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ABSTRACT . , ,
. Electrophoreuo scparauon of protein polymorplusms and discriminant analysis of scale characters are boLh
rbuunely used to discriminate thc'conuncnt of origin of Atlantic salmon caught at West Greenland. Howevcr, the use
of electrophoretic separation to discriminate fish in the commercial caiches is precluded by the difl‘lcul_ty of
collecting sufficient samples. Sampling for the discriminant analySis is simpler, although this method provides only -
abt_)iit\an 80% correct classification for both North American and European fish. This paper presents an alternative
method for analysing the scale data, based on the use of a neural network. The same data sets were used to develop
and test a discriminant function and a neural network, and the results were compared. The network was set up with
the four input variables (river age, fork length and two scale circuli counts) grouped into discrete classes in order to
provxde 33 input neurons; the 2 oulput neurons corrcsponded to 'North American’ and 'European and the network
was given 17 hidden layer neurons. The neural nétwork analysxs gave more accurate scparauon (85 8% correct) of
all samples into North American and European groups than the discriminant analysis (80.3% correct)."l‘he
classification by the network was improved by reducing the testing tolerance level and thus removing the most
doubtful results from the assessment. At a tolerancé level of 0.2, 15% of the samples were unclassified, but the

accuracy of the remaining classifications was improved to almost 90%.

INTRODUCTION

The West Greenland fishery for Atlantic salmon (Salmo salar L. ) explonts fish originating from both North
American and European rivers. Tlus presents a complex management problcm and has led to the requxremcnt to find
mclhods 10 dnsungulsh fish from the two continents in order to estimate the composmon of the catch. Both protcm
polymorphisms and scale characters have been used exlcnslvcly to discriminate between stocks or groups of stocks
of Atlantic salmon (g Payne and Cross, 1977; Lear and Sandcman, l980, Reddin et al. 1988)). Elcctrophoretxc
separation of prntein polymorphisms has been shown to provide fairly reliable discrimination between North
American and European fish (Verspoor and Reddin, 1989). About 65% of each stock group can be assigned with a
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probability of >1000:1 of being correct and a further 30% with a probability of >10:1 of being correct. However, the
routine use of this method in the West Greenland fishery is precluded because it is impossible to obtain the
necessary tissue samples from a large exiough number of fish. As a result, discriminant an.alysis of scale
characteristics in currently used in the annual assessment of the fishery (Reddin, 1986; Anon, 1989). The o -
discriminant function is developed and tested using data from salmon whose origin has been established by ‘

electrophoretic separation (Reddin et al, 1988) or tag recoveries (eg Russell et al, 1990).
The purpose of this paper is to compare the accuracy of the discriminant analysis with an alternative method,
that of 'neural networks', in the analysis of the same data set. o B o

NEURAL NETWORKS
Neural networks are computer models which are designed o operate in a similar way to the brain by modelling
mathematically the functions of neurons and synapses. Neurons in the brain are highly interconnected, and it appears
to be this property that gives them their ability to learn and recognise patierns. ) ’ :
The basic mode of operation of biological neurons is that they accept and combiné many inputs; if sufficient .
inputs are reccived at the same time, then the neuron will produce an output, otherwise the neuron will remain
inactive The efficiency of the contact between each input and the neuron is varied by chemical cﬁanges where they
jOll’l at the synapses. The variable efﬂcxency of blologxcal synapses can be mimicked mathemamally m the aruﬁcml 1
neuron by applying a multhhcatwe weighting factor to each of the i mputs an eﬂicxent synapse gets a hxgh |
welghtmg, while a weak synapse gets a low welghtmg Thus: "
- N | | l
Total input =  wl '
: i=1
where w; is the weighting value on the ith input (I;). :
‘This sum is then compared with a threshold value, 8, for the neuron; if this value is exceeded the output wiAll be
1, if not it will be 0. : : :

Such an artificial neuron can be trained by presenting it with sets of input and output patterns (or vectors):

e.g.  Input pattern: o ~ Output pattemn: . L ' ‘
. Length , 65 : American}1
River Age 3 European)0

Scale parameter 1 |23
Scale parameter2 | 13

. 'The neuron is mmally set up with random weights (w ) on the inputs. Dunng the Lrammg phase, the mput pattern
is used to produce an output whxch 1s then compared with Lhe correct output. If the difference between the network
output and the target is within acceptable limits, then no 'leammg takes place If, however, the difference exceeds
the lumt lhen the welghung factors are adJust.ed to rcduce the difference. '

This leammg algomhm allows thé artificial neuron {0 divide the pattem space in a simple manner; for example it
can separate panerns in two dxmensnons with a line. This is much the same as a dlscnmmam funcuon Howevcr, ’

there are limitations to this type of discrimination. One msoluble problem is the exclusive-OR (XOR) function,



which produces one output (Y) if only one of its two inputs is "on’ but another (X) if both are 'on’ or both are 'off'.

The input and output vectors are shown with a graphical representation below: -

Input Output Graphical representation:
patterns: patterns:
1 Y X
1. 0,0 - X
2. 0,1 Y -
3. 1,0 Y 0 X Y
4. 1,1 X v Y
r 0 1

. In the graph, no single line can be drawn to separate the X' values from the "Y' values. For the single neuron,
there are no possible weighting values for the inputs that will produce the same output pattern when inputs are on or
off; thus it cannot be trained to discriminate these groups

The constraint of linear separability was overcome by the development of mululayer neural networks. In these
models, neurons (indicated by circles in the diagram below) are arranged in, usually, three layers; an input layer, a

middle 'hidden’ layer and an output layer.

Input layer Hidden layer Output layer

Each unit in these layers is hke the single aruﬁcxal neuron described above, although the threshold function has
to be changed. If, for example, the neurons in the hidden layer only gave outputs of '1' or ‘0", the input layer would be
masked from the output layer, and no information would be passed to show which neuron weightings had to be
adjusted. The figures below show the step threshold function and an alternative non-linear function of the type
required for multilayer networks:

Output . Output | : .
‘ A
' 7
| J —-=
0 “Input ‘ 0 Input
Step threshold function Non-linear threshold function.

Increasing the number of layers increases the resolving power of the network. As explained above, a single

neuron can define a single line in the pattern space (visualising the problem in two dimensions). In a two layer



system several neurons (each defimng a lme) are combined, producmg more complex space partitioning. Regxons
defined in this way are called ‘convex hulls' and have the property that any two pomls within thém can be Jomed by

‘a erzught line that does not cross the boundary of the region. If a third layer of neurons is added, the space defined

will bé a combination of ‘convex hulls', which can produce arbitrary complex shapes in the pattern space. This -

means that adding further layers will not help improve the resolving power of the network.

METHODS
The database: o

Both discriminant analysis and the neural nictwork analysis are based on samples of known' origin. The
dalal)ase used in lhlS compaflsoh cousisted Of saxnples from Noiih Amerlcan*ahd Europeah oﬁgin 2 sea Wlntei'
Data were provnded on sample year, fork len gth, river age, sea age and two scale variables. Fork length values for’

fish sainpled in homewaters were not appropiiaie for the analysis and were therefore given as 'unkniown'. Fish -

- sampled at Greenland were identified to continent of origin by electrophoretxc scparation or tag recoveries. Scales .

wére taken from the same localmn on the fi 1sh and circuli counted as described by Reddm (1986) The scale -
variables used were the cxrcuh counts in the winter growth portion (CS lW) and in the summer growth poruon
(CS1S) of the first sea year, read at 45" from the longest axis. | |

Bécause the discriminant analysis was to be carried out on separale river age classes (see below) the data set was
eslabhshed with equal numbers of North American and Europcan salmon of river age 1 (200), 2 (330) and 3-6 (220);
this gave a total of 750 salmon from each continent. The database was divided randomly in half to provxde a '
"training' set and a 'test' set. In both the discriminant and neural network analyses, the roles of these sets were
reversed, and the training and tésting processes were repeated; the results were then combl'ned, and misclassification
and error rates were based on a summation of both runs (Pella and Robertson, 1979).

The misclassification rate is deﬁned asthe sum of the mcorrectly classed samples divided by the total number of
samplés classxﬁed The error raté is the actual proporuon of North Amencan or European salmon in the samples

‘minus the calculated propomons classified. - - ' T N ' .

Discriminant analysis: .

The parametric discriminant analysis model employed was as described by Reddin (1986). Because the results of
an analysis of variance (ANOVA) indicate si ghiﬁciam;ef fects of river age on the scale characters CS1S and CS1W,
three discriminant functions were developed for salmon of river age 1, 2 and 3-6 respectively.

The discriminant model used was based on a measure of geﬁekalised squared distance (Rao, 1973) employing
cither the individual wuhm-group covariance matrices or the pooled covariance matrix. For nver age 1 salmon the
within-covariance matrix was used for classxﬁcalnon because a test of the homogenexty of the wnhm~covanance
matrices was SIgml‘icam at the 10% levcl (X 27 2 df = 3 p< 0. Ol) (Kendall and Stuart, 1961) For older river age
salmon pooled covanance matnces were used because tests of the homogeneny of the wulun-covanance matrices

salmon, X =0.14, df = 3,p= 0.71).



Neural network analysis:
Neural networks operate beucr on discrete binary inputs rather than continuous variables, and the 1eai’nirig power

is improved if the number of i mputs is increased. For thls reason each of the input vanables was divided into the

followmg classes:

CS1S <4 . CSIW <18 Riverage 1 Fork length <57
CS1s 4 CS1wW 18-19 River age 2 Fork Iength 58-59
CS1s 5 ' CS1W  20-21 Riverage 3 - Fork length 60-61
CSi1S 6 CS1W 2223 Riverage4 _  Forklength 62-63
CS1s 7 CSIW 24.25 River age >4 Fork length 64-65
CS1s 8 CS1W 26-27 , : Fork length 66-67
CS1s 9 CS1w  28-29 v ~ Fork length 68-69
CSis 10 CS1w  30-31 ) ' Fork length >69
CSIS 11 CSlw >31 Fork length Unknown
CS1s  >11 - .

For each record (salmon), these classes were given values of '1' if the fish measuréxﬁent was within the given

range or ‘0’ if it was not. Each of the groups was assigned to an mput neuron, giving a total of 33 neurons in the input

layer.

The hidden and output layers had 17 and 2 neurons respécﬁvely. The two output neurons corrcspondcd o
'American' and 'European’; the 'correct’ outputs were defined such that, if the fish was American, the American
output neuron would be given a value '1' and the Europcan output neuron a value '0". If the fish was European the
reverse would be true.

, Tv&‘p networks were trained by repeatedly presenting the examples in the respective 'training' data sets. The
leaming tolerance (ie the accuracy required for an example to be considered correctly learnt) was setat 0.1. The
trained networks (effectively the values of w;) were stored at regular interval during the training pro;edure and
tested on the alternate ‘test' data sets. The tolerance during testing was set at a lower level than during learning, for
example 0.4; at this level, if the network ass’igned a value of over 0.6 to the American output (and less than 04 to the

European output) it would identify the fish as American, and vice versa.

RESULTS

Dlécrnmlnant analysis: ) ‘
The results of classifying the ‘test’ samples for the three river age groups are shown below, and the lotal

classification matrix for all age groups combined is given in Table 1:

" Riverage Misclassification  Error
rate - - - rae
1 10.0% ' +/- 3.5%.
2 - 23.3% . +-3.0%

3-6 23.2% +/- 0.9%

All age groups  19.7% +/-2.0%



Neural network: o .

i-‘igu;é 1 shows the change in the number of samples correctly learnt on successive training runs through thé two
'trainiﬁé' data séts; the number increases quickly at first and then more sldle. lrevel'ling~ off after about 100 runs. Th}e
change in the proportion of the 'test’ data sets that weére correctly identified by the two networks after different

numbers of training runs is shown in Figure 2. The numbser of records correctly identified improves very rapidly for

. the first 5 training runs, followed by a slow imprchmcn; for about another 35 runs; with further training the

discriminatory power of the networks gradually deteriorates.

From Figure 2, the two networks were judged to be optimally trained after 40 runs of the 'training' data sets.
Tables 2-4 show the results of testing these networks on their respective 'test’ data sets ‘a‘t‘dif ferent tolerance levels.
In Table 2, each record is classified according to the output neuron (American or European) with the highest vqiue.
In Tables 3 and 4, classification is made using tolerance levels of 0.4 and 0.2 respectively, and there are therefore

some unclassiﬁed records. The misclassification and error rates from the tests are summarised below:

Tolerance . Misclassification  Error Unclassified

level rate ~ rate

None . .. 142% +/-0.2% 0%

0.4 12.7% +/-0.4% 4.2%

0.2 ©10.1% +-1.3% 149%
DISCUSSION

The neural network analysis gave more accurate separation (85.8% correct) of all samples into North Américan
and European groups than the discriminant analysis (80.3% correct). This is as predicted because the network is able
to separate the pattern space in a miore complex manner than the discriminant analysié. The classification by the
nétwork was improved by reducing the testing tolerance level and thus removing the most doubtful results from the
assessment. At a tolerance level of 0.2, 15% of the samples were unclassified, but the accuracy of the remaining
classifications was improved to almost 90%. This gives a misclassification rate equal to about half that of the
discriminant analysis. The misclassification rate by the neural network could probably be reduced still further by
using an even lower tolerance level, but the possibility that the unclassified samples may be biased towards
particular stocks needs to be investigated.

It should be noted that, although length measurements were not available for about half of the samples, the
neural network operated successfully on the incomplete data sets. This demonstrates the flexibility of this technique
and illustrates how a wide range of quantitative and descriptive data could be used in a neural network analysis. *. «

At present, the only way to fine-tune the network in order to improve its discriminmbry powers is by trial and
error. For example, increasing the number of input neurons by putting the data into classes improves the learning
power of the network, but it also reduces the number of examples of each input pattern for the network to train on. A
compromise also has to be made in the number of training runs the network is given. The 'training curve' in Figure 1
shows that the network may get progressively better at discriminating the samples in the ‘uaining' data set over many
training runs, although there may always be some records that éaﬁhoi be learnt, if, for example, an American and

European fish have almost identical input pattems. The leaming curve in Figure 2, however, shows that the
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discrﬂiminato'ry' pdwer of the network may only over about 40 ‘icaming runs, but also demonstrates that the network
can be overtrained. It appears that by learning the differences in the 'trairiing‘ data set too precisciy, the network
looses its ability to generalise on other similar data sets. '

The result of this comparative study suggests that neural networks may offer a useful alternative to discriminant
analysns in other situations, for example, in conventional scale reading. Modern image analysxs systems permit the
objective collection of many scale measurements with little effort. Such data would be ideal for analyms by neural

networks which leam well with many inputs even when the dz;ta are imprecise.
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Table 1. The results of classifying test samples of Atlantic salmon to continent of origin by discriminant analysis of
scale characteristics; results combined for river age 1, river age 2 and river age 3-6 fish.

Actual ___ Predictedorigin___

Origin American  European  Unclassified Total

American 617 133 0 750
(82.3%) (17.7%)

European 163 587 0 . 1750
(21.7%) (78.3%)

Totals 654 622

classified (52.0%) (48.0%)

Actual 750 750 )
(50.0%) (50.0%)

Error rate +2.0% -2.0%

Number of records classified: 1500 (100%)

Number of records correctly classified: 1204 (80.3%)
Number of records incorrectly classified: 296 (19.7%)

Table 2. The results of classifying test samples of Atlantic salmon to continent of origin using a neural network with
no threshold level; test fish assigned to the origin given the highest output value.

~

Actual Predicted origin

Origin American European Unclassified Total

American 645 105 0 750
(86.0%) (14.0%)

European 108 642 0 750
(14.48%) (85.6%)

Totals 753 747

classified (50.2%) (49.8%)

Actual 750 750
(50.0%) (50.0%)

Error rate +0.2% -0.2%

Number of records classified: 1500 (100%)

Number of records correctly classified: 1287 (85.8%)

Number of records incorrectly classified: 213 (14.2%)

+



Table 3 The results of classifying test samples of Atlantic salmon to continent of origin using the neural network
with a testing tolerance level of 0.4.

Actual
Origin American
American 631
(84.1%)
European 93
(12.4%)
Totals 724
classified (50.4%)
Actual 750
(50.0%)
Error rate +04%
Number of records classified:

Number of records correctly classified:

Predicted origin

European  Unclassified Total
90 29 750
(12.0%) (3.9%)
623 34 750
(83.1%) (4.5%)
713
(49.6%)
750
(50.0%)
-0.4%

1437 (95.8%)

1254 (87.3%)

Number of records incorrectly classified: 183 (12.7%)

~

Table 4 The results of classifying test samples of Atlantic salmon to continent of origin using the neural network
with a testing tolerance level of 0.2.

Actual
Origin American
American 587
(78.3%)
European 67
(8.9%)
Totals 654
classified (51.25%)
Actual 750
(50.0%)
Error rate +1.25%
Number of records classified:

Predicted origin

European  Unclassified Total
62 101 750
(8.3%) (13.5%)

560 123 750
(14.7%) (16.4%)

622

(48.75%)

750

(50.0%)

-1.25%

1276 (85.1%)

Number of records correctly classified:

1147 (89.9%)

Number of records incorrectly classified: 129 (10.1%)
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Figure 1. Number of samples correctly learnt against the
number of training runs for the two training data sets.
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Figure 2. Number of samples correctly classified from two
test data sets against number of training runs for the two
training data sets.
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