Spatial statistical
techniques arc applicable to acoustic
survey data and are recommended as

The followmg general situation is considered -

. first: a stably located fish dlstnbuuon is confined

to a known geograplucal rchon, , which is
surveycd accordmg to a grid of parallel, equally
spaced transects. - The statistical charactenstws of
the fish distribution can be categorized as follows

1. Thc scale of vanauon is large comparcd to
inter-transect distance. Exs. Test data sets 6
(walleye pollock), 7-9 (Icclandic herring),

. 10-15 (simulated data),

2. The scale of vanauon is comparable to

inter-transect dlstance Ex. Test data set 4 -

(Norwchan pelaglc stock off coast),

3. The scale of variation is small comparcd to
.. inter-transect distance. Ex. Test data set 2
(Norwegian pelagic stock in fjord).

Geostatistical techniques of analysis can be

" applxed in cach of these situations. In the first and

suitable for  the follown_ng -

estimating  global | abundance  of
acoustwally surveyable fish stocks, (2)
obtammg an assocnatcd estimate of
preclsxon and (3) mappmg the spatial
distribution of the stock.

The prccxslon of th¢ global eSUmate is
defined here in terms of the mean- square
difference between the observed distribution and
that predicted on the basis of observed
autocorrclauon '

9.2 Association of technlques with
spatial features of the stock

A number of different’ kinds of fish
distribution ar¢ recognized. These may be
characterized a priori by the rangc of the
autocorrelation wnh rcspecl to the extent of the
dxsmbuuon or a posteriori by the scale of

distance..

second cases, thcy will be able to exploit the '
observed slructure, _as characterized by the
autocorrclauon and the rcsultmg vanancc
esumate will be lower than the classical variance
estimate. In lhe third casc the geostausueal and
classical variance estimates could be sxmnlar

Smcuy speakmg, thc choice of analysrs
should also be based on the scale of vanauon
relative to the arca sampled

» A sccond gcneral sxtuann is 1llustralcd by the -
Icelandic summer-spawmng hcmng The bulk of
Lhe stock exists at the autumn survey time in one
or two dense aggregauons of initially ‘unknown
location. These must be found in ordcr to
estimate the abundance. When an aggregalmn 1s

. found, it is usually possrblc 10 samplc this vcry

dcnsely An apphcauon of geostatistics to the
Icclandlc hcmng found that the range of
covariation was too small to obtain the benefits

assocraled wn.h high spaual correlauon This * - .-

rcsulted in an appropnate increase m thc vanancc
estimate as compared to an esumate assummg
mdcpendence

A 1lurd gcneral snuauon is that of mrgrauon,
whlch rcqulres specnal surveymg tactics. “These
are dcscnbcd in Simmonds et al. (1991) 'Ilus

.sxtuatmn requrrcs detailed exammauon . mot
- undertaken at the workshop

~ variation with rcspcct to the inter-transect

An undcrlymg assumpuon employcd hcre is
that the biology of lhe fish stock bcmg survcyed is
known at least in its gross whereabouts at the
time of the survey _Given 1h|s knowlcdge the
following recommendation can be made: -



Recommendation 2 Among spatial
statistical techniques, geostatistics, i.e.
analysis using the variogram, is
specifically recommended for the
analysis of acoustic survey data.

If the acoustic survey has been performed
over a grid composed of parallel transects
reaching the boundary, then the variance can be
estimated according to a quite simple procedure.
Each value of density is exact for the particular,
small interval of sailed distance. The total density
along each transect is computed by simple
summation. The resulting set of numbers
constitutes a one-dimensional distribution. This
is necessarily less rough, or spatially more
correlated, than the underlying two-dimensional
fish distribution. Illustrative examples are found
in the analyses of test data sets 4 (Norwegian
pelagic stock off coast), 6 (walleye pollock), and
10-15 (simulated data). In these particular
examples, the range of spatial correlation of the
one-dimensional data is large in comparison to
the extent of the distribution. Application of
geostatistics here will give both a lower and more
realistic estimate of variance than is obtainable by
classical statistical analysis.

It is noted that for the general acceptance of
geostatistical techniques, some form of education
and dissemination of information is required.

When synoptic knowledge of the whereabouts
of the fish stock is lacking, estimation of
abundance is not generally possible. Knowledge
of fish biology is a precondition for conducting a
proper survey, thence analyzing resulting
measurements of fish density in order to estimate
abundance over a region.

9.3 Analysis procedures

The phases of an analysis of acoustic survey
data are:

1. Exploratory data display and analysis, to
learn about the characteristics of the data,
including possible connection with other

variables, namely covariates,

2. Diagnosis, or selection of the best analysis
technique,
3. Analysis, or exercise of the selected

technique with the particular survey data,

-20 -

4. Evaluation, including judgement of the
quality of the analysis in the context of the
degree of coverage of the stock by the
survey grid and how well the analysis
assumptions are met.

In the analysis phase, generalized additive
models (GAMs) may be useful for associating
other variables with the fish distribution.
Examples include those of bottom depth, as in test
data set 6 (walleye pollock), and temperature, as
considered by Shinomiya and Tameishi (1988),
among others, but not considered at the workshop.
These techniques are particularly valuable for
facilitating interpolation of measurements of fish
density between transects, hence aiding the
process of mapping fish distribution, as discussed
in Appendix C. Hence,

Recommendation 3  Generalized
additive models should be considered
for use in exploratory data analyses to
aid in choosing the specific analysis
technique, and in the analysis process
itself, as to map the distribution.

Association of the pattern of fish distribution
with other variables can have major significance
for the conduct of acoustic surveys. The potential
to improve both the survey design and quality of
analysis result is emphasized.
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Figure 2.1 Bering Sea 1988 walleye pollock survey showing cruise tracks and a histogram of abundance
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Figure 2.6 Variogram from the untransformed data in test data set 1.
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Figure 2.7 Variogram from the untransformed data in test data set 2.
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-Figure 2.8 Variogram from the untransformed data in test data set 3.
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survey in the Barents Sea conducted by the Institute of Marine Research, Bergen. Depth distribution for
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Figure 3.1 Acoustic density of fish for test data set 1.
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Figure 3.2 Acoustic denstiy of fish for test data set 2.
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of Icelandic herring during three surveys in November 1988.

Figure 3.7 Location
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Appendix A: Working papers and relevant documents available to the

meeting

A.1 Working papers

W1: Kizner, Z.I. 1991. Simulating Data for
Comparison of Methods of Spatial Statistics.

W2: Stefansson, G. 1991. Analysis of
Icelandic herring data using GLMs.

w3: Stolyarenko, D.A. 1991.
Multidimensional Spline Approximation of Stock
Density: Spline Survey Designer Software
System.

W4: Swartzman, G. and Sullivan, P. 1991.
Exploratory analysis of hydroacoustic fisheries
survey data using statistical and graphical
techniques.

W5: Wade, E. 1991. The Application of the
Ordinary Kriging Package "Gulfkrig" for
Mapping and Estimating Abundance of the
Resource Surveyed by Acoustic Data Sets.

W6: Warren, G. W. 1991, Spatial Analysis of
Acoustic Survey Data. I. Iceland Herring,

W7: Warren, G.W, 1991, Spatial Analysis of
Acoustic Survey Data. II. Simulated Data Sets.

W8: Warren, G.W. 1991, Spatial Analysis of
Acoustic Survey Data. III. Bering Sea Pollock.

W9: Petitgas, P. and Rivoirard, J. 1991,
Global estimation: o?/n and the geostatistical
estimation variance.

W10: Ferrandis, E. 1991. A note on the
kriging weighting estimation.

A.2 Related documents, available to
the meeting

Butterworth, D.S., Borchers, D.L. Miller,
D.G.M. 1991. Some Comments on the Procedure
for Testing Estimators of Krill Abundance which
Utilise Survey Data.

Haslett, J., Bradley, R., Craig, P., Unwin, A.
and Wills, G., 1991. Dynamic Graphics for
Exploring Spatial Data, with Application to

Locating Global and Local Anomalies. American
Statistician. -
Sullivan, PJ. 1991. Stock Abundance

Estimation Using Depth-Dependent Trends and
Spatially Correlated Variation.

Unwin, A., Will, G. and Haslett, J. 1991,
Regard-Graphical Analysis of Regional Data.

Wills, G., Unwin, A. 1991. Kodiak Crabs -
The View from Ireland.
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Appendix B: Global estimation: ¢2/» and the geostatistical estimation
variance

by
P. Petitgas and J. Rivoirard



Acoustics can provide a lot of data over a given domain. Here we will look at the
estimation of the mean acoustic density over this domain, and in particular at the
estimation variance.

First we will try to explain why this variance is not always o 2 /n . Then we will give

the formula using the variogram. And after that we will consider different case studies:
"iceher” (herring, S-E Iceland, three surveys), "test04” (West of Norway), "k0*a”
(Walleye Pollock, Bering Sea).

1. WHY THE ESTIMATION VARIANCE IS NOT ALWAYS o?/n

- line divided into segments

| n- o g 1 1 ) | ? 8 b J

A line is divided into n segments /. We know the value Z; of each of these
segments. Their, variance iso £

Suppose we want to estimate the average value of the line L.
The estimate Z; = %ZZ; is equal to the exact value of the line Z; = %ZZ,-.
The estimation variance Var(Z; - Z;) is zero, but is not o2 /n either!

— thin block

The last example was trivial, but suppose we want to estimate the mean value

over a thin block V set on the line L. We then would expect the estimate Zy = lz A
n

2

s A . ! . g
to be close to the real value Z,, with an estimation variance still smaller than —.
n

- large field

The exact mean value Zy, is now the average of many distant values.

2
; : s ne O I
If the data Z, were independent, classical statistics would give — as estimation
n

variance for Zy.



‘In'the case they are correlated, they count as if they were fewer but independent
data. So the estimation variance will be larger than 0}2 /n.

Summarising all these cases, we can see that the estimation variance is not
always o2/n. It depends on the geometry of the field and of the data.

2. VARIOGRAM AND ESTIMATION VARIANCE

The variogram measures the mean vanablhty between two pomts xand x+has a
function of their vectorial distance h

W) = 5 EIZ6 + h) - ZG)P

The symbol E (expectation) denotes the average on all pairs (x, x+h).

The variogram may reach a sill. In that case, there is a covariance function
C(h) = C(0)-y(h) which represents the covariance between two values Z(x) and
Z(x + h) distant of h. The covariance C(0) for h=0is the variance o 2, and for hlarger
than the range, there is no more correlation between Z(x)‘ and Z(x + h).

sill 2 - . . —

nugget effect

range

. The variogram makes it bosSible to compute the variance when estimating the
average value on V by the average of n samples Z;: Zp = ;Z Z; . This can be written,
in term of covariance:

o} =Cw Cj-2Cy | O

Cyy is the mean covariance between two points describing V mdependently
Cy is the mean covariance between sample i and a point descnbmg V



C; is the mean covariance between samples / and j, for all n? possible pairs (i.f):
n pairs correspond to /i with itself, the other n?>-n correspond to / different from j:
c(0)

C.. T — + C..
. n i#ju

If the field is large, compared to the range, the terms Cyy and Cy are zero. The

estimation variance a% is reduced to the term Cj;, which is generally larger than

o _ o
n n

If the range is larje compared to the field, we will see (on test04 and k0*a) that
0% can be less than o2 /n.

. ICEHER

The 3 surveys cover nearly the same zone (figures 1 to 4 in nautical miles).
Excepting the zerdes at the North East, there are about 10 acoustic values per nm. The
length of the first survey is smaller (15.5 nm, 174 values) than the two others (23 nm,
255 and 276 values). Large values are present in the first survey (max=26738),
increasing its mean and variance.

Survey no m o? L 2
m m;;(n)

5531 28 345 200 0.93 0.073

2 3253 14 120 100 1.33 0.072

v 3594 16 300 000 1.26 0.068

If the data of a given study were independent with the same law, the mean of this law
would be estimated by the arithmetic average with a relative standard deviation of

o/m J(n) . here 7%.

In fact the acoustic data are regionalised and neighbouring data are correlated.
Variograms computed at a 0.1 nm lag show structures up to 1.2 nm (figures 5-6-7).
The structure is shorter for the first survey.

Knowing the variogram, we can compute the estimation variance of the mean
value over the field. This supposes that the field has been delimited. Two hypotheses

have been made.

- Either we limit approximatively the field to the zone which has been swept (for instance
if we assume that the outside is close to zero).

- Or we extend the field on each side of the survey, admitting that the extension is not



systematically poorer than the survey.
The surfaces are respectively 15 and 33.5 nm?2.

To compute the estimation variance according to the formula (1), the field is
discretised very finely. We obtain as relative standard deviation for the estimation

Zy = l}_:Z,- from each survey:
n

about 12 % for the smaller field;
about 14 % for the larger one.

These two values are close, but both are larger than o/m /(n)=7%. Itis due to the fact

that the field is large enough, and the data correlated: they count as fewer independent
data.

Other approaches:

1) The data are not located regularly throughout the field. A weighted average,
rather than the arithmetic one, may be used to estimated the field. Kriging corresponds
to the optimal weighted average, the one which minimises the estimation variance. In
our case kriging gives an increased weight to the data at the angles of broken lines. But
it practically does not change the estimates and the variance (except for the estimation
of the larger field from the third survey, where kriging gives about 3000 instead of 3600).

2) Tables exist, which give the estimation variance of a rectangle knowing its
median line, with a spherical variogram model (Matheron 1971).
Let us take a rectangle close to the smaller field. If we replace the broken line survey by
the median line (which is shorter and would contain less information), we get a relative

standard deviation of about 14%.
If we unfold the broken line to be the median line of a larger but thinner rectangle, we get

a deviation of 9-10%.
The reality lies between these two limits.

3) Data are correlated, which is one main reason for the estimation variance
o2 /n not to be correct. By averaging them over segments, we can build new values.

Here we have regularised the data every 1 nm segment. These new values are less
variable and little correlated to each other.

g g
Survey no n —
m m/(n)
1 17 0.45 0.1
2 24 0.73 0.15

3 24 0.76 0.15




The relative standard deviation is smaller for the first survey. This comes from the fact
that the variability is shorter scaled, and has been destroyed more by the regularisation.

The value of o/m /(n) is then 11% for the first survey, and 15% for the two others.

. SURVEYS MADE OF PARALLEL REGULARLY SPACED TRANSECTS

For such survey design we suggest a simple method to calculate the variance of
the estimation. We shall see that it can be calculated on the transect cumulated data

using geostatistics but not using the variance A

Each echo-integrated value is the exact mean value on each ESDU segment of
the acoustic fish density. The variable q(j) defined by cumulating the data Z(i,j) along
each transect j represents the acoustic fish quantity along each transect j:

n()
q() = > a Z(G.j)

i=1

/
where i is the indice of the acoustic densities along the transects and j is the indice of
the transects; and where a is the ESDU distance.

Of course, the transect should sample the limits of the fish regionalisation, i.e. should
reach the bordering zeroes at both extremeties.

The cumulation transforms a 2D regionalisation into a 1D one. Obviously the 2 are
related. These relations are communly used in stereology and geostatistics when the
transect lengths are equal. The cumulation has 3 effects on the variogram. The sill
(variance) is lowered, the nugget effect is filtered, the correlations are smoothed. Even
though the transects are of different lengths the 1D data set is expected to be less rough
and more regular than the 2D one.

In 1D, the estimation problem becomes the following. We want to estimate the
mean acoustic quantity on a segment L when we know experimental values q(j)
regularly spaced along L. The values q(j) may be regarded as punctual values because
the width of the echo surveying cone is very small in comparison to the inter-transect
distance. Let us call D the inter-transect distance. It is the distance between 2

successive q(j) values. We have: L = ny D where nq is the number of q(j) values, i.e.
the number of transects.

’ R 1 ,

The estimate of the mean transect acoustic quantity is: g = — Z q()
n .
.l

The estimation variance writes after equation (1) in 1D as follows:
0’% =CrL + Cx-2C; (2)



where G(h) is the 1D covariance modél of the.q(j) Vaiues.
When the inter-transect distance is smaller than the range of the ';e,'baﬁ'a‘l )

correlatrons. Matheron (1965 1971) has glven theoretlcal prove for approxlmatnng o E

of equatton (2) the errors ot estrmatlon in each segment D can be considéred as

uncorrelatéd. The variance o'} E thén writes: -

of = n—daﬁah- @)

oda,, is the variance of estimation when the segment D Is estlmated by the value ol‘ |ts |

central pornt Equatxon (2) rewntes
0% = C(0) + CDD -2Cip

As C(O) = g2 (vanance ofq(j) values) we can write the vanance of estrmatlon oktin

the followrng way:
o2

-'~—.(2C}D-.‘-CDD) .
ng

ot
1
The mean ¢ovariance CDD involves distances Iarger than the mean covariance C]D

because the pomt jis at the center of the segment D. So we have the mequalrtyi
5 T
CDD < Cp. Thus we expect o £ to be smaller than _a_.

nq
We dld the prewous calculatrons on 2 data sets the one named test04
concernlng hernng ott shore Norway and the one named K0 a concermng walleye,
pollock in the Bernng Sea. In both cases the q(j) values are very regular and 2 values h
apart stay correlated for dlstances h up to half of the total length L. In such srtuatlon the
range ot the correlatrons is Iarge in companson to the field over whrch the mean is
estimated. The q(j) values cannot be considered as observatrons sampled out of an-

infinite field. The parameter ? will ovér-astimate the variaice of estimation.

4.1 Herring off Norway, data set TEST04 (K.Foote)
The survey desrgn wnth a proporttonal representatton of the data is grven on fi gure

8. Wé shall focus only on the regular part of the survey The Northeastern trregular part
represents only 3% of the arithmetical mean of the total data set

In order to calculate dtstances the longltudes and latrtudes have been'
transformed followmgly Lety and b be the latrtude and the longrtude expressed in -
mmutes and decrmal fractions of mmutes and It /at be the mean of y over the surveyed
field. The transformed Iongrtude is: x = b cos (Iat) The distances are expressed in

nautical miles (n.m.).



The values are cumulated along the parallel transects. We have 15 non zero q(j)
data. A representation of the q(j) values is given on figure 9. We have:

D = 454nm.; ng=15; L = 68.1n.m.
qr = —-ZQ(I) = 49006. ; S7 = —Z(q(l) qr)* = 3.11 10°

The 1D variogram of the q(j) values is given on figure 10. No nugget effect has
been modelled. The variogram model is a sum of a spherical and a linear variogram.

The variabbility between 2 values h apart is lower than SZ untill h is 30 n.m.. The

geostatistical estimation variance oi— is caculated using formula (3). We get:

Sq
O.E = and

- = 29.3%
qL f-IL n

]

4.2. Walleye pollock of the Berring Sea, data set K0*a ( N. Williamson)

/
The survey is made of n,=27 parallel transects oriented approximatively NE-SW.
The coordinnates are transformed as previously (here /at=58°). The mean

inter-transect distance is: D = 20 n.m. . Along the transects the echo-integrated data
Z(i,j) are expressed in kilograms of fish per meters. The q(j) transect cumulated values
k
derived are expressed in: . n.m..
m

The survey design with a proportional representation of the data is given on figure
11 and a representation of the q(j) values is given on figure 12. We have :

qr = 1983 S$2 =

1 Z(q()) qry? = 2.257 ;| L ='540n.m.
ng-

The 9 Northwestern transects , i.e. the 9 Northwestern q(j) values which show the
greater agregation of fish represent 63 % of gz . Correcting the unities the estimated

total quantity of pollock is: Q = g1 D ny = 3.7 10° tons

The 1D variogram of the q(j) values is given on figure 13. No nugget effect has
been modelled. The variogram model is spherical. The q(j) values are very well
correlated. The range of the spherical variogram is 340 n.m. which is the equivalent of
17 inter-transect distances. The geostatistical estimation variance o % is caculated

using formula (3). We get:

g5 and ' 259 = 14.6%

qL qrvyng
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Appendix C: Generalized Additive Models

by
G. Swartzman

In a generalized additive model the expected
value of a random variable Y is expressed as a
sum of smooth functions of the covariates. Thus

E(¥ 1x1se . 0n) = 5 Six), (oA
j=1

where §;(x;) rcpresém smooth functions of the
covariates. In a generalized additive model a
known function of the expected value, called the
link function, is modeled as a sum of smooth
functions of the covariates. This generalization of
the model is easy to make for random variables in
the exponential family.

If, for example, the Poisson distribution is
chosen as an underlying distribution, a central
assumption in the generalized additive model for
spatial data is that the observations are distributed
according to a nonhomogeneous Poisson
distribution. The parameter of the Poisson
distribution is A = | A(u)du where A(x) is the

Ay
intensity of the underlying Poisson process and
A, is the area of the observations. The expected
value of the Poisson distribution is A(x) and the
natural link function is the logarithm. Thus, the
Poisson generalized additive model relates the
expected counts to the covariates as:

log [E(Y Ixy,... ,xp)]
P
= log [A(x)] = 3 5,0 (C2)
j=1
P
Or, if the additive predictor isn = 3’ §;(x;) then:
j=1
A= u = e’l .

Since the functional form of the smooth
functions, S;(x;), j =1, ..., p, is not specified, the
usual estimation techniques such as maximum
likelihood estimation cannot be wused for
generalized additive models. Instead, an
algorithm that empirically maximizes the
expected log-likelihood is used. The derivative of
the expected log-likelihood is set to zero and the
resulting equation is expanded in a Taylor series
about an initial estimate of the additive predictor,
n°. The equation can then be rearranged to give a
new estimate for m based on the initial estimate
n°. This update equation is used iteratively with
the conditional expectation from the expected
log-likelihood estimated by a scatterplot

smoother. The resulting algorithm is similar to
the adjusted dependent variable regression
method of McCullagh and Nelder, 1989 for
computing maximum likelihood estimates when
the predictor, M, is a linear function of the
covariates. The adjusted dependent variable for
the Poisson generalized additive model at the m-
th iteration is
"

="+ Q:Tl (C.3)
The scatterplot smooth of z™ on x (when there is
only a single covariate x) provides an updated
estimate of the additive predictor, n™*'.

The measure of fit for the generalized additive
models is the deviance, which is twice the log of
the likelihood ratio between the saturated model
and the current model. For the Poisson model this
is calculated as

Dev(y,u) =25 [yilog

i=1

Yi
— | =i =W Cc4
u.-] (67 u)] (C4)

The updating iterations are continued until the
deviance fails to change.

C.1 Backfitting algorithm

The above discussion of the generalized
additive model was for only one covariate, x. For
the spatial models that will be considered, there
will be at least two covariates, e.g. longitude and
latitude. To fit multiple covariates, the backfitting
algorithm is used. The algorithm computes the
smooth function for each of covariates by holding
the other covariate functions fixed. To do this for
the j-th covariate, x;, the partial residual

rj =z SO -~ ZSk(x,,) (CS)
k=)

where z is the adjusted dependent variable

described in Eq. (C.3), is formed. An updated

value of §; is computed by smoothing r; on x;.

The process is then repeated for each covariate.

The initial estimates for the algorithm are zero
for the smooth functions §; and the log of the
overall mean count for m. The algorithm is
iterated until the deviance no longer decreases or
for a maximum set number of iterations.

C.2 Smoothers

The core of the generalized additive models
(GAM) used is a running line smoother which is
used to find the smooth functions §; of equation



(C. 2) A runmng line smoother fits a lme by least

<65-

squares to the data pomts ina symmetnc nearest

netghborhood contarmng n; points around each X;.

The advantage of a running line smoother over a
runnmg mean smoother is that it reduces bias near
the endpomts without sacrificing much in

calculation speed (Kaluzny, 1987, Friedman,

1984).

'Ihe span of the smoother (the fraction of the
data set used i in estimating a lme at each point) is
determined using cross-validation, i.e. the smooth
value for the point x; is computed by omrmng the
i-th observatton and the span is chosen so that the
resrdual sum of squares is minimized. In the
program used in this study the best span was
found by trying the spansO3 0.4,0.5,0.6,0.7 and
1.0 and choosmg the one which gave the smallest
residual sum of squares A span of 1.0 uses all the

data to fit the least squares line and is equivalent

toa sxmple linear regression line.
C.3 Estimation of variabllity

. In moving from the parametric generalized
linear models fit by maximum likelihood to the
nonparametnc generaltzed addttt\e models, the
likelihood theory for estimating variances is lost.
However, the bootstrap methodology of Efron
(1979, 1982) can be apphed to the additivé
models to obtain estimates of vanabrhty

A bootstrap sample of size n is drawn from the
observations (x; j»X2j» ;) with replaccment The
Poisson generahzed additive model is fit to this
sample and the resulting smooth functrons 51 and
3 are saved. Thisis repeated N times. The spans
for the runnmg lme smoothers used in the
. bootstrap fitting are fixed at the values chosen by

cross-validation on the original data. If the span_

is allowed to vary for cach bootstrap sample,
essentially a new model would be fit when the
interest lies in the variability of the model fit to
the original data. The upper and lower ov2
empirical quantiles of the f; at each x; gives an
approxtmate (1-a)x100% prediction interval for
S; at that value of x;.

C.4 Test of trend significance

The bootstrap predrctron intervals are onc
mcthod to assess the significance of the smooth
- functions. The intervals indicate a range of
- possible values the function could have. If a
horizontal linc can be drawn within the prediction

interval then there is an indication that the smooth-
function rs not srgmﬁcant. A more formal
approach lS to do a permutauon test Thé null .
hypothesis that is consrdered by the test is:

Ho: Si(x;j) = m (a constant) for all j,

i.e. the smooth function for covariate x; does not
depend on x;. Under tms‘ null hypothesis, any
permutation of (x;3, %3, * **,X;,) should result in
approxunately the same overall fit. If the null
hypothesrs is false then permutmg the values of x;
should not result in as good a fit as that obtamed ,

 from the original data. Here the term "good fit" is .

taken to mean a small devrance To provrde a
familiar measure of model fit a pseudo r? is
computed as 1.0 minus the rauo of the deviance in

the best ﬁtung model to the deviance for the . -

overall mean (the null or zero model) Whtle not

“identical to the classical r? this measure  is

“data

bounded between O and 1 and is used as a

surrogate for it. Since all posmble permutatrons
cannot be examined, only a sample of size N of
the possible permutatrons is used. The devrance

from the generahzed additive fit to each of the N '

permutauons of the covariate vector x; rs recorded

along with the other unpcrmuted covanates To

avord changtng the model being fit the same ﬁxed
span smoother is used for all the fits, with the span
being chosen bycross-vahdatton on the original
data. If the deviance from the original data is the
m-th smallest among the N + 1 deviances the null
hypothesrs is rejected atthe m/(N + 1) level.

C.5 Applicatlon of GAM to data sets

The pnmary focus in the GAM analysrs of the
sets provrded was on uncovenng
rclauonshtps between fish abundance and
envtronmental factors. Only depth was prowded

" as an ancillary variable (except for latitude and

longltude of the samplmg locattons) and that only
for the Icclandic herring and Benng Sca suneys '
The simulated data set was therefore not

~ addressed. Scatterplots of fish abundance against

depth for each of the Icelandic surveys suggested
very little relauonshtp between abundance and

' depth over the surveyed arca (Fig. C.1). There is

a drop rn abundance below 80m however, this
depth rangc compnsed only a tiny fraction of the
overall survcy GAM with latitude and longltudc
as covariates might - provrde a marginally -
improved fit to the data relative to GLM (sec
section 6). However, this fit would not help to -
explain the spatial distribution, and other methods
appear to provide better estimates than the GLM



estimates.

Contour and image plots of depth and
abundance for the Bering Sea survey (Fig. 2.4)
suggest that the spatial distribution of pollock is
strongly related to depth. These figures were
based on spatial interpolations of the abundance
and depth data provided for the survey (see
section 2 for a discussion of the dangers of such
interpolations). GAM was run on these data with
depth, latitude and longitude as covariates. Due
to the large number of data points the data were
binned into a 40x40 grid. The average of all data
points in each of the 1600 grid bins were taken as
the value for that bin. Fig. C.2 shows the GAM
smooth on depth along with the depth residuals
(conditioned on the fits for latitude and longitude)
and one standard error range (dashed lines). The
span used for the smoother was 1/3 (i.e. 1/3 of the
data distributed around each point used for
estimating the value at that point). This figure
indicates that almost all the high abundance
points are between 100 and 130 m, just off the
shelf break. 3-D plots of the raw abundance data
and the GAM fitted mean are shown in Figs. C.3
and C.4 respectively. These demonstrate the
quality of GAM of flattening and spreading out
peaks. Also, GAM has no protection against
giving negative estimates at some points,
although this is only a minor affect over the entire
survey region. The GAM mean values could be
converted to an overall abundance estimate using
the same method as used for GLM. Although
variance estimates are provided by the S+ version
of GAM, these are approximate and the theory is
not clear. Bootstrap resampling can be used to
provide pointwise variance estimates. The spatial
distribution of the residuals should be examined
(this was not done here) as discussed in the data
analysis section 2 of this report. If the residuals
appear to be spatially autocorrelated, further
analysis with a variogram of the residuals suffers
from bias of the residuals through the deviance
minimization process inherent in the GAM
algorithm,
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Figure C.1. Scatterplots of acoustic measurements versus depth for three Icelandic acoustic surveys of

herring.
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Figure C.3. Three-dimensional representation of acoustic abundance measurements,
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