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Abstract. - Monte Carlo simulation is used to quantify the uncertainty in the results of
sequential population analysis and in related derived statistics. Probability density
functions describe the measured or perceived uncertainty in the inputs to the assessment
model. Pseudo-data sets are then generated repeatedly from these distributions and used as
inputs to the assessment model to examine the variability in the resulting parameter
estimates. The approach quantifies uncertainty in the assessment of the swordfish stock in
the North Atlantic Ocean, particularly in the estimates of population size, current fishing
mortality, values of various reference fishing mortalities (e.g., Fq 1), and catch regulations
necessary to achieve various objectives.
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Fishery managers have long recognized the dangers of accepting parameter
estimates without consideration of the inherent variability in the estimates of fish stock
status and related parameters. Early strategies for dealing with this were quite simple, such
as backing off from the estimate of the fishing mortahty giving the maximum y1eld (Bnax)
to a more conservative value. Sensitivity analyses, in which the effects of various
perturbations of the inputs are observed, have commonly been employed to obtain
impressions of the probable bounds on the errors (e.g., Pope 1972; Pope and Garrod
1975). Recently, various authors have used the delta or Taylor's series method (see
Kendall and Stuart 1977 pp. 246-248) to obtain analytical expressions or numerical
solutions for the variances and covariances of outputs from simple sequential population
analyses (SPAs) (Saila et al. 1985; Sampson 1987; Prager and MacCall 1988; Kimura
1989). These solutions tend to be complex, only asymptotically valid, and highly model
specific. They have only been worked out for the simplest of the sequential population
analysis models and some simple quota-setting procedures (e.g., Pope 1983).

It is possible to measure how well the fitted population estimates correspond to
trends in indices of abundance when calibration procedures are applied to sequential
population analyses. Estimates of standard errors of population obtained in this way do not
reflect all of the variability in the inputs. For example, similar trends in population
abundance may be obtained when two very different values of natural mortality rate are
assumed as inputs; despite the similar trends (and hence correlation with the abundance
indices), there may be large differences in the absolute estimates of abundance.

The term uncertainty will be used broadly here to refer to any variability or error
that arises from the stock assessment process. Uncertainty can enter into an assessment in
various ways. There may be uncertainties in the values of the inputs, e.g., the total catch
may be estimated with error. Also, the formulation of the assessment model may be
subject to uncertainty, and the analyst may make data-dependent decisions during the
analysis which are subject to error. The degree to which these sources of error are
incorporated into the analyses will determine the perceived uncertainty in the overall
assessment results. If all sources of error are not accounted for properly, then estimates of
the uncertainty in the assessment results may be too small.

Monte Carlo simulation is a convenient tool for studying a model's outputs given
different types and levels of error in the model's inputs (e.g., Restrepo and Fox 1988). In
a sensitivity analysis framework, Pope and Gray (1983), and Rivard (1983), used a Monte
Carlo approach to study the relative contribution of various inputs to the overall uncertainty
in total allowable catch (TAC) estimates obtained from calibrated SPAs. In this paper, we
present a generalized method, also based on Monte Carlo simulation, for accounting for the
uncertainty in assessment results, including the parameters directly estimated from the
SPAs as well as derived statistics used to set management targets and allowable catches.
We then illustrate how the method can be applied with an example for swordfish (Xiphias
gladius) in the North Atlantic Ocean.

Quantifying Uncertainty by Simulation

Suppose the only uncertainty in the inputs to an assessment model concerned the
value of the instantaneous natural mortality rate, M, and that it was felt that M could be
anywhere is the interval from 0.15 to 0.25 yr -1 with equal likelihood. One could compute
the assessment model results for a large number of uniformly spaced values of M in this
interval (say, 100) and make histograms of the results. This, then, would represent the
feelings about the relative likelihood of the estimated output taking on various values. If
not all values of M were believed to be equally likely, then one could weight the 100
outputs by the probability associated with the corresponding inputs.

The above procedure becomes awkward when there are a number of inputs subject
to uncertainty because the number of combinations of input parameter values becomes very
large. An alternative is to use a Monte Carlo approach in which values of the inputs are




drawn randomly from uncertainty distributions. A sufficiently large number of plausible
input data sets are thus generated and used to compute the assessment model results such
that the distributions of the estimated outputs are clearly defined. This may involve several
hundred or several thousand runs, depending on the types of data and models used (in our
work we found that 500 to 1000 data sets were necessary to obtain stable results).

A typical assessment of a fish stock using sequential population analysis involves
three levels of analysis: First, data are prepared for the SPA. This usually involves
estimating and ageing the annual catch, and computing indices of abundance for calibration.
Second, the SPA itself is carried out (it is also frequently termed "VPA", for Virtual
Population Analysis). In many cases several SPAs are carried out in order to examine the
goodness of fits of the input data to alternative model formulations or simply to examine the
sensitivity of the results to the alternative formulations. Third, derived statistics are
computed. These are commonly so-called reference points (Fyax, Fo.1), and forward
projections of stock status and catches under alternative management actions.

It is intuitively simple to see how the Monte Carlo approach can be used to
characterize the uncertainty in the entire analysis process, starting with the raw data
collected for the first step in the above procedure. For instance, the total annual catches and
their proportions at age can be obtained by resampling the original data that lead to the catch
estimates, through a non-parametric bootstrap (Efron 1982). These bootstrapped catches
would then be used to calibrate the SPAs, whose results, in turn, would affect the values of
projected future catches.

In practice, however, the time and computer resources required to carry out such a
large-scale simulation makes it more practical to derive the input uncertainty distributions
from parametric statistical analyses of data (this would involve assuming a distribution type
for the inputs and estimating their mean and variance). Often, the distributions for some of
the inputs will not be based on a rigorous statistical treatment of the data, but rather will
represent personal feelings about the likelihood of the inputs taking on particular values
(this is probably more true of the natural mortality rate, M, which is usually assumed and
not estimated). The outputs would then represent the analyst's personal uncertainty in the
assessment results.

The above approach can be generalized to allow for uncertainty in the sequential
population analysis model formulation as well. Suppose one feels that there is a 70%
chance that the fishing mortality rate in the last year does not decline with age after a fully
recruited age (this is often known as a "flat-topped" partial recruitment curve), and a 30%
chance that it does ("dome-shaped" partial recruitment). Then one could conduct 70% of
the simulations with an SPA that assumes the flat-topped curve and 30% with the dome-
shaped curve. The resulting combination of outputs would reflect the feelings of
uncertainty about the SPA model formulation. Similarly, the approach can also account for
uncertainty concerning data-dependent decision making. For example, if several
abundance indices are available, one might subject each index to a preliminary test to decide
whether the index is acceptable for calibrating the sequential population analysis, e.g., via
analysis of residuals. One can repeat this decision making process for each of the
simulated data sets and thus account for the uncertainty associated with screening indices.

Application to Swordfish in the North Atlantic Ocean
Assessment Procedure. Swordfish in the North Atlantic Ocean are assessed by the
International Commission for the Conservation of Atlantic Tunas (ICCAT). The
assessment procedure is continually changing as experience is gained. The procedure
below was used for the 1989 assessment (ICCAT 1990).

Nine age groups were recognized in the commercial catch, ages 1 to 9+ (where 9+
means age 9 and above). There were 11 years of catch-at-age data from 1978 to 1988.
Fleets from the United States, Japan, and Spain account for most of the catch. Eleven



abundance indices were available based on fleet-specific catch rates from the longline
fisheries ICCAT 1990).

Details of this assessment of the stock are presented in ICCAT (1990). Briefly, the
procedure used was as follows: (1) A separable virtual population analysis, SVPA, (Pope
and Shepherd 1982) was computed in order to obtain estimates of the age-effects or partial
recruitment. Data from 1983 to 1988 were used for this under the assumption that the
selectivity pattern remained stable during that period. For that analysis the terminal fishing

mortality was 0.2 yr -1 and selectivity for the oldest age group was 3.0. (2) Gavaris'
(1988) approach to sequential population analysis (ADAPT) was then used for calibration,
with each abundance index used separately. A weighting factor for each index was
obtained by setting the weight for the ith index equal to the reciprocal of the mean squared
error after calibrating with the index. In performing the calibrations, ages S and above
were assumed to be fully recruited (S; = 1.0 fora =35, 6, ..., 9+) and the partial
recruitment for the other ages was as determined from the SVPA (i.e., from step 1). (3)
The set of weights computed for the abundance indices were then rescaled so that they
summed to unity. (4) The weights were then used in recalibrating the ADAPT SPA using
all of the abundance indices at once. In doing so, the following constraints were used: S;
was taken from the separable virtual population analysis, S, through S5 were directly
estimated through calibration, and Sg through Sg, were set equal to the estimated Sg. The
objective function used in the calibration is to minimize the weighted sum of the squared
deviations from the predicted abundance indices, RSS:

A
RSS = min¥y & W (- Iy,
1
where the subscripts i and y refer to the index and year, respectively, the W; are the

A
weighting factors from step (2) above, and Ijy and Ijy are the observed and predicted
values of the indices, respectively.

After the fishing mortalities and population sizes were computed by the sequential
population analysis, the values of Fp,« and Fy ; (Gulland and Boerema 1973) were
calculated from yield per recruit computations. Data from the terminal year (i.e., the most
recent year available) were used to project the catch in the current year and then project the
catch for the next year. For this, recruitment in the current year and the following year
were assumed by ICCAT to be equal to the long term mean recruitment obtained in the
sequential population analysis. The projections were made for a variety of fishing
mortalities, specifically Fg 1, Fnax, and Fgapys quo- The value of the spawning potential
ratio was also computed. This biological reference point is defined as the current spawning
biomass per recruit divided by the potential spawning biomass per recruit in the absence of
fishing. It has been suggested that many of the fish stocks which have collapsed have had
spawning potential ratios less than 0.2 (see Brown 1990 and Goodyear 1990 for a
discussion).

Specification of Uncertainty in the Inputs. One thousand simulated data sets were
analyzed using a version of ADAPT written in FORTRAN 77 (available from the authors).
The formulation of the problem was made to mimic the 1989 ICCAT assessment for North
Atlantic swordfish. However, we emphasize that the uncertainties in the inputs specified
below are our ad hoc choices and, although realistic, are intended mainly for illustrative
purposes.

Natural mortality. Uncertainty in the natural mortality rate (M) was specified as a
uniformly distributed random variable in the interval from 0.1 to 0.3 per year. The value of
0.2 used by ICCAT (1990) is at the center of this range and the choice of a uniform
distribution places equal confidence in all values in the interval.

Catch-at-age. Total annual catches were assumed to be lognormally distributed
with a coefficient of variation of 10% and expected value equal to those in the assessment.
A coefficient of variation of 10% indicates that the catches are known with high precision.




The proportions of the total catch in any year that make up each age component were
assumed to follow a multinomial distribution with expected values equal to the observed
proportions and sample size equal to 1% of the annual catch. This model for the
uncertainty was purely heuristic rather than based on measured variances.

Abundance (CPUE) indices. The eleven available indices from the longline
fisheries were also assumed to be lognormally distributed with a coefficient of variation of
10%. We chose a value of 10% as a rough approximation for all indices in all years.
However, there is no reason why each index could not have a different coefficient of
variation for each year depending on the amount of data available.

Results and Discussion

The simulations gave rise to 1000 sets of age- and year-specific fishing mortality
rates and population sizes. We computed the coefficient of variation of these sets of
estimates for each age-year combination (Figures 1a and 1b). As expected, the coefficients
of variation were highest in the most recent (terminal) year, 1988. Also, the age groups
which form the bulk of the catch (ages 3 - 5) were the best determined. It is interesting to
note that the coefficients of variation of fishing mortality rates for ages 8 and 9 were
consistently lower than those for preceding ages. This is due to the manner in which the
estimates for ages 8 and 9 were determined: it was assumed that Fgy, = Fgy (subscripts
refer to age and year respectively), and these were computed as a pooled average of fishing
mortalities for ages 5 to 7. Thus, the uncertainty in the estimates of fishing mortality for
the last two age groups is solely a function of the uncertainties in the estimates for ages 5 to
7. This underscores the fact that the simulation results are conditional not only on the input
uncertainty distributions but on the formulation of the model being fitted as well.

The median recruitment (age 1) from the simulations increased over time (Figure 2).
However, the 95% confidence bands, defined by the 2.5th and 97.5th percentiles of the
1000 estimates, are quite wide. The confidence bands provided by the Taylor series
approximation for a single run with the actual data are much narrower than the ones
obtained by the Monte Carlo approach. The former confidence bands indicate there is no
uncertainty in the results for the converged part of the sequential population analysis in
contrast to the simulation results. This is because the Taylor series results are conditional
on the natural mortality rate, catch at age, etc. being known exactly whereas the simulation
accounts for uncertainty in these inputs. For this reason, we believe the simulation results
are more realistic.

Note that there appears to be very little interannual recruitment variability in the time
series (Figure 2). This is probably due in part to the fact that fish ages were estimated from
lengths by inverting the Gompertz growth equation and this tends to blur the age groups.

The population of fish age 5 and above appears to have declined rather steadily
over time while the weighted fishing mortality rate appears to have increased (medians,
Figures 3a and 3b). Here, weighted fishing mortality is defined to be the mean of the
fishing mortality estimates for ages 5 through 9+ computed with weights proportional to
the estimated population size at age. Again, the confidence bands are very wide.

It should be noted that for each run the estimates of fishing mortality, Fay, and
population size, N,y, are highly correlated not only with each other but also with the value
of natural mortality, M, used in the simulation run. For this reason, it is appropriate to
examine trends in an estimated quantity one run at a time. We computed the ratio of the
weighted fishing mortality in a given year y to the weighted F in the base year (taken to be
1978 in this example) for each simulation run (Figure 4). The distribution of the fishing
mortality ratio in 1979 was centered around 1.0; the ratio in 1986, 1987 and 1988 was
greater than 1.0 in 100% of the runs thus clearly indicating that fishing mortality has
increased. This result is not obvious from examination of Figure 3b and illustrates how the
Monte Carlo approach lends itself to hypothesis testing very easily.



Of course, the goals of an assessment are not restricted to estimating population
sizes and mortality rates. Interest is often centered on catch projections and quotas, effort
regulations, and risk analyses. For swordfish assessments, it is useful to contrast the
estimated current level of fishing mortality against reference points such as Fg ; and Fp ..
The uncertainty in such comparisons (e.g., the ratio of current F to F) ;) can easily be
quantified using the Monte Carlo procedure.

For each simulation run, we computed the multiplier that would be necessary to
bring the estimated vector of age-specific fishing mortalities in the terminal year to the Fy ;
and Fp,, levels (Figure 5). For the computations, we used the run-specific natural
mortality rate and the weight at age relationships used by ICCAT in the 1989 assessment.
No uncertainty was specified for weight relationships although this could easily be added if
appropriate information were available. From Figure 5, it is evident that , to achieve the
Fp.1 goal, fishing mortality must be cut to about 25% of its current value (whatever that
may be). With respect to Fp .4, it appears that fishing mortality must be cut by around 50%
(Figure 5). Note, however, that this conclusion is considerably less certain than that for
Fy.1 as evidenced by the fact that the distribution of multipliers is more spread out for Fp,«
than it is for Fg ;.

We also computed 1000 projected catches in weight for 1989 with fishing mortality
equal to that in 1988. We then projected the catch for 1990 with fishing mortality set at the
midpoint between the fishing mortality in 1988 and Fg ; (Figure 6). This is a method for
gradually reducing fishing mortality to minimize the short-term impact that decreased
landings have on fishermen (see Pelletier and Laurec 1990 for a discussion). Recruitments
for 1989 and 1990 were drawn randomly from the empirical distribution of recruitments
estimated from 1978 through 1987 on each iteration. If the fishing mortality does not
change in 1989 from the level in 1988, catches are likely to be somewhere around the 1988
yield of approximately 18,000 mt. The 1990 yields are likely to be around 11,000 to
13,000 mt.

Using the Monte Carlo results, it is equally simple to obtain distributions of catches
for fishing at other exploitation levels or to obtain distributions of fishing mortalities for
fixed catch quotas. Similarly, the distribution of other projected variables, such as the
spawning potential ratio that results from various catch and fishing mortality options, can
be computed. In doing so, it is important to have the values of the inputs used in
calibrating the SPAs (e.g. natural mortality) stored in each iteration, so that the projection
computations use the same values.

Conclusions

Monte Carlo simulation has long been regarded as a very useful quantitative tool,
especially for sensitivity analysis (e.g., Pope and Gray 1983 and Rivard 1983). Itis also
quite useful for studying the properties of specific assessment procedures (e.g., Kimura
1989; Mohn 1983). We believe that the Monte Carlo simulation approach we present is not
only a versatile and intuitive method to quantify uncertainty in assessment results, but in
many cases it may also be the only practical way to incorporate some types of input
uncertainty which are not estimated statistically. Because the estimated uncertainties in the
model outputs are conditional on what is known and what is assumed about the inputs,
failure to acknowledge possible sources of uncertainty in a realistic manner may lead to
overly optimistic views of the uncertainties in the model outputs. The Monte Carlo
approach forces one to examine the nature and magnitudes of the uncertainties in the inputs
and in the model formulation, and it allows one to study how uncertainties are propagated
through the assessment and into the projections ultimately used for management
recommendations.

Perhaps, one of the most encouraging aspects of our experience with application of
the Monte Carlo method is the high precision with which we appear to be estimating
relative statistics. Whereas, stock sizes are estimated with a large degree of error, current




stock size relative to a previous level is not. Similarly, the effort required to generate a
desired level of catch, relative to the terminal year's effort, is estimated with quite useful
precision. Indeed, it is these kinds of relative statistics that are most useful for
management.
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, Figure 1. Coefficients of variation of outputs from the sequential population
analyses of simulated swordfish data sets. a) age- and year-specific estimates of
population numbers; b) age- and year-specific estimates of instantaneous fishing mortality.
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Figure 2. Distribution of recruitment estimates, by year, from the sequential
population analyses. Outer lines are from the Monte Carlo simulations and show 95%
confidence bands (determined as the 2.5th and 97.5th percentiles of the distribution
resulting from 1000 simulations). Inner pair of lines shows the confidence bands obtained
from a single run of the ADAPT program using the actual data. Line with symbols gives
the median estimate for each year from the simulations.
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_ Figure 3. Medians, 2.5th percentiles and 97.5th percentiles of the output
distributions from the Monte Carlo simulations. a) distribution of the estimates of the size

of the population of fish aged 5 and above
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Figure 3. Medians, 2.5th percentiles and 97.5th percentiles of the output
distributions from the Monte Carlo simulations. b) distribution of the estimates of the
fishing mortality for fish aged 5 and above.
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Figure 4. Distribution of the ratio of fishing mortality in year y to that in 1978 as

a function of the year. Vertical bars indicate 95% confidence intervals based on percentiles;
horizontal bars represent the median ratio.
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Figure 6. Distribution of estimated catches in 1989 when the fishing mortality is
kept the same as in 1988 (open bars) and distribution of estimated catches in 1990 when the
fishing mortality is equal to the midpoint between the fishing mortality in 1988 and Fy;,
assuming fishing mortality in 1989 was the same as in 1988 (cross-hatched bars).



