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SUMMARY

For sUifaces With loeal positive correhition more precise estilnätes orihe surface mean can
often bo obtnined using stratified random or systeinatic sampling ratlier thäD. siiIiple '
randcim sampling.. Thc increase in precisicin depends on the relationship between the
spatial correlrition; the sampling intensity arid tho region to be sampled. However, the
fmill choice/of strategy also depends on the objecU,ves of a sUrvcy. The dccision niay
depend not omy on thä need to cstiniate the mean but also on thc need to estimate thc
precision' of the mean. This paper provides insight into the coniparative perforriiäUce of
some methods for estiniritmg variancc mid the impact of different sampling strateiies on
this process. ' , ",' ' 'J -'

. ,. . .

Simuiüted surfrices werc generrited with a range of statisUcal propertfes simllär to th~se
observed on annutu acousii6 surveys of North Sea herring. These sunaces contniried
elements of loeal positive eorrelation, a random process arid a non'süitionary compciiient.
The proportions of these .were varied to stüdy the effeCts of different situations. . ...
:' ,-", , (,,";' . , ,'!, ,', .. , ' '-"." .
Eight different sampling, stratägies ,were investigated, allWith a sampling mtensity
sirililar to the aiuniäI herriilg;surveys, varying from 40 trnnsectS randonuy löcated in one
stratum to 40 transects With systematiCally spaced aiid with a centred stärting point.The
bias arid tlie true error variance of the. sampIe meän associated With .each sampling
strategy were estimate. For the suifaces generated, all the samplmg strategies were
approxiinately unbiased. The highest eiTor variance waS obtmned from. the simple
random sampIe; the lowest erior variances were obtamed from the systerilatic strateiies.

From each. sanipling strategy, foUr esÜiriators of the variance of the sampie meäii were
. invesÜgated.These ware bäsed on a) the sampIe variance; b) tlie pooled withiri strata

variance; c&d) two geostaiistical estiination variances, using spherical arid exponential
models Witli nugget. The simUlations were used to estimäte the meari, median aiid 90%
iritervals for each väriarice esUmator for each sampling strategy.
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INTRODUCTION

\ '

I

J7' 1
Thc t1ii.rince estimator based on the pooled within strata variance Jis unbiased for
strateI;es from simple random to'two transects per strata. For mOfc.,stmctured survcys
it i~'b!as~d,upw~~4s. T~~ tw.o geo~tatisiica} vari~ce cstiin~t~rsEose.lyfo~,lowed, thc.t.ri;te
error vanance for all stratcgIes! In these slmulatlOns;90%mtervals ofthe pooled wlthin
"/' ~"" ,. '\",\lt .1 , ~'l/' '.' ,',~ I/, '.. ",',.,. ''!o~" , •• '~' ,

strata and geostabsbCal varlancc esbmatrirs arenarrowest at two transects per strata,
aJd 90%' i~terV3J.s 'of, the abufIdancc estiniatOrare' riarrowest for systcmrifiC strategies.

I V : V I,
I
I

; ~ ,

The interaction between·survey precision and survey strategy was examinedby simUlation
by Simmorids and Fryer_ (1992)., They concluded,' that for surraces with 10cID positive
correlation more precise estiinates of, thc sUrface ,niean can orten be obtained using
stratified random or systematic sriinplirig rrither than simple random sampling. The
increasc in prccision depends on the relationship~between the spatial correlati<?n, the
samplirig iritensity and thc region tö be samplE~d. I

, t ' '

Exmnples of the effects of different ~trate~es were gIven for berririg pOlmlations iii the
OrImcy Shetland area of thc North Seri. These indiciitrid dcci-eases in error väriance of _
bctween 20 und 80% as thc strategy was charigcd from simplc random to systematic with
the saine sampling intensit,y. It was pointed out that thc fmaI choice ofstrategy depends
on the objectives ofthc survey. Thc decision may dopend not only on the need to cstiinate
the mean but, also on the need to estiIriate the precision of tbe mean. .This paper
corisiders the latter problem by companng four variancc cstimators over a range of

; sampling strategies. i '
I

•.
, '~iETHOD~ i

j
" Eiaiiilitätiöii öf Datä from Hcrrlrig S~eys
,I

I
I I
I '

I
I

I

, The staiisUcai properties oftm:~e aco~stic surveys ~ere~vesHgritcdiii orie dimen~ion by
examinirig the transeet abcindance. The amplitude distiibution of transect v81ues was
estimated by normalisingthe abundrinces in each year and coinbining the transectVIDues

,over years (Fig. 1). Vanograms were calculated from each sUrVey tri deterinine the spati81
" statistiCal properties of thc transect abundances. TWo of these variograms ure sbown in

Simmorids rind FIjer (1992). All thc surveys show a small positive correlation :With a
. range ofabciüt two to tbree transeCts, a nugget effeci ofbetween zero rind half the sill; and
a non-st.3.tionary ccimporient illllstrrited by a continuallYincreasingvariogi-riin. A mimber

, ofplausible vrirlOgTam flinctions describe these datai There are some iridications oftrend,
,since the southern half of the area coritains lower aburidance than the riorthern pärt for
all tbrec surveys. However, it is"not possible to condiisively distmguish betweeri trend
and large scale spatiUI corrclatiori from the data so both pcissibilities are considered. '

, , I: ,
Siriiuhition Proccdurcs ~

, i,. '.,
To investigate all these possible characteristics a range of surfaces witb differing

.statistiCal properties wcre siiriulated.' Tbe sUrfaces' contained elements of loCai. positive
correlation. raIidom ccimponents. andnon station~ry components. Tbc local spatial
correlation .was generated using an auto-regressive function chosen to give' spatial

, 'autocorrelation siiriilar to thc herring surveYs. Thc rnndcim co'mponcnt was denved from

.2
;
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a random mimber generator. Tbc non-stationary c~mponentwas 'denved in three waysj
a simple raildom. walk, a linear trend and a eosirie trend function from -rrJ4 tO 5rrJ4. AB
the relative proportions ofthese components is difficult to establish from the srirvey data,
the proportions were varied to see how sensitive the conclusionswere to a wide range of
situations. Finally the surface amplitude values were modified so that the amplitude
distribution was äimilar to the distribution observed on the thi-ee surVeys. Frii- each set
of conditioris 1,000 sUrraces of 400 locations were gencrated~ In all cases the amplitude
distribution arid the range of spatial autocorrelation were fixed but the proportions and
type of non-stationary component varied.. Tbe details of the surface generation method
are included as Appendix A. .

To examine the relationship between variance estimation and sampling strategy we
considered eight survey strategies and four varianec estimatorS. The sampling intensity
of 40 transccts was similar tri the coverage used on the surveys beirig stiIdied. The
sampIe strategies were:

,.'.,•
1.
2.
3.
4.
5.
6.

. 7.
8.

40 Transects Randomly Located in 1 Stratum
20 Transects Randomly Located in 2 Strata
10 Trimsects Randomly Located in 4 Strata .'
5 Traiisects Rriridomly Located in 8 Strata
2 TransectS Rrindomly Located in 20 Strata .
1 TransectS Randoinly Located in 40 Strata
40 TransectS With Systematic Spacing and a Random Start
40 Transects with Systematic Spacing rind Centred

(40/1)
(20/2)
(10/4)
(5/8)
(2120)

(1140)
(Sys-Rand)
(Sys-Cent)

The strata boundaries were located systematic~ly With equal spaclng thi-oughout th~
area.

Let the survey area be denoted by Xand have a size lXI. For each realised (simulated)
sui-face let Sex) be the surface valueat x. An example ofa surface and systematic sainples
is shown in Figure 2.

•
. The true ~eriri value of the sUrrace iS then:

(1)

•

•

•
•

For each survey let:

Xv be the location of the jth transect in the i th strata, regarding the systematic
surveys as 1 transect in each of 40 strata. .
s·· be the surface vriluc at Xu (ie s·: =S(Xy» .
lbe the mimber of transects in e~ch strata and I thc number of strata.
N be the total number of transectS (lJ), which for these simulations was 40.
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The sample mean in the ith strata is:

1 J

~ - L SjJ
_ J j=l

The overall sample mean is:

_ 1 1 J

S = - L L SI/
IJ i-1 j-1

The mean abundance is estimated by the overall sampie mean:

The four different variance estimators are:

1. "Sampie variance":

2. "Pooled within strata variance":

(2)

(3)

(4)

(5)

For those surveys with only one transect per strata, adjacent strata are combined in pairs.

3. Geostatistical estimation variance using a spherical model with nugget, Vargs(E),
fitted by an iterated least squares procedure. The expression for the variance is
given in Matheron (1971): •

(6)

4



where:

where "( is the variogram:

y(d) = a + b (1.5 dJ R-0.5 (dJR)3) ...... d<R

(7)

(8)

= a + b ...... d2:.R

In equation (9) a is the nugget, a+b the sill and R the range.

4. Geostatistical estimation variance using an exponential· model with nugget,
Varge(~), fitted by an iterated least squares fitting procedure. The variance is
estimated using equations 7 and 8 above and with "( the variogram :-

y(d) =a + b e(l-4/R)

where ais the nugget, a+b the sill and R the range.

The iterated least squares procedure for both geostatistical estimators used the
experimental variogram derived from pooled sampIes in 39 distance bins and weighted by
the number of sampIes per bin. The experimental variogram is given by:

• 1 N(ti)

yCd) = E [SU-S kl]2
2NCd) ijkl

d = IXU-Xk11

(9)

The distance d assigned to an interval was defmed as the mean distance between sampIe
pairs within the interval. The parameter estimates were indistinguishable from the fit
to the cloud of 780 sampIe pairs obtained from 40 data values (not put into bins) and
computational much faster.
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The statisticill properÜes oftne abundanec estimat~~ were investigated by co~paririgthc
simulated estimates say:em With the simulrited abundances Em., Negligible bias was fciund
in these simulations for any ofthe sampling stratCiies. Thc true erior varianee Vart(~)
is given by: - _ . i

, 1 1 I .
Var, (E)' = - E ,()()()(E

lII
...: E

lII
)2 ' (10)

999 1II-1 I '"
.

The "variogram ofthe complete simul~ted sunrice~ was also computed to check '011 thc
statistical properties of the generatCd sunaces. j ,"
. I

The mean, median and 90% intervais of each variahce estima""tor wcrc esÜnirited ihr each
sampling strategy. The lower 90% limit, the niedian and upper 90% litD.it were obtamed
by sorting the 1,000 simUlated variance estiriuites rind selecting those in locations 50, 500
and 950 respectively. . l'

I
. . j

RESULTS I
:

The varlograms for two setS of simUlations ure shbwn in Figures 3 and 4. Each'figura
shows 10 vanogianis froin sulfaces With different proportions ofnugget effect, stationary
positive correlation arid non:.stationalY componimtS. Thesevariograms have statisticw
pröperties which cover the range of niodels derived frOni data collected on North Sea
herring surveys. All cxäID.ple ofthe elond ofpoint p'airs, thc experimental varlögram and
thc fitted models, from one rerilisntion is shoWn in Figure 5.

I
, I

\, ,
The estiinrites of eiTor variance Vart(:e), for thc thr~e typ'es of non-statioiüiij component
rire similar (Fig. 6) The simple random sampIe, on the left, has thc highest errorvariance. '
Thc eITor vanance decreases mönotonicrilly to the systeniatic ccntred strategy on the nght
of the graph~ . ! ~

I

DIstribution ofVariancc Estimatörs 1

The four variance esÜmators also show similar ~esU1ts for each inethod of sUrface •
generation. Thc results for the cosine trend and the liriear trend ure summUrised in
,Figures 7 and 8. i
'The mean of ihe sampIe varlance cstimator Varl~) is almost constäilt, independent of
strategy, Wiih ri slight increase from random tö systCmatic. Thc 90% iritcrvw iS Widcst
für tlie simple random strategy narrowing slightly With increasing order iii the survey.­
Thc sampIe vanancc estimator is positively biased for allstrategies except the simple
random strategy. '

I

The pooled variance estimator Varp(~) is unbiased f~om the simple random stirvey tü two
transects per strata. ,For strategiesWith cinly one transect per strata, thc estimritor is
positivelybiused nlthough less biased than Var.(~).Thc90% interVal nurrows as thc
strategy becomes more ordered until the number of transects per strata reduces tri two.

I .

I
I
!.
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noth geostatistical estimators give simlllir results~ The menns of these esUmatorsrire
close .to the trUci error vanance over thc fuH range of stratCiies~ The 90% interval
narrows from a high for the silnple. raridom sUrvey arid reaches a minimum ät two

, trarisects per strata~ and widens slightly for strategies with orie trailsect per strata. The
exponential model performs better than the spherical model far the systematic strategies.
This is because this model more correctly'matches the choice of an autoregressive model
for the loeal positive autocorrclation. lt is not possible to detCrInine which model is more
appropriate far thc herring surveys and the differences in the two models indicate the
uncertäirity due to the choice of model. Generally the geostaUsÜcal estimators givc a
wider spread of estimatCs than those from the pooled variance estimator. However, these
two cstimators involve the use of an iterated least squares fitting proccdure to arbitrarily
chosen models, Without any rion-stationary ccimponentS. Alternative fitting proccdirres
or theoreticaI variograms might improve on these rcsUlts. For eiainple Gressie (1991)
suggests afourth root transform of squared differences Yields amore robust estimate of
the variograni; howevcr, this may not be applicable to dritri. sWfaces with a non-stationary
component.

Thc iterated least squhres fitting procedure iS aiso cllscussed iri Cre~sie (1991). The
method usEid here is a weighted least squares procedtire which compares frivourably With
other methods examined in Cressie. A more detailed ciamiriation of differcnt vrinogram
estiniators and fitting proccdtircs is rcquired bcfore the most appropriate method can oe
selccted for this type of situation. '

Ta examine tbe relati~e performance of the different estiID.ato~ scatter i>iots 01' variance
estimates dEirivcd from the pooled withiri strata, variance and both geostritistical
estimators obtaincd from the same realisations are shoWn iri FigUres 9 and 10. Tbe two
geostatistical estimatorS are vel-y, similar, suggesting that .tbc choice of model iE; not
.critic3l in these cirCumstances. Figure 10 also shows that the geostatistical estmuitors
have a longer tail thriii the pooled variance for thc simple räiidom srii-VeY.·

To suiriDiririse the iesUlts Figura 11 shows the mean 90% m:ierVäls far,the abUndance
estimates, arid for the pooled varlance estimritor and the two geostatistiCalestiniritors,
over all the simulations. Tbc pooled estunatOr is only shown for strntegies for which it
is unbiased; 40 to two transects per strata iiiclusivc. Thä "sampIe vmalice" estiniator has
been omittcd from this graph as it is biased for all strategies eXcept thc simple random
strategy and this is incltidcd as thc first point for the pooled variance cstimator.

Choice of SurVcy Strätegy

These results proVide inrorniation on thci precision of both estimates of abundance and
estimates of precisioD. and how these chalige With survey strategy. One method of
utilismg this is to use adecision suiface to show which survey strategy is optimiiin~ given
user defined weights for the rillocatiori of effort to improve either the precision of tha
aoundance cstimate or the precisiori of the variance estimatC. ,Thc absolute levelS of

_ abUridanCe arid variance aitd their precision are very different. A.function is required that
expresses the relative change in preCisiori for abundance and for variance With ch~nging

strategy. One suCh function enD. be proVided by thc normaIisad 90%iriterval (lgoJI90) for
both abUndance and variante. There ure a nuinher of methods of denvirig approximately
unbirised variance estiriiates from stratified random stiategies With two or more trrinsects
per strata. The poolcd vanmice estimator,which has the uarrowest 90% interv3J, has
becri selccted aS thc best method fo~ these straiegies. Für strategics with orie transect per

...
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strata the geostatistical cstimators provided the best esÜmate ofvananee rind have beeil
selected. ' Thc best strategy for any chosen survey objeetives, or weight regime, thus
correspondS to thc maximUm of:' I . '

I
I " . "

",here i w ... W = 1 .'I •. Y •. ,

I

·1
I
1
I
I

, I

Ig~ is the 90% iritei-Val for abiindärice usirig strriU;gys' '
, , Igo.. is the meari 90% iriterval for aburidance for an strntegies
· Ig~ is the 90% intervril for vririanee using strategy s "
· IgOv is the mean 90% interval for variance far all strrite~es

, " I
The decision surface based on our simulations is sIloWn in Figm.e 12. Thus, for example,
if thc reqmrement' is to anoeate 80% of effort to cstimate abundanee arid 20% 'to

· estinuitiiig variance thon ä systematie sUrVcy is thc optimal strategy. Ir between 57 and
100% of efforl is rillocated for estiIriating abundanec, 0 to 43% for variarice, then the best
stratcgy is' a systematic survey with varianee estimrited using ä gEmstatistiCal model.
Conversely if between 0 arid 57% of effort is allocated for estiinating abundance, 43 and
100% for varianee, the best strategy is two räildoni transeets per strata usmg pooled

, väriäiice estiinätion; i '
I

I

I,
I,
I,

CONCLUSIONS
, .,

" ".!. , , ','.
Ir a stOck distributiori can bc, represented by ri statistical distribution' within the range
examined in this' paper, arid thc mean abundariee is estmuited by the aiitliriietie niean of
the data vroues, the best strategies, selectcd from those examined, are; systematie
strategies; when the main aiin is abundarice esUmates, and two transeets'per strata when
the Wni is pnmanly to estimate the preCision of the ablindance estiniäte. The statistical

· models'examined mchided varymg proportions. of ri random process, löCal positive
, eOITelation~ non stationary coniponent givcn by a linear or ci low frequeney eosiiie'trerid;
· or ci simple räiidorn. wrilk. In all thc siniUlatioristhe amplitude distiibution~and leical

posiÜveautoeorrelatiöri ware eonstramed to be sunilar to those observed on thc North Sea
herring surveys.The eonclusions do not deperid ori'thc choiee ofnon-staticinary model or
on the exaet combination of the different eomponents. ' . . '

, I
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APPENDIXA

Surface Generation Method

The aim. of the surface generation was to provide amplitude and spatial distributions
similar to those observed-from the survey data. For this purpose, the following expression
was used to derive 400 surface values Si at points Xi within a surface area X. (For the
autoregressive functions 1,000 values were generated and the last 400 used):

(11)

where: the Pi is independent and normally distributed with mean 0 and variance 1

P, = N(O,l)

the Cli is an autoregressive series given by:

q, = aqH + N(O,d)

(12)

(13)

in which <X is fixed to give a range of autocorrelation of 2.5 transect spacings
and d is chosen so that the realised variance of Cli within the surface is 1

r i is a non stationary component generated by one of 3 different methods.

a) By a simple random walk:

in which d is chosen so that the realised variance of r i within the surface is 1•
T, = T, _1 + N(O, d)

b) By a linear trend

T, = f + gx,

where f and g are chosen so that r i has a mean of 0 and a variance of 1

1

(14)

(15)



c) By a eosine trend

(16)

where h is chosen to give a variance of 1

The coefficients a, b and e in equation 14 are varied to eombine these
eomponents in ten different proportions.

M is 35. This provides a surface with all the required properties except that
the amplitude distribution is normal. The function T, found experimentally,
transforms the amplitude distribution to one similar to the observed
distribution:

= 0.OO321z.:2 +0.4542z.: + 16.66 .... forz.: ~ 40

T(z) = z .................................................. for z.: > 40
(17)

The resulting surfaees have properties similar to those of North Sea herring:
a mean of 45, a sampIe varianee of 1,200 a range of autocorrelation of 2.5
transect spacings and an amplitude distribution similar to Figure 1. The
proportions ofspatial variation are illustrated in Figures 3 and 4 for the eosine
and linear trend. The match between the observed and simulated amplitude
distributions can be seen in Figure 1 where the bars show the observed
distribution and the solid line shows the simulated distribution.

11
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Figura 1. Tha amplitude distribution derivad from 3 survays of North Ses herring (bars),
and the simulated vaJues •

•
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Figura 2. A simulated surface with statistical properties simUar to North 8ea herring showing
sampla locations and valuas from a systematic sampling strategy.
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Figure 7. 1lle true error variance (thick line) and the median and 90% intervals tor 4 variance estimators
(a) sampie • (b) pooIed, (e) spherical model and (cl) exponential model variances' for eosine trend.
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Figure 8. The true error variance (thick line) and the median and 90% intervals tor 4 variance estimators
(a) sampie , (b) pooled, (c) spherical model and (d) exponential model variances far linear trend.
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