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This paper explores methods for expressing uncertainty in the
scientific advice on current and projected resource status. We
have conducted simulation experiments incorporating variability
in the stock-recruitment relationship and measurement error in
catch and abundance estimates for stocks with different life
histories, exploitation and information bases. Stock assessments
are simulated for every projection year and TAC's are chosen
based on management strategies given by the estimated target
biological reference point and the probability that the TAC will
achieve its target.

Using these simulation results, where there is a "perceived"
population as~well as a "true" underlying population, we consider
how the choice of management strategy interacts with the
uncertainty in the assessment of current status. We explore
possible measures of risk to the resource and the fishery for
different strategies. In discussing risk we consider related
issues of defining biomass thresholds, statistical power and Type
I error. We then discuss how these sorts of calculations may be
incorporated into assessment advice on a routine basis.
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As stock assessment methodology has moved toward statistical
procedures,increasing attention has beenlfocussed on estimating
the uncertainty in assessment advice (e.g. Shepherd 1991, Smith
et al 1993, Anon 1993). It has become routine inmany
assessments to estimate the variance of the estimated stock
abundance or fishing mortality rate, but lin many cases this
additional information is primarily usedby scientists as a' .
diagnostic for the analysis. Expressinglassessment uncertainty
to managers is another matter however, and there is, as yet, no
standard approach in the presentation of!advice with respect to
uncertainty and risk. Here, we investigate the role of
uncertainty in the provision of management advice through
simulation studies. We present a numberjof different measures of
the projected status of the resource and,the implications of
managers adopting different approaches to the inherent
uncertainty in the assessments. Then, we discuss how such
information may be incorporated into scientific advice for
managers. I

I
I

In broad outline, we are seeking to address two fundamental
questions with our simulations; 1) how can a given management
strategy be evaluated on a year to year basis given uncertainty
in knowledge of resource status ? and 2) ;what is the benefit of
reducing uncertainty as information accumulates through time or
additional research? We consider these 'questions by generating
model fish populations roughly similar to a Northwest Atlantic
cod stock and apply an FO• 1 (Gulland and Boerema 1973) or an Fmed
(Sissenwine and Shepherd 1987) harvest strategy over a 15 year
period. Different levels of uncertainty 'are introduced into the
process for comparison. We carry through the full assessment
process using the ADAPT procedure (Gavaris 1988; Conser and
Powers 1989) in each year of the simulation, projecting one year
ahead to set catch limits, then updating the estimates of stock
status~ We then compare performance using a suite of measures
evaluated on the "perceived", i.e., estirnated, population and the
true, simulated population. This distinction is crucial in our
view. We wish to know how the management' measures have performed
for the underlying population. But, equally or perhaps more
important is the ability to detect what is happening given
uncertainty and a particular management strategy.
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The analysis of uncertainty and risk assessment are often taken
to mean the same thing in fisheries. In decision theory, this is
not the case. The term risk means the expected loss of benefits
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from the resource, where thebenefits .are defined with respect to
some utility or loss function which expresses the value of
possible outcomes such as yield or recruitment. In practice, the
term risk is often used to describe some subjective notion of
danger to the resource base, such as the risk of spawning biomass
falling below a specified level, or the risk of recruitment
failure (Restrepo et ale 1992; Francis 1992). It would certainly
be desirable to use the more formal approach of decision theory,
but this would require managers making clear the appropriate
utility or loss functions to be applied.

Uncertainty arises from an imprecise knowledge of the state of
nature. At least five types of uncertainty can be distinguished:

1) measurement error is the error in the observed
quantities such as the catch or biological parameters.

i

• 2) process error is the underlying stochasticity in the
population dynamics such as the variability in
recruitment.

•

3) model error is the misspecification of model structure.

4) estimation error can result from any of the above
uncertainties and is the inaccuracy and imprecision in
the estimated population parameters such as stock
abundance or fishing mortality rate.

5) implementation error results from variability in the
resulting implementation of a management policy, i.e.,
inability to exactly achieve a .target harvest strategy.

In the simulation studies presented here, we incorporate
measurement error, process error and estimation error. We
evaluate risk in comparison to simple utility functions related
to yield and recruitment. In addition, we consider the more
usual notion of risk as the chance of low stock biom~s~ or poor
recruitment and calculate the statistical power and a form of
Type I error in the assessment advice as an important component
of uncertainty for managers.

SXMULATXON STRUCTURE

We generated model fish populations using standard fishery
population dynamics equations with stochastic, lognormally
distributed recruitment with mean recruitment at a given spawning
biomass level governed by a Beverton and Holt stock and
recruitment relationship and a constant coefficient of variation
as an input parameter. üther input parameters were the rate of
natural mortality, the maturity ogive, weight at age, and the
partial recruitment at age to the fishery. For each population
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we also input an exploitation history; either overexploited or
underexploited. In the overexploited case, the simulated
population was harvested at an FO•1 rate for 50 years. Then the
mortality rate was increased over a 10 year period to a fishing
mortality rate corresponding to the slope at the origin of the ,
underlying stock recruitment curve (notelbecause of stochasticity
this harvest rate did not result in rapid extinction of the
population), which was maintained for a further 10 years before
the first projection year. In the underexploited case,
harvesting at FO•1 was maintained up until the first projection
year. 1
As noted above, an assessment was conducted each simulation year
starting with the first projection year. I These assessments used
the ADAPT method of least squares fitting of, the catch at age
matrix and research survey indices at age. Measurement error was
added to the catch at age matrix from a lognormal distribution
with input coefficient of variation. Similarly, lognormal errors
were added to. the survey indices. A separable VPA was performed
on the "observed" catch at age matrix tolestimate the partial
recruitment in the final year for cohorts whose terminal F was ,
not directly, estimated as a parameter inlthe,search. Estimates of
stock abundance and fishing mortality rates at'age from ADAPT .
gave the "perceived" stock status and perceived reference points,
which were re-estimated each year~ Thepartial recruitment
vector used to estimate FO•1 or Fr.ted was the geometric mean of the
perceived fishing mortality rates at agejfor the last three years
of data. The.perceived,reference fishingmortality rate was then
applied to the perceived stock to estimate a TAC for the coming
year. The true stock was updated using this TAC,. a new
recruitment value was added and the process repeated.

I
., , ,I

Simulation experiments were performed for 16 cases in total and
in each experiment 100 populations were projected for 15 years I

each. The random recruitment sequences added to the populations
were the same in each experiment tO,enable comparisons. For each
harvest rate strategy, eight experiments lwere performed, four
with overexploited populations and four with underexploited
populations. Two of the overexploited and two of the
underexploited cases were based on an initial observed data ,
se ries of 10 years in the first projecti6n year with error C.V.'s
of 50% added to the catch and the survey'data. The other two
were with 20 years of initial data and error C.V.'s of 25%.
Of these pairs, inone case the resulting estimate of stock ,
abundance was interpretedcautiously by using the 25th percentile
of the distribution of the estimate to calculate the TAC for the
coming year. In, the,other case of each pair, the abundance
estimate was viewed optimistically, by using the 75th percentile
of the distribution of the estimate. :

This design enabled us to consider the b~nefits of being cautious
in interpreting the estimates and the benefits of longer time
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series or lower error variances' in the data for either type of
stock or target harvest rate.

SIMULATION RESULTS

To provide a frame of reference for the results, we calculated
FOo1 as 0.162 and Fmax as 0.274. for our model populations. Bmsy
for the deterministic yield curve was 50,000 MT and the maximum
recruitment on the deterministic stock and recruitment curve was
100;000 fish.

The median fishing mortality rates actually applied to the stocks
(the true F's) were similar, between 0.1 and 0.2, for all cases
except the overexploited stocks harvested using an Fmed strategy
(Figure 1a). This is simply because Fmed is calculatea from the
stock biomass and recruitment levels recently experienced by the
population and is a maintenance harvest rate, so will maintain
those stock levels. In the overexploited cases, Fmed gives a
fishing mortality rate similar to the recent F the stock
experienced, i.e., near the slope of the stock recruitment curve.
Note in the Figure 1a that the median harvest rates for the
optimistic view of stock status (75% of the distribution of
biomass estimates) are always higher than the cautious view.

The perceived harvest rates overestimate the true F when a
cautious view of the stock is taken by a substantial amount,
nearly double in some cases. In contrast, an optimistic view of
the stock abundance results in slight underestimates of F (Figure
1b). This is because using a lower biomass estimate to compute
TAe's gives a lower true F compared to the perceived reference
point. Longer data series lessen this effect (Figure 1b).

When the Fmed harvest rate is estimated without error and applied
to the stock, the perfect implementation case, it does in fact
result in maintenance of the stock at the level at the start of
projections. FOo1 results in substantial stock rebuilding for the
overexploited stocks and maintenance for the underexploited
stocks (because it is close to Fmed . However, using the estimated
Fmed , the overexploited stocks rebuild somewhat by the end of the
simulation anyway, more so for the cautious strategies and when
the uncertainty is higher in fact. This is because there is a
tendency to underestimate stock biomass in the simulated
assessments. Using the cautious view of stock abundance, this
tendency to underestimate is accentuated and enhances rebuilding.
Even so, the average annual true yields are much higher for the
underexploited stocks than those overexploited (Figure 2a). The
average yield is actually not very sensitive to the degree of
uncertainty. The perceived average yield is always slightly less
that the actual yield (Figure 2b), but this just results from the
lognormal distribution of error in total catch that we used to
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generate the observations, i.e., the median of a lognormal
distribution is less than the mean. Note the short data series
highlight this effect. I

. I
Another important attribute of fishery performance is the annual
variability in yield (Figure 2c). Expected variability in yield,
measured by its coefficient of variation~ is always less when the
uncertainty is lower and is much higher for the overexploited
stocks than the underexploited.

We compared the average cumulative yield over the 15 years of
projections.to both the case where the strategy was implemented
perfectly, i.e., there was rio measurement error so abundance was
known exactly, and to a population harvested.at the status quo
fishing mortality rate at the start of the projections. The
former gives a measure of the foregone yield due to measurement
error. The latter is a measure of the foregone yield from taking
different harvest strategies, here the choice of FOot or Fmed
combined with a cautious or optimistic .view of management. Note
that foregone yield in either case is defined as the respective
perfect implementation or status quo yield minus the true yield
obtained in the simulated case. Therefore, positive foregone
yields mean that the perfect implementation or status quo yield
was higher than for a particular combination of measurement error
and harvest strategy. ~

For the underexploited stocks, the foregone yield calculations .
indicate that it does not pay .to be extra cautious (in terms of
the estimate of stock abundance) and, for lightly exploited
stocks, one can afford to be optimistic (Figure 3). If the stock
is heavily exploited an FOot is anadvantageous strategy compared
to the status quo of course because it gives a lower fishing
mortality rate. The true yield under Fme~ is also higher than the
status quo because of the tendency to underestimate F noted
above. Because higheruncertainty implies wider confidence
limits on the estimated biomass, a shorter time series and
cautious strategy give large negative foregone yields, i.e.,
fishing mortality rates are lowered evenlmore. The longer time.
series with lower uncertainty always provide yields closer to the
perfect implementation case of course. I

I
Yield is one measure of stock productivity, but recruitment is
also an important measure in its own right. One goal of
management may be to maintain long term viability, i.e., prevent
recruitment overfishing, regardless of whether the yield is the
largest obtainable. We examined expected recruitment for each
case (Figure 4a). Underexploited stocksjhad much higher expected
recruitment than overexploited stocks because of the shape of the
stock recruitment relationship built into the simulations~ In
every case, recruitment was slightly higher using a cautious view
of abundance and differences between cautious and optimistic were
larger for cases where the uncertainty was higher (short time
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The perceived recruitment was higher than the true simulated
recruitment for the overexploited stocks, sornetimes by as much as
60% (Figure 4b). This has implications beyond the strict
comparisons made here. Overestimating recruitment if the
projections were made more than one year ahead to guide
management, would suggest the stock is producing at a higher
level than is actually the case. Note that the runs with greater
uncertainty overestimate recruitment more.

The Risk of Recruitment Overfishing

Maintaining stock productivity implies maintaining the production
of new recruits and therefore maintaining a sufficient spawning
stock to keep the probability of good recruitment high.
Determining what constitutes "good" recruitment is an arbitrary,
though hopefully sensible decision and, unless there is clear
evidence for depensatory recruitment, the choice of a spawning
stock abundance to maintain a high chance of good recruitrnent is
somewhat arbitrary. Here, we choose to define good recruitment
as greater than or equal to half of the maximum recruitment from
the underlyingrelationship between stock and recruitment. The
threshold for spawning biomass therefore is the biomass that is
expected to give recruitment at one half the maximum of the
deterministic relationship' (Mace in press, Myers et al. in
press). For the Beverton-Holt relationship written as R =
aS/(l+S/K) this is given by the parameter K.

We calculated the probability that'the true simulated recruitment
was less than half, the maximum of the underlying curve and the
probability that spawning biomass was less than the level that
would is expected to produce half the maximum recruitment. The
results were similar and only the spawning biomass threshold
results are described below.

.. For the underexploited cases, spawning biomass never fell below
K. Fishing at Fmed on an overexploited stock kept the stock below
the threshold and recruitment consequently low (Figure 5a). A
cautious view of abundance only slightly ameliorates this is
situation, but the FO• 1 reduces this measure of risk to the stock
to between 10 and 20%.

Of course, in practice, one would not know these probabilities or
the true, underlying stock and recruitment curve. This could
only be estimated from the data and the estimated spawning
biomass compared to the estimated threshold,level would be used
to judge if the stock"was at risk of reduced recruitment. We
compared this perceived risk to the stock to the true simulated
population and calculated statistical power and the chance of
Type I error. Here, power is the probability of perceiving that
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the stock is below the threshold when inl fact it iso Type I
error is the probability of perceiving that the stock is below .
the threshold when in fact it is not. In these tests we used an
alpha level of 0.2, i~e., if the estimated threshold fell above
the 80th percentile of the distribution of the estimated spawning
biomass the stock was considered below the threshold. This is
also another sort of Type I error, from drawing an incorrect
conclusion due to the alpha level chosen~ fixed at 20%. The
additional error comes from a cornbination of misestimation of the
abundance and the threshold. I

I
To calculate the threshold we used two methods, that due to
Serebryakov (1992; Shepherd 1992) and simply fitting a Beverton
Holt curve to the observed data for each' year and using estimated
K as the threshold. Note that the perceived threshold moves each
year as the assessment is updated. The Serebryakov,method'
performed poorly and wasvery unstable as biomass changed (Myers
et ale in press b) and is not discussed further. The power for
the fitted curves was much higher for the longer data series with
little difference between the cautious and optimistic views of
abundance (Figure Sb). The Type I error~however, was always
higher for the optimistic harvest strategies and lower for the
longer dataseries (Figure Sc). We examined the time series of
threshold estimates compared to the truelK of the underlying
relationship. There is a clear pattern of learning' as data
accumulates through time as expected. l

I
DXSCUSSXON I

Our simulations provide some general reshits on the importance of
uncertainty in the assessments. The benefits of reduced
uncertainty in the form of longer time series and lower
measurement error show up most clearly in the expected
variability of yield and the power and Type I error for detecting
risk to stock with respect to recruitment. These are important
quantities for any management decision and should where possible
be calculated as a component of the scientific advice as
discussed below. I

I

The choice between harvest strategies islless clear cut. There
seems little advantage to choosing a cautious view of abundance
if an already cautious strategy such as FO•1 is chosen. The '
benefits of caution here are with respect to risk of the stock
going below a threshold level, statistical power and Type I
error. However, these are powerful arguments, since there is
generally little to lose from added caution. The Fmed strategy
appears to be outperformed,by FO•1 as a harvest rule and is
probably more appropriate as a harvest threshold than as a
target. It is likely intermediate strategies (Pelletier and
Laurec 1991) or a more complicated harvest control law (Rosenberg
1993) would outperform either of these simple strategies.
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Perhaps the most important point of the'work presented here is
the various measures of the performance of different harvest
strategies. In our view it would be useful to calculate
routinely for many assessments measures such as expected yield
and recruitment, expected variability in yield, probability of
going below a biomass threshold or risk to the stock and the
power and Type I error of tne estimates for detecting such
effects. In the context of a real simulation this would require
some simulations studies using the available data to bootstrap
projections into the future. While we have simulated a full
updating procedure here, this is not necessarily needed for a
real assessment. One approach would be to resample or Monte
Carlo recruitment estimates from observed recruitments or their
estimated distributions for different stock sizes as a basis for
the projections under different harvest strategies. Estimates of
measurement error in the assessments should also be bootstrapped
or used in Monte Carlo experiments. The measures are then
calculated over medium term projection as we have done here.

The power analyses done here are somewhat more difficult, but can
still be performed as an important component of the advice. A
fitted stock and recruitment curve for the observed data is
needed as the basis for the analysis. This is taken as the
"true" curve as in our studies. New sets of stock recruitment
data could then be generated via bootstrapping or Monte Carlo
methods and power and Type I error computed as the nurnber of
times the stock appeared to be below the threshold (1/2 maximum
recruitment of a fitted curve) in the generated data sets when it
was in the original data set. An additional difficulty arises
due to the range of observations of stock biomass. A very
different impression of the relationship between stock and
recruitment often results from stocks which have undergone
different exploitation histories. Because of this, it may be
useful to hypothesize a nurnber of different curves for trial in
the power analysis. However, the question of relevance is how
sensitive is the conclusion concerning the status of the resource
vis avis one or more biological reference points, i.e., do we
get a different answer using different realizations generated
from the distribution of the parameters.

Clearly this is not a complete power analysis, but at least will
guide managers as to the ability of the assessment methods to
warn them of danger to the stock. Similarly, the Type I error
warns of the chances of taking difficult and costly actions when
they are not warranted.

While these simulations may appear to add a large burden to the
assessment process, we note that many of the needed quantities
are already output in many assessments (measurement error
variances, projections under different strategies). We simply
argue for completing the proce~s and carrying through the
estimates of uncertainty to the management advice itself.
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