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ABSlRACT

Electrophoretic separation of protein polymorphisms and discriminant analysis of scale chafacters are both

rotitiriely tised to diseriminate the,continent of origin of Atlaritic salmon caught at West Greenlarid. However. the use
. .

of electrophoretic separation to discriminate fish in the commercial caiches is precluded by the düficuIty of

collecting sufficient sampies. Sampling far the diseriminant analysis issimpler. although this methOd provides only .

ab<?ut'an 80% correct classification for both North American and European fish. Tins paper presents an alternative

method for :inaIysing tlte seale data. based on the use of a neural network. Tbe same data SetS were used 10 develop

and test a diseriminant function and a neural network. and the results were compared. Tbe network was set up with

the four input variables (river age. fork lengtlt and two sciue circuli counts) gfouped into diserete classes in order to

provide 33 input neurons; the 2 output neurons corres~ndCd to 'North Amerlcan' and 'European'; and the network

was given 17 hidden layer n~ns. The neufai network analysis gave more accurate separation (85.~% correct) of

atl sainples into North Americ.m and European groups than tltc'diserlminani analysis (80.3% correci). Tbe
.." .

cIaSsification by the network was improv&t by reducing the testing tolerance level and thus removing the most

doubtful results from the assessment. At a tolerance level of 0.2. i5% of the sampies were uncIaSSified. but the

accuracy of the remainmg classifications was improved to almost 90%.

INTRODUCTION

Tbe West Greenland fishery for Atlantic salmon (Salmo Salar L.) exploits fish originating from both North

American and Euro~ rivers. This presents a complex management probiem and has led to the reQuirement to rind
. ,

methods to distiriguish flSh from the two continents in order to estimate the compositiori of the cateh. Both protein
.. " ..

polymorphisiris and Seale characters have been used extensively to diseriminate between stockS or groups of stockS

of Attantic salmon (eg Payne and Cross. 1977; Lear and Sandeman. ~980; Reddin et aI. 1988». EICctrophoretic

separation of protein polymorphisms has been shown to provide fairly reliable discriminati~ri between Ncirth
American and EuroPean fish (Verspoor and R~din~ i989). About 65% of each stock group cim be assigned with a ,
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probability of>I000:1 ofbeing ~orrect and a f.:u.ilier 30% wilh a probability of>10:1 ofbeing correct. However, the

routine use of this method in the West Greenland fishery is precluded bCcause it is imPossible 10 obtain the
. .

necessary tissue sampies from a large enough ilUinber of fish. As a result, discriminant analysis of scale

characteristics in currently used in the annual assessment of the flShery (Reddin, 1986; A~on, 1989). The

discrlminant fwiction is develoPed and tested using data from salmon whose origin has~n established by

electrophoretic separation (Reddin el al, 1988) or tag recoveries (eg Russell et al, 1990).

The purpose of this paper is 10 compare the accuracy of tlie discrimiJlll~t analysis with an alternative method,

that of 'neural networks'. in lhe aitalysis of the same data set.

NEURAL NETWORKS

Neural networks are computer models which are designed 10 operate in asimilar way 10 the brain by modelling

mathematically the funetions of neurons and synapses. Neurons in the brain are highly interconnected, arid it appears

to be this property that gives them their ability 10 leam rind recognise piltterrlS.

The basic mode of operation of biological neurons is that they accept and combine inany inputS; if sufficient

inputs are received al the same time, then the neuron will produce an output, otherwise the neuron will remairi

inaetive. The efficieney of the contact between each input and the neuron is varied by chemical ehanges where they

join at the synapses. Tbe vanable 'cfficieney of biological synripses ciui be mimicked mathcmaticaiiy in the iutifieial

neuron by applying ~ multiplicätive weightmg factor LO ea~h of the inputs; an 'efficien't sYnapse' g~ts a high

weightirig, while a 'weak synapse' gets a low weighting. Thus:

•
Americanfl ]
European~ .

Output pauern:

Total input =

Input pattern:

Lerigth
River Age
Seale parameter 1
Seale parameter 2

Such an artifieial neuron can be trained by presenting it with sets of input and output patterns (or veCtors):

n
L wiIf

i=1

where wi is the weighting vatue on the ith input (Ii)'

This sum is then eompared with a threshold value, 0, for the neuron; if this value is exceeded the output will be

1, if not it will be O.

e.g.

The nem-on is initially set up with rändom weightS (wi) on thc inputs. Ollring the trai~mg phase, the mput pattern

is usect to produce an output, which is then eompared with thc ~orrecl output If the difference bCtweeri the network

output and the target is within acceptable iimits, then no 1eaming' takes plaee. If, however, the differerice exceects .

the limit, th~n the weighting factors are adjusted tO rcduce the difference.

This leaining algarithm allaws the artificial neuron to divide the pattehI space in äsimple rrianner; far example it

can separate patterns in t"'o dimensions with a line. This is much the same as a discriminant f~nctiori. ~owev~r,

there are limitatlons iO this i~ rir discrlmination. One inSoI~ble problem is the exclusive-OR (xOR) functlon,



which produces one output (Y) if only one of its two inputs is 'on' but another (X) if both are 'on' or both are 'off.

The input and output vectors are shown with a graphical representation below:

Input Output Graphical representation:
patterns: patterns:

I Y X
1. 0,0 X
2. 0,1 Y
3. 1,0 Y 0 X Y
4. 1,1 X

0 1

. In the graph, no single line can be drawn 10 separate the 'X' values from the 'Y' values. For the single neuron,

there are no possible weighting values for the inputs that will produee the same output pattern when inputs are on or

off; thus it eannot be trained 10 discriminate these groups.

The eonstraint of linear separability was overcome by the development of multilayer neural networks. In these

models, neurons (indieated by eircles in the diagram below) are arranged in, usually, three layers; an input layer, a

middle 'hidden' layer and an output layer.

Input layer Hidden layer Output layer

•
Each unit in these layers is like the single artificial neuron described above, although the threshold funetion has

. '.

to be ehanged. If, for example, the neurons in the hidden layeronly gave outputs of'l' or '0', the input layer would be.
masked from the output layer, and no infonnation would be passed to show which neuron weigbtings bad 10 be

adJusted. The figures below show the step threshold function and an alternative non-linear funetion of the type

required for multilayer networks:

Output 1 :- - . - - --
I
I
I

I
I_______ J

e Input

Output 1

e Input

Step threshold funetion Non-linear threshold funetion.

Increasing the number of layers increases the resolving power of the network. As explained above, a single

neuron ean define a single line in the pattern spaee (visualising the problem in two dimensions). In a two layer
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system severilI neurons (each defming a line) ace combined, prOducing more complex spare parutiorung. Regions

defined in this way are caIIed 'convex hulls' and have the property that any two Points within them can be joined by

a striüght line that does not cross the bOundary of the region. Ifathud layer of neurons is added, the space der.ned

will bC acombination of 'convex hulls" which Can produce arbilrary complex shapes mthe pattern space. Tb~

means that adding fuither layers will not help improve the resoiving power of thc network.

METHons

The database:

BOth dlscriminant analysis and the neural rietwork analysis riTe based on sampIes of 'kiiown' origin. Tbe

database used in this comparison consisted of SampIes from North American'arici European orlgin 2sea-winter

saIniön'Coitect~ in homewater fishenes (1980-85) and 1 sea-winter saimon sampled at West Greenhiiid (1986-89).
',' ',', '.' > ," ...

Oatli were providCd on sämple year, fork length, civer age, Sea age and lWO sCale vanables. Fork length values for

flSh sampled in homewaters were not appropnate for lbe analysiS ~d were therefore given as 'unkriown'. Fish '

sampled at Gcrentand were identir.ed to contlneni of örigin by eiectrophoretic separation or lag recOveries. Scales

were laken Crom the s:im'e location on the flSh, and clrculi coiinted as described by Reddin (1986). Tbc Scale·

variables uSed were the circuli coUntS in the winter growth portion (CS IW> arid in the summer growth portion

(CS1S) of the first Sea year, read at 45' from the longest axiS.

Because the discriminant analysis was to be caiTied out on ~parate river age dasses (See below) the daui set was
estabÜshed with equal numbers of North American and Europe3n Salmon of ri~er age 1 C200),2 (330) and 3-6 (220);.. .

ihis gave a iotai of 750 salmon from each continent The ~tarose was divided randomly mhaiC 4> provide a

'training' set and a 'test' set. Iri both the discriminant and ßeufai network analyseS, the roles of these sets we~

reverScd, and the tr.lining and tesiing processes were repea~; the ~u1ts were then combined, and misclassification

and em;r rates were based on a suinination of halb runs (pella arid RobertSOn, 1979).

The misclaSsificatlon rate is defined as the sum of the incorrectly ciassed sampIes divided by the lotal number of

sampIes ciasslled. Tbe error rote is the actual proPortion ofNorth Amencan.or Europeaii SaImon mthe sampies

minus the caiculatCd proportions classified.
" '.' . ~ .

DiScriminant analysis: . '

The paräinetrlc disCriffiiriant analysis mOdel employCd was as describi::d by Reddin (1986); Because the results of

an analysis of variance (ANOVA) indicaie sigltificant'e~iec~ of river ag~ on the sca1e characters CS IS and CS1w,
three discriminant functions were developcd for Salmon of river age i, 2 ami 3-6 resPectively.

The diSCriminant model uSed was t>aSed on ri measure of generaÜsed squared distance (Rao, 1973) employing

either the mdividual within-groiip covanance matrices or the pOOled cOvarlance matrix. For ~ver age isaIrrlOn the

within-covanance ·~atrix v.:as used for classificali~n beeauseatest of the homogeneiiY of the withiri-ccivanance

inatrlces waS signif1cant 3t the 10% level (X =27.2. elf =3, p < 0.01) (KendaIl and Stuari. 1961). For older river age

saIniori, pooled covariance matrices were üsCd bCc:iüse tCstS ofthe homogeneity of the within-covariance matrices

wem not significant at the 10% level (for river age 2 salmon, X = 2.06, dr = 3. p = 0.15, and for nver age 3-6

salmon, X = 0.14, df= 3, p = 0.71).

•
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Neural network analysis:

Neural networks operate better on discrete binary inputs rather than continuous variables, and the leaming power

is improved if the number of inputs is increased. For this reason each of the input variables was divided into the

foUowing classes:

CSIS <4 CSIW <18· Riverage I Fork length <57
CSIS 4 CSIW 18·19 Riverage2 Fork length 58·59
CSIS 5 CSIW 20-21 Riverage 3· Fork length 60-61
CSIS 6 CSIW 22-23 Riverage4 Fork length 62-63
CSIS 7 CSIW 24·25 Riverage>4 Fork length 64·65
CSIS 8 CSIW 26·27 Fork length 66-67
CSIS 9 CSIW 28-29 Fork length 68-69
CSIS 10 CSIW 30-31 Fork lepgth >69
CS1S 11 CSIW >31 Fork length Unknown
CSIS >11

For each record (salmon), these classes were given values of '1' ü the flsh measurement was within the given

range or '0' if it was not Each of the groups was assigned to an input neuron, giving a total of 33 neurons in the input

layer.

The hidden and output layers had 17 and 2 neurons respectively. Tbe two output neurons corresponded 10

'American' and 'European'; the 'correct' outputs were deflned such that, if the flsh was American, the American

output neuron would be given a value 'I' and the European output neuron a value '0'. If the flSh was European the

reverse would be true.

Two networks were trained by repeatedly presenting the examples in the respective 'training' data sets. The

leaming tolerance (ie the accuracy required for an example 10 be considered correctly leamt) was set at 0.1. The

trained networks (effectively the values of wi) were stored at regular interval durlng the training procedure and

tested on the alternate 'lest' data sets. Tbe tolerance during testing was set at a lower level than during leaming, for

example 0.4; at this level, ü the network assigned a value of over 0.6 to the American output (and less than 0.4 to the

European output) it would identify the flsh as American, and vice versa.

RESULTS

Discriminant analysis:

Tbe results of classifying the 'test' iamples for the three river age groups are shown below, and the total

classification matrix for alt age groups combined is given in Table I:

River age Misclassification Errar
rate rate

1 10.0% +/-3.5%.
2 23.3% . +/·3.0%
3-6 23.2% +/-0.9%

All age groups 19.7% +/·2.0%



Neurid network:

Figur~ 1 shows the change in the number of sampIes correetly iearnt on successive trainio'g runs through the two
• " • , , . I " . • •

'trainirlg' data sets; the number increases quickly at first and then more slowly, levelling off arter abOut 100 runs. The
, 'j -' .;

change in the proportion of the 'test' data sets that were correctIy identifiOO by the two networks after different

numbers of training runs is ShOwD in Figure 2. The number of records correctIy identified improves very rapidly for

. the flrst 5 training runs, foIlowed bY a slow improvement for about another 35 runs; with further training the

discriminatory power of the networks gradliaIly deieriorates.

From Figme 2, the two networks were judgOO to be optimaIly trainOO after 40 runs of the 'training' data sets.

Tables 2-4 show the results of testing theSe networks on tbeir respective 'test' data sets at,different tolerance levels.

In Table 2, each record is cIassirioo a~cording to the output neuron (Americari or European) with the highest v~ue.
, ,

In Tables 3 and 4, classification is made using tolerance levels ofO.4 and 0.2 respectively, and there are therefore

some uncIassified records. The miscIassification and error rates from the tests are summarisOO below:

,-(
{

Tolerance
level

None
0.4
0.2

, MiscIassification
rate

,·14.2%
12.7%
10.1%

Error
rate

+/-0.2%
+/- 0.4%
+/-1.3%

UncIassifiOO

0%
4.2%
14.9%

DISCUSSION

The'neUrat network analysis gave more accurate separation' (85.8% correct) of aIl sampIes into North American

and European groups thari the discriminant analysis (80.3% correct). This is as predicted bticilUse the network is able

10 separate the pattern space in a more complex manner than the discrimiriant analysis. Thc cIassification by the

network was improvOO by reducing the testing tolerance level and thus removing the most doubtrul results from the

aSscs;ment At atolerance level of 0.2, 15% of the sampIes were unclassiflCd, but the accuracy of the remainirig

cIassificatlons was improved to almost 90%. This givcs a misclassification rate equaI to about half tha~ of the

discriminant analysis. The miscIaSsification rate by the neural network could probably t>e reduced still ~urther by •

using an even lower tolerance level, but the possibility that the unclassifiOO sampIes may be biasCd towards

pClrticular stocks needs to be investigatOO.

It should be notOO that, although length measurcments were not available for about half of the sampIes, the

neural network opernted successfuIly on the incomplete data sets. This demonstrates the flexibility of this technique

and iIIustrates how a wide range of quantitative and descriptive data could be used in a neural network analysis. '. .

At present, the only way tO flne-tune the network in order to improve its dlscriminatory powers is by trial arid

error. For example, increasing the number of input neurons by putting the data into cIasses improves the learning

power of tbe network, but it also reduces the number ofexamples of each input pattern f<?r tbe network to train on. A

compromise also has to be made in thc number of training runs thc network is givcn. Thc 'training curVc' in Figure 1

shows that the nelwork may gel progressively heuer al discrimiruiting the sampies in the 'training' dara sei over many

training runs. although there rnay always be some records that eannot bc lcarnt. if. for example. an ArIlerican and

European flsh have almost identical input patterns. Thc learning curve in Figure 2, however. shows that tbe
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discriminatory power of the network may only over abollt 40 Iearning runs, but lllSO demonstrates that the network

can be overtrained. It appears that by learning the differences in the 'trairiing' data set 100 precisely, the network

looses its ability to generaHse on other similar ruita sets.

Tbe result of this comparative study suggests that neural networks may offer a useful alternative to discriminant

analysis in other situations, for example, in conventional seale reading. Modern image analysis systems perrnit the

objective collection of many scale measurements with Hute effort. Such data would be ideal for analysis by neural

networks which learn weIl with many inputs even when the data are imprecise.
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Table 1. The results of classifying test sampies of Atlantic salmon to continent of origin by discriminant analysis of
scale characteristics; results combined for river age 1, river age 2 and river age 3-6 fish.

Actual Predicted origin
Origin American European Unclassified Total

American 617 133 0 750
(82.3%) (17.7%)

European 163 587 0 750
(21.7%) (78.3%)

Totals 654 622
classified (52.0%) (48.0%)

Actual 750 750
(50.0%) (50.0%)

Errorrate +2.0% -2.0%

Number of records classified: 1500 (100%)

Number ofrecords correctly classified: 1204 (80.3%)

Number of records incorrectly classified: 296 (19.7%)

Table 2. The results of classifying test sampies of Atlantic salmon to continent of origin using a neural network with
no threshold level; test flSh assigned to the origin given the highest output value.

Actual Predicted origin
Origin American European Unc1assified Total

American 645 105 0 750
(86.0%) (14.0%)

European 108 642 0 750
(14.48%) (85.6%)

Totals 753 747
classified (50.2%) (49.8%)

Actual 750 750
(50.0%) (50.0%)

Error rate +0.2% -0.2%

Number of records classified: 1500 (100%)

Number of records correctly c1assified: 1287 (85.8%)

Number of records incorrectly classified: 213 (14.2%)

•



Table 3 The results of classifying test sampies of Atlantic salmon 10 continent of origin using the neural network
with a testing tolerance level of 0.4.

Predicted origin
Actual
Origin American European Unclassified Total

American 631 90 29 750
(84.1%) (12.0%) (3.9%)

European 93 623 34 750
(12.4%) (83.1%) (4.5%)

Totals 724 713
classified (50.4%) (49.6%)

Actual 750 750
(50.0%) (50.0%)

Errorrate +0.4% -0.4%

....

Number ofrecords classified: 1437 (95.8%)

Number ofrecords correctly c1assified: 1254 (87.3%)

Number of records incorrectly classified: 183 (12.7%)

Table 4 The results of classifying test sampies of Atlantic salmon to continent of origin using the neural network
with a testing tolerance level of 0.2.

Predicted origin
Actual
Origin American European Unclassified Total

• American 587 62 101 750
(78.3%) (8.3%) (13.5%)

European 67 560 123 750
(8.9%) (74.7%) (16.4%)

Totals 654 622
classified (51.25%) (48.75%)

Actual 750 750
(50.0%) (50.0%)

Errorrate +1.25% -1.25%

Number of records classified: 1276 (85.1%)

Number of records correct1y c1assified: 1147 (89.9%)

Number of records incorrectly classified: 129 (10.1%)



Figure 1. Number of sampIes correclly learnt againstthe
number of training runs tor the two training data sets.
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