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ABSTRACT

Assessments and prOJecuOns can have uncertainty because data are noisy or unrepresentative,
and because model formulations do not capture the biological processes correctly. When
scientists quantify risk, they lose none of the uncertainty due to data sources. Moreover, they
may add further model uncertainty because they must specify the error structure of the models,
as well as the biological processes.

Non-parametric densxtylestlmauOn methods estimate the probability density function (pdf) of
attributes from data, without specifying a particular functional relationship or error distribution.
Non-parametric density estimation methods can forecast the pdf of features like recruitment or
wexght—at-age from biological and/or physical influences. They can also capture environmental
vanablllty in tuning indices without having to specify the relationship between the index and the
environmental factor (say, survey estimates and water temperatures). The quantitative results
can be displayed as probablhty distributions or ogives.

When models are well motivated, or model parameters are of direct interest, model-based
methods should be used to quantify uncertainty. When there are reasons to question any
particular model formulation, non-parametric methods are useful for representing the true
uncertamty in the advice and the range possible outcomes of management actions. From my
experiences using distributions and ogives to present results to managers, I will draw some
generalizations about the effectiveness of each type of display, and how each can influence
decisions.
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INTRODUCTION
i

Both the models we use to represent fish populatxons and fisheries and the data we use to
parameterize the models determine the quantltatrve advme we give on the status and management
of fish stocks Both the models and the data are 1mperfect The 1mperfect10ns are major
components of the uncertainty in advice and the risk in management options.

Data can be made less 1mperfect through 1mproved survey and samplmg de31gns, ‘through
collectron of more data; and through better tools for makmg measurements Nonetheless data
will never be perfect. When scientists estimate nsk or uncertainty, the error or vanance in the
data will contribute to the estimates. i
The models which use the data are intended to represent actual brologxcal processes At best the
models simplify and may mtsspecxfy the real processes iMoreover, the quantrtatrve models must
not only specify the functional relatlonshrp between entities (say, stock and recruitment), but the
models must specify the form of the vanablllty around that functional relationship (the error
term). Models can be 1mproved through research on! blologlcal and fisheries processes, and
through approaches to model seléction which render poor models implausible in comparison to
good models. ;
i

The first strategy is limited because good fisheries research takes time. The second strategy is
llmlted by, the qualrty and quantrty of data avarlable to drscrrmmate among altematrve models

Therefore, even many w1dely used models have been chosen for mathematlcal convenience
rather than for : any strong theoretical or empmcal Justlﬁcatron (e.g. Ricker 1954) Now, the
computing power avmlable routmely to most fisheries smentrsts has decreased our need for the
mathematical "convenience" of simple functional relatlonshlps in fisheries models.

Estlmatmg model parameters from poor data can make even good models go bad (Wa]ters and
Ludwrg 1981, Schnute & Hilborn in press) Conversely, why put good data into a model which
mlsspemﬁes functronal relatlonshtps or error dlstnbutlons" We would be addmg addmonal
maccuracy to the level of uncertainty alrcady present in the data themselves. In those cases we
can apply quantxtatrve tools which use the data drrectly, wrthout mterposmg between the data and
the advice functional relatronshxps or error terms in which we have little faith. Nonparametrrc
densrty estrmatxon methods are one class of such tools (Silverman 1986).

i
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Evans and che (1988) descnbe one srmple nonparametnc dcnsrty estrmauon in detarl a kemel

models; say pairs of historic ssbs and recrurtments The kernel estimates the probability density
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function (pdt) for recruxtment given a new ssb (forecast or estxmated) by werghtmg each historic
recrmtment by the srmxlanty of the historic ssb which produced it to the new ssb. The wexghttng
function is:

w, = 1/[ 14 / D)

D is 4 tuning parameter estimated t‘hrough crossvalidation (Bowman, et al. 1984) The x,’s are
the dlfferences between the new ssb and each Of the i hlstonc ssbs. The w s are scaled to

Evans and Rice (1988) report results of sxmulatxons which show that the kernel estimator
performed as well or better (smaller average error, much bettér worst case performance) than
traditional parametric approaches to stock - recruitment forecasting, except under 1dea1
conditions. The “ideal" conditions were that the true functtonal form of the stock - recrult
relatlonshtp was specrﬁed correctly, AND the error term was specxﬁed correctly, AND the noise
(contrrbutJon of the error term to the.simulated data) was small compared to the 51gnal
[contnbutlon of the functional relation to the simulated data]: Ricé and Evans (1988) and Rice
(1993) illustrate apphcatrons of the Cauchy kernel to developing advice on rebuilding fish stocks
and on fish - habitat interactions.

APPLICATIONS TO RISK AND UNCERTArNTY

PROBLEM 1: Selet:ting a rebuilding strategy.

To forecast the effects ofa management strategy, ﬁshenes scientists often must forecast expected
recruitment levels. For example, in 1977 Canada adopted a management strategy to rebuild the
cod stock i in NAFO Division 2J3KL. Decision makers needed prOJectrons of the trajectory the
stock would take under different F’s. Although concems about natural variation in recruitment
were prominent in the ICNAF advice, there were no estimates of risk or uncertalnty associated
with the reburldmg forecasts. The stock and recruit data avarlable at that time did not allow
identification of an appropriate stock récruit function; because there was inadequate information
on the curvature and descendmg limb of the functron if either existed (Fig 1). Therefore,
ICNAF assumed annual recruitment would be the average of cohort estimates from 1962-1972
(ICNAF 1977).

Rice and Evans (1988) used the kemel estxmator to mvestxgate six questrons about rebuxldmg cod
stock. Their answers included estimates of the range of outcomes possible given the data which
were available in 1977. Suppose the explrmt objectrve had been to achieve an SSB of 1.0
million metric tonnes (mmt),within 10 years. If recruitment are chosen without consxderauon
of SSB (i.e. if the kernel parameter D is made large relative to the range of historical SSB’s),
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parameter is tuned; the pdf of recruitment does vary thh SSB and the probabtltty of failing to
achieve that objectlve is 0.30 (Fig 2a). Moreover, the approach allowed estimation of the full
pdf of future SSB for different.values of F, so the probablltty of the stock achlevmg various
targets under dtfferent management regimes could be evaluated (Fig 2b) Interestmg, when the
work was done in 1986 the kernel algorithm estimated the median value for actual average
fishing mortahty between 1977 and 1984 to be 0.37. : This value was substantlally hlgher than
VPA estimates at that time, but fairly close to current VPA estimates of F in those years. Not
only did the data-based method provxde estimates of uncertainty directly; it also estimated the

central moment well compared to model-based methods.
[
|
PROBLEM 2: Age Composxtlon of Pacific Hake Catch

t

Canada and the US both ﬁsh the mlgratory stock of Pacxﬁc Hake (Merlucczus productus) In
5 "typxcal year" the stock spawns in February off Southern California and northern Mexico, then
migrates north. Older fish migrate further, so the Canadian harvest, taken from June to
September, has an older age- composxtxon than the US harvest. In discussions concermng
allocation of catch between the countries, it has been argued that tonne for the tonne the
Canadian fishery places the stock at higher risk, because it has a greater impact on spawnmg
biomass, and therefore on future recruitment.

Hake year-classes vary greatly The 1nﬂuence of SSB on recruitment is weak The data do not
lend themselves to parametric analyses; again neither the peak of the dome nor the shape of the
limbs can be determmed with conﬁdence (Swartzman; ‘et al. 1983; Fig 3). We mcorporated a
Cauchy kernel estimator of recruitment from SSB into a’sxmulatlon model of the hake populatlon
and fishery. We used the model to explore the effects of altering the age composxtmn of the
combined Canada US harvest on future recruitment; future SSB’s, and future ylelds Scenarios
ranged from age compositions younger than the present US catch to age composmons older then
present Canadlan catch (Table 1; data from Dorn and lvlethot 1992).

The cychc nature of hake recruxtment is present in results of all smulatxons (Flg 4a), as is the
skewed and bimodal pattern in the frequency of occurrence of cohort sizes (Fig 4b). Some
catch is foregone with the older age composition (Fig 5a), but SSB is actually higher (Fxg 5b),
and catches are more stable (Table 2). |

Figures 4 and 5 are averages of 200 runs, and do not reflect uncertamty and risk. The hake
stock is managed with a strategy which reduces explmtatxon 31gn1ficantly whenever the SSB falls
below a critical level. Probabxllty of reaching the critical level is available d1rectly from the
simulations, Suppose we 1dent1fy the critical level as 0. 225 mmt (the value used in 1992). With
an older age composmon of catch; the critical level 1s hit less often than w1th a younger age
composition. One can examine the uncertamty of any features presented as averages in earlier
figures. - For example, catches and ssb’s after 20 or 40 years are highly skewed for all age

compositions (Fig 6a,b). ;
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PROBLEM 3: Hydroacoustrc Index of Capelm Abundance

Annual hydroacoust1c surveys of capelm abundance are conducted in the Northwest Atlantrc
Oceanographlc condmons influence capelin distribution and aggregatron patterns (Carscadden
et al. 1989). To use the survey results as either an absolute or relative index of abundance i in
an assessment wrthout accountmg for oceanographrc influences would include unnecessary
variance and uncertamty However, there is no theoretical Jusuﬂcatwn for any specific
functional relatronshlp between temperature and abundance. Inspection of the data suggests the
relationship may not be smooth and contlnuous (Fig 7).

Exploratory regressron analyses produced statrstrcally srgmﬁcant fits to the data (Frg 7)
However, model estimates were consistently biased at temperatures above 2°C and below 0°C.
Because of the aggregation of capelin, there also would be major problems specrfymg the error
term in regression-based models. . If both the central moments and the uncertainty estimates of
a model are unreliable, it is unlikely to estimate the risk of various harvesting options accurately

Relating hydroacoustrc estimates of biomass to bottom temperature with the Cauchy-based kernel
accounted for over half the variance in the hydroacoustic estimates (Fig 8). The ogives of
abundance at different temperatures correspond well with the patterns in the original data. For
very cold water (-0.5°C) only low capelin densities are lrkely The pdf changes little until
temperature reaches +1.5°C. Over the next 2°C, the upper limb of the ogive changes
substantrally, however the oglves remain nearly flat between 2 and 70 units of capelin. This
reflects the schooling nature of capelrn Even in preferred temperatures one does not expect an
"average abundance of capelin. It is the likelihood of encountering high abundance which is

varying,.

From survey data and maps of bottom temperatures, one can construct a grid of ogives for the
area. Algorithms then can estimate abundance indices through resampling from the ogives or
using other strategies. Repeated estimation will represent a realistic pdf of actual abundance.
The pdf may be qurte skewed and 1rregular but can be used directly to estimate the uncertamtres
and risks of various management options. :

PROBLEM 4: Trawl Index of Shrimp Abuidance

Shnmp stocks in Bntrsh Columbia are surveyed with trawls (Boutrlher 1992). Bathometry grves
sxgmﬁcant spatial structure to.the shrimp populations. Physical oceanography also influences
distribution and abundance. No functional relatlonshlps have been developed to account for the
spatral or temperature influences on the trawl samples.- The management strategy for shrimp
stocks includes advising closure of fisheries when biomass estrmates fall below a critical level

set for individual grounds.

A multrdrmensronal extensmn of the kernel estimator was used to estlmate the pdf of abundance
for a grid of sample points. Wheén constructing the pdf of abundance at a ngen ("gnd")
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posmon, influénce of each sample pomt was welghted by the srmrlanty of each sample pomt to
the "grid" point on three factors temperature, depth, and isotropic (positional) space (Evans et
al. ms). Crossvalidation was used to select Cauchy parameters srmultaneously for all 3 features.

Differences in the ratios of the width of the tuning 1 window to the range of observations for each
feature provided the drfferentral weighting of each feature when estimating the pdf of abundance

(Table 3).
!

)

The ogrve mappmg procedure produced a pdf of abundance at each pomt on a spatxal gnd over

strmated through repeated sampling from the grid of. pdfs.. That overall pdf of abundance
prov1des a direct estimate of the probabllxty that the stock lies below the critical level. The pdfs
are estimated without having to develop overall - parametric relatlonshlps between shrimp
abundance and temperature nor detailed parametnc models of the spatral distribution of shrimp
on each ﬁshmg ground Parametric versions of such models and partrcularly parametenzed
error terms and uncertainties of such models, have not been produced.

DISCUSSION

DATA BASED OR MODEL BASED RISK Es‘"rmms‘:i -

Consrder problems lxke estlmatmg howvnsk to the stock varles w1th age composmon of hake
use these to estrmate risk. It would requrre f'mdmg normahzmg transformations, obtaining stable
estimates of error dtstnbutrons, and many other steps The best models could only be
approxrmate ones. Moreover, given the data, it would be extremely difficult to reject ‘many
different representatrons of the functional relatlonshrps and errors of stock and recruitment, yet
at least some representatxons would have to be wrong. | l

A careful advisor would run forecasts with all the models and error structures which are
plausrble given the data (cf chhards 1991). Asa result the range of possrble outcomes would
increase, compared to results of any single model. { The data already contain substantial
uncertamly about the future dynamrcs of the stock. Proper use of model-based approaches can
only add uncertainty; and science advrsors would assrgn less certamty and greater risk to any
management option. ‘ : : ! .

l

We can use the data drrectly to produce the necessary forecasts and uncertamty estrmates .These
can be related drrectly to the decisions managers must make What additional | purpose is served

by addition of weakly supported models?

o -
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WHAT Do WE REALLY WANT TO KNOW ABOUT RISK?

decisions depend more on the shape of the tails of a distribution than on its central moments
Managers may wish to keep unpleasant events rare, or enhance infrequent opportumtres

As the capelm example showed model-based estlmates can be especrally poor away from the
average condrtlon Moreover the mean condmon may be unllkely It can be argued that more

concerns about entrre distributions rather than just central moments. Agam, one has only the
data to guide the proper treatment of error. _If the data often are inadequate to discriminate
among alternative functional relationships, is rt hkely they would be better able to identify the
proper error structure? Data-based methods aren’t a cure-all, but they can be helpful.

PRESENT’ ' ’m'o“N OF RESULTS

In thrs paper I have usually presented results as cumulative frequency dlstnbutlons (cfd) rather
than as pdf’s. Both contain the same information. Which manner of presentatron conveys the
key information more effecttvely"

. to most sc1entlsts but with many audiences either. mode_of presentatxon requires explanatxon
- If the core message deals with the most likely event, or the average condmon pdfs seem to

focus attention better on that pomt If the core message is the probability of an extreme event

ogives focus attention on the shape of the distribution:

Theé difference is c1ear in an_example 1 fudged from the hake fOreCaStmg model. Consider
cumulative catch over 20 years From the pdf (Fig 9b); the mode of test 2 is clearly at hrgher

catches than the mode of test 1. We are used to making decisions based on differences in the-

peak of a pdf. Many would infer fishing pattems producing test 2 are better. However, due

" to the skew and spread of the distribution of forecasted catches, such a conclusron 1s

unwarranted. The cfd (Fig 9a) shows that the mode is not representatrve of the "average"
condition. In fact, the medians and means differ very little. Do we conclude the tests produce
the same catches? The cfd shows the scenarios do differ: Test 1 has a higher lrkehhood of
producing the larger catches. . Although producmg large catches is not generally viewed as a
risk, the commumcatron 1ssue is appropriate. Both graphs show the same mformatron, of
course Nonetheless, ogives can hlghllght the tails of the dlstnbuuons When managers select
among optlons to avoid risks; or to encourage unhkely events, ogives may be a particularly
effective communication tool
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FIGURE LEGENDS

Fig. 1. Scatter plot of recruits (#'s at age 4) vs. ssb for cod in NAFO Div. 2J3KL from
1962 - 1977 (see Rice and Evans 1988).

Fig 2. Ogives of SSB estimated from 200 independent simulations, starting with 1977
conditions and proceeding 10 years: a) F= 0.16, using a very large value for
"D" (no stock-recruit relatlonshlp) or "D" tuned with data in Fig. 1; b) tuned "D"
and F increasing from 0.16 to 0.52 in steps of 0.03.

Fig 3. Scatter plot of recruits (#'s at age 2) vs ssb for Pacific hake, using data from
Dorn and Methot 1992.

Fig 4. Recruitments of Pacific Hake stock and fishery over 100 years; population
parameters from table 1. a) Time series of recruits averaged over 200 independent
simulations. b) Ln frequency of occurrence (y-axis) of cohorts of various sizes
(x-axis); from 200 simulations, each of 100 years.

Fig 5. As in Fig 4a, but for a) catch, and b) SSB.

Fig 6. Ogive of a) catches and b) SSb, after 20 years, from 200 simulations of Pacific
hake stock and fishery (Fig 4), ,

Fig. 7. ‘Scatter plot of capelin density (arbitrary hydroacoustic unlts) vs bottom
temperature, from survey of NAFO Div. 3LNO in 1987 w1th linear and
polynomial regression lines. :

Fig 8. Ogives of density of capelin for 4 trial values of bottom temperature; data from
Fig. 7, and tuned Cauchy algorithm.

Fig 9. Forecast cumulative catches of hake over 20 years, for two test fishing scenarios
(details are artificial; to produce desired pattern of frequencies for example) a)
Results displayed as ogive (cfd), b) results displayed as pdf.



TABLE. 1. Population parameters input to hake simulation model.

AGE 2" 3 4 5 [ 7 8 9 10 1 12° 13 14 15,
Deta from the 1962 assssement .
POPAC - 0676° 0.528° 0042° 0476 - 0475 0054 0: 0454° 0008 0002: 0002 015: 0005: 0067
NMORT. 0237 0237 0237 0237 0237 0237 0237/ 0237 0237 0237° 0237 0237° 0237 0237
POPWT 0278~ 0371 0448 0531: 0575 0628 0666° 0678 0604 075 0778 083" 0887 1047
MATURE 019 064 - 077° 08 08 09T 1 A TS T 1 1 BT
USSLCT. 0.04 015 042 073 082 098 1. 099 097" 068 058 024 006. 001
CANSLCT" 0: 0517 056, 061 067  074: 08 088 095 1 064 0.68 0.32. 0.1
IPROPFEM 048 0501 0512 052 0524: 0826 0529 0538 059 0544 0553 0561 0568 0575
Expednnnﬂcmhdmm(m)e
Assossment 0037° 0150 0417° 0676 0828 0904. 0916 0928- 0060: 0810 0751° 0410. 0.163° 0.047.
Younger 0053 0213: 0514 0763. 0860 06878 0887 0678: 0660 0763 - 0514. 0213, 0053: 0009
Otder - 0036° 0145 0403 0654- 0801 0875. 0888 0851. 0919- 0867 0900° 0658 0310 0097
POPAC . - Initlal populaion vector (billions) -
NMORT =" Natural mortality rate :
POPWT - = - Population weight at age (Kg) -
MATURE = Proportion of sexually mature femeles :
ussLCT = US. fishery selectivity st age.
CANSLCT. = Canadian flshery selectivity at age.
Assessment : = = Total fishery selectivity st age. ’
Fishing selectivity for younger fleh - - e a - — ———— e o e e e - e
Oider : = Fishing selectivity for oider fish - —
Years Control- | Younger. Older
Catch. Catch: Catch.
0 0 0 1
. 25 26 25 25
TABLE 2. — 58 > 55
, 75 21 27 23
Over 200: simulations of hake model, tabulation. 100 21 - 19 15
of the number of years. that.the:SSB:was: below. the. 125] 22 16 18
crltlfzal value used by. managers to indicate need to 150 22 21 26
apply conservative exploitaiton rates. 175 15. 19 23
’ o emaemn 200 45, 51 39

e e e Younger - m -
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