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1. Introduction

1.1 Partlclpants

is the curnulative backscauering cross section in
the sampled volume Vs (Stanton et al. 1987). For
a single ping, or sounding,

1.3 Background

a. present data analyses prepared in advance;

b. present comparisons of me1hods prepared in
advance;

c. discuss analyses, methods, and comparisons
ofmethods;

d. prepare plans for an ICES Cooperative
Research Report.

The terms of reference are given in C. res.
1990/2:11 :

A Workshop on the Applicability of Spatial
Statistical Techniques to Acoustic Survey Data,
with Dr. G. Stefansson (Iceland) as Chairman and
Dr. G. Y. Conan (Canada) as Vice-Chainnan, will
bc held in Reykjavik from 5-9 September 1991 at
national expense 10:

•

(1.1)

(1.2)

(1.3)

C1
sv=P 41t '

where C1j, in this section only, is used to denote
the backscattering cross seclion of the j-th
scatterer of n in Vs ' In the limit of a large number
of scatterers or pings,

where p is the number densi1Y of scaUerers with
respect 10 volume, and er is the mean
backscauering cross section of a scatterer.

While the dependence of Sv on echo range or
depth z can be quite useful for some applications,
the data quanti1y is generally voluminous and
unwieldy for ordinary surveying work. A much
more useful quanlity is 1he area or column
backscattering coefficient Sa (Clay and Medwin
1977). This is the integral of sv(z):

%,

where ZI and z2 are the limits of integration.
Strictly speaking, 1hese define 1he inner and ou1er
radii of a spherical shell cen1ered a1 the
transducer, for short pulses and in the transducer
farfield. For the highly direclional transducers
that are almoS1 universally employed in echo
integration work, most echoes come from the
central lobe of 1he beam panerns, hence echo
range is tantamount 10 dep1h.

The quanti1y Sa is dimensionless, bu1 is
typically very small, say of the order of 10-7 10
10-1• It is more conveniently expressed with
respeC1 10 1 square naulical mile, or I NM 2

(Knudsen 1990). This quan1iLy, den01ed SA, is
derived from Sa thus :
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1.2 Terms of reference

The acoustic data under analysis consis1
mainly of the mean area backscauering
coefficient. The meaning of this is explained here.

The fundamental quan1ity 1ha1 is measured in
echo integration surveys (MacLennan 1990) is the
mean volume backscauering coefficient sv' This

(1.4)

This is 1he basic quamity that is analyzed in echo
integration surveys. ILS units are square meters of
backscauering cross sec1ional area per square
nautical mile.
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The importance of SA may be emphasized. by
substituting Eq. (1.2) in Eq. (1.3). and the result
in Eq. (1.4) :

(1.5)

where PA is the number density ,()f fish with
respect to an area of 1 NM 2 •. If a measurement of
SA is representative of a partieular species and
size er age dass of scatterer for whieh a is
known. then computation of PA is immediate.

In the test data. SA is assumed to be
monospecific with respect' 10 the fish seatterer.
The various manipulations are performed mainly
on SA, without division by a, this last step being
extraneOlis to the aim of the study. In one case,
that of Datt set 6, the division has been performed
and the number further converted to mass density
with reSpect to arca.

1.4 Nomenclature

The following converition is used throughout
this work. Measurements made along transccts
are of densitY. Thismay be acoustic derisity, Sv

or SA; number density with respect to volume, p;
number density with respcct to area, PA; or mass
density with respect to, arca.. The result of
integrating a' density fieId defined over an area
specifies the abundance of the animal. .

1.5 Worklng Papers

Working papers weee available on some of the
topics. These are listed in Appendix A.

1.6 Acknowledgements

The werk described in this report would not
have bccri possible .without the aid of several
individuals not included in the participant list. In
particular, A. Aglen, I. .R0ttingcn, K. ~unnariä, P.
Reynisson, A. .Guömundsd6ttir and N. J.
Williarnson arc thanked for their. contributions of
aCOlistic data. Z. Kizncr is thanked for the
conlribution of simulatcd data. Finally, E. Wade,
D. Stolyarenko and N. J. Williamson prcparcd
analyses whieh were available for the meeting.
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2. Basic datEi analyses and survey
design

&ich survey nccds to be explored initially
with data display tools before analysis begins. A
key LO proper spatial analysis of surVey data lies
in the graphical display and preliminary
exploratory analysis of abundance and, where
relevant. ancillary environmental data. Through
the comparlson of several sUrVeys, general
patterns may emerge that would suggest fruitful
geriefaI approaches. Even after initial processing,
an acoustic., survey data set still provides much
data, inchiding the .depth distribution of fish
abundance and. the dcpth of the water column,
sometimes at the individual fish specieS level.
The data are generally agglomcrated further, as
seen in the data sets analyzed here, to produce a
total abundance estimate thai applies throughout
the entire water cohimn. In some cases, depth has
reen providCd (although prcsumably it is
available or easy to obtain in all cases).

It is useful to present the surveytracks on a
map of the area. A variety of means have bccn
used to show the spatial distribution of abundance
along the tracks iricluding scaled· histograms
(Figure 2.1), sCaIed rcctangles (Figure 2.2), arid
scaled circles (Figure 2.3). These figures present
the data in an explicit spatial context, with
abundance propOrtional to the size or length.
Contour and gray-scale' image plots were also
used to display. abundance data (Figure ~.4).

While these pennit more complete spatial
coverage thari the scaled transcct plots, they can
introduce aitifacts into the data resulting from the
interpolation used to cover unsurveyedarcas
betwccn the survey tracks, such as apparent
smears or gradients of abundance.. Careful
attention should be paid, in interpreting such
plots, to where the sui-vey tracks actually are:'
Confidence in intcrpolatcd predicÜons is often
low away from surveyed arcas, espccially if the
data are extrapolated. out of the. study area. Thi~

was not done here but it is done arid it is often
misleading. An exampie is in Figure ,2.5, which
shows a bilinear interpolation of the Iceherl
survey as a 3-D plot. Eere, regions of low
acoustic density appear as four regularly sp~ced

afeas at the bottom of the surveyed area (front of
the plot). These areas are intersccted by the
survcy transccts. ßet"',Ccn them are, area.~ of
purportcdly higher dcnsity, which are higher
solely bccausc they are not on the survey tracks

)



and so this interpolator produces spatial biases.
The same observation can be made for the high
abundance areas near the top of the surveyed area
(back of the plot). Color plots can be made
analogously to the transect, grayscale, contour
and 3-D plots.

The presence of ancillary information, such as
depth, can be informative in the analysis of
acoustic data. The gray scale and contour plots
for abundance (shown in Figure 2.4) have been
compared with depth gray-scales for the same
area, which can help to suggest possible
relationships between these variables. For the
Bering Sea there appears to be a strong
relationship between depth and abundance. This
suggests further analysis using a spatial trend
detection model such as GAM or GLM to
correlate ancillary information with abundance.
This is discussed further in seetion 7.

A number of classical summary statistics may
be used in an exploratory sense as weil. The
variogram, which is used in geostatistical
estimation procedures, is a good example. In a
restricted sense it represents the correlation
between sets of observations a distance h apart.
Pauerns in variograms fit to the data can indicate
pauerns in the data. Each of the the variograms
obtained from untransformed lest data sets 1-3
(Figures 2.6, 2.7 and 2.8) represents a different
covariance pauern. The first indicates covariance
lhat continues to decrease with distance, possibly
indicating some large-scale pattern of variation in
lhe observations. The second indicates a pattern
more like a global nugget effect indicating no
pauern or covariance on any scale. The third
shows a covariance lhat inilially decreases with
distance, only to increase later, indicating both
small-scale as weil as large-scale inleractions.
The variogram can also provide diagnostic
information about the existence of correlation in a
population at the spatial scale of lhe collected
data.

Fish depth profiles (showing the fish depth
distribution) can give importanl clues to species
and provide additional information to locate
trends in fish distributions. As such, these data
should not be summarized by a single measure,
such as column scauer strength or overall fish
abundance, until preliminary display is made.
The variogram and other simple statistics like
scauerplots of abundance versus ancillary
variables can help in preliminary data
examinalion and suggest further direction. An
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important aspect of such preliminary analysis is ta
point out the potential relative importance of
autocorrelation and trend (drift) to fish spatial
distribution and thereby suggest whether the
analysis should ignore or include these factors.
Graphical display of model predictions and
residuals can also be importanl after analysis to
indicate whether model assumptions were met
and the need for possible further analysis.

2.1 Multlvarlate data

In addition to density integrated through the
water column, survey data usually provide
information on the depth distribution of
abundance as weil, which may be useful in
providing I) a good indication of where an
abundance pattern has changed (i.e. change in
both the magnitude and depth distribution of
abundance) and 2) relationships of species
interactions and possibly help in species
identification. An example of display of such
data is given in Figure 2.9.

Developing taols for multivariate spatial data
analysis (as, for example, the Barenl Sea data
shown in Figure 2.9) remains achallenge. Few
methods exist even for the display of such data,
let alone tests of statistical significance or
measures of trend. For example, how can the
depth profile of fish abundance be related to
covariates? The challenge is compounded if the
data are not all collected simullaneously or in lhe
same region, as, for example, using sea surface
lemperature or ocean color data collecled from
salellile images as covariales for fish abundance
in a nonparametric regression. That such
variables are important lO fish distribution is
allested lo by the use of spatial cross-correlation
belween fish calch at salellile-collected sea
surface lemperature dala lo successfully predicl
areas of high calch. For al leasl lWO species
(Shinomiya and Tameishi 1988) lhese 'hOL spots'
are on the edges of eddies of cold or warm waler
breaking off from major ocean currenls. In lhis
area, exploratory data analysis plays a central role
in helping to choose variables of importance, lO
reduce the dimension of lhe problem lO its bare
essentials, to suggest analysis LOols, lO
characlerize an area, and lO provide clues lO
possible univariate measures that can serve as
urrogates for multivariale aggregates.

•

•
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Just as grnphical display is impoi"tÜ1t before
analysis. so is it importIDtt after analysis. The .
model fit ShOldd 3lways be grnphically compared
with the original dati. . For models involving .
tiansformations of the onginal data (e.g. GAM
arid GLM) thiscomparison should be made hath '
with. the triUisforrned and the natural data.
Graphical displays of the. residuals thfough. for
example. two-sided rectarigular histograms (e.g.
right for a positive and left· for a negative
residu31) along the transecis just like Figure 2.3.
but for residuals. can indicate lack of fit of the
model or the possibility of having correlated
residuals. A variogfam on the residuals in a trend
model can also indicate the nccd for further
analysis if significant correlation is shown. Other
statistical methods. such as cross-validation. can
be used to evaluate the methOd applied.

2.3 Survey Design
'.

This section is provid~ as a brlef overview of
the choice within the design of a survey and ihe
track layout. It is mostly bascd on Simmonds ei
al.• i991. Only thc major elements in the choice
of cruise track are considered. Other elcmellts in
the survey design, such as biological sampling
requirements and 3llocation or estimating overall

. sampling cITort are ignorCd. The survey design
consist.S of aseries of choices of strategy. There is
rio one single optimum sirategy for all objectives.
The, choices that are appropriate are detemlincrl
firstly by the objectives ofthe survcy. secondly by
any. knowledge of the stock distribution. arid
thirdly. the analytical mcthod to b6 employcd for
data analysis. In all cases the useof appropriaie a
priori information will improve the survey design
and the subsequent estimates. However. care must
always be laken to ensure that any survey design
is capable of producing adequate results if ihe fish
distribution or its behavior diITcrs from the
expected. It is unlikCly thai a good stii'vey design
can bc completely free of assumptions. and the
best results will be obtained by undcrstäriding the
fish stock :ind its distribution.

Objectin~s

There ure a r!Umber of possible objectives.
such as; an overall abundance estimate for u'

pOpulation or an areri. :in estim:ue of precision for
that abunwince. :i map of the Spatial distribution.
or pOssibly the location ,of major exploitable
concenirations. In addition. there may be
subsidiary criteria that aITeet the choice of
strategy. stichas; the absence of büis in the
estimate arid minimum variance. minimization of
mean square eITor. or that the estimates are
obtained with the minimum riumber of

. assumptlons. It is impoitant to be clear about
bOth the objeetives and therr relative importance.

Definition of sun'er area arid Stratification of
efTort

Seiecting the bOundaries of the survey area is
imPortant.. Removal of areaS th:1t coniain rio fish
has ,considcrable benefit. For most stock
distributions there appears to be a link between
variance arid mean density. Predicting i1i advance
areas. of high and low density and allocatirig.
sampling eITort accordingly can give considerable
gains . in precision. Depth. hydrography. and a
knowledge of the distribution from previous
occasions are all possible stratification criteria.

Adaptive I Predeiermined Strategies

PrCdetermined strategies require fewer
assumptions about the stock ·distribution. More
information is requircd to design an adaptive
survey than to' use prCdctennined designs.
Adaptive' stratcgies are p:irticularly applicable'
when thc stock is highly contagious in its spatial
distribution but unpredictable in location. A
number of adaptive methods have bccn used;
scouting or outline surveys followed by intensive
loc31 surVeys. adaptive transect Iengths. and
increased survey eITort in :ireas of high dcnsity.
Each of these meth()ds requircs assumptions about
thc distribution of thc stock. If these assUlnptions
do not hold. the esuinates will be biased.
Adaptive str:ltegies may. prechide calculation of
surVey precision without making further
important assumptions.

.Transect Direction

Choice of direction is controlIed I:>y a ~umber
offactors.

a lo.ilnimization of betwccn-transect variance.
This is relevant for areas with anisotropic
distiibutions und rcquires tr:lnsects to be

.placed. in the dircction with the grcatest
rates of change.



b. Direction of migration. To minimize errors
caused by systematic horizontal movement
of a population the survey should be
conducted with transects altemately with
and against the direction of migration. If
this is in conflict with criteria a) then an
'interlaced' survey design should be
considered.

c. Minimization of inter-transect time. In the
absence of other information the transects
should be across the short axis of an area.

d. Operational considerations such as weather
may necessarily override these
considerations, but may compromise the
results.

Systematic ! Random track designs

The choice of track design is strongly
influenced by the objectives of the survey and the
method chosen for data analysis. However, some
basic guidelines can be given. If the overriding
requirement is for an estimate of total abundance,
in the absence of spatial periodicity, systematic
sampling generally provides the best estimate. If
the spatial correlation is ignored, then random
strategies should be employed to allow for
calculating the variance. But if spatial
information is modeled, random sampling is not
required for the variance calculation and
systematic sampling is believed to be more
efficient.

Parallel! Zigzag transects.

For random designs independence of transects
is essential. For this reason, parallel transects are
useful. For adaptive designs, both the transect
length and spacing will be changed by the use of
zigzag transects. This requires additional
assumptions that are difficult to justify and should
be avoided.

For systematic designs, the choice of transect
design is not so clear.

For parallel transects, aproportion of survey
time will be unusable if inter-transect data is
excluded from the data analysis. In most cases
where the boundaries of the survey area are
determined by the stock distribution, including
coastlines, this must be the case.

For zigzag transects, lhere is increased
correlation belween data from the vertices. The
raison d' eire of systematic sampling is to ensure
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efficient coverage of the sampled area.

For wide areas with long transects, and thus
low proportions of unusable time, parallel
strategies are preferred. For narrow areas,
considerable survey time will be wasted if
parallel transects are used. In these situations, the
increase in survey effort will improve the estimate
despite the loss of independence at the vertices.
However, because of the high correlation at the
vertices, it is important that they are not located
preferentially and, where possible, they must be
located outside the boundaries of the population.

3. Test data sets

3.1 Data sets 1-5 Norwegian fish
stocks

These data sets are derived from acoustic
surveys of Norwegian fish stocks. The presented
data are believed to be monospecific within each
set The gross characteristics of the data are
summarized in Table 3.1. Further details,
incIuding statistical features, are given below.
Maps showing transects and acoustic density
values are presented in Figs. 3.1-5.

Table 3.1. Gross characterislics of test
data sets 1·5.

Interval
(NM)

Data Fish type Region [nte- Ave- No.
set gration raging data

I Pelagic Coast 5 5 664
2 Pelagic Fjord I I 96
3 Pelagic Coast I 5 881
4 Pelagic Coast I 5 986
5 Benthic Open 3-5 5 1712

Sea

Data set 1 This describes an unbounded fish
aggregation with concentrations on lhe survey
boundary. The observations are averaged over 5­
NM intervals, the transects are spaced at intervals
oE about 15 NM. Data on longitude are relative.
The data were contributed by A. Aglen.

Data set 2 The distribution is bounded by
fjord walls, but is extremely patchy. Cross-fjord
sampies are not available nor are more fine­
grained data on one small but exceedingly dense
concentration. The source of data is A. Aglen.

•

•
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Data set j The aggregation is mostly
bounded by the survey. Data are provided at 1­
NM intervals. The parallel transecls are locally

. concentrated and strongly contrasted with low
values inclllding zeroes. The saurce of the data is
I. Rottingen.

Data set 4 This is the resuit of repeating the
survey representCd by Data set 3 after one year.
The samplirig interval and distarice between
parallel uansccls retain ,their previous survey
values of 1 and 5 ~ NM, respectively. The
statistical characteristics are less extreme truin in
Data set 3, but concentrations exist along
boundaries. I. R0ttingen also contributed this
data set. '

Data set 5 Two ships collected the data on
ihis survey, and the survey grids overlap in space
but not in time. The, data are distinguished by .
survey grid. Considerable· differences are
observed with respect to time and space. The
source of data is K. Sunnanä.

3.2 Data set 6Berlng' Sea walleye
pollack '

The data were denved from the 1988 summer
survey of the Castem Bering Sea shelf.The
survey region showing the 27 parallel trarisccls is
shown in Fig. 3.6. Each'data rccord consisis of
position', time, bottom depth, distance sailed, and
surface density. Bottom depths greater than 400
m are rccorded as 400 m. The surface density
expresses the fish density in terms of biomass per
unit area. The llnits are kilograms of fish mass per
square meter. The source of the data is N. J•
Williamson. , '

3.3 Data sets 7-9 Icelandic herring

A major part 'of the stock' of Icelan'dic
summer-spawning herring' was surveyed
repeatedly in the region indicated in Fig. 3.7
under similar coriditions, ori the night of 25-26 '
November 1988. The thrce surveys reported here
had the following siarting and ending 'times:
19:00-22:15,22:40-02:05, and 03:15-07:00 local'
time. The horizontal resolution of the data is 0.1 .
NM. Bottom depth is givcn as an ancillary datum
associated with each' acoustic 'datum. P.
Reynissori coritributed the' data' which A.
Guömundsd6ttir prcpared for distribution. .

3.4 Daia sets 10-15 Simulated dals

Two fish aggregation density fields were
simulated ovCr a square 300 by 300 matrix..The
frrst field was simulated by nieans of an algorithm
devised by Z. Kizner and exercised on the basis of
actual survey dal:l for Myctophidae that wem
collccted . duririg a cruise of the Soviet vessel
VOZROZHDENIE in the waters north, of Sauth
Georgia, 27September - 16 October 1988. The
second fie1d was derived from the first by a
transformation. A smoothed version of thc' first
field is shown in Figs. 3.8-9. .

" ,
On the basis of each simulated data field,

three väri:inls were derived: (1) without noise, (2)
with .normally distribuied additive rioise, with.
staßdrird deviation of 20,. and (3) with
multiplicative, lognormally distributed noise, with
standafd deviation of 0.1.

Survey dai:i are simuiated by supcrÜnposing a
grid of ten equally spaced parallel transccts on the .
two density fields in each of the thfee variants.
The grid is indicated in Fig. 3.10. Datri from the ,"
first simulated density field in its thfee variants
ure averaged over aseries of three successive
vatues. Each of these simulated surveys consists
of 994 data. Daia from thc secorid simulated
density field are averagcd over series of five : :
succcssive values. Each of the resulting
simulatCd surveys consists of 596 data.

4. Ciassical analyses

In the classical approach to survey data
analysis, the daia should be collected on a largely

.., uniform grid of either' systematic, or stratified
random design..The grid density nced not be ' ..
uniform over the whole survey area but if·
different levels of survey effort are used then these
are:is must bc treated separately. The survey grid
is constrained so that 3t least one tninscct passes
thfough each element of area used in thc data
analysis. The dai:i are analyzcd to give some
geographical or spatial distribution and an overall
cstimate of abundance. The area is broken up into

. sub areas or strata. These may be large paris of
the area or small 'rcctangular' strata based on
laitIong positions. These strata are not selected
on the basis of the abundance values but rather on
the spatial variability and should be deterinined



prior to the survey. Typically, the strata
dimensions have turned out to be between two to
four times the limit of sampIe correlation.

4.1 Method

The data from each stratum are analyzed
separately to give estimates for each stratum. At
the end of the analysis, the strata are combined to
give a total abundance and associated variance.
The data within each stratum are treated as
independent and identically distributed. The strata
are assumed to be independent. An arithmetic
mean and variance may be calculated for each
stratum. However, the amplitude distribution of
data found in each stratum may not be normal,
and a more efficieot estimate of the stratum mean
may be possible. The data are examined visually
to check that the amplitude distribution is not
multimodal. A Maximum Likelihood estimation
procedure as described by Box and Cox (1964) is
used to estimate a suitable power transform to the
Gaussian distribution. This is combined with a
delta function (AilChison 1955) to remove the
zero values. The Box-Cox transform is performed
separatelyon all strata, but the results are
combined to give significant results. If the results
of this test give a maximum far the power
transform between +0.5 and 0, apower transform
of 1/2 1/3 1/4 1/6 or In is selected. For each
stratum, the mean and variance of the transformed
data are calculated. As the distribution is
Gaussian, confidence limits may be calculated in
the transform domain. The inverse transform is
performed and the effects of the delta function
removed (see MacLennan and MacKenzie 1988).
An unbiased mean and variance are determined
for each stratum. The abundance of each stratum
is calculated using the area of each stratum,
taking ioto account the proportions of land and
sea as appropriate. The variance of the abundance
is the variance of the mean scaled by the area
squared. Finally, the total abundance and its
variance is calculated assuming independence of
strata. To check the process, the means calculated
by the arithmetic and transformed methods are
compared.

4.2 Oata Sets analyzed

The choice of rectangular strata sizes and the
selected power transform for the data sets that

- 8 -

have been analyzed, are shown in table 4.1.

Table 4.1. Stnlta sizes and power tnInsfonns used
for data sets 1-5.

Stnlta Sizes

Data Latitude Longitude Power
sei tnInsfonn

1 0.5 1.0 1/6
2 1/12 1/6 In
3 0.5 1.0 lf2
4 0.5 1.0 1/6
5 0.5 1.5 In

The results of the data analysis are given in
section 8.3. With the exception of data set 2, the
survey designs and data distributions are suitable
for this analysis technique. In all these cases, it
was possible to seIect one power transform
unambiguously and the dilferences between
arithmetic and transformed means were
negligible. However, it was not possible LO seIect
a unique transform far data set 2, since although
the Box-Cox test indicated that the best transform
was the logarithmic one, the confidence intervals
included other transforms. It is also interesting to
note that for data sets 1 and 4 the transform
estimate exceeded the arithmetic mean, for data
set 3 they were equal, and for data sets 2 and 4 the
transform estimate was less than the arithmetic
mean, indicating, at least from this small sampIe,
that there is no evidence of bias in this technique.

4.3 General Applicability

This technique, when applied on a grid
structure similar to those shown for data sets 1
and 3 to 5, provides some geographical
information, total abundance and variance
estimates along with confidence limits. It works
best with a systematic sampling strategy and
uniform sampling intensity. It is most applicable
to large ocean areas (data sets 1,3-6 and 10-15)
with little spatial correlation and non-stationarity
of the density distribution. It is relatively simple
to use and requires no real operator skill with the
exception of choice of area size. It is not suitable
for estimates of single schools (data sets 7-9) or
complex areas with highly aggregated
distributions (data set 2). The assumptions are that
the within stratum data are uncorrelated and the
strata are independent.

•

•



5. Kriging

·9·

2 --- -----
(Je =C(V,V)-2C (V,V)+C (V, V) (5.3)

•

•

Spatial covanation can be used in the
estimation of fish density locally at :i point or
globally over :in area. A number of approaches
have been developcd for using spatial covariation
in this way and the geostatistical litemture is a
particularly rich source of such applications
(Matheron 1963 1965, 1971; Joumel and
HuijbregtS 1978, Cressie 1989). These techniques
are now being applied, in fisheries researCh
(Crittenden 1989, Guillard, et al. 1990, Sullivan
1991, Conan ,1985, Conan et al. 1988a 1988b,
Coruiri and Wade 1989, Gohin 1985, Nicolajsen
and Conari 1987).

Estimates, such as that of fish abundance at a
given location, may be derived as a weighted
avernge of the obserVations taken near the point
of interest. The observations are weighted in the
estimate according to their correlation with other
obserVations and with the point oe area to be
estimated. The shape of the area of the estimate
and th6 coverage of thc survey will also affed thc
weights lhfough the computed correlations. ,The
correlation is generally given as a function' of
inter-poirit distance, and may be derived 'directly
from another measure of interpoint variation
known as the variogram (Matheron 1971, Journel
arid Huijbregts 1978). The variogram is orten the
measure of choice because of its generality, since
it does not require stationarity in the rriean. The
variogram is defined as half the expected value of
the. squared difference betwcen two random
variables that are located adistance 'h' apart.

'., The estimation (or prcdiction) variance, (Je
2,

is the expected deviation of the estimator from the
random variable describing the density at a point,

, that is

(J/=i't2r[Zv"-Zv]=E [(Zvo-Zvr]. (5.1)

Note that this may differ from the vari~ce of
the estimator,

(5.2) ,

a statistic more' commonly uscd in classical ,
statistical approaches, but inappropriate here'
exccpt under the right conditions. In terms of the
covariances, 'the estimation variance may be
computed as

wheee V repreSents the total area ~f iriterest arid 'v .
represenis the area, sampled. The average (noiCd
by ~ar) will depend 9n the weighting used in
computing the estimator. '

This formula contairis the mean covanance
between two arbitrary points independei1lly
describing the volume, .C (V,v), th6 mean
covariance bCtween a sampie obserVation and an
arbitffirY point descnbing the volume, C(V,v) and
the mean covariation between sampie ' points,
C(v,v). , ',' .

Several alternative approaches for estimating
global' fish abundance using these principles rire
presented 'here. The general methOds will be
described first, followed by results and discussfon.
A comparisori of the results from this spatial '
geostatistical approach, sometimes referrcd to as .
kriging, with other approaches discussed in this
report is givcn in Section 8..

Application 1: Point kriging, with pOsSible
trend removal

, W. Go' Warren applied point kriging c\VP6-7),
taking inta accoimt the following considcrations:

Forthc kelandic herling data, a d~nsity
surface was described by taking as coordinates
the distance from the coastline and the distance .
parallel to the coastiine from an arbitrary origin.
The non-zero. data cmibited noticeable positive
skewness. The Box-Cox (1964) transformation
was used to determine a tnmsformation that
would yield an approximaie normal (Gaussian)
distribution. .The square-mot triinsformation
appearcd suitable for all three cases.

, '.
A rectangular box wlth sides 'parallel and'

perpendicular. to thc coastlinc v.'as then,
constructed about thc patch separatcly for cuch '.
survey. Each boX'was divided into rows ami
co!umns to form ~cIls of approximatcIy cqual
area. The number of data Points that' fell into a
cell varied and for some cells this numbcr was
zero. Trend removal was accomplished by an
unbalanced analysis of variance (ANOVA), with
rows and colurims as factors.

. The ANOVA-estimated cell· 'values wcre
, subtracted from thc transformcd data values at

points falling within the appropriate cell. The
residuals wcre lhen used ,to ; construct a
~onventional sphcrical variogram whcre isotropy
was assumed. Thc' global cstimate is



approximated by eomputing the point estimates
over a grid on the area, multiplying by the mean
area about each point, and then summing. The
varianee of the estimate is eompuled similarly
using the eorrelation between grid point estimates
that are derived from the spatial eorrelations.
Details relating to distance caleulations, choice of
variogram, and the global approximation were
provided in working paper W6.

The simulated data were similarly analyzed
but no trend removal mechanism was applied.
The Box-Cox approach on the non-zero data
suggested that a logarithmie transformation would
be appropriate. The variograrn was estimated in
lwo direetions but no systematic differenee was
found, so a single conventional spherical
variogram was compuled by combining the two
estimates. Further details were provided in
working paper W7.

Application 2: Global block kriging

The estimate of the average densily and
associated estimation varianee over agiobai area
of interest is obtained from all points sampled, in
a one slep procedure as deseribed in Matheron
(1971). The information from the variogram, y,
and from the respective distance between the
points and to the area, and lhe shape of the area
are used for ealeulating an estimation varianee of
lhe form:

where Wi are the statistieal weights altribuled to
lhe n poinl sampies Vi, and V is lhe global area
studied. The variogram may or may not be
isotropie, i.e. identical in a11 direetions. This
estimation variance is minimized by
dilferentiating with respecl lo eaeh of lhe weights
and to a lagrangian parameter, A., in order lO
optimize the estimale of the weighled average and
to avoid bias under the eonstrain 1:w =1.

The resulting optimized varianee or kriging
varianee is:

cr~ =1:Wj)i(Vj, V)+A.-)i(V, V) (5.5)

In the particular Gulfkrig software application
designed by Conan and Wade, the numerieal
ealculalions of an average variogram over an area
V can be made over any irregular shape. If the
global area over whieh lhe estimale is lO be made
is not predefined prior lO calculations, it may be
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defined by first calculating eontours of local
estimation varianees by point kriging and then
ehosing a contour beyond whieh it is fell that
extrapolating would be unsatisfaetory.

The global kriging estimate can also be
approxirnated by caleulating a large number of
point kriging estimates over a fine mesh grid, and
then averaging. This procedure is useful when the
number n of point observations is very large,
since a matrix of n + I x n + I must be inverted in
the direct estimate procedure.

In working paper WIO, E. Ferrandis proposed
a simplified computational procedure for
caleulating the statistical weights. This procedure
reduces the dimensions of the matrix lo be
inverted to n by n.

Data sets I through 4, the Icelandie herring
data sets, and the simulaled data sets were all
analyzed using the fo11owing methodology. No
trend removal or variance transformation was
applied to the data. Spherieal isotropie variogram
models were fit lO eaeh data set and agiobai
estimate and its variance were derived by
ordinary kriging applied within an irregular block
defined by the varianee eontour around lhe area
studied.

The GulfKrig software developed by G.
Conan and E. Wade ealculales global and local
(either block or point) estimates of abundance and
their varianees using the melhod of ordinary
kriging.

Application 3

A third application by P. Peti19as and J.
Rivoirard was presented in working paper W9 and
is given as Appendix B. For the Icelandie herring
data set, sinee the data arc regularly located
lhroughout lhe field, the abundanee is estimated
using a simple arithmeLic mean. Furtherrnore,
since the field is large eompared with the range of
the correlation, the mean eovariance between two
arbitrary points independenlly deseribing the area
C (V, V) and the mean covariance between a
sampie observation and an arbitrary point
describing the area C (V, v) are found lo be small.
Thus, the estimation variance simplifies to the
mean covariation between sampie points C(v, v)
which may be compuled from lhe mean variance
arnong sampies plus the mean covariance belween
sampies.

For data sel4 (Norwegian Herring) and for lhe
Bering Sea walJeye pollock dala (dala set 6) a

•

•
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different approach is laken. Assuming the
transects are parallel and th3t each transect
traverses the eritire width of the stock the
integrated transect values may be laken as beirig
one-dimensional observations OIi the stock. A
variogram was then estimated in one dimension
and geostatistical theory was applied to the
overall abimdance estimation and associated
variance computation. Observing that the field is
small with respect to the range of covariation the
estimation variance must now include the mean
covariance between points and the mean
covariance between points (in 1D) and the sampie
points. But since the problem is one dimensional
the computations are straightforward.. .

Two-dimensional computations were
performed using Blucpack (1991), whereas ane­
dimensional computations required rio software.

6. Generalized linear models

6.1 Descrlption of method

The basic GLM assumes that the structure of
the schools is of the form of a mean plus a random
error, where the mean is a function of location
(and potentially other variables), but the error
contains no structure. The mcan is parametrized
as a function (the inverse link function) of some
linear terms and the distribution of the
measUrements is from the exponential family.

Generalized linear models are described in
several texts, including McCullagh (1983),
McCullagh and Neider (1989), rind Neider and
Wedderburn (1972). A clear introduction to their
use, usirig the GLIM package (Haker and Neider,
1978) is given in Aitkin et al (1989). GLMs cari
also be filted within the Splus package (Becker et
al. 1988, Anon. 1991).

6.2 Appllcatlon of method

Only the three herring data sets were
considered, since GLMs can only be expected to
work weIl with this type of acoustic data, when
there is a single aggregation of fish, within a
limited area. In allother data sets considered
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(with the possible exception of walleye pollock),
there tend to be aggregations with low values in
between or around. Polynomials of reasonably
low order cannot fit such data weil. An analysis
using GU..1s on .one of these daci sets was
introduced bnefly in Anon. 1990.

Assuming a gamma density and a log-link
seems a reasonable assumption, but high-degree
polynomials are needed to fit the data weU.
Working paper W2 found that polynomials of up
to the 6th degree were needCd for some of the
data, and even in this case, (pseudo-) R2-values
were only at the 0.5-level.

However, since there seems to be one large
"lump" in each aggregation, only the results from
fitting a simple paraboloid as a function of
IOcation for each data set rire presented in this
report.

The numbers obtained are given in section 8.
The areas and gridpoints uscd wem based on a
grid of 0.2 NM by 0.2 NM cells, which were
defiried in such a fashion as to cover the survey
tracks with a minimal amount of extrapolation,
yet relaining a roughly convex region.

6.3 Discussion

The actual values obtaincd (80775, 76933 and
81250) are quite close, the range of the thrce
being only 5% of their average. This is in stark
contrast to the "confidence bounds", based on
integrating an estimated one slandard error in
each direction from the surface, all of which are
over 13% in each direction from the
corresimnding estimate. It must bc noted that
these boü11ds are only approximate and fUrther,
they approximate the 68% confidence interval,
corresponding to one standard error in each
direction. They are used only to obtain an
approximate "C.V." ratio (st3.ndard error/mean).
The approxiinatc 95% confidericc inierval will be
correspondingly wider.

It would seem, thereforc, that aithough the
log-polynomials do not fit very weIl, there is
considerable smoothing involved in the
integration and this is not appropriately feflected
in the vanance cstimate behind the confidencc
bound.

Some concems were raiscd during the
meeting that thc reverse transform (exponential),
required to cvaluatc thc surfacc on a grid for



integration, would introduce a bias. Allhough ws
may be lhe case, il is not obvious what lhe precise
effect is, or how it should be corrected for, since
the equations used for estimating the parameters
in the GLM model are different from simply log­
transforming the data before fitting a model.
These equations are based on the differences
between the aCllJaI (untransformed) observations
and their means according to the model.

In lieu of the results in working paper W6, the
residuals from the GLM are expected to be
correlated, reducing the validity of the error
estimates.

7. Generalized additive models

7.1 Introductlon

Generalized additive models are used here as
methods for detection of spatial trends. They can
be used as a tool in abundance estimation, but
more importantly as an aid to demonstrating or
quanlifying relationships between the spatial
distribution of abun<lance and environmental
factors. In cases where the average value of a
variable changes explicitly over space, this
change is assumed to be a trend. A spadal trend
is assumed to mean a change in the average
densily which is a function of the spatial location.
Besides detecting trends in abundance over space,
these changes can be related quantitatively not
only to spatial location but to environmental
factors such as depth and temperature. The
existence of such quantitative relationships
strengthens understanding of the factors that
influence the explicit spatial distribution of fish
species abundance and also gives a degree of
explanation of this distribution that may serve to
reduce the variance in abundance estimates by
providing additional information about
abundance distribution through covariates that are
easy to measure.

Generalized additive models relate the
changes in abundance LO spatial covariates,
without restricting the functional form of the
relationship (Kaluzny, 1987; Hastie and
Tibshirani 1986, 1990). This method allows
nonlinear trends and includes covariates which
potentially determine the spatial patlems in the
data. Bootstrap methods give information on the
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variability around the trends and permutation tests
are used to determine the significance of trends.
The use of generalized additive models for
analyzing survey data is quite general in that the
surface which is fitted to the data is only restricted
to be a sum of smooth non-paramemc functions.
The form of the functions is not restricted to
polynomials as in generalized linear models
(GLM; McCullagh and Neider, 1989). The
functions are instead determined by a smoothing
technique that reflects local spatial trends, while
allowing trends over the entire space to be
observed (if they exist).

A Generalized Additive Model (GAM) is a
nonparametrie generalization of multivariate
linear regression. Both methods relaLe the
dependent variable to possibly important
covariates. However, in GAM the covariates are
assumed to affect the dependem variable through
additive, unspecified (not linear) funclions.
Scatterplot smooths (Chambers et al. 1983) in
GAM replace least square fits in regression. In
GAM, the data can come from any distribution in
the exponential family (which includes the
normal, Poisson and binomial distributions).
Because of the flexibility of GAM in detecting
and testing for trends in abundance, they are
valuable in uncovering factors influencing fish
distributions over several years. The theory and
method for applying GAM, using the garn
function in Splus (Chambers and Hastie 1991), is
given in Appendix C.

7.2 Appllcatlon 01 GAM to data sets

The primary focus in the GAM analysis of the
data sets provided was on uncovering
relationships between fish abundance and
environmental factors. Only depth was provided
as an ancillary variable (except for latitude and
longitude of the sampling locations) and that only
for the Icelandic herring and Bering Sea surveys.
Analysis was most fruitful for the Bering Sea
survey, where a significant trend for abundance
with depth was found. This analysis is presented
in Appendix C.

•

•
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8. Comparisons across melhods

8.1 Introduciiön

In the. foiIowißg secuons, the results from
applying different methOds toeach <lata set are
compared in tenns of the estimated abundance
and the estimated emir in trult number. The
density .. estimate and area used are also
considered, .since in some cases these Sevei-dy
affect the reSultS.

.Withln tables in the cominirisons subsections
(8.3-8.6), AdenoteS the arithmetic mean, B
denotes the l11ethod basCd on the Box-Cox
transforrn, GI-G3 will denote different
goostatistical l11ethods, S is used to denote the
spline approximation meth<>d, L deilOtes the
method basCd on generaliZCd linear l110dels arid T
denotes the apjmxich of accumulating along a
transect, followed by analyzing the sampie using
the ratio methOd (as describCd in Anon. 1990, p.
80)

8.2 Varlance estlmätion

When thc rcsultS· from the different.
COl11putatioris arc cOl11pared, severnl issues rnust
bC borne in mind. ane of thcse is thc definition of
the quantity of intercst. Thc iern "total aburidance
cstimate" can be - and has been - interpretCd in
different mathcmatical ways, resulting in entirCly
different estimates of associated varianccs.

, .
Thc approaches which have hcre beeil callcd

"c1assical", as weII as thc GLM and GAM
methods havc as their underlying purposc thc
estimation of a "response surfacc" whieh cari bc of
thc fonn of a step function, a, polynomial in
location or an abundancc-depth relationship. Thc
surface .estimates the expecfed value of fhe
response at each location.. The associaied
abundancc estimatc is thc volume under that
surface.
'.' " .

Thc method of point kriging, howcver, fits a
sufface which estimates fhe unobserved
individual responses at each locatiori. The
associated abundancc estimate is also thc volul11e
"under thc surfacc", albeit a different surface.

A fundamentaJ. diffcrence in approach is tllUS

evident. This someiimes has draStic consequences
for the variance estimate.

Under. the "classlcal';approacheS, including
GLM and GAMS, the existence of autocorrelation
in residunls rcflects a redundancy of information,
which reduces the effective degrees of freedorn,
arid increaseS the vanance in the
integraVabundance estimritC. However, the
kriging school of thought is the exact opposite.
esseritially st:itirig that sirice there is
autocorrelation; there. is beiler infonnation 10
interpolate between <lata points, resUltirig in a
betler estimatci of abundance. .

Asirnple cxarnple wÜI suffICe io iIiustrate the
difference quite clearly. If the transects arc
parallel, they can be added ull to rCduce the
problem to one dimension. Suppose that there is
no trend in Lhc <lata, so thrit the expected value is
constaßt in the. remaining dimension. The
"chlssical" approach is to auempt t6 estimate Lhis
single mean. The kriging approach is to esiimatC
the entire curve (whieh will riot be astraighi line
due to Lhe autocorrelations). .

If the item of primary intercst is the. expectCd
value, an increasc in the autocorrelation will
obviously reduce the effective degrees' of
freedom. In fact, as the autocorrelation goes to 1;
the infonnation in the data set is rCduced to just
orie observation, as far as thc estimaiion 'of thc
expected value is conccrncd..

... Ir the item of prlmciry interest is the curve
itself nlorig with thc integral of that realization of
the process, then an increasCd autocorrelatiori will
lead to more information about the behavior
between <lata points, thus rCducirig the variance.
Inthe limiting ense, as the autocorrelation goes to
I, Lhe curve will become pcrfectly known, as will
the abimdance.

It must be noted that in cases when ci grid is
regular, both approaches may simply bc using thc
arithmetic mean as ari estimator, but thc vanance
estimales may be totaIly different, with onc giving
CVs as low as a few percellt, the othcr yielding
CVs which cominonly range from 20 to 50%. As
is deScribCd above, this simply sterns from thc
choice between estimating a mean surface and
predicting an unobserved surface. \Vhether thc
CVs arc real1y as low or high as indicated is not
known apriori. but can bc ascertained through
other rncLhods, such as cross-validation.
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8.3 Data sets 1-5

where Z. is the double integral of the process and
Z: is an estimate. The varianee used in the
alternate ("classieal") approach is

where I: is an estimator of the integral of the
expeeted value of the process (the above
equations assume unbiasedness of the estimators).
As explained above, these two varianees may be
tOlally different, even if the estim~~ors are both
equal to the sampie mean: I: =Z: =2 .

•

•

mean

B BoxlCox 68 9 55 3.7 Simmonds
transf.

GI Kriging 85 43.5 54 4.6 Conan &
Wade

S Spline 77 IA 53 4.0 Sto1yarenko

Table 8.2. Summary of the results of the analyses of
test data set 2.

ID Method SA CV Area sA • Area Analyst

m2/NM2 % Nm2 1103

A Aritlunetic 297
mean

B Box/Cox 48 37 49 2.4 Simmonds
transf.

GI Kriging 443 4 47 20.9 Conan &
Wade

S Spline 259 N/A 51 13.2 Stolyarenko

It is noted that in lable 8.1, methods GI and S
both give higher abundanee estimates than
method B, but the CV estimate in B is mueh lower
than for GI. It must be borne in mind that these
two CV-values are estimates of different
quantities. as deseribed in section 8.2.

Table 8.1. Swnmary of the resulu of the analyses of
lest data set 1.

Tables 8.1-5 give, for dala sets 1-5, the
estimated densities (5,,), the eorresponding C.V.
(defined here as 100 times the standard error of SA

over SA), the area used and the total abundance.
Analyses of these data sets were also given in
Anon. (1990), but many of the values have been
revised.

ID Method I
A

CV Arq SA • Af'\':a Analyst

m2/NM2 % 103 Nm2 /106

A Aritlunetic 75

In lable 8.2. the CV of B is mueh larger than
that obtained in GI (although these two have
different interpretations). The aetual abundanee
estimates also vary widely, with the Box-Cox
transform (B) giving the lowest, the spline
approximation (S) intermediate and global
kriging (G 1) giving the largest estimate. It must
be pointed out that the areas used by the different
analysts are different, but this does not fully
explain the differences. The group noted that this
dataset is partieularly difficult to analyze and few
methods would be applieable to this kind of data
(c.f. seetion 3 and Fig. 3.2), since it is to a large
extent due to the different area definitions.

(8.1)

(8.2)

This leads immediately to the use of the
eriteria and language used in kriging, speeifieally
with respeet to the term "total abundanee" whieh
is defined as the abundanee that would have been
measured if the area had been completely covered
- not the expeeted value of that quantity.

In mathematical notation, the varianee of
primary interest is the predietion varianee,

It is therefore essential 10 precisely define the
quantily of inlerest: should il be the surfaee of
expecled values or the unobserved measurements
belween the transects ? This queslion ean be al
leasl partly answered by investigating the source
of lhe aulocorrelation. The aeoustie
measurements involve several levels of variation,
whieh for eonvenience can be separaled into
"process error" autocorrelation (the struetured
variability of the resouree) and "observation
error" aUlocorrelation (the struelured variation in
the measurement instruments). If most of the
autocorrelation stems from the observation error,
then lhere is good reason to treal it as true error
and eonsider its effects negative ones.

Aeoustie measurements are eapable of
detecting sharp ehanges in density. so most of the
autocorrelation along and aeross transects will be
due to eontiguous behavior of the resouree. This
implies that when autocorrelations are observed
along and aeross transects, they include important
information about the resouree itself and should
be utilized as best possible for the estimation of
the resouree.

Var [Z:-Z.] =E [(Z:-Z.;2]
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Table 8.3. Summary of the results of the analyses of
test data set 3.

10 Method sA' ev Area sA• Area Analyst

m2JNM2 % 'ltrNffi2 1106

A Arithmetic 1793
mean

B Box/Cox 1327 7 55 7.3 Simmoods
transfonn

GI Kriging 1558 33.8 63 9.8 Conan &
Wade

G2 2089 14 90 18.8 Guillard &
Gerdaux

G3 1911 22 83 15.9 Annstrong

S Spline 7.8 Stolyarenko

T Transects 3072 30 19 5.7 Williamson
as
strata

In test data set 3, the CV estimates vary
widely (table 8.3). The geostatistical methods
(01-03) give abundance estimates which are up
to two to three times the estimates obtained by the
other methods. .

Table 8.4. Summary of the results of the analyses of
test data set 4.

ID Method sA ev Area sA• Area Analyst .

, m2fN}.12 % Nm2 1106

A Arithmetic 774
mean

B BoxlCox 560 ,9 6100 ' 3.4 ' Simmonds
transfonn

GI Kriging 1062 51 ' 3000 3.2 Conan &

.. Wade

G2 1690 12% '1975 3.3 Petitgas

S Spline 3.5 Slolyarenko

T TransecLS 1512 31 2200 3.3 WiIli.;n~on
as
strata

In data set 4, the difference between' the
results from the geostatistical methods GI and 02
is considerable. The. main explanation for this
probably lies in definition of the urea over which
the estimation was performed. The area is 1975
sq. NM for G2 and 3000 sq. NM for GI. In the
02 approach, the zero values at the extremities of
the transeclS are interpreted as zeros exterior to
the fish spatial extension. Therefore, the area
over which the' estimation errors are· made is
reduced. In the GI application, on Lhe other hand,'
a much larger surface was defined. Further,
estimation errors in areas wem assumed, whereas
no error was assumed in thc 02 application.
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The CV ofT is very high in data setS 3 and 4.
. It is believed that this sterns from this method not
taking . into account the inter-tranSect spatial
correlation.

Table 8.5. Summary of the resu1ts of the analyses of
test data set S. '

10 Method SA CV Area sA• Area Analyst

m2JNM2 % 104Nm2 1104

A Arithmetic 14
mean

B BoxlCox 9 8 13 110.0 Simmoods
transfonn

GI Kriging 14 18 19 266.0 Conan &
Wade

S splinC 87.5 Sto1yarenko

Three methods were applied to this test data set
The resulting estimates varied widely.

8.4 Data set 6 Walleye pollack

Two estimates of transect mean density were
provided, as indicated in table 8.6.

Table 8.6. Abundance estimates for walleye
pollock (data set 6)

10 Method ' Abundance' CV,% Analysl

GI See sect. 13.220 2.3 Petitgas &
5 (appI. 2) Rivoirard

G2 See beiow 13.019 3.5 Warren

The G2 estimate is based on the total of the
mean densities over the number of elementary
sampling unilS in each transect, Ldi , say.
However,' the lengths, li. of the dcmentary
sampling unilS vary slightly and the GI estimate
is based on r.ljdj•

. Although the original data set consist of 27 -.
transects, a transmission glitch of some sort
erased one transect from some of the diskettes
sent to participants. This omission is unlikely to
have affected the results to any noticable extent.

The GI method is described in Section 5,
above. In 02, the transect was also laken as the
sampling unit but thc transCclS were treated as a
systematic sampIe with a random sLart. Variance
estimation was then accomplished by assuming a
polynomial trend on die transect totals. and
applying the formula given in Cochran (1977) as
cxtcnded by Kingsley and Smith (1980). A
quartic was judged to bc appropriate. Details are
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given in working paper W8. Essentially, it was
assumed that the residuals, after removal of the
fourth-order trend, would be independent. The
slightly greater CV obtained in G2 relative to GI
suggests that some residual serial correlation may
have remained in the residuals.

8.5 Oata sets 7-9 Icelandlc herring

Five different analyses for each of the 3
surveys were available for the meeting. The
results are summarized in table 8.7.

Table 8.7. Summary oe results oe analyses oe Icelandic herring
data. Abundances and averages divided by 1000.

Method 10 Statistic I 2 3 Analyst

GLM L Abund. 80.8 76.9 81.3 Stefin-
sson

Mean 5.72 4.34 5.32
Density

Area 14.1 17.7 15.3
CV.% 16 18 13

30- S Abund. 110.0 55.4 94.3 Stolyar-
Spline enko

Mean n.a.
Density

Area n.a.
CV,% n.a.

Block GI Abund. 127.5 117.6 113.4 Wade
kriging

Mean 4.94 3.24 2.77
Density

Area 25.8 36.3 40.8
CV.% 19.9 18.6 22.5

Point G2 Abund. 103.1 93.3 1lY7.1 Warren
kriging

Mean 5.54 3.52 3.87
Density

Area 18.7 26.5 27.7
CV.% 16.6 n.a. n.a

Mean G3 Petitgas
abund. Rivoirard

Mean 5.53 3.25 3.59
Density

Area
CV')

I) 12,*, forarealS.0.14% for area 33.5

No estimate of area size or mean density of
precision was provided with the application of S.

The methods of area estimation differed from
one method to the next:

• The boundaries for the GLM model
application (L) were chosen to include all
locations of observations.

• The areas fOT the application of point kriging
(GI) were deterrnined as those locations for
which the estimated density was non-zero.

• Areas in the block kriging application (G2)
were defined as the outline of an variance
contoUT line of an arbitrary level (value not
specified). They correspond approximately to
the outline of the sampie points plus a corridor
of width slightly smaller than the range of
inftuence.

• The area used in G3 was limited to the zone
that was swept It was taken as 15 sq. NM for
all sets. An extension on each side of the
survey was also considered, giving an area of
33.5 sq.NM.

Consequently, the areas, as used for the GLM
model, were smaller than those used in point
kriging, which, in turn, were smaller than those
used in block kriging.

Application G2 provided a CV estimate for
survey 1 only. Little change in the mean density,
area and abundance estimates is anticipated by
using a finer grid fOT G2, but the CV estimates
may be somewhat reduced.

The GLM estimates of CV, obtained in the L
application, are not comparable in that they
represent the pointwise integration of one­
standard error confidence limits and should
therefore only be considered approximations.

Other choices of distribution, link funclion
and degree of polynomial in L gave alternative
abundance estimates ranging from 78225 to
103734, from 67514 to 96185 and from 74195 to
90543 for surveys I, 2 and 3, respectively. With
high-degree polynomials, slight changes in area
definitions can drastically change the results.

The estimates of mean density are, not
surprisingly. inversely related to the estimates of
area. The relationship iso however, not that of
exact inverse proportionality so that the GI
estimates of abundance turn out to be greater than
those of G2 which, in turn, are greater than those
ofL.

The mean densily estimates in G3 (the sampie
means) are closest to those of G2 differing by

•
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0.1 %, 8.1% and 7.7% for surveys I, 2 and 3,
respectively.

The spline approximation (S) abundance
estimates for surveys 1 and 3 are also closest to
those in G2 differing by 6.7% and 12.0%,
respectively. The S estimate for survey 2 is
clearly unrealistically low, since the data are
supposed to represent three surveys of the same
aggregation. By the same token, the fixed areas
assumed in G3 are also unrealistic since this
would imply abundances for surveys 2 and 3 of
approximately 60% that of survey 1.

Since the data sets represent three surveys of
the same aggregation, it was expected that the
abundance estimates obtained by any one method
would be consistent over the three surveys. Table
8.8 expresses, for each analysis, the range of the
three estimates of abundance as a percentage of
their mean. The differences between the estimates
are relatively small in relation to the estimated
CVs.

Table 8.8. Comparison oC between-survey results
Cor Icelandic herring.

Application Range (oC 3) Mean (oC3) Range I
Mean

%

L 4317 79653 5.4
S 54600 86567 63.1
GI 14173 119505 11.9
G2 13875 101178 13.7
G3 n.a.

The estimate of CV in G2 (survey 1) seems
comparable to that obtained in G3, and perhaps
somewhat less than that obtained in GI. This is
consistent with the conjecture that, in employing
ordinary kriging, somewhat greater precision
would be attained by removing any seemingly
weil defined trend.

8,6 Osts sets 10-15: Simulated dats

For ease of tabulation, all total abundance
values have been scaled down by 100000. For all
six surveys the true abundance is 87.67 and the
mean density is 97041. The population of survey 2
is lhal of survey I rotaled through 90 degrees.

Three different analyses (or partial analyses)
of data sets 10-15 were available for lhe meeting.
The results are summarized as folIows:
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Table 8.9. Comparisons oC results Crom simulated
daa sets 10-15.

Data set 10 11 12 13 14 15

Simul- 1.1 1.2 1.3 2.1 2.2 2.3
ated
survey

IDI Statistic
Methodl
Analyst

A Mean
density 95.8 95.9 95.8 91.9 926 92.3

Arith. Abund. 86.20 86.30 86.20 82.70 83.10 83.00
mean CV n.a.

Düf.
Crom
true 1.7'10 1.6'10 1.7% 5.7% 5.2% 5.3%

S Mean
density 97.1 97.2 97.1 95.8 96.3 96.3

2D-spline Abund.
CV

Stolyarenko Dill
Crom
true 2.8% 3.0% 2.8% 1.5% 2.0% 2.0%

GI Mean
Density 94.5 94.4 94.1 94.7 95.7 92.7

Kriging Abund. 85.06 84.96 84.96 85.23 86.13 83.43
CV 12.2% 10.4% 10.2% 12.8% 10.8% 8.8%

Wade Düf.
from
true -3.0'10 ·3.1 '10 ·3.1% -2.8% -1.8% -4.8%

G2 Mean
density HJ2.59 n.a. n.a. 97.32 94.89 96.98

Kriging Abund. 92.33 87.59 85.40 87.29
CV n.a.

Warren Dill.
Crom
true 5.3% -0.1% -2.6% -0.4%

Only es ti males of abundance were provided
with the S method (no measure of precision).

The G2 abundance estimates for Surveys 2.2
and 2.3 are preliminary. They were based on a
smaller critical distance than inlended; i.e. lhe
distance of data points used from the interpolated
locations.

The S estimates are a11 slighlly abovc the true
abundance by an average of approx. 2.4%.
Conversely, lhe GI estimales are all slightly
below the true value, by an average of 3.1 %. The
G2 estimaLeS are above lhe true value for survey 1
and below for surveys 2.1,2.2 and 2.3.

W. Warren also presented estimales obtained
by treating the major Lransects as a systematic
sampie (Kingsley and SmiLh 1980) with a single
random start, although clearly, a randorn starl was
not employed. Not all the data were uscd, as lhe
short transects linking the ends of the long
Lransects were orniued. The resulLs were as given



in table 8.10.

Table 8.10. ResullS based on asswning
a random stan.

Data set 10 11 12 13 14 15

Sirnul. 1.1 1.2 1.3 2.1 2.2 2.3
survey

Abund. 94.36 94.51 94.32 75.75 75.13 74.97
Diff. from 7.6% 7.8% 7.6% -14.7% -14.3% -14.5%
true

CV 6.9% 6.9% 6.9% 4.9% 4.9% 4.9%

These results are interesting in that, as noted
above, the underlying population for survey 2 was
that for survey 1 rotated through 90 degrees. It
can be seen from Fig. 3.10 that the populations
consists of a "mountain range" running through
the center of the region and parallel to one pair of
sides. Consequently, the transects of survey 1 cut
across the "mountain range" thus giving transects
totals that exhibit relatively moderate variability
but with no clear trend. For survey 2, the transects
run parallel to the "mountain range" so that the
transect totals exhibit much greater variability but
also an essentially quadratic trend. Since, far
survey 2, a quadratic trend was assumed in the
variance estimation, this accounts for the smaller
CV estimates. The lower abundance estimates are
due, in part, to the omission of the short end
transects which cross the "mountain range".

8.7 Discussion

The above results are, perhaps, as notable for
the consistencies as for the diserepaneies, most of
which ean be explained, at least in part.

Ouring diseussion, the group considered the
described fish stocks and a number of others.
There was general agreement that some structure
could be assumed in all cases considered. There
was evidence of large seale changes in mean
density in most eases. In addition to these
"trends," additional spatial autocorrelation was
always expeeted to be present.

Based on these eonclusions, the group agreed
that there was in many cases potentially great
benefit involved in utilizing the spatial strueture
when estimating the abundance of the resouree,
and, in particular, there is potential gain when
estimating the precision of that quantity.

There is no doubt that spatial analysis can
give a more realistic measure of precision of a
survey than classical methods and, under certain

- 18 -

circumstances, a better measure of abundance or
mean density. It is not, however, a panacea. It
would be a fallacy to assert that there exists a
"black box" that can be used to process spatial
data and that will yield viable results under all
circumstances.

Depending on the severity of the trend, it may
need to be removed before applying covariance
techniques, although Journel and Rossi (1989)
have shown that equivaIent results may. in same
cases, be obtained by using appropriate data
windows when applying techniques which do not
assume the existence of trend.

Spatial analysis can be viewed as a sequence
of steps at each of which a choiee must be made
of the several options that are available (e.g.
transfonn or not, if so which transfonn ? Trend
removal or not, if so how? Should ancillary data
be used ? Da the two-dimensional data lend
themselves to being collapsed ioto one
dimension?). There are as yet no weil defined
rules as to whieh choice would be best. While
general guidelines ean be given, eaeh situation
must be treated on its merits, and the viability of
the results depends, to some extent, on the skill
and experience of the analyst.

Spatial analysis eannot be divorced from
survey design. While in theory it is possible to
analyze spatially any configuration, spatial
analysis appears to be most effective under
systematic designs.

9. Conclusions and
recommendations

9.1 Applicability

The aim of the workshop was to examine the
applicability of spatial statistical techniques to
acoustie survey data, with partieular attention to
global abundance estimation, variance estimation,
and mapping. This has been done with respect to
so-called classical or traditional statistical
techniques. generaJized linear models (GLMs),
generalized additive models (GAMs), and
geostatistical or kriging techniques.

In the course of comparing the several
methods, workshop participants managed to

clarify a matter of long-standing contention,
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9.2 Associatlon of,techniqües with

spatlai features of the stock

A number of dilTererit' kinds of fish
distribution are rccogrlized. These may be
charäctenzCd cl priori by the range of the
autoCOrTelation with resPcct to ihe exterit of the
distribution or cl posteriori by the scale of
variation with respect to the inter-lransect
distance..
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Tbe following general situation is considered
fust: a stably located fish distribution is confined

'to a kßown geographical region, which is
surveyed according to agrid of paraIlel,equilllY
spaced tr:lnSCCts•. The statisticaI chanicteristics of
the fish distribution can be categorized as folIows:

1. The scale of variation is large compared 10
inter-transect disiance. Exs. Test dau setS 6
(walleye pollock), 7-9 (ICClandic h6rrlng).,
10-15 (simulaied data),

2. The' scale of vanation is comparable' to '
inter-tranSect distance. Ex. Test <Iata sei 4
(Norwegian Pelagic stock offcoast)•
. ' '. .

3. The seale of variation is small compared to
inter-tr:lIlsect distance. Ex. Test data sei 2
(Norwegian pelagic stock in fjord). ,

Geostaiisticai tcchniques of analysis caO bC
applied in each of these situations. In the first and
second cases. ihey will be. able to exploit the
obserVed structure•. as crulraciCrlZC<i by the
autocorrelation. and the ,resUJ.ung vanance
estimate will be lower than the cl:issical variance
estimate. In the third cäSci, the geostatistical and
CIassical vanance estimates could be similar.

Strictly speakirig. th~ choice of a~iysis
should also be based on the scalc of variation
relau;"e to the urea sampled.

A sec()~d generai situati6n is iIiusirated by the' ,
Icetandic summer-spawriing herling. The bulk of
the stock existS at the autumn stirvey time in arie
or two' derise aggregations of initially 'unknown
location. These must' be found in order to
estimalC the abundance. When an aggregation is

, found, it is usually possible to sainple this very
densely. An application of goostatistics to the
Icelandic herrlng faund that the. range of
covariation was too small to obtäin the benefils
associated with high spatial correlation. This'
resUIted iri an appropriate increase in the vanance
estimate, as comparcd to an estimatc assuining
inaependence.

, Atlurd general situation' is ihat of migration,
which requires special surveying tactics. .These
are described in Simmonds ei al. (l991).This

. situation requircs detailed examiriation.. not
, undertaken at the workshop.

An ünderlying as~umption employed here is
that thc biology of the fish stock being surveyed is
knowri, at least in iis grass whereabouts at the
time of the survey. Given this knowledge. the
fOllowing rccommendation Carl be made: .



Recommendation 2 Among spatial
statistical teehniques, geostatistics, Le.
analysis using the variograrn, is
specifically recommended for the
analysis of acoustic survey data.

If the acoustic survey has been perfonned
over a grid composed of parallel transects
reaching the boundary, then the variance can be
estimated according to a quite simple procedure.
Each value of density is exact for the particuIar,
small interval of sailed distance. The total density
along each transect is computed by simple
summation. The resulting set of numbers
constitutes a one-dimensional distribution. This
is necessarily less rough, or spatially more
correlated, than the underlying two-dimensional
fish distribution. Illustrative examples are found
in the analyses of test data sets 4 (Norwegian
pelagic stock off coast), 6 (walleye poUock), and
10-15 (simulated data). In these particular
examples, the range of spatial correlation of the
one-dimensional data is large in comparison to
the extent of the distribution. Application of
geostatistics here wiU give both a lower and more
realistic estimate of variance than is obtainable by
c1assical statistical analysis.

It is noted that for the general acceplance of
geostatistical techniques, some fonn of education
and dissemination of infonnation is required.

When synoptic knowledge of the whereabouts
of the fish stock is laclcing, estimation of
abundance is not generally possible. Knowledge
of fish biology is a precondition for conducting a
proper survey, thence analyzing resulting
measurements of fish density in order to estimate
abundance over a region.

9.3 Analysis procedures

The phases of an analysis of acoustic survey
dala are:

l. Exploratory data display and analysis, to
learn about the characteristics of the dala,
including possible connection with other
variables, namely covariates,

2. Diagnosis, or seleclion of the best analysis
technique,

3. Analysis, or exercise of the selected
technique with the particular survey dala,

- 20-

4. Evaluation, including judgement of the
quality of the analysis in the context of the
degree of coverage of the stock by the
survey grid and how weil the analysis
assumptions are met.

In the analysis phase, generalized additive
models (GAMs) may be useful for associating
other variables with the fish distribution.
Examples include those of bouom depth, as in test
data set 6 (walleye pollock), and temperature, as
considered by Shinomiya and Tameishi (1988),
among others, but not considered at the workshop.
These techniques are particularly valuable for
facilitating interpolation of measurements of fish
density between transects, hence aiding the
process of mapping fish distribution, as discussed
in Appendix C. Hence,

Recommendation 3 Generalized
additive models should be considered
for use in exploratory data analyses to
aid in choosing the specific analysis
technique, and in the analysis process
itself, as to map the distribution.

Association of the pattern of fish distribution
with other variables can have major significance
for the conduct of acoustic surveys. The potential
to improve both the survey design and quality of
analysis result is emphasized.

•
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Figure 3.7 L .ocauon ofIceland' h 'lC emng durin thrg ee surveys in November 1988.
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Figure 3.8 Simulated field used Cor data sets 10 - 15.
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Appendix A: Worklng papers and relevant documents available to the
meeting

A.1 Worklng papers

Wl: Kizner, Z.I. 1991. Simulating Data for
Comparison of Methods of Spatial Statistics.

W2: Stefansson, G. 1991. Analysis of
Icelimdic herring data using GLMs.

W3: Stolyarenko, D.A. 1991.
Multidimensional Spline Approximation of Stock
Density: Spline Survey Designer Software
System.

W4: Swartzman, G. and Sullivan, P. 1991.
Exploratory analysis of hydroacoustic fisheries
survey data using statistical and graphical
techniques.

WS: Wade, E. 1991. The Application of the
Ordinary Kriging Package "Gulfkrig" for
Mapping and Estimating Abundance of the
Resource Surveyed by Acoustic Data Sets.

W6: Warren, G. W. 1991. Spatial Analysis of
Acoustic Survey Data. I. Iceland Herring.

W7: Warren, G.W. 1991. Spatial Analysis of
Acoustic Survey Data. 11. Simulated Data Sets.

W8: Warren, G.W. 1991. Spatial Analysis of
Acoustic Survey Data. III. Bering Sea Pollock.

W9: Petitgas, P. and Rivoirard, J. 1991.
Global estimation: cr/n and the geostatistical
estimation variance.

WlO: Ferrandis, E. 1991. A note on the
kriging weighting estimation.

A.2 Related documents, avallable to
the meeting

Butterworth, D.S., Borchers, D.L. Miller,
D.G.M. 1991. Some Comments on the Procedure
for Testing Estimators of Krill Abundance which
Utilise Survey Data.

Haslett, J.• Bradley, R., Craig, P., Unwin. A.
and Wills, G., 1991. Dynamic Graphics for
Exploring Spatial Data, with Application to

Locating Global and Local Anomalies. Arnerican
Statistician.

Sullivan, PJ. 1991. Stock Abundance
Estimation Using Depth-Dependent Trends and
Spatially Correlated Variation.

Unwin, A., Will, G. and Haslett, J. 1991.
Regard-Graphical Analysis of Regional Data.

Wills, G., Unwin, A. 1991. Kodiak Crabs ­
The View from Ireland.
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Appendix B: Global estimatlon: cil/n and the geostatlstical estimatlon
varlance

by
P. Petitgas and J. Rivoirard



Acoustics can provide a lot of data over a given domain. Here we will look at the
estimation of the mean acoustic density over thls domain, and in particular at the
estimation variance.

First we will try to explain why this variance is not always a2 In . Then we will give

the formula using the variogram. And after that we will consider different case studies:
"iceher" (herring, S-E Iceland. three surveys), "test04" (West of Norway), "kO·a"
(Walleye Pollock, Bering Sea).

1. WHY THE ESTIMATION VARIANCE IS NOT ALWAYS a 2 In

- line divided into segments

A line is divided into n segments 1/. We know the value Zj of each of these

segments. Theirj variance is a 2 .

Suppose we want to estimate the average value of the line L.

The estimate Zr. = .!. I Zj is equal to the exact value of the /ine ZL = .!. I Zj.
n n

The estimation variance Var(ZL - Zr.) is zero. but is not a 2 In either!

- thin block

,----------------------------------.
I i I I I i i i I

I ----------------------------~

The last example was trivial. but suppose we want to estimate the mean value

over a thin block V set on the line L. We then would expect the estimate ZV = .!. I Zj
n

a 2
to be close to the real value ZV, with an estimation variance still smaller than

n

- large field

The exact mean value Zv is now the average of many distant values.

2
If the data Z/ were independent. classical statistics would give !!- as estimation

n
variance for Zv.

•

•



In- the case they are .c~rrelated, they count as if they were fewer but independent

data. So the estimation variance will be larger than a2 In .

Summarising all these cases, we can see that the estimation variance is not

always a2In. It depends on the geometry of the field and of the data.

2. VARIOGRAM AND ESTIMATION VARIANCE

The variogram measures the mean variability between two points x and x+h as a
function of their vectorial distance h: '

, l'
r(h) = '2 E[Z(x + h)-Z(x)j2

The symbol E (expectation) denotes the average on all pairs (x, x+h).

The variogram m~y reach a sill. In that case, there is a covariance function

C(h) = C(O) - r(h) which represents the covariance between two values Z(x) and

Z(x + h) distant of h. The covariance e(O) for h=O is the vari~~ce a 2, and for hlarger

than the range, there is no more correlation between Z(x) and Z(x + h) .

sill

• nugget effect

- - - - - - --=-~_....---=.:---....-----
. I

01..- +- _

range h

The variogram makes it possible to compute the variance when estimating the

average value on V by the average of n sampies ~': ZV = .!-I Zi. This can be written,
. n

in term of covariance:

a~ = Cw+ Cij-2CiV (1)

Cw is the mean covariance between two points describing V independently.
. , '

C,v is the mean covariance between sampie i and a point describing V.



Cij is the mean covariance between sampies i and j, for all n2 possible pairs (i,j):

n pairs correspond to i with itself, the other n2-n correspond to I different from j:

C(O)
C-.=--+ C"v n ..v,JA}

If the field is large. compared to the range, the terms Cwand CiV are zero. The

estimation variance a k is reduced to the term Cij, which is generally larger than

C(O) a 2
-=-

n n

If the range is lar'Je compared to the field, we will see (on test04 and kO-a) that

ak can be less than a 2 In.

3.ICEHER

The 3 surveys cover nearly the same zone (figures 1 to 4 in nautical mires).
Excepting the zeroes at the North East, there are about 10 acoustic values per nm. The
length of the first sUNey is smaller (15.5 nm, 174 values) than the two others (23 nm,
255 and 276 values). Large values are present in the first sUNey (max=26738)I
increasing its mean and variance.

SUNey no m
a
m

a

mj(n)

1 5531 28 345 200 0.93 0.073

2 3253 14 120 100 1.33 0.072

3 3594 16 300 000 1.26 0.068

If the data of a given study were independent with the same law. the mean of this law
would be estimated by the arithmetic average with a relative standard deviation of

alm jen) , here 7%.

In fact the acoustic data are regionalised and neighbouring data are correlated.
Variograms computed at a 0.1 nm lag show structures up to 1.2 nm (figures 5-6-7).
The structure is shorter for the first sUNey.

Knowing the variogram. we can compute the estimation variance of the mean
value over the field. This supposes that the fjeld has been delimited. Two hypotheses
have been made.
- Either we limit approximatively the field to the zone which has been swept (for instance
if we assume that the outside is close to zero).
- Or we extend the field on each side of the sUNey, admitting that the extension is not

•
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systematically poorer than the survey.
The surfaces are respectively 15 and 33.5 nm2.

Ta compute the estimation variance according to the formula (1), the fjeld is
discretised very finely. We obtain as relative standard deviation for the estimation

1z"v = - IZ; fram each survey:
n

about 12 % for the smaller fjeld;
about 14 % for the larger one.

These two values are close. but both are larger than alm Rn) =7%. It is due to the fact

that the field is large enough, and the data correlated: they count as fewer independent
data.

Other appraaches:

1) The data are not located regularly throughout the field. A weighted average.
rather than the arithmetic one, may be used to estimated the field. Kriging corresponds
to the optimal weighted average. the one which minimises the estimation variance. In
our case kriging ~ives an increased weight to the data at the angles of broken Iines. But
it practically daes not change the estimates and the variance (except for the estimation
of the larger field from the third survey. where kriging gives about 3000 instead of 3600).

2) Tables exist. which give the estimation variance of a rectangle knowing its
median line. with a spherical variogram model (Matheran 1971).
Let us take a rectangle close to the smaller field. If we replace the braken line survey by
the median line (which is shorter and would contain less information), we get a relative
standard deviation of about 14%.
If we unfpld the broken line to be the median line of a larger but thinner rectangle, we get
a deviation of 9-10%.
The reality lies between these two limits.

3) Oata are correlated, which is one main reason for the estimation variance

(12 In not to be correct. Sy averaging them over segments, we can build new values.

Here we have regularised the data every 1 nm segment. These new values are less
variable and Iittle correlated to each other.

Survey no

1

2

3

n

17

24

24

(1

m

0.45

0.73

0.76

(1

mj(n)

0.11

0.15

0.15



The relative standard deviation is smaller for the first survey. This comes trom the fact
that the variabllity is shorter scaled, and has been destroyed more by the regularisation.

The value of alm j(n) is then 11% for the first survey, and 15% for the two others.

4. SURVEYS MADE OF PARALLEL REGULARLY SPACED TRANSECTS

For such survey design we suggest a simple method to calculate the variance of
the estimation. We shall see that it can be calculated on the transect cumulated data

using geostatistics but not using the variance a'- .
n

Each eCho-integrated value is the exact mean value on each ESDU segment of
the acoustic fish density. The variable qU) defined by cumulating the data Z(i,j) along
each transect j represe~ts the acoustic fish quantity along each transect j: •

n(j)

q(j) = I a Z(i,J)
i= 1

I
where i is the indice of the acoustic densities along the transects and j is the indice of
the transects: and where a is the ESOU distance.

Of course. the transect should sampIe the limits of the fish regionalisation. Le. should
reach the bordering zeroes at both extremeties.

The cumulation transforms a 20 regionalisation into a 10 one. Obviously the 2 are
related. These relations are communly used in stereology and geostatistics when the
transect lengths are equal. The cumulation has 3 effects on the variogram. The sill
(variance) is lowered, the nugget effect is filtered. the correlations are smoothed. Even
though the transects are of different lengths the 10 data set is expected to be less rough
and more regular than the 20 one. •

In 10. the estimation problem becomes the following. We want to estimate the
mean acoustic quantity on a segment L when we know experimental values qU)
regularly spaced along L. The values qU) may be regarded as punctual values because
the width of the echo surveying cone is very small in comparison to the inter-transect
distance. Let us call 0 the inter-transect distance. It is the distance between 2

successive qU) values. We have: L = nq D where nq is the number of qU) values. Le.

the number of transects.

The estimate of the mean transect acolJstic quantity is: qi. = -.!.- I q(j)
nq j

The estimation variance writes after equation (1) in 10 as folIows:

a 1: = CLL + Cjk - 2CjL (2)



,,' .

(3)

•

"

where C(h) js the 10 covariance modei of the.qU) vaiues.

Whsn the jnter~transeet ciistance is smaller thein the' range cf the spatial

correlations. Matheron (1965.1971) tias given theoreticai prove for approximating u~

of equatlon (2): the errors of .~Stimation In sach segment ci can be corisidered as
uncorrelated. ine variarice U ~ thefl writes: '

2 1 2
UE = -Udern'

nq

U~ern is the variance cf estimation when the segment 0 Is eStlmated bY ths valus of its '
central point. Equation (2) rewrites: '. ' . '

a~eni = C(O) + CDD-2C/D

AS C(O) = 0- 2 (variarice of q(j) Values) we c~n Writs the variance of ~Stlmatiori U ~ in
ths following way:

/
The mea~' covarlance' CDn involves distarices iarger th~n th~ meari covariance CjD

because ttie point j is at the center 0; the segment D. SO we have itie iriequality:
. ". ;. . ,

" ' , "2' ',"c<. " u 2
CDD< CjiJ; Thus we expect··u E to be smaller than -' . . '

nq

We did the previous calculatlons on 2 data sets. the one named testÖ4
c6nc~rning herring off shore Norway and thä one· named KO';' ci concernirig walreye .
pollock in the Berring Sea. In bottl cases the q(j) values iue very regular arid 2 values h
apart stay correlated tor distances h up to half cf the 'totallength L; In such situation tiie
range 0" the correiatlons is large in comparison to the field over which the mean is
estimated. nie q(j) vsiues cannct be considered as observations sampied out cf an'
. , " ....., ' . cl-" " .. ,: . ", .'" ,,'.-

infinite field. The parameter - will over-estimate the variance of estimation.n . .

4.1 Herrlng orfNonvay, data set TEST04 (K.Foöte)

The survey design W1th a proportional represeritation of tha data is given on figura
8. We shäll tociJs only on the regular part of the sürvey. The Northeastern irregular part
represen~ only 3% of tt1e arithmetical mean cf the tötai data set.

,In order to calculate distances the longittldes and latitLJdes' have beeri'
transiormed iolloWingly. Let y arid b be tt1e latitude and the iorigilude expressed in
minutes arid deoimal fractions of minutes arid iet jat be the mean of yover the surveyed
ßeld. The transformed longitude is: x = b cos (lal). The distances are expressed in

ficii.Jtical miles (n.m.).



The values are cumulated along the parallel transects. We have 15 non zero q(j)
data. A representation of the q(j) values is given on figure 9. We have:

D = 4.54n.m.: nq = 15: L = 68.1n.m.

qi. =~I q(j) = 49006. ; S~ = -11 '2)q(j) - qi.)2 = 3.11 109
15 . 4 .

J J

The 10 variogram of the q(j) values is given on figure 10. No nugget effect has
been modelIed. The variogram model is a sum of a spherical and a linear variogram.

The variabbility between 2 values h apart is lower than S~ untill h is 30 n.m.. The

geostatistical estimation variance a k is caculated using formula (3). We get:

a; = 12.1% and
qL

Sq
• c- = 29.3%

l/L vnq

4.2. Walleye pollack of the Berring Sea, data set KO·a ( N. WLlliamson)

The survey~s made of nq=27 parallel transects oriented approximatively NE-SW.
The coordinnates are transformed as previously (here lat=58°). The mean

inter-transect distance is: D = 20 n.m. . Along the transects the echo-integrated data

Z(i,j) are expressed in kilograms of fish per meters. The q(j) transect cumulated values

derived are expressed in: kg n.m..
m

The survey design with a proportional representation of the data is given on figure
11 and a representation of the q(j) values is given on figure 12. We have :

qi. = 1.983 ; S~ = 1 1 "2)q(j) - qi.)2 = 2.257 ; L = 540n.m.
nq - j •

The 9 Northwestern transects , Le. the 9 Northwestern q(j) values which show the

greater agregation of fish represent 63 % of qi.. Correcting the unities the estimated

total quantity of pollock is: Q = qi. D nq = 3.7 106 tons

The 10 variogram of the q(j) values is given on figure 13. No nugget effect has
been modelIed. The variogram model is spherical. The q(j) values are very weil
correlated. The range of the spherical variogram is 340 n.m. which is the equivalent of

17 inter-transect distances. The geostatistical estimation variance ai is caculated

using formula (3). We get:

a; = 2.3% 'and
qL

Sq
• ;n: = 14.6%

qL nq
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Appendix C: Generalized Additive Models

(C.3)

by

G. Swartzman

In a generalized additive model the expected
value of a random variable Y is expressed as a
sum of smooth functions of the covariales. Thus

p

E(Y lxi •... ,xp ) =L S/Xj), (C.!)
j-I

where S/Xj) represent smooth functions of the
covariales. In a generalized additive model a
known function of the expected value. called the
link function, is modeled as a sum of smooth
functions of the covariales. This generalization of
the model is easy to make for random variables in
the exponential family.

If, for example, the Poisson distribution is
chosen as an underlying distribution, a central
assumption in the generalized additive model for
spatial data is that the observations are distributed
according to a nonhomogeneous Poisson
distribution. The farameter of the Poisson
distribution is A = A.(u) du where A.(x) is the

A.
inlensity of the underlying Poisson process and
Ax is the area of the observations. The expected
value of the Poisson distribution is A.(x) and the
natural link function is the logarithm. Thus, the
Poisson generalized additive model relates the
ex~ted counts to the covariaLes as:

log [E(Y lXi, ... ,Xp »)

=log [A(X») = f. S/Xj) (C.2)
}=I

P
Or, if the additive predictor is Tl =L Sj(Xj) then:

j=1

A=Jl=e"

Since the functional form of the smOOlh
functions, Sj(Xj). j = 1..... P. is not specified, the
usual estimation techniques such as maximum
likelihood estimation cannot be used for
generalized additive models. Instead, an
a1gorithm that empirically maximizes the
expected log-likelihood is used. The derivative of
lhe expected log-likelihood is set LO zero and the
resulting equation is expanded in a Taylor series
about an initial estimale of the additive predictor,
Tlo. The equation can then be rearranged to give a
new estimate for Tl based on lhe initial estimate
Tlo. This update equation is used ileratively with
lhe conditional expectation from lhe expected
log-likelihood estimated by a scauerplol

smoother. The resulting algorithm is similar to
the adjusted dependent variable regression
method of McCullagh and Neider, 1989 for
computing maximum likelihood estimales when
the predictor, Tl, is a linear function of the
covariales. The adjusted dependent variable for
the Poisson generalized additive model at the m­
th ileration is
'" Tl'" (y-e Tl-)

z = +
e Tl-

The scatlerplot smooth of z'" on x (when there is
only a single covariate x) provides an updated
estimate of the additive predictor, Tl'" + I .

The measure of fit for the generalized additive
models is the deviance, which is twice the log of
the likelihood ratio belween the salurated model
and the currenl model. For the Poisson model this
is calculated as

Dev(y,Jl) =2i:, [YilOg [Yi ]-(Yi-JlJ] (CA).-1 Jl.
The updating ilerations are continued until the
deviance fails to change.

C.1 Backfitting algorlthm

The above discussion of the generalized
additive model was for only one covariale, x. For
the spatial models that will be considered, there
will be at least two covariales, e.g. longitude and
latitude. To fit multiple covariates, the backfitting
a1gorithm is used. The algorithm computes the
smooth function for each of covariates by holding
the other covariate functions fixed. To do this for
the j-th covariate, Xj' the partial residual
rj = z - So - LSk(Xk) (C.5)

bj

where z is the adjusted dependem variable
described in Eq. (C.3), is formed. An updated
value of Sj is computed by smoothing rj on Xj.
The process is then repeated for each covariaLe.

The initial estimates for the algorithm are zero
for the smooth functions Sj and the log of the
overall mean count for Tl. The algorithm is
iterated until the deviance no Ionger decreases or
for a maximum set number of iterations.

C.2 Smoothers

The core of the generalized additive models
(GAM) used is a running line smoolher which is
used lO find the smoolh functions Si of equation

•

•



•

•

(C.2). Aninning lirie smoolher fits a line bY leäsi
squares to the data points in asymmetrie nearest
rieighbOrhood eontaining nj points around each Xj.

The advantage of a running line smoolher over a
rmining mcan smoolher is th3.t it teduees bias near
the endpoints wilhout sacrificing much in
calcuIation speed (KaIuzriy, 1987, Friedrrian,'
1984).

The span of lhe smoolher (lhe fraction of the
dala set used in estimating a line 3t each point) is
deterrniried using cross-validittion, i.c. lhe smooth
value for the point Xj is computCd by omitting the
i-th observation and lhe span is chosen so that the
residual sum of squares is minimized. In the
program used in this study lhe best span was
found by i.rying lhc spans 0.3, 0.4, 0.5, 0.6, 0.7and
1.0 and choosing the one which gave the smallest
residual sum of squares. A span of 1.0 uses a11 the
data to fit the least squares line and is equivalerit
to a simple linear regression line.

C.3 Esiimätiorl of varlabllity

, In moving from lhe pararnetrie generaIized
linear models fit by maximum likelihood to lhe
nonparametric gerierntized additive models, the
likelihood theory for estimating variances is lost.
However, lhc bootstrap melhodology of ,Efron
(1979. 1982) can be applied to ,lhe additive
models to obtain estimates of variability.

A bootstrap sampie of slze n is drawn from lhe
observations (Xlj.X2j.Yj) with replacemeni. Thc
Poisson generaJized additive model is fit to this
sampie and the rcsulting smoolh functions, si and
si are saved. This is repeatCd N times. ' The spans
for the running line smoolhers used in lhe

. bootstnlp fitting are fiiect at lhc values chosen by
cross-validation on the original data. Ir lhe span,
is a1lowCd LO vary for cach ,bootstrap sampIe,
esseritially a new model would be fit when the
intercst lies in thc variability of lhe model fit to
the original data. The upper and lower 012
empirical quantilcs of lhc Ji at each Xjj givcs an
approximate (l-a)xlOO% prediction interval for
Sj at that valuc ofXj.

C.4 Test of trend slgnlficance

The bootstrap predicÜon intervals are onc
melhod to assess the significance of the smooth
functions.The intervals indicatc a range of
possible values the function could have. If a
horizontal linc can be drawn within the prCdiction
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interval theii there is an indication that th6 smooth
function is not significanL, A more formal
approach is to do a permutation test. Th6 null
hypOlhcsis tbat is considered by the test is: '

Ho: Sj(Xjj) =m(aconstant) for all j,

i.e. ihe sniooth function for covarlate Xj does not
depend on Xj. Under this null hypolhesis, any
Permutation of (XjloXj2, •• : ,Xj,,) should result in
approxirriaiely the Same overall fit. If, thc null
hypoihesis is false then permutirig the values of Xj

should not resUIt iri as gOexi a fit as ihat'obtained
from the original data. .Here the term "goOd fit" is.
iaIcen to niean a sinall devianee. To providc a
familiar measure of model fit a pseudo ,2 is
corriputed aS 1.0 mirius the ratio of the dcviancc in
lhe beSt fiiting model to' thc deviane6 for thc
overall mC3n (lhc null or zero model). Whilc not

. identica1 to the c1assical r 2 this mCaSUre' is
oounded between. 0 arid 1 arid is uscd as a .
surrogate for iL Since all possiblc permutations
cannot I>e examinCd, only a Sanlplc. of size N of
the pOssible pernlUtations is used. Thc deviance
froin lhc generaliZCd additivc fit to each of thc N
permutations of lhe covariate vector Xj is recorded '
a10ng wilh lhe olher unpermutcd covariates. Ta
avoid changirig thc model being fit thc same fixCd
span smoolheris used for all thc fits. witli the spari
being chosen by cross-validation on the 6riginil1
data. Ir lhc deviance from the original data is the
m-th smallest aInong lhc N + I dcviances thc null
hypolhesis i~ reject~ at lhc m I (N + 1) level.

C.5 Appllcation of GAM to data sets

The primary focus in thc GAM analysis of the
. data sets providcd was on uncovering
relationships between fish abundance und
environmental factors. Only dcpth was provided
as an ancillary variable (exccpt for lalitudc and
longitude of lhe sarripling IOcations) arid truit only
for the Icelandic herring and Bering Sea sur\'cys..
The simulatcd data set was thercforc riot
addressed. ScatteriJlots of fish abundancc against
depth for each of thc Icelandie surveys suggested
very Iiule relationship betwccn abundance and
dcpth over the surveyed area (Fig. C.I). There is .
a drop iri abund4ißce. below 80m. however, this
depth range comprised only a tiriy fraction of thc
overall survey. GAM wilh latitudc and larigitudc
as covariales might· provide a marginally
improvcd fit, to thc data relativc to GLM (see
section 6). However, this fit would not help to .
explmn lhe spatiaI distribution, and other methods
appear to provide better estimates than the GLM



estimates.

Contour and image plots of depth and
abundance for the Bering Sea survey (Fig. 204)
suggest that the spatial distribution of pollack is
strongly related to depth. These figures were
based on spatial interpolations of the abundance
and depth data provided for the survey (see
section 2 for 41 discussion of the dangers of such
interpolations). GAM was ron on these data with
depth, latitude and longitude as covariates. Due
to the large number of data points the data were
binned into 41 40x40 grid. The average of all data
points in each of the 1600 grid bins were laken as
the value for that bin. Fig. C.2 shows the GAM
smooth on depth along with the depth residuals
(conditioned on the fits for latitude and longitude)
and one standard error range (dashed lines). The
span used for the smoother was 1/3 (Le. 1/3 of the
data distributed around each· point used for
estimating the value at that point). This figure
indicates that almost all the high abundance
points are between 100 and 130 m, just off the
shelf break. 3-D plots of the raw abundance data
and the GAM fitted mean are shown in Figs. C.3
and CA respectively. These demonstrate the
quality of GAM of flattening and spreading out
peaks. Also, GAM has no proteclion againsl
giving negative estimates at some points,
although this is only a minor affect over the entire
survey region. The GAM mean values could be
converted to an overall abundance estimate using
lhe same method as used for GLM. Although
variance estimates are provided by the S+ version
of GAM, these are approximate and the theory is
not dear. Bootstrap resampling can be used to
provide pointwise variance estimates. The spatial
distribution of the residuals should be examined
(this was not done here) as discussed in the data
analysis section 2 of this report. Ir the residuals
appear to be spatially autacorrelated, further
analysis with a variogram of lhe residuals suffers
from bias of the residuals through the deviance
minimization process inherent in lhe GAM
algorithm.
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