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SUMMARY

For surfdces with local positive correlatxon more precise estimates of the surface mean can

often be obtained usmg stratlﬁed random or systematxc sampling rather than s1mple '
random sampling. The increase in precision depends on the relatlonshxp between the

spatial correlation; the sampling intensity and the reglon to be sampled However, the

final chome of strategy also depends on the objectxves of a survey The decision may

depend not only on the need to estimate the mean but also on the need to estimate the

preclsxon of the mean. This paper provides insight into the comparatlve performance of

some methods for estxmatmg variance and the impact of dxfferent samplmg strategies on

this process ‘ o S /

Slmulated surfaces were generated Wlth a range of statlstlcal propertles s1m11ar to those
elements of local positive correlatlon, a random process and a non stationary component
The proportxons of these were vaned to study the effects of del'erent situations. - -
Lo ) i
E1ght different samplmg strategxes were 1nvest1gated a]l w1th a samphng mtens1ty
similar to the annual herring’surveys, varymg from 40 transects randomly located in one
stratum to 40 transects W1th systemat1cally spaced and with a centred starting pomt The
bias and the true error variance of the sample mean associated with each samphng
strategy were estimate. For the surfaces generated all the sampling strategles were
' apprommately unbiased. The hlghest error variance was obtained from the s1mple
. random sample, the lowest error varlances were obtained from the systematlc strategies.

mvestlgated These were based on a) the sample vanance, b) the pooled within strata
variance; c&d) two geostatxstxcal estxmatlon vanances, usmg sphencal and exponent1a1
models with nugget The s1mulat10ns were used to estimate the mean, median and 90%
intervals for each 1 vanance estxmator for each sampling strategy. :
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The Y riance estimator based on the pooled thhm strata varxance is unblased for
strategxes from simple random to two transects per strata. For more structured surveys
iti is'bi biased u wards The two geostatistical variance estlmators closely followed the true
error vanance for all strategxes / In these s1mulat10ns, 90% intervals of the pooled within
strata and geostatxstlcal variance estlmators are narrowest at two transects per ‘strata,
a}md 90\%/mtervals {)/f the abuhdance estimator are narrowest for systematic strategies.
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The interaction between survey precision and survey strategy was examined by simulation
by Smeonds and Fryer (1992) They concluded' that for surfaces thh local posxtwe
stratlﬁed random or systematic samphng rather than sxmple random sampling. The
increase in precision depends on the relatxonshxp between the spatial correlation, the
sampling intensity and the reg'xon to be sampled.
l

Examples of the effects of dlfferent strategxes were given for hernng populatlons in the
Orkney Shetland area of the North Sea These indicated decreases in error variance of

between 20 and 80% as the strategy was changed from simple random to systematic with -

the same sampling mtensxty It was pointed out that the final choxce of strategy depends
on the objectlves of the s survey. The decision may depend not only on the need to estxmate
the mean but also on the need to estlmate the precxsmn of the mean. This paper
considers the latter problem by comparmg four variance estimators over a range of
samplmg strategies. .
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The statlstlcal propertles of three acoustic surveys were mvestlgated in one dxmensmn by
examining the transect abundance. The amphtude dxstrlbutlon of transect values was
estlmated by normalising the abundances in each year and combunng the transect values

. over years (Fig. 1). Variograms were calculated from each s survey to determme the spatlal
 statistical properties of the transect abundances Two of these variograms are shown in

Sxmmonds and Fryer (1992). All the surveys ‘show a small posxtlve correlation with a
range of abotuit two to three transects, a nugget effect of between zero and half the sill, and
a non-statxonary component illustrated by a contmually 1ncreasmg vanogram A number

) of plau51b1e vanogram functlons describe these data There are some 1nd1cat10ns of trend

........

“all three surveys. However, it is not possible to concluswely dxstmguxsh between trend
“and large scale spatial correlation from the data S0 both possibilities are considered.’
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To mvestlgate all these pos31b1e characterlstxcs a range of surfaces w1th dlffermg

.....

correlatxon, random components and non statxonary components The local spatial
correlation was generated using an auto-regresswe functxon chosen to give spatial

' autocorrelatlon similar to the herring surveys. The random component was derived from



a random number generator The non—statmnary component was derived in three ways;
a simple random walk, a linear trend and a cosine trend function from -n/4 to 57/4. As
the relative proportlons of these components is difficult to establish from the survey data,

the proportions were varied to see how sensitive the conclusxons were to a wide range of
situations. Fmally the surface amplitude values were modified so that the amplitude
distribution was similar to the distribution observed on the three s surveys For each set
of conditions 1,000 surfaces of 400 locations were generated In all cases the amplitude
distribution and the range of spatial autocorrelation were fixed but the proportlons and
type of non-stationary component varied. . The details of the surface generation method
are included as Appendix A.

To examine the relatxonshxp between variance estimation and samphng strategy we
. considered eight survey strategies and four variance estimators. The samphng mtensxty
of 40 transects was similar to the coverage used on the surveys being studied. The
sample strategies were:

1. 40 Transects Randomly Located in 1 Stratum " (40/1)
2. 20 Transects Randomly Located in 2 Strata _ (20/2)
3. 10 Transects Randomly Located in 4 Strata - (10/4)
4. 5 Transects Randomly Located in 8 Strata (5/8)
5. 2 Transects Randomly Located in 20 Strata “ (2/20)
6. 1 Transects Randomly Located in 40 Strata (1/40)
A 40 Transects with Systematic Spacing and a Random Start (Sys-Rand)
8. 40 Transects with Systematic Spacing and Centred (Sys-Cent)

The strata boundanes were located systematxca]ly with equal spacmg throughout the '

area.

Let the survey area be denoted hy X and have a size IXI For each realised (sxmulated)
surface let S(x) be the surface value at x. An example of a surface and systematic samples
is shown in Figure 2.

"The true mean valu'e- of the surface is then‘

E-= ITI fS(x)dx - (1)

For each survey let:
. o be the location of the j* transect in the i strata, regarding the systematic
surveys as 1 transect in each of 40 strata. ,
s; be the surface value at x; (ie sy = S(xu))
J be the number of transects in each strata and I the number of strata.
N be the total number of transects (IJ), which for these simulations was 40.



The sample mean in the i** strata is:

13
. j:l
The overall sample mean is:
1 L2 @
s = = S,
U ,zl: ,Z; v

The mean abundance is estimated by the overall sample mean:

.

E=5

The four different variance estimators are:

1. "Sample variance™:
X 17 @
Var (E) = (s,-5)?
s N(N—l) ,z; ,z,: ¥
2. "Pooled within strata variance":
; ~ 3 B (5)
Var (E) = (s;-5;)
2 N(N 1) ,)j; f\—f‘ )

For those surveys with only one transect per strata, adjacent strata are combined in pairs.
3. Geostatistical estimation variance using a spherical model with nugget, Var. (B,

fitted by an iterated least squares procedure. The expression for the variance is
given in Matheron (1971):

Var,, (8) = 2y (X, X,;)-y (X, X)y (x;, %)) ©



where:

YXX) = _I;_I gy(x,x')dxdx'

_ 1
Yx) = 7 % ! v(X,x,) dx @
'y(x,-j,x,,,) = —1-2- E E 'Y(xy, xk,)
ne i u
where 7 is the variogram:
Y(d = a + b (15d/R-05(d/R)p) ..... d<R 8
=g+b . d>R

In equation (9) a is the nugget, a+b the sill and R the range.

4. Geostatistical estimation variance using an exponential- model with nugget,
Varge(E), fitted by an iterated least squares fitting procedure. The variance is
estimated using equations 7 and 8 above and with ¥ the variogram :-

1 = a + b el

where a is the nugget, a+b the sill and R the range.

The iterated least squares procedure for both geostatistical estimators used the
experimental variogram derived from pooled samples in 39 distance bins and weighted by
the number of samples per bin. The experimental variogram is given by:

N(d)

' - 1 e T2
v(d) D f‘; [sy=sul 9

d = Ixij‘xul

The distance d assigned to an interval was defined as the mean distance between sample
pairs within the interval. The parameter estimates were indistinguishable from the fit
to the cloud of 780 sample pairs obtained from 40 data values (not put into bins) and
computational much faster.
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The statlstlcai propertles of the abiindance eSttmate E were investigated by 'cdinpaiiﬂg the

in these simulations for any of the samphng strateg1es The true error variance Var(E)
is given by: . i

Var, (£) = -9_9- )j J000(E,, - E )2 1 (10)
m=1 .

¢
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The vanogram of the complete 51mulated surfaces was also computed to check on the
statistical properties of the generated surfaces. !
i
The mean, median and 90% intervals of each variance estimator weré éstimated for éach
sampling strategy. The lower 90% hmxt the median and upper 90% limit were obtained
by sorting the 1,000 sxmnlated varlance estlmates and selectmg those in locations 50 500
and 950 respectively. 1 .
)
: i
RESULTS i
The i;ariog‘faﬁas for two sets of simulations are shown in Fxgurés 3 and 4. Eachfigure
shows 10 variograms from surfaces with different proportlons of nugget effect, statlonary

: posxtwe correlation and non-statlonary components These variograms have statistical

propertxes whlch cover the range of models denved from data collected on North Sea
herring surveys. An example of the cloud of pomt pairs, the experimental variogram and
the ﬁtted models, from one realisation is shown in iFlgure 5.

Precision of Abundance - {

The estimates of error variance Var,(E), for the three types of non-statxonary component

~are s1m11ar (Flg 6) The simple random sample on the left, has the highest error variance. -

The error variance decreases monotonically to the systematlc centred strategy on the right

of the graph. - .
1

Distribution of Variance Estimators |

> \

The four variance estimators also show similar results for each method of surface

generatlon The results for the cosine trend and the linear trend are summansed in
Flgures 7 and 8. , i

'The mean of the sample vanance estimator Var, (E) is almost constant, mdependent of

strategy, with a shght increase from random to systematxc The 90% 1nterval is w1dest

~ for the simple random strategy narrowmg slightly with i mcreasmg order in the survey

The sample variance estimator is positively biased for all strategles except the simple
random strategy ! .
) : i

The pooled variance estimator Var, (E) is unbiased from the sxmple random survey to two
transects per strata. For strategles with only one transect per strata, the estimator is
posxtwely biased although less biased than Var,(E). The 90% interval narrows as the
strategy becomes more ordered until the number of transects per strata reduces to two.
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Both geostatxstxcal estlmators nge s1m11ar results The means of these estimators are
close to the true error variance over the full range of strategles The 90% interval
narrows from a high for the sxmple random survey and reaches a muumum at two -
' transects per strata, and widens slightly for strategles with one transect per strata. The
exponential model performs better than the spherical model for the systematlc strategles
This is because this model more correctly matches the choice of an autoregressive model
for the local positive autocorrelatlon It is not possible to determine which model is more
appropnate for the herrmg surveys and the dlfferences in the two models md1cate the
wider spread of estimates than those from the pooled varlance estimator. However, these
two estimators involve the use of an iterated least s squares fitting procedure to arbitrarily
chosen models, w1thout any non—statxonary components Alternative fitting procedures
or theoretlcal variograms might improve on these results. For example Cressie (1991)
suggests a fourth root transform of squared differences ylelds a more robust estlmate of
the vanogram however, this may not be applicable to data surfaces with a non-stationary
component. )

The iterated least squares ﬁttxng procedure is also d1scussed m Cressxe ( 1991) The
method used here is a weighted least squares procedure which compares favourably W1th
other methods examined in Cressie. A more detailed examination of different vanogram
estimators and ﬁttmg procedures is reqmred before the most appropriate method can be
selected for this type of situation. \

" To examine the relative performance of the different estlmators scatter plots of variance
estimates derived from the pooled within strata, variance and both geostatlstlcal
estimators obtained from the same realisations are shown in Figures 9 and 10. The two
geostatlstlcal estimators are very similar, suggestmg that the choice of model is not
.critical in these circumstances. Flgure 10 also shows that the geostatlstlcal estimators
have a longer tail than the pooled variance for the simple random survey.

To summarise the results Flgure 1 shows the mean 90% intervals for the abundance
estlmates, and for the pooled variance estimator and the two geostatlstlcal estlmators,
over all the simulations. The pooled estimator is only shown for strategxes for which it
is unbiased, 40 to two transects per strata inclusive. The " sample variance" estimator has
been omxtted from this graph as it is biased for all strategies except the smple random
strategy and this is included as the first point for the pooled variance estimator.

Choice of Survey Strategy

These results provlde information on the precision of both estimates of abundance and
estimates of precxsxon and how these change with survey strategy One method of
utrhsmg this is to use a decision surface to show whlch survey strategy is optxmum ngen
" user defined weights for the allocatxon of effort to 1mprove either the precision of the
abundance estmate or the premsxon of the - varxance estimate. , The absolute levels of
abundance and variance and theu' prec1s1on are very different. A functxon is required that
expresses the relative change in preclsmn for abundance and for variance with changing
strategy. One such functxon can be prov1ded by the normahsed 90% mterval (IsoJIs,o) for

unbiased 1 variance est1mates from stratified random strategles with two or more transects
per strata. The pooled variance estimator, which has the narrowest 90% interval, has
been selected as the best method for these strategies. For strategies with one transect per
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Stra_ta the éeoStat1Stlcal estimators proyxded the l)est estixnate of vanance and haye been

corresponds to the maximum of:

] weiwwer
An e | I S |
oo oo,
. .. o , . o ‘ .
where' Co Ce e o !
L. is the 90% mterval for abundance using strategy s - ' R .

Is5, is the mean 90% interval for abundance for all strategies
" Toou 18 the 90% interval for vanance usmg strategy s
- Ly, is the mean 90% interval for variance for all strategies

l

The decision surface based on our snmulatxons is shown in F:gure 12, Thus, for example,
if the reqmrement is to allocate 80% of eff‘ort to estimate abundance and 20% to

- estimating variance then a systematlc survey is the optimal strategy If between 57 and
" 100% of effort. is allocated for estlmatmg abundance, 0 to 43% for vanance, then the best

strategy is a systematxc survey with variance estimated usmg a geostatistical model.
Conversely if between 0 and 57% of effort is allocated for estlmatmg abundance, 43 and
100% for vanance, the best strategy is two random transects per strata using pooled

vanance estimation. o l

CONCLUSlON{S | a o

If & stock distribution can bs represented by @ statistical distribution within the range
examined in this paper, and the mean abundance is estimated by the arithmetic mean of
the data values, the best strategles selected from those examined, are, systemat1c

' strategxes, when the main aim is abundance estlmates, and two transects per strata when

the aim is primarily to estimate the prec1smn of the abundance estunate The statistical

'models exammed mcluded varymg proportlons of a random process, local posmve

“or a s1mple random walk. In all the simulations the amplitude dxstnbutxon and local

positive autocorrelation were constrained to be sxmxlar to those observed on the North Sea
hernng surveys. The conclusions do not depend on the choice of non-statlonary model or
on the exact combination of the different components.
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APPENDIX A
Surface Generation Method

The aim of the surface generation was to provide amplitude and spatial distributions
similar to those observedfrom the survey data. For this purpose, the following expression
was used to derive 400 surface values S; at points x; within a surface area X. (For the
autoregressive functions 1,000 values were generated and the last 400 used):

S, = T{Vap, + by, + Jcr;+M) 1)

where:  the p,; is independent and normally distributed with mean 0 and variance 1

p, = NO,1) (12)

the q; is an autoregressive series given by:

4 = g, + N©,d) (13)

in which « is fixed to give a range of autocorrelation of 2.5 transect spacings
and d is chosen so that the realised variance of q; within the surface is 1

r; is a non stationary component generated by one of 3 different methods.

a) By a simple random walk:
=1, + NGO _ a4

in which d is chosen so that the realised variance of r; within the surface is 1

b) By a linear trend
r,=f+gx (15)

where f and g are chosen so that r; has a mean of 0 and a variance of 1



c) By a cosine trend

3x
- reuf )

where h is chosen to give a variance of 1

The coefficients a, b and ¢ in equation 14 are varied to combine these
components in ten different proportions. )

M is 35. This provides a surface with all the required properties except that
the amplitude distribution is normal. The function T, found experimentally,
transforms the amplitude distribution to one similar to the observed
distribution:

R =2 . v et saeee wennnene for 2> 40 an

0.00321z%+0.4542z + 16.66 .... for z < 40

The resulting surfaces have properties similar to those of North Sea herring:
a mean of 45, a sample variance of 1,200 a range of autocorrelation of 2.5
transect spacings and an amplitude distribution similar to Figure 1. The
proportions of spatial variation are illustrated in Figures 3 and 4 for the cosine
and linear trend. The match between the observed and simulated amplitude
distributions can be seen in Figure 1 where the bars show the observed
distribution and the solid line shows the simulated distribution.

il
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Figure 1. The amplitude distribution derived from 3 surveys of
and the simulated values .

10 30 50

BB Observed transect values

== Simulated values

170 190 210

North Sea herring (bars),

Transect Value

60

50

40

30

L

+m I

20

¥

e

P b,

lu

10

100 200

Position on the surface

400

Figure 2. A simulated surface with statistical properties similar to North Sea herring showmg

sample locations and values from a systematnc sampllng strategy.
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Figure 3. The mean variogram for ten simulations using cosine trend function with varying
proportions of nugget and positive local correlation.
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Figure 4. The mean variogram for ten simulations using linear trend functlon with varying
proportions of nugget and positive local correlation.
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Figure 5. The experimental variogram compared with variance values computed from
sample pairs, the variogram of the underlying surface and models fitted by least squares.
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Figure 6. The error variance calculated from sample means for three different methods
generating non-stationary components.
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Figure 7. The true error variance (thick line) and the median and 80% irtervals for 4 variance estimators
(a) sample, (b) pooled, (¢) spherical model and (d) exponential model variances for cosine trend.
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Figure 8. The true error variance (thick line) and the median and 90% intervals for 4 variance estimators
(a) sample, (b) pooled, (c) spherical model and (d) exponential model variances for linear trend.
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Figure 9. Scatter plot of variance estimates by two geostatistical models for
simple random strategy and two transects per strata.
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Figure 10. Scatter plot of variance estimates by geostatistical model and pooled
variance for simple random strategy and two transects per strata.
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Figure 11. 90% confidence intervals for abundance estimation and variance estimation
using pooled variance, exponential and spherical model estimators.
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