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Abstract

An inverse modeling technique is applied upon a new hydrographic data set of
the Iceland basin. The goal is to compute the barotropic component of the
velocity field, without assuming a level of no motion. From a simulation
study on the Levitus data set it is concluded that the estimation procedure
can be stabilized significantly when a new way of sampling is used.
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1  Introduction

In this paper the problem is addressed to estimate the geostrophic
currents from hydrographic and tracer distribution measurements. The
hydrographic data alone give a relationship between the vertical derivative
of the horizontal velocity field and the density field. In the approach
introduced by Wunsch (1978), the missing integration constants are found by
an inverse model approach. Taking into account that some tracers are
conservative, a set of mathematical equations can be obtained in which the
integration constants act as the unknowns. A major difficulty is that the
mathematical constraints resulting from the conservation assumptions are
(almost) linearly dcpcndcnt yielding non-umque solutions. This
non-umqueness problem can be resolved by applying the Smgular Value
Decomposition (SVD) technique and filtering out the small scale variations.

In this paper a modified SVD-technique is (section 3) upon a new
hydrographic data set of the Iceland basin. It was found (section 4) that the
calculated transports are rather sensitive to variations of layer thickness,
rounding off criterion and the number of ’boxes’ used simultaneously in the
inverse calculations. In section 5 a simulation study is performed on an
alternative way of sampling which yields more stable equations.

2 Assumptions

The sampling scheme of hydrographic data intended for inverse modehng
usually consists of a set of vertical sections which enclose one or more
water volumes (boxes). At the vertical boundaries of these boxes the in situ
density p and the geostrophic shear ¥ (s,p) are determined from temperature
and salinity measurements as a function of pressure p. If s is the horizontal
coordinate along a section, then the geostrophic flow perpendicular to the
curve y: x=x(s), y=y(s) is given by

, |
vor) = 55 { J S8 et b [
p

‘ 0
Here {(s) is the unknown height of an arbitrary pressure level p 0 The

positive flow direction of v with respect to the curve is to the right hand
side for increasing s. The height of the sea level is obtained from a
mathematical model describing the tracer concentrations. If it is assumed



that the tracer is stationary on time scales much larger than the ﬂushing
time and that the diffusivity is much smaller than the horizontal advection,
the net amount of tracer material flowing into a box is zero:

Ifs(n) ¢

Here, 5¢®) is a part of the vertical box boundary on which the tracer varies
from C to C,. The constants C, to C, should be chosen such that the enclosed
layer is so thlck that the vcrtlcal advcctlon and diffusion are small

compared to the horizontal advection. Equations in the form of Eq. (2) can

only give restrictions in the barotropic component if there is a large bottom
topography or an unstratified tracer, since otherwise Eq. (2) is

automatically satisfied, due to the geostrophic degeneration.
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3  The inverse model

Equation (2) is discretized by assuming that the barotropic part of the
velocity field { is constant between a station pair m. Its value is denoted
by ¥ and the baroclinic part is denoted by ¥_(p). The following inverse
equations for the barotropic flow can then be derived:

LZ{ anm om = bn ’ ‘ ' (3)
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where S(")ls partitioned into parts S( ), correspondmg to the station pairs
m=1,...,M.

In a realistic measurement situation, it might happen that equations are
contradicting each other, so that no solutions exist at all even if there are
more unknowns than equations. This problem is solved by adding a noise term
which accounts for the model mis-fit. In matrix form this can be expressed as
follows: '

A =b+¢ . ()

t

When |¢|? is minimized, at least one solution of the problem exists. But
since many tracers may have a very similar distribution; the ’inverse
equations’ will be lmearly dependent and the solution is non-unique. The
complete class of solutions can be obtained from the SVD of the matrix A,



A=U0UAV" . | (6)

The matrix V is square and orthonormal: Vv =T =1 y and A is a square
diagonal matrix with non-negative numbers (the singular values) on the
diagonal, ordered in decreasing order. Using the SVD, the general solution of
the minimization problem is given by

$=vA'U D + V) . | ™

Here the first term is a particular solution and the second term is the

general solution of the homogeneous problem. Furthermore, A is obtained from
A by replacing the zero’s on the diagonal by infinite numbers, so that its
inverses vanish. The matrix V is that part of V corresponding to the
vanishing singular values, so that AV: = (. By setting 1 = 0 in (20) the
minimum norm solution is found:

O, =v AU D . (8)
This solution is the one which minimizes the motion at the pressure level p .
According to Wunsch (1978) this is the large scale solution, i.e. the

solution which filters out the the small scale variations. However, a more
direct way to remove the small scale variations, would be to minimize the
differences in the geostrophic flows of subsequent station pairs:

P
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Here the summation is over all stations joining two station pairs. 1”j is the
maximum pressure of station j and w_ are arbitrary weighting constants.
Furthermore, v; and v; represent thcJ total geostrophic velocities just before
and just after station j. i
When v is split into the baroclinic V¥ and the barotropic flow v one
finds for 92(0), the following expression in vector form,

P = H(Y +9)=|D% +¢* , (10)
with
wo-w, o0 O
D = W, "W, (11)
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and

w, P, ~+ ~
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The problem of minimizing (10) under the condition that (3) is satisfied can
be solved by using the general solution (7). After substituting (7) into
(29), the value of 1 can be determined for which H is minimum. It is found

that
-1
T T T T
¢=0 -v, (iDDV,) VD@DV +¢ . (13)
In the derivation of (13) no use has been made of the specific form of D and
¢ and the weights w_. With these properties it can be shown that the total
geostrophic flow, calculated with Eq. (13) is independent of the initial

reference pressure p 0"
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Figure 1. The area where the measurements were done. A dot represents a
station, the connected dots represent the sections (numbered in Roman)
through which the transports are calculated.



4 Results and Comparison 7
The data set used to demonstrate the methods derived in section 3

consists of CTD and tracer measurements performed in spring 1991, south of

Iceland. In figure 1 the locations of the CTD-stations are indicated with

dots. The line segments connecting the stations form three boxes on which the

inverse model is applied. Figures 2 and 3 show the distribution of potential

density, relative to the 0 dB level. In figure 2 the isopycnals coincide with

the separation of ’original water types’. In figure 3, on the other hand, the

isopycnals are chosen such that the surfaces S are divided into parts of

approximately equal width.
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Figure 2. The isopycnals on the _ Figure 3. As fig. 2, but here it
boundary of the left most box is attempted to create layers of PS
of fig. 1. The lines correspond equal thickness. '

to assumed original water types.

It is expected to find a northward current in the upper layer of the water
column and a southward current at the bottom, carrying Overflow Water from
the pole to lower latitudes. The size and the distribution of these currents

is unknown. To answer these quesuons, the contours given in figure 1 are
divided into 6 sections (numbered in Roman in figure 1) through which the
transports are computed. The transports are computed for each of the water
masses given in figure 2. To eliminate the effect of the Ekman layer, all
water masses above 100 m are disregarded.
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Figure 4. The flow through each of the sections. In the upper three and the
lower left picture the transports are separated into the layers given by
figure 2. In the lower middle picture the total transports through each of

the sections is shown. In the lower right corner the scaling is shown.
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Figure 5. As figure 4, with a truncation of 1 %.
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Figure 4 presents the first of our computations. The lower middle
picture gives the total transports through éach section. The inverse modeling
equations are based upon the conservation of potential density and -
distribution of layers as given in figure 3. The ambiguity of the solution
was removed by minimizing the vertically averaged differences in the
velocities of subsequent station pairs, as described by Eq. (9). The -
absolute size of the flows quite large, e.g. the total eastward flow through
section III equals 9.45 Sv, according to our compiitatiotis.

The cause of these large numbers is within Equation (7), as pointed out
by Wunsch (1978), is that the small singular values blow up the solution,
Since X Az = Tr{A"A}, it is convenient to express the squares of the singular
values as a percentage of the ’total power’ of 4, i.e., as a percentage of
Tr{A"A}. To reduce the blow up effect the singular values smaller than the
truncation level (usually /%) are set to zero. In this way the exact inverse
equations are oniy approi(imateiy satisfied.

Figure 5 presents the transports computed similarly to those in figure
4, but with a truncation level of I %. The total transport througb section
III is reduced to 1.38 Sv. The effect of truncation can not simply be
considered as a scaling of the transports. A comparison of figures 4 and 5
shows that the eastward transport through section I, presént in’ figure 4 has
disappeared in figure 5. With a truncation level of .5 % (not shown) , the |
transports were still quite large, but the distribution was rather different
from figures 4 and 5. 4 o

A rather different picture (figure 6) is obtained when the distribution
of the layers coincides with the assumed original water types, given in
figure 2. Here the truncation level was taken at I %. Compared to figure 5,
the transport through section IV is enormously increased (up to 4.66 Sv)
whereas the total flow through section III is reversed in sign. The reference
level of the potential density also has a significant effect on the resulting
transports (not shown). When for instance the reference level is taken at
1000 dB, the transport through section II is southward.

The direct SVD-technique yields sensitivities of the same order of
magnitude as with the new approach presented here. But since the solutions
obtained with SVD are dependent on an initial reference level, there is even
one more parameter that may be varied. USing-the interpretation of Veronis
(1987), i.e. the level of no motion, it is natural to choose the reference
level at ca. 1000 dB. With p = 1000 dB the agreement with figure 5 is rather
good (not shown). Also the absolute values are in good agreement.
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Figure 6. As figure 5, but here the layers were distributed according to the

assumed original water types.
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Figure 7. As figure 5, but here section VI was removed from the computations.



When section VI is left out of the computations, leaving two instead of
three boxes, the eastward transport through sections III and IV disappears.
Figure 7 shows the resulting transports for a truncation level of 1 %. One
may conclude from this result that the solution of the inverse modeling is
not local: the solution at one place depends on the measurements at another
place.

S An alternative sampling strategy

From the above computations and comparisons it may be concluded that one
can hardly extract quantitative information from the given data set on the -
basis of the geostrophic relations and the inverse modeling of conserved
tracers. The central difficulty in the estimation procedure is that the
inverse equations are too less restrictive to determine a unique solution.
This becomes clear when the distribution of the singular values is
considered. In all configurations considered (except ﬁgurc 7) the
distribution of the singular values is very similar to 47 %, 26 %, 11 %, 4 %,
3 %, 2%, .... So there is only one independent equation per box at most and
hence the distribution into layers does not yield additional independent
information.

One might expect that a more favorable distribution of the data points
is obtained when the number of boxes is large compared to the number of
sections. Such sampling schemes are given in figure 8. The station positions
coincide with the Levitus (1982) data set. For each triangular box only the
total mass is assumed to be conserved and no division into layers is applied.
In the case of figure 8A this gives 30 equations and 8! unknown flows. The
distribution of the singular values of the matrix A, ordered from large to
small is similar to: 7%, 7%, 6%, 6%, 5%, 5%, 4%, 4%, 4%, 4%, 4%, etc. This
shows that the inverse equations are much more independent than in the cases
presented in section 4. Therefore, one may expect that if the transports
through five surrounding sections are computed, the results will be more
stable than in the conventional configuration. :

Figure 9 shows the precise location of the sections and the
corresponding transports, based on the minimization of flow differences.
Although no truncation was applied, the maximum transport that occurred was
only 2.2 Sv, so that the ’blow up effect’ present in the cases of the
previous sections is diminished. Therefore, in this case there is no need to
introduce a truncation parameter and study its effect. The results have a

10



clear interpretation: there is a superficial layer flowing to the north east
and a return current at the bottom flowing in the opposite direction.
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Figure 8. A: An alternative way of sampling the same area as figure 2. By
following a zigzag course, many more boxes can be created upon which the
conservation principles can be applied. This results in many more independent
equations. B: As A, but with leaving out the right branch. C: As A, but with

leaving out the left and right hand side.
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‘ In the conventional configuration, leaving out one box had a major
| effect on the solution. When in the alternative sampling scheme the right

hand side was left out (figure 8B) or when both left and right hand side
were left out (figure 8C), very similar qualitative and quantitative
transports were obtained, see table 1.

Jayer fig. BA fig. 3B fig. 3C
1 .60 51 .62
2 - 11 -.13 -.13
3 -.40 -.49 -.43
4 -.48 -.62 -.49 Sv

27.1400- 27.5200

27.5200- 27.6200

Table 1. The effect of leaving out one or two branches of the sampling
scheme, upon the distribution of transports through the middle section of
figure 8. Transports are in Sv, positive flow is directed towards the east.
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Figure 9. The resulting flows, when the alternative sampling scheme is used.
The large scale solution was obtained by minimizing the differences in the

flow field.
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6 Discussion

The main issue raised in the present paper is the question whether it is
possrble to extract physrcally meamngful information from a lmearly
depcndent set of inverse modelrng equations. From the computatrons presented
in this paper one may conclude that there are. substantial limitations. On the
other hand, the simulation studies with the alternative samphng scheme
y1elded phys1cally relevant results, although the underlymg system of
equatrons is still formally underdetermined. The question is: how should one
count the number of unknowns and the number of equations? If only the mass
balance is taken into account for each box and if one assumes that the other
equations are linearly dependent from it, then the number of equations equals
the numbeér of boxes. If for the number of unknowns oné counts the number of
station pairs; the mathematical system is underdetermined in either samplmg

scheme. But 1f on the other hand the number of sections is counted one has
" an overdetermined system in the alternative sampling scheme and an
underdetermined system in the conventional samplmg scheme.

The alternative sampling scheme studied here has some srmrlarlty with
the one used by Tz1perman (1988). In that paper, a hydrographxc data sét
consisting of a 2-D grid with half-degree spacing was used to study the
oceani¢ circulation and mixing coefficients. This sampling scheme made it
possible to include unknown mixing coefficients and to avoid a division of
the water column into isolated layers in the inverse model. However, a full
2-D samplmg scheme of the whole ocean is far beyond the practical
pOSSlbllltleS The samplmg scheme studied in the present paper could be
apphcd in practice by following a zigzag course and could therefore be
realized more easily than a full 2-D sampling.

Comparcd to the ’ordinary’ way of sampling, the alternative sampling
schemé has the advantage that the data is more synoptic. It takes perhaps
only half a day to perform three stations, the corners of the proposed boxes,
and therefore it is much more likely that the data can be treated as
synoptical than in the ‘normal’ case, where it may take more than a week to
close a box. Other theoretical advantages are that 1.) the stability is
obtained without assuming more than conservation of mass so that no division
into layers is necessary and 2.) there is no need to truncate the
SVD-solution which eliminates an 1mportant source of subjectrvrty However,
the author is well aware that the practical usefulness for real data, still
has to be demonstrated.
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