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ABSTRACT

Belief networks contain a set of mterllnked nodes. Based on Bayesxan calculus, the lmks transfer in-
formation between the nodes containing probability distributions. The aim of the paper is to present
a brief theoretical basis for belief networks and to illustrate their capability to support fish stock as-
sessment. The flexibility of problem formulation and efficiency in knowledge acquisition are empha-
sised. It is also shown, how various types of uncertain information can be handled and merged in be-
lief networks. The technique is applied to Baltic salmon assessment problems. Regression models,
the VPA, and expert judgement are used together to estimate the parameters for the terminal stock,
to produce stock forecasts, and to assist in the total allowable catch decision, which is done on the
basis of highly uncertain mfomtatxon :

’ -

1. INTRODUCTION

Management decisions of natural and envu’onmenml resources need often be made under l-ugh un-
certaxnty, and expert )udgement is thus in central role There are two key reasons to tlus Fxrst it were
often most irrational in practxce to thrive at collectxng a waterproof empmcal data. This is due to
econormc constraints. Second the potentral changes in the systemin companson to the past are often
K- thh that extrapolatxon of past development is vague. This is due to  high vanabxlxty in semi-natu-
ral systems caused by numerous uncontrolled and controlled i issues. Moreover, the management tar-
gets often at changing the system substantxally to a desired direction, and invalidates the use of his- -
torical records.

A typtcal example from ﬁshenes management is the annual Baltic salmon quota decnslon
The stockmg of reared salmon to the Baltic has enhanced the salmon t‘lshenes, and the wxld stocks
are under severe risk of being extmct (e.g.; Anon. 1993). The managers (the lntematlonal Baltic Sea
Fisheries Commission) have defined that the goal for management is to safeguard wild salmon stocks.
Stock assessment is made to support this goal. The economic rationale to gather empmcal mforma
tion is far too low to provxde enough data for purely empirical stock foremsts Furthermore, the sys-
tem unpacted by the management policy, including ecological, social, economic, and polmcal facets,
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I
is under practtcally unpredtctable changes and transitions (cf Kuikka & Varis 1992, Kuikka 1993)

For the purposes of fish stock assessment, the mformatton and experience available allows
the use of empmcal regressron-type of models for certain relatxons between sub-stock volume data,
growth parameters, water quahty data, and so on. Also the VPA equations (Beverton & Holt 1957,
Gulland 1983) have been found very useful, although they are not identifiable from data and the es-
sential parameters (mortalities) are assessed by experts When producing age—structured stock fore-
casts from this information which is of rather splxt character, the role of experts is lmportant Some
experts prefer the use of selected empmcal models, whtle some rather use the VPA equatrons
Clearly, any present assessment techmque alone suffers from severe limitations, and all possible, rel-
evant information and models should be taken into account. I

The objective of this study is to produce a computensed enwronment that allows the inclu-
sion of empmcal models and the VPA equattons in one context The uncertain mformatxon from
multrple sources can be merged together by one, or preferably, several experts The system allows i in-
teracttvely the detectxon of controversxes in information, arbxtrary wetghttng of different models,
tuning of the VPA equattons, calculatton of forecasts, and ‘defmmon of the fisheries quota ('l‘otal
Allowable Catch) decision. Methodologtcally, this has been realtsed by usmg a probabthshc, belief
network in which the above mentioned models have been embedded.

.2, BALTIC SALMON MANAGEMENT - THE PREDICTION PROBLEM

|

The present state of wild Balttc salmon stocks is poor The share of the reared stock from the whole
stock has increased remarkably dunng the last 10- 20 years In 1980 the recruitment of wild stock to
fxshery was about 20 % of the total recrultment butin 1988 - !1989 it was only about 9% (Anon. 1992,
Tables 7.25.2.1 & 7.2.6.2.1). About 35% of the wild recruxtment comes from the northemmost nvers,
even though the smolt productton potenttal of these nvers ts hrgh and their water qualrty is good.
Lack of spawners is an obvious reason for the poor state of the northernmost stocks (Anon 1993).

To achteve the management goal -to safeguard w11d salmon stocks managers have de-
cided to use the Total Allowable Catch (TAC) pollcy for yeaxs 1991 - 1993. The ICES produces the in-
formatxon on the state of the stocks, whtch is needed in the management decxstons

Salmon is a short vamg specxes, the ﬁshmg mortahty of Baltic Salmon is around 2/ year in
the most 1mportant age groups This implies that around 90% of the mdtwduals of these age groups
are betng caught annually Fxshenes is based on two age groups, Al and A2. Even though the total
recruttment is almost totally based on reared salmon released annually (known quantxty) mamly to
the northern part of the Baltic Sea, the recruttment vanatxon is large. For example, in 1987 the post-
smolt survival of the reared salmon was about 10 % and i m 1988 around 30% (Anon. 1992)

The most important age group (A2) in the spawmng stock of the target year (TAC year) 1s re-
Ieased two years earher, i. e dunng the latest data year However, thxs age group does not recruxt to
this age group, which ¢ould be used ina usual way m VPA based assessment

Moreover, vanatton in the growth rate is also large l(Kuxkka 1991). Growth rate trnproved
almost by 60 % in the end of 1980's. While the selectmty of the most 1mportant ftshery (drift net fish-
ery) is very lugh, the ﬁshmg mortahty of age group Al+ has large vanatton and it is not in clear con-
nection with the total effort. Therefore, the tumng of this fxshmg mortahty value is a dtfftcult task.

meg to these vanatxons, the uncertamttes of the stock predlctxons and TAC based man-
ments to reduce the uncertamtxes (Anon 1992) Avatlable data suggest, that both the growth of the
post smolts in the sea dunng the first half year and the temperature dunng the first months in the
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sea can be used i m the predxctlons of the size of age group AO. Moreover, the CPUE (catch per unit ef-
fort) data of the driftnet frshery and the growth rate can be used in the assessment of the terminal F
values of age group ALl. Effective use of these predxctlve variableés requires methodology, that allows
the consideration of all relevant, information that could be used in salmon stock assessment.

3. THE BELIEF NETWORK APPROACH

Oneé of the ways a human mind comprehends a habit is through defining ob;ects and postulatmg as-
sociations between them. When considering a certain ob)ect in this context, she sees it s:multaneously
as one unit, and as a detail in interaction with the rest of the context. Systems, in whxch uncertain in-
formation is avaxlable ona set of mutually dependent ob;ects, would be ‘approached i in Bayesxan cal-
culus by asmgmng a prior probability distribution to each object. Thereafter, the strength and charac-
ter of the dependency between each ob)ect palr would be inserted. Wlth this information, postenor
probabxhty dlstnbutxons are calculated for each ob]ect This is actually the key idea in behef net-
works. In the behef network terminology, the objects are called as nodes, their associations as links,
and the context as a network.

Belxef networks have emerged from the tradition of Bayesxan statxstxcs m the 1980s (see
Shafer & Pearl 1990) The comerstones were laid by Pearl (1986, 1988). The key idea is that any new
mformatxon mtroduced in the net can be propagated to any direction, not only to one direction (Flg
1). This feature has been realised using bl-dxrectxonal information flow in the links. The nodes are
able to merge the mformatlon from these systems and to update it. Pearl (1988) presented a sequence
of algorithms starting from a chain, and proceedmg through trees and polytrees to networks. The ba-
sic problem in network algonthms is to cope with circular references. The a]gonthms presented con-
sist of approximate methods such as simulation.

Fxg 1 Example on bx-dxrectxonal propagatxon using the approach by Varis (1993). In a,a new mes-
sage updates the node 4. The message is propagated through the net by two belief trees in opposite
directions. The trees are directed by the sequence of nodes. If the message to node 4 were to update
also the node 3, then there should be a link in between, or the node sequence should be different.
Again, in ¢, a new message updates the node 5. The message is propagated and posterior distribu-
tions are being calculated.
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Asa summary, a network consists of n nodes that can be arbrtranly lmked to one another. The pnor
probabilities assrgned to the outcomes are updated with the mformatron linked from other parts of
the net, yielding the postenor probabllxty drstnbutron A network is constructed and modxﬁed inter-
actrvely durmg the modellmg procedure Essentlal is to fmd (1) most relevant vanables to a specrfxc
short below (Varis 1993) is deeply rooted to the work by Pearl (1986 1988), it has adsorbed certam
features from the influence diagram methodology by Shachter (1986), and a number of extensions
have been made.

Nodes

Each node x in the network contams

. A vector of possrble (discrete) outcomes Yi- They can be defined as inputs or they can depend
on outcome values of other nodes
. A prwr probabzhty dxstnbutzon, expressed with probabllrhes 1. ek assrgned to k outcomes

grven, summing up to umty Thesé constitute a k drmensronal vector e, also known as évidence vec-
tor. If no pnor belxef exrsts, a non-xnformatlve pnor, e g a umt vector, is used
. A sign mdxcatmg the direction of change The sign may erther positive (1mply1ng growth in-
crease, addition, enlargement, etc.) or negatwe (dédline, decrease, reduction, lessening, etc.).
. A posterior probabxlxty dzstnbuhan Bel;. '
In general the nodes are probabrhstxc (uncertam) They can, however, have ¢ one outcome thh the
value 1 and the others wrth 0, and be thus certam If an outcome in a pnor drstnbutron gets the value
uncertain issiies accept updatmg fom other parts of the model

In decision analysis or optlmlzatlon, some nodes may be understood as controllable, decr-
sion nodes. One or several nodes can act as criteria or constraints to decision makxng, and constitute
one or more ob)ectxve functions. Removmg uncertamty from a node, i.e., selectmg one of its out-
comes to have a probabrhty 1, may be used to simulate a deasron or other actlon that has been or will
possibly be made. Its 1mphcauons are propagated through the network, and they canbe observed at
each of the successor nodes. Some of them are usua]ly more cntrcal than the others, presentmg
ob)ectxves or constraints, and the ad]ustment of the control pohcy simulated can be based on ob-
served changes in those nodes. 3

l

Links
l
A lmk transnuts information from a node to another node. When defmmg the concept of lmk Pearl
(1988) lists the followmg four pnrrutlves, for which we have created examples 1 lzkehhood fish
growth is more likely to be increased than decreased (2) condxtwmng- if temperature mcreases, then
fish will grow faster, &) relevance' whether the ﬁsh will grow 'faster depends on whether there will be
mcreased temperature, and (4) causatton mcreasmg temperature will enhance fish growth For more
discussion and ulustratxon, see Pearl (1988) Another classrficatxon based on the mformatxon source to
the link is given by Varis (1993) (1) deductive: there is prior lscnowledge, theory, or belief concerning
the mterdependency of the two nodes; and (2) inductive: there is, correspondmgly, empirical
evidence or data. ‘

Links are in two layers An uncertamty lmk is defmed as the link matrix M;i j between two
nodes i and j j- An outcome link presents a relation between outcomes yi and y, ofiandj. Because the
approach requlres that each outcome has oné value, the propagauon of outcome values i is umdrrec—
tional, and a functional relatxonslup exists, yj = fly). This relatron can be either determmzshc (numeri-
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cal), or Iogzcal (rule-based) Flg 2 (see also Appendxx 1 portrays the idea of two dlfferent layers of
links between three nodes: probablhstxc links propagated bl-dxrectlonally through link matrices Miyj,
and outcome links y;j = f(y;-

The links can be direction specu’xc, i.e., Mii; i* M]| i or they can be negative, i.e., increase in
rode i implies decrease in node j. A link matrix can be either symmetrlc or non-symmetnc. If the 1mk
represents pure correlation between two variables, then there is no reason to use direction speaﬁc or
non-symmetric links, but negatxve links are very useful. In many cases, there i is a clear causal depen-
dency between two nodes, and direction specxfxc links and non-symmetric link matrices are well ap-
plicable. Varis (1993) presents indices for both defining the information content of a link, expressed
as avalue,rangmg‘between -1and 1 (0 is non-informative), and inverse use of these indices for gen-
erating a link matrix from a link strength index value.

Unk2§1, 112 SI000E Node : ¥ Unk3j2,23

.  M32eM2 ‘ ey ;
0.10 0,16 o.as 0,70 0,10 0,10 0,10 0,55 0,15 0,15 Q015 021 0,66 0,70
o010 0,09 021 0,10 0,70 0,10 0,10} 10,16 0,13 0,19 0,15 0,58 0,15 015 021 009 0,10 |3
0,10 0,09 021 0,10 0,10 0,70 0,10 0,16 0,13 0,19 0,15 0,15 0,55 015 021 0,09 0,10 .
0,70 - 0,686 021 0,10 0,10 0,10 0,70 }:10,52 043 0,19 0,15 0,15 0,15 055 0,36 0,18 0,10 Uncertainty
- 3 Layer

Outcome
Layer

8D X

Fig. 2. An example three node belief network model with deterministic outcome links. Computed
values are set in italics, and inputs are in double-line bordered cells. Uncertainty layer is above with
figures, and outcome layer is below.

Network propagation

The questxon is how to calculate posterior belief chstnbutxon vectors Bel, for the nodes, updatmg
their prior mformahon. The algorithm by Varis (1993) is based on Pearl's (1988) tree algonthm Two
mdependent tree messages (denoted usually as % and 1) are computed (cf., Fig. 1), The updated
behef is obtained as their and the prior's convoluhon product. The nodes are lmked with hnk matri-

ces that can be chosen direction specific. I Positive and negatxve dependenmes between nodes are al-
lowed. Computahonally, all nodes are linked with each other, and a non-mformatxve link xmphes no
connection. In a non-informative link, each link matrix element has an equal value. All mformatxon
on the probabxlishc relations between nodes is expressed by unequal link matrix element values.

Prospects for applféﬁbilify
Bemg a relatwely novel approach the number of apphcahons is limited at this stage. Varis (1993)

prowdes a prospecnve discussion and revxew of apphcablhty of belief networks in the management
of natural resources and the envuonment. He groups the potential modellmg directions in the fol-

lowing five clusters, and discusses and illustrates them with exampleS' (1) belief and knowledge ac-
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qulsmon, (2) decision analytxc use, 3) analytical, mechamstxc and process modellmg, @ spatxal and
temporal correlations, and (5) leammg and adaptxve modellmg In pract:ce, a belief network can in-
clude propemes from each of these categories (Fig. 3), bemg'a hybnd of several, conventionally dis-
tinct, computahonal modellmg approaches In this application, 1 regressron models and a determinis-
tic model (VPA) are used together as described below.

Pragmarié

Linguistic
Anblytical Learning &
m yt adaptive
o mogels
Spatial &
temporal
Mechanical correatlon Metric

Fig. 3. The belief network approach facilitates the combmed use of several, methodologxcal and
paradigmatic (in italics, see Beck 1991) facets that are often seen as being far from one another.

4. ASSESSMENT AND PREDICI'ION OF BALTIC SALMON STOCKS USING
THE BELIEF NETWORK VPA !
The assessment procedure consists of four steps They are }
. Regression models for predicting selected quantmes of the salmon stock.
. Calibration of the VPA model and lmkmg itand regressxon models witha behef network.
. Prediction of the stock for the present and the corrung year using both the VPA and the belief
network model. |
. Deﬁmtxon of the total allowable catch usmg the predxctlons.
Fig. 4 :1lustrates the schematic structure of the assessment procedure showing the relations of dlffer-

ent submodels used.
.Adecadeback  Three years Present year Targetyear | Time frame
.o .. back. . . &targetyear L
e Belief
Regression network
‘r»nodel’s ; _modal
: Structure
VPA VPA
modal forecast
Step 1 Step2 . Step3 | Step 4 Step
Metic —— Hybrid —  Hybrid ' o ST,
y y l\ Pragmatic gomlclqant
Mechamcal —_— Mechamcal ; araaigm

Fxg 4. Schematic dlagram of the structure of the assessment procedure The more angular a module
is, the more important is the expert judgement component. .

P,
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There are a number of inputs to the model during the procedure (Table 1). Their uncertainties are
usually presented as the coefficient of variation value cv:

w=2 | ' (1)
u

where o = standard deviation and u is mean. The normality assumptxon is used in the whole proce-
dure. The belief.network handles probablhty distributions dxscretlsed in three outcomes. The mput
distributions are discretised to have values u-0. 970’, I, and u+ 0.97c. Thxs gwes each outcome an
equal pnor probabxh ty, 1/3. This allows easy companson of prior and postenor dxstrxbuhons

Sample data from the situation from 1992 assessment work (data from 1991 and TAC advice
for 1993) is used throughout this and next section. Catches of wild and reared salmon are summed
up due to the large uncertainties in discrimination of wild/reared salmon by scales (Anon. 1993)
The computer xmplementatlon of the procedure is described at the end of this Section. In addition,
the unplementatxon inchides a collection of dxagnostxc plots, examples of which are given below.

Table 1. Inputs dunng the assessment procedure

Step Type of variables Variable (see Table 3) Para- Substock
‘ .meter* e
1 Informationonregression  (see text and Table 2) (see. eachyear, smolts, Al

models Eq.2) ‘ _

2 VPA parameters m; j (natural mortality) u each year & each year class
‘ - one value for all
‘ F; j (fishing mortality) B cv  terminal agegroups
Observations Cij (catch) u each year & each year class
_ w one value for all
. - Sj (post-smolt survival) d\ each year

Weights for (beliefs on) w

regression models o B ‘

Belief network link strength  Beliefs on VPA equations &

parameters _

year-to-year dependence & )
interannual dependence  a

3  Dedision from previous year TAC for current year d

Assumption on stationarity Volume parameter d
4  Dedision variable TAC for coming year d

Assumption on stationarity  Volume parameter d

Properties of the stock Perceritage of wildstock p,cv  eachyearclass

Percentage of wild females u,cv - each year class

u mean, cv = coefflcxent of variation, d = single value, @ = link strengths of the belief network.

Step 1: Regression models

The apphcatxon makes use of four linear regressxon models (Table 2). They are based on historical
monitoring data, avaxlable from nine to ten years backwards. These regressrons have been found
useful, simple predlctors in Baltic salmon stock assessment (cf, Anon. 1992).
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Table 2. Regression models. :

Independent (x) Dependent (y)

| * ' Equation r n
Temperatureat Seili [°C] ~ Post-smolt survival [%] i y=-458 +464x 073 10
Growth of A0+ salmon [cm] Post-smolt survival [%] y= 10 9 +1 43x 0.60 10
Catch per unit effort for Al+ Stock size of § year class A1 y= 3555+33x 023 10
[number of mdmduals] _
Mean weight of Al+ Fishing mortality of year class A1  y=-1.06+059x 070 9

A regressmn modely=a + bx is used in predxchon m the followmg manner. Given thé observation of

the predxctor Xm, the mean of the predxcted value is y =a+ bx,,,l, and the standard deviation is
~ 2 2pn-1 ' :

oy=4/ c,(1-r)— (2)

y y n- 2 1

where 1 is the number of observations.

Step 2: Calibration of the VPA model and linking it and regression models with a belief network

VPA equanons by Pope (1972) were used, in the form shown i m Table 3 The ﬁshmg mortahty values
for terminal stocks are assumed. Three ; year classes are mduded and three years are calculated back-
wards, mcludmg the termmal year Stockmg data was used to calculate post-smolt survwal rates for
each of the years mcluded The proportion of the year class A3 is very low (Kuikka & Varis 1991).
Therefore, it was excluded.

LR E R SRR L AT G W s B TR SRR LT S S T

Variable .. . .. ..Year-2 ... ......... . .. ..Year-1.

6
i
| l
i
Table 3. VPA and post-smolt survival equabons mi , is natural rr\ortalxty of age group iin year ]
o

YearQ . v
POS,t‘Sfmlt S2=No2/s2 51 = No 1/81 So=No,0/s0
survival (5;) _ - . I
Fishing mortali- Fo,2 = -m,2-In(N1,1/No2) F o 1-1n(~1 o7NG D Foo
ty for A0 (Fo ,) p _
o P siseo No2= Co2¢™2 % Ny 1€™2 N ya o™/ Ny o i Nog=Cog- rop* Fug
' 4 | Fg 0(1 _emorFod
Fxshmg mortali- Fy3=-my2In(N21/N12)  Fy,1=-my3-In(Nog/N1,1)  Fip
ty for Al (Fy,)) ‘ |
Stock size of Al o Maf2 . Mg i o myif2 . myg | iy o F
(Noli)sxaeo Ny 2= Cj ¢ 12 +N3qe 12 Nj1=Cy e 11 +Nyge 11 Nlo-Clo . 1,0 IOF
' . | Fy 0(1 §me p)
Fishing mortali- = F1 ‘ Fa0
tyforAZ (F2,)) { |
Stock size of A2 - No 1o G mpq+Fpq N3g=Cag my g+ Fa
(Nz") 2.1 2 1 N o
: . le(l‘ emzfrz’) L FaQ1- P w)

|
!
i

ey . o
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lief network model. The architecture of the uncertamty layer is presented in Fxg 5. Each link has a
symmetnc link matrix Miij, which is not direction specxfxc The matrices are presented as single in-
put parameters, usmg the link strength parameter approach (see Varis 1993).

The mterpretahon of the links is belief on the level of dependency, in the nature, of the re-
spectlve variable pau- There are links that refer to interannual dependence of the year classes, links
that stand for wrthm-year dependence of age groups, lmks mdxcatmg the belief on the level of de-
scnptxon of a mathematical relation (VPA equation) in the model, and combinations of these.

YEAR -3 YEAR -2 YEAR =1 YEARO
. (terminal) (assessment)

r©

Fig. 5. The belief network architecture: uncertainty layer.

In addrtxon to the VPA model mformatron, the predxctions from the regressnon models (T able 2) are
merged in the belief network model. This is done in nodes PSM, F1, and N1 using the followmg
equations, under the normalrty assumptron

K 1+Xw; >
R _ (4)
1
+3
O ¥ Ok

where p' is joint mean and 62is joint standard dewahon of the VPA and regress:on models k, and
wy is the weight assigned to the regression model k. For the above mentioned nodes, the normal dis-
tribution represented by these parameters is used as the prior drstnbuhon to the behef network For
the other nodes, the VPA outcome represented with uvp. and cxvpa, is used as the pnor distribution.
After each change, the belief network returns the updated postenor distributions for each
node. These d15trlbutrons are used in (1) iteration of terminal ﬁshmg mortahty rates (both means and
coefficients of variation), (2) other dxagnostxc purposes concermng the information available at this
stage, and (3) as inputs to the predxctlve model. The first of these uses deserves more detailed expla-
nation. The differences between the pnor and posterior distributions indicate the additional informa-
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|
tion obtamed from the belief network, using desired link strength parameter values If desired, both
the prior mean and the prior coefficient of variation can be iterated quite qulckly to equal the corre-
sponding posterior values, once there are not major controversxes between different sources of in-
formation. These, possxble controverstes, together with relahve welghtmg of information from differ-
ent sources as merged using Eqs. 3 and 4, can be illustrated, e .g~» as shown in Fig. 6.

30,0% 1 b
28,0%
26,0%
24,0%
22,0% .
20,0% TTiiigrey = fITEe
18,0% -
16,0%

\
14,0% l‘

[ sivea
] s|'t"
5 s|G

“"
L1}
Y
(X
’

12,0%
"10,0%

ST 5iG Sivpa

l-':g. 6. Sample dxagnostlc plots for mergmg of VPA and regressmn mformatlon (a) Post-smolt sur-
vival rate for year -1 from temperature regression (S T), from the regression based on growth data
of post smolts (S1G), and from VPA model (S| VPA). The prior and posterior distributions of the be-
lief network are also shown The figure shows the U+ a, 1, and p— o values for each distribution.
Solid, horizontal lines are for prior and dotted for postenor distributions. (b) Proportion of explana-
tion of the three different models to the prior distribution of the belief network model (values in the
denominator of Eq. 4 are compared).

Step 3: Prediction

The assessment procedure produces two predictions, using Eqs. in Tablé 3. They are:

. VPA prediction.

. Belxef network model predlctlon, whxch aggregates the VPA information with regressmn
models and the inserted wexghts and beliefs on these mformatxon, and uses this as input to the pre-
dictive equahons of the VPA:

The most recent stockmg information is gwen as mput, together with a volume parameter ﬂ
which allows the inclusion of an assumpuon of the level of statxonanty of the stmcture of fxs}ung
between consecuhve years. It is left as the task of the expert(s) to choose heunstlcally the recommen-
dation for the TAC declston, given two uncertam predxcttons (Flg 7) Besxdes the belief network pre—

dlchon, the VPA predxct:on has been m such a wrde use w1thm ICES that its inclusion as a compara-

[

Step 4: Definition of the Total Allowable Catch l*

At t}us step, a set of additional monitored, but still rather uncetrtam parameters must be fixed. They
are the proportlons of wild salmon and females, both for all three age groups (A1, A2and A3) For
them all, also coet’ﬁcxents of vanatxon are needed to allow handlmg of uncertamty Also here, the pa-
rameter 8 can be used to describe the effect of the total effort change Scale sample data on the pro—
portion of wilds (mcludmg some efror in the discriminate assessment by scales) and estimates on the
wild and reared smolt producnons are available (e g-» Anon. 1993) The uncertam foreoasts of the to-
tal stock, the age structured stock, and the number of wild, spawmng females are the basis for the
TAC recommendation (Appendxx 20).

|
|
i
|
!
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Sensitivity analysis of belief network links

In order to analyse and illustrate the roles of different links in the network, two sensxtmty analyses
were camed out. In the first one, the studied variables were the fishing mortalltles for the terminal
year, and in the second, the stock sizes for the terminal year (Table 4). The relative dlfference in the
deviation between the prior and the posterior means was used as the indicator of sensitivity 4:

Hn=Hn  pn—py
Hn _HN
KN=UN
BN

4y

(5)

where pis prior and p* is posteriox? mean. N refers to nominal, and n to pertiirbed link strength pa-
rameter values The used values were 0. 1, 0.5, and 0.9.

Only the links in which one or both of the interlinked variables were flshmg mortalmes, m—
duced changes in the fxrst sensxtmty study (an 7). Terminal fxshmg mortalities were most sensitive
to the links between F's of two consequent age groups, within one year.

In the second study, each studxed link group caused changes in stock sizes of the termmal
year. The most sensitive link groups were those between post-smolt survivals and N(AO) (within one
year), and those between post-smolt survivals and between N's, both between two subsequent years.

Table 4. Classification of hnks for the two lmk sensmvxty analyses and indexing in ans 7 and 8. The
indices in bold indicate the most sensitive cases. + denotes next age group, * denotes next year.

Time domain Link type Terminal F Terminal
‘ (Flg 7). N(Fig 8)
Within a year Between post-smolt survivals and N: A0 noinfluence S —NoO
Between Fand N of an age group F N F— N
Between F's of two consequent age groups F— F+ F F+
Between two subsequent years Between post-smolt survivals no xnﬂuence S — S’
' Between F's F— F+ F— P+
Between N's no influence’ N — N*
F—N F<Fs F=F

0,81
0.6
0.4/

Fig. 7. Results of the sensitivity study for ﬁshmg mortahuas of the terminal year, thh respect to links

as grouped in Table 4.
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0,04
0,02

0,02

Fxg. 8. Results of the sensitivity study for stock sizes of the terminal year, with respect to links as
grouped in Table 4.

As a third sensmvxty study, a correspondmg procedure was perfonned to the we:ghts of the two re-
gresswn models predxctmg post-smolt survwal (Fig. 9), with respect to stock sizes for the termmal

year The temperature regressxon appeared to have he greategt unpact on A1, while the growth re-
gression appeared the more influental the younger the fish group is. .

ST

Fig.9. Results of the sensxuvxty study for stock sizes of the terminal year, with respect to two regres-
sions used to predict post-smolt survival.




Belief Networks in Fish Stock Assessment 13
Computer implementation

Microsofts Excel 4.0 spreadsheet was used for coding the system described above. It allows the
portability within Windows™ and Apple® Macintoshg environmients. For the belief network, the EC
BeNe (Varis 1992) spreadsheet toolkit was used. Excel contains a number of statistical, mathematical,
and matrix functrons that were very practical in the realization of the system For instance, functlons
such as NORMDIST, NORMINV, and NORMSDIST were used frequently when dealmg with normal
probabrlxty dlstrrbutrons As another example, Appendlx 1 shows the source code of the belief net-
work (actually a chain) in Fig. 2, that uses the MMULT function to perform belief updating in the net.

The user interface worksheet consists of six areas: one for each assessment step (Appendrx 2)
described above, a selection of (readily extendable and relocateable) diagnostic plots, and a variety of
auxiliary, computational routines.

5. DISCUSSION AND CONCLUSIONS

In the management of natural and environmental resources, there is a need to produce tools - com-
puterised systems — that provide aid to experts in combining the information from multiple SOurces,
consxstrng typically of numerous, very uncertain entities. It is often useful to be able to combine vari-
ous empmcal information to structurally experienced, determxmstm models such as the VPA in
fisheries management. In addition to the support in tuning of the parameter values, and in the as-
sessment of the associated uncertamty is very rmportant All this is because data is very often
exceedmgly sparse, the costs for data collectxon allowing purely empmcal foremsts are far too high
to be rational, and the importance of the analytical inclusion of the assocxatrve ‘way of human
1udgement in complex problems (cf., Rowe & Boulgarides 1983, Rowe & Watkms 1992). Yet above
all, we are dealing with important, real world problems that call for the best available methodology.
Computatxonal problem solving should target in particular, at enhancing the learrung about the
problems (Shafer 1981).

The present application shows an example on a management problem where plenty of ex-
pert )udgement is needed. Especially, the combined use of different information sources is a drffrcult
and time consuming process, e.g., in the working groups of ICES. Moreover, the decision problem
and the system (ecological, political, etc.) are subjected to continuous, substantial, almost unpre-
dictable, changes. Due to the short time series, 72 is a poor basis to judge the relevancy of différent
mformat:on sources. In this case, the historical data gives a good correlation for the mean werght of
Al¥ and flshing mortahty, but due to the changes of the market prices, the effort of the off shore
fishery has decreased and the F predxchon is not relevant anymore '

With respect to the advice given to the managers, the belief network approach offers possi-
bilities for constructing computerised environments that allow systematic group discussions on the
role, reliability, and usability of information from various, different sources, and of varying charac-
ter. Systematic use of link parameters gives a good overview of the role of different information. The
belief network helps both in the dxagnosxs of the problem, including information available, and in the
predictions. The more deviations there are between priors and postenors, and between VPA fore-
casts and belief network forecasts, the more inconsistencies there are in the system.

Even though the role of sub)ectrve mformanon is often understated and even denied at ICES,
subjective evaluation is very often needed. It is very rmportant that the role of ‘expert )udgement is
made clear, and the assessment procedure is open for discussion, e.g., at workshop meetmgs In ad-
dition, it is important that all the relevant information mcludmg computatronal models are setina
framework that allows their inclusion or exclusion, or merging and werghnng depending on what
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!
is seen reasonable ~ to produce the best available forecast for the given purpose In the sample case,
the belief network model produced a more accurate forecast than the VPA model alone. This is due
to the ablhty to include empirical information.
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APPENDIX 1 -
Source code (Microsofts Excel 4.0) of the example belief network model in Fig. 2.
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User interfaces of the four steps of the assessment procedure.

(a) Regression models (cf. Table 2 and Eq. 2). Numbers in bold are inputs.

1989 || 1990 || 1991 {| 1992
T(C] 08 | 153 | a7 15 ] 0% e 2
S|T s(S) | r n 20,0%1 3 <. *
0,059| 0,73 | 10 10,0%
ST |22,9%]25.2%] 17,8%|[23,8% 0.0%
ssm _133%]33%]33%(33% 35 14 125 15 155
G [cm) 58 | 62 | 7.4 30.0% s . -
S|G s(S) | r n 20,0% ..__._.—/-0.
0,059| 0,6 10 10,0%
R(SIG) |19,2%]19,8%]21,5% 0.0% L
s(SIG) | 4.0% [ 4,0% | 4,0% e 7 e
CPUE(U)] 144 | 12,7 ] 10,4 1500
N:ANU | s(N) | 2 n 1000 - ="
‘p—'H
2639| 0,23 10 500 R
w(N1V) | 830,1| 774,1 | 698,3 0
s(N1]U) | 2456 | 245,6 | 245,8 o s 10 15
G 32| 58 | 62 3
F:ALG | s(G) | r2 n 2
0,208] 0,704 9 1
w(FIG) | 0,828 ] 2,362 2,598 ol
$(FIG) | 0,173} 0,173§ 0,173 0 2 4 6 8
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APPENDIX 2
User interfaces of the four steps of the assessment procedure.

(b) Estimation and tuning of the VPA and linking it with the belief network. u shows the mean
and cv shows the coefficient of variation of the prior distribution to the belief network. In that distri-
bution, the regression information is included. y shows the three outcomes of the VPA distribution,
each with equal probability in the pure VPA calculation. bel indicates the posterior probabilities, cal-
culated by the belief network, for those outcomes. i’ and cv’ are mean and coefficient of variation of
the posterior distribution. Numbers in bold are inputs.

J1ess |« y bel 'y bel 'y L e y bel 'y
s 26,8%| 32,5% —‘26.8“/:] ] 1 19,6% S 20.8% | 14.8% ) 21,3%
stock|| cv |37.1%] o' ] ‘stock] cov [17.9% NN v stockll ov [23.0% ] v
5230 [| 0,09 [41,8%]] 0,09 4389 || 0,109 [ 21,7% M@ __ |[0,033 4014 [ 0,127 [31,1%|| 0,083
g
0,1 4,115 |-0,016 | symr=ss 0,1 3,637 | -0,026 i 3,224 0,1 0,3 | 0,008 r—‘ 0,292
m || cv [0007 “mey| cv [ 0,015 || cv cv | 0,011 |= ov'
F 0,007 | 0,036 0,015 | 0,083 [HEEE || 0,015 0,011 | 0,014 0,011
A y B y bel | p y bel 0y
N 1942 | 1700 784,6 | 6184 |B 832,7 N 922,5| 595 906,5
catch| cv | 1942 | o catch]| cov [7846 % o stobll o 9225 % o
11,2 ] 0,129 | 2185 | 0,248 11,1 | 0,218 | 950,7 0,185 8,55 | 0,366 | 1250 0,081
0,674 [ommun| 0.182 0,1 [[0,269] 0,28 0,417 005 03 | 0,17 0,219 [ 0,273
0,735 |} ov' L cv | 0,363 v cv' | 0,24 oV oV
0,817 0,647 W 0,396 | 0,487 0,352 0,24 | 0,31 [MEEE | 0,263 | 0,263
y | bel | W Al p |y | bel | w pe | y | bel | w | u
1450 (Ezezemd| 1251 1286 | 1483 1279 698,7 | 514,9 744,9
1628 ov' catehll cv | 1748 o ov | 699 ov'
1807 0,121 7]l 0,15 | 2009 0,16 150,9 § 0,223 | 883,1 0,229
input cv & w {[Link 01 ff 03 | 1,51 0,297 0,1 | 03 |[0454 0,297
cv(m)|0,4 S|N0/0,8 S|S*[0,5  [Eew ev | 2,13 | ov cv | 0,64 o'
ov(C)l0,2 | FONoj0,8 |FoForlo,s  [fEER 2,13 [ 275 (M| 2,135 0,64 | 0,826 (MM || 0,643
w(S(T)(0,9 FO|F1(0,1  |NOIN1°|0,8 A u y | bel [ w p y bel B
w(S|G)|0,3 F1|N1/0,8 |F1|F1°[0,3 [i& 706.6 | 579.7 |Feeg)| 626.1 1099 | 824,3 [Fxeml| 971.2
w(N|U)|0,9 F1/F2/0,1  |N1N2°[0,8 [Eestehll cv | 706.6 |p ov' il cv | 1099 |y ov'
w(FIG)0,01 || F2N2/0,8 [F2iF2jo,1 | 587,5] 0,185] 8335} 0,308 47810258 | 1374 [§ 0,441
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APPENDIX 2
User interfaces of the four steps of the assessment procedure.

() Forecasts and the TAC decision. Means and coefficients of variation of the VPA forecast (1
and cv, respectively), and of the belief network model forecast (u' and cv', respectively). At the lower
right hand corner, the users of the system are allowed to fix target levels for the spawning wild fe-
males, and the cumulative probability is shown for the realization of the goal. For more details, see
the text. Numbers in bold are inputs.

y bel w1993 N
14,8% ) 23,2% —\
23,0% || cv \
4000 [{ 0,142 | 31,1%) 0,106
cv N oV [IAGHES N cv B cv'
0,3 | 0,016 | 0,292 |EEi&'R 0,025| 0,3 | 0,016 | 0,292
0,119 | 834,9 | 0,091 [t R 840,1 | 0,119 | 834,9 | 0,091
0,269 | 6,461 | 0,251 [fsaiel 6,483 | 0,269 | 6,461 | 0,251
cv cv' 0,4
0,273 0,219 : 0,2
0,3 0,108 fiwispW 30,46 | 0,383 [ 17,75 | 0,342
0,363 0,163 | spw! 30,23 | 0,376 | 20,69 | 0,31
cv cv 0,4
0,3 0,297 | fem¥) 0,2
0,245 0,246 [iv'spw 10,11 | 0469 [ 3,19 | 0,479
0,297 0,159 fwsp 9,887 | 0,421] 3,103 [ 0,446
v ] x| v A3 w ]l o] ko] 10% | 04 \
0,3 | 1,205 0,297 1,999 | 03 | 2,007 0,297 % 40% | 02
0,254 | 498,5 | 0,386 N 112,3] 0,372 118,7] 0,356 W 4,401 | 0,484 | 0,991 | 0,546
0,28 | 402,2 | 0,404 |EEEcatel 294,3 | 0,237 ] 313,8 | 0,215 fwispw 4,748 | 0,475] 1,04 | 0,538
N N s
cv w ov |[1993 m ov p' cv [WEpW cv_Jp(<L1)|p(<L2)
0,183 | 810 [ 0,221|[EcateN 990 | 0,151 | 1002 [ 0,104 [ ¥ 21,93 | 0,287 ] 0,029 | 0,379
AG{ -10,02/f5 @ 23 0,082 [ TAG-2,207|l- B HF 8% 24,83 | 0,265 0,012 0,231
800 ff 101%|| 0,69 [} Sa i ANEZE 10 | 20
0,478
1 1 7 1 >
4 F /
06 - 0.6 i 06
0,4 7 04 7 04 :
0.2 02 ‘ /.
74 ' 0.2 Vi
0° oo : 5
393AERRIE | 2388B838EE | “ereiswvens




