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The model is a generalization of the traditional (equilibrium) surplus production

Schaefer or Fox model expressed in terms of dependence of catch per unit etTort (CPUE)

upon the fishing etTort; it is based on the concept ofstock inenia:

TUE LLEONART ET AL. MODEL

NTHODUCTION

When dealing with the problem of stock and TAC assessment one has to operate

sometimes with commercial fishery data which do not rellect the age structure of the

exploitable population. In such a case a surplus production model can serve as a

mathematical instrument of the investigation. While only traditional (i.e. equilibrium)

models were in use it was possible to discuss the reliability and accuracy of the estimates

obtained, butthe question oftheir stability did not arise. But now thatthe dynamic surplus

production models are being introduced to TAC forecasting the question becomes not

only meaningful but a very important one.
One cannot state that an unstable model is, a priO/'i, worse than a stable one.

Nevenheless, the stability analysis, c1arifying the conditions of the stability and the growth

rates of unstable modes, make it possible to use surplus production models in TAC

forecasting more deliberately and etTectively.
The present work had been initiated by the specific situation that arose in ICSEAF in

the last years of its existence (\988 - 1990) when three kinds of dynamic surplus

production models were used as official methods for Cape hake TAC assessment. The

stability of a number of models used in ICSEAF for forecasting Cape hake TACs is

discussed here. Those are the Butlerwonh - Andrew (\984), the L1eonart - Salat - Roel

(\985) (hereinafter referred to as LJeonart et al.), the Babayan - Kizner (\988) models,

and three new models (one ofthem can be regarded as a modification ofthe BUllerwonh­

Andrew model) suggested by Kizner (MS 1989, MS \990). For simplicity ofthe following

exposition it is convenientto examine two models by Kizner prior to the Babayan - Kizner

one and the Buuerwonh· Andrew model along with its modification after the

Babayan. Kizner model (regardless ofthe chronology).

It should be noted that the problem of the stability of stationary states of dynamic

production models with ditTerent surplus production functions had been examined by many

authors (see e.g. May, Beddington, Horwood, Shepherd, 1978); the technique of such an

examination is a dassic one and leads to an eigenvalue problem. The models which are

considered below are discrete ones, therefore direct analysis of the behavior of the

perturbations is performed, and not only stationary states are considered.
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ON THE STABILITY OF DYNAM1C
SURPLUS PRODUCTION MODELS

The present work had been initiated by the specific situation that arose in ICSEAF in

the last years of its existence (1988 - 1990) when three kinds of dynamic surplus

production models were used as official methods for total allowable catch (TAC)

assessmenl. Nevenheless, now that the dynamic surplus production models are being

introduced to TAC forecasting very broadly, the discussion of theirstability based on the

results ofanalysis ofthe models used in ICSEAF for forecasting Cape hake TAC looks to

be meaningful.
The stability ofthe BUllerwonh - Andrew (1984), the Lleonart - Salat- Rod (1985),

the Babayan • Kizner (1988) dynamic surplus production models, as weil as of some

newer models by Kizner (1989, 1990) wirh the controlthrough both catch and fishing

elfort, is discussed. As the models considered are discrete ones, direct analysis of the

behavior of the perturbations is performed. Not only stationary states are considered,

therefore a special notion of a critical boundary (dependent on the current fishing etTon)

is introduced.
The analysis carried out shows that the models with the controlthrough fishing etTort

are preferable from the point of view of their slability (and therefore from the practical

point of view) as the fishing etTort acts as a stabilizing factor: as a maller of fact the

population biomass never falls below the critical boundary. Models with the control

through catch are also admissible, but when the biomass becomes lower than the critical

level, the instability grows, and it is only after the solution transcends the criticallevelthat

the instability begins to decrease.
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Ui.' = gUi + (l-g)F(f;). (\)
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Here

Ui • CPVE for the year i,

~ - fishing elfort in the year i (supposed to be known),

g - inertia coeffieient (O<g< I),

F - a function reJating CPVE to fishing elfort in the traditional (equilibrium) models

(u '" F(!)); for the Shaefer- and the Fox-type models F(/) = a - bf and F(/) = ae-bf

respectively.

Supposing that a solution ofequation (I), uj• is a sum of a eertain unperturbed solution

U and ofits perturbation Ei'

Vj>. = Vi + qP(v/q) - qCi. (6)
This model. suggested by the aUlhor (Kizner. MS 1989. MS 1990) ean be called

the model wilh Ihe eontrol through eateh (Ci which is supposed to be known for a

period i = I•...,n). The 'model' CPVE dynamics during the period offishing history ean be

evaluated from the equation (6) ifthe slart V, e.g. V2 (see Annex). is given.

The equation (6) is a nonlinear one (wilh respect to Vj) and sludy of its finite

perturbations would be a complicated problem, therefore only the linear stability analysis

of the dynamie system will be carried out, i.e. the perturbations will be regarded as small

ones. For the Schaefer pfoduction function the equation (6) takes the form:

where Vj is the unperturbed solution of (7) and "i is ils small perturbation. and substituting

(8) into (7) one gets:

(2)

then substituting (2) into (I) and taking into aeeount that Uj+, = gUi + (l-g)F(Q, one gets:
Ei>,= gEj' (3)

It is evident from (3) that the perturbation Ei does not grow wilh the increase ofi (Le. the

passage of time): it is either eonstant for fully inertial stocks (g '" I) or decreases as a

geometrieal progression does in other eases (for O<g<1, to be more accurate).

So, the Lleonart et al. model is asymptotically stable for O<g<l. and neutrally stable at

g = I. The result obtained is valid for stationary states ofthe model as weil.

Vi>. = Vi + rv,(I-v/qK). qCi·

After expanding Vi into a sum

"j>, = [I + r(I-2V/qK)]l'i'

(7)

(8)

(9)

(4)

(5)

CATCH CONTROLLED MODEL

Two equations expressing balance ofthe stock biomass and the proportion between Ihe

biomass and CPUE:

Di>. = Di+ P(D,) - Cj,

" vj=qBj,

will serve as abasis oflhe folJowing eonstruct* ions.

Here

Bi - biomass at start of the year i,

Vi - CPVE at start ofthe year i,

Ci - eatch in the year i,

P - production function: P(B;) = rBj(I-D/K) and P(D;) = rBj(l-lnD/lnK) according to

Schaefer- and Fox respectively,

q, r, K - positive eonstanls: q - ealchability eoefficient, K • carrying capacity, r • intrincic

grOWlh rate.
Here and below we operate only with 'model' (estimated) variables (except Ci and f,), thus

Ihere is no need to mark them with any special sign, such as ". for example.

Substitution of (5) into (4) reduces the system (4). (5) to one equation wilh

respect to CPUE:

* Such form of the produClion function or the 'rale of population illcrease' for desenbing continuouse
dynamics ofunexploiled populations goes back 10 P.F.Verhulsl.

Now it is elear Ihat there exis!S a crilical level oflhe unpenurbed solution Vi of(7):

VeR =qKl2;

in terms ofthe biomass it is BCR = Kl2. i.e. the maximum surplus production level, DMSY'

providing MSY. Indeed. 1-2V/qK:!> 0 when Vi ~ VCR' and in this case the coefficient

by "i in (9) (Le. the expression in square brackeis) is less than I. and on the conlrary.

1-2V/qK > 0 and the eoefficient by Vj is more than I when Vi< VCR'

It should be noted that Ihough the concrete value of Ihe parameter r does depend on

the initial data as well as on the time scale accepted. usually r < 1 for the Schaefer-type

model (e.g. for the Cape hakes r varies from about 0.3 to 0.5). Furthermore. as usual

Vi ~ gK: only in the early years of the period of intensive commercial fishery the CPUE

can be e10se to qK or a bit higher. Therefore. in the context of the stability analysis of the

models one undoubtedly can assume that r(I-2V/qK) >-1.

Thus,

when Vi < VCR

It is elear now that while Vi ~ VCR the perturbalion does not grow wilh the groWlh of

i, whereas it does grow monotonically wile Vi< VCR' The perturbation grows or decreases
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no slower than a geometric progression if Vi stays separated from VCR (ie. Vi - VCR stays

finite). One can say that when Vi< VeR the zero mode is ullstabie.

Because of generality of the conclusion made it remains valid for stationary states of

the model under consideration.

For the Fox-type modelthe linear stability analysis (which re9uires to use the power

expansion of the logarithm) gives qualitatively the same results. In panicular. the critical

level is the level of maximum surplus production VCR = qKle (or BCR = BMSY = Kle)

providing MSY. Moreover. it can be shown that in the case of an arbitrary production

function P with one maximum. BMSY is the critical level (in the terms ofbiomass) for the

stability.
The procedure of TAC forecasting is the same for both new modifications of the

model. Its stability will be discussed below.

boundary falls. E.g.• for the Cape hake ofthe ICSEAF Divisions 1.3+1.4 the fitting ofthe

model brings one to K '" 2.6-1 03(-I 03t). r '" 0.40. '1 '" 0.42-10.3(-1 0·3h· I ), while qf; varies

from 0.07 to 0.36. Hence the critical boundary lies lower than O.4lqK. In fact it lies lower

than the actual and the estimated CPVE values for the majority of real intensively

exploited stocks. and for the Cape hake among them (Figure 1). because the fishing elfort

acts as a stabilizing factor here. The instability could appear in the present model only in

such a hardly probable situation when the stock was diminished to a very low level as

compared to the carrying capacity and then the fishery intensity was reduced greatly.

The conclusion made is valid for every solution of the e'1uation (10) including

stationary states (i.e. for limit states achieved at fi = const).

TAC forecasts in both ofthe models described above are calculated as

EFFORT eONTROLLED l\tODEL

This model (the very model suggested by Babayan and Kizner in 1988) can be also

called a 'centr:11 dilTerence' version ofthe model with the contro! through catch. It comes

from equations (4) and (5) supplemenled by the relationship

vj = (Uj•• +uJ!2. (12)

E'1uations (4). (5), (12) give the following principa! equation ofthe model in the case of
the Schaefer surplus production function:

uj+1= uj.1 + r(u j• l+u j)[1 - (uj.•+uJ!2'1K] - 2qCj. (13)

In contrast to the governing equations of the two previous models. the CPVE change
corresponding to the year i is in fact represented in (13) by the central difference uj+1 • uj • l •

TUE ßAßAYAN - KIZNER MODEL

for k = 1•...•m (the first forecasted epVE value. vn+ l • is determined by (7) or (11». In

view ofthe fact thatthe limit ofthe succession ofthe forecasted (with a fixed fß +k = fo.• for

all k) values of CPVE is higher than qKl2. the TAC forecasts are stable if staned from a

CPVE level which is not lower than '1Kl2 for the model with the control through catch.

and (1-'1fo..tr)'1Kl2 for the model wilh the controlthrough fishing elfort. i.e. practically

always for the laller model.
The results obtained are valid in the case ofthe model with the Fox surplus production

function too.

where

(10)

(11)

1 - '1f,12 + r(J -v;l'1K)
v

j
+

1
= v

j
•

1+ '1f,12
Acting in accordance with the above described scheme and substituting (8) into (10),

one gets in the linear approximation the following e'1uations for the perturbations:

which gives:

Another model also suggested by Kizner (MS 1989. MS 1990) which will be called

the model with the control through lishing elTort comes from the previous one aller

replacing Ci in (4) and (7) by f,(vj + vj+I)I2. In other words, now it is the fishing elf011

rather than the catch that becomes the external control action upon the stock. This

considerably changes the type of the e'1uation of the dynamics. When P is the Schaefer

function. the governing equation is:

where a j= (l-qf,/2)/(1+qf/2) and Pj = r/(I+'1f,I2).
Strictly speaking, any critical level (i.e. a constant bound) does not exist in this case:

the penurbation does not grow now when Vj ~ [(uj+p;-I)/p;]qKl2 = (1-'1f,/r)'qKl2 (the

upper boundary is not given because. as it was argued above, usually Vj< qK). That is why

the term 'critical boundary', Vjb. which is determined by the equation Vjb = (1-'1f,/r)qKl2.

is more appropriate here.

It is evident that the critical boundary itself and the values of Vj providing an opposite

ine'1uality Jie tower than '1Kl2; the higher the fishing elTort is the Jower the critical



TUE BUTIERWORTII- ANDREW MODEL

When analyzing the stability of the solution of the equation (13) the results of the

examination of the first modification are useful. Indeed, substituting the expansion (2),

where now Ei is a small perturbation, in (13) and using the following designations

(U;'t + U;)!2 = Vi. (E i_! + e)12 = "i'
one can see that changes of the variable v; are governed by t~e equation (9). Since the

behavior of the variable "i is known, it is easy to study the behavior of Ei from the

relationships

for k = 1•... ,m (the first forecasted CPUE value. un'.' is determined by (13».
This equation dilfers from (13), but the analysis of the following equation describing

the behavior of the perturbation.

E.,k+.= [r(I-2Vo./qK)-2qfol]E.:;+ [I+r(1-2Vo·/qK)]E••k_••

where fo.1 = 0,45r/q. VOI= 0.55qK, shows that the modulus of the perturbation grows.
and Ihere is a saw-tooth swing. So, the highest mode is ullstable now.

The same conelusion is valid for the model with the Fox surplus production function.

CONCLUSION

The TAC forecasts depend on the level of estimated CPUE for the end ofthe historical

period. since it serves as a start level for the forecasts. and the errors in determining this

level do depend on whether the solution describing the CPUE dynamics is stable or not.

That is why when considering the reliability of the foreeasts, one has to take into account

not only the stabiJity or instability of the forecasts themselves but the stability

charaeteristics oflhe initial dynamic model as weil.
The analysis carried out shows that the models with the eontrol through fishing elfort

are preferable from the point of view of their stabiJity (and therefore from the practical

point of view) because the fishing elfort aets as a stabilizing faetor upon an exploited

population. Models with the control through eateh are also admissible. but when the

solution falls below the crilicalleveJ, the instability grows, and it is only after the solution

transcends the critieal level that the instabililY begins to decrease. The 'central dilference'

Babayan • Kizner model is the most unstable, which is why preJiminary smoothing of the

initial data series is required to be able to use this model, and forecasting only one or two

years ahead can be reeommended.
The linear L1eonart et al. model is always stable, not that it can prelend to give a

substantial description of an exploited fish stock dynamics.

and substituting (17) into (4). one gets the equation for the variable 1\ which coincides

with the equation (9) for the variable "i' if P is the Schaefer function and with an

analogous equation. ifP is the Fox function.
Just as for the original version, after substituling (2) and (17) into (15) and (16) one

can obtain the equation for the variable /3; whieh coincides with the equation (11) fo,: the

variable "i'
Hence. the stability conditions and the instability characteristics of the original and

modified versions of the Butterwonh - Andrew model are analogous to those of the two

described above corresponding models with the controlthrough catch and through fishing

elfon by Kizner.

(14)

It was found that "i deereases when V; > VCR = qK12 or qKle (for the Fox-type model).

Henee. ifthis condition is maintained sufficiently long, the ratio Ei.llei.• becomes e10se to I

and e/e;.1 to -I. In other words, a saw-tooth swing of the solution of the equation (13)

must be observed. i.e. the highest mode is unstable.

When Vi< VCR the mean perturbation vi grows. hence (see (14» sooner or later the

perturbation Ei will become positive and growing. Thus. below the criticallevel at least the

zero mode is unstable.
The conclusion made is valid for stationary stales as weil, but the TACs are forecasted

here as TACn• m = fO.lu••m, where

U.,kTl =u.'k.l+ r(u.'k.•+u.,k)[I-(u••k.•+u.,k)/2qK] - 2qfo.u._k

The model is based on the equation (4) and the relationship

uj = q(B i + B j • I )/2. (15)

Here the catch sen'es as the control action upon the stock. That is the original version

ofthe model. but one can modify it replacing (4) by

Bi• 1= Bi + P(B,). f,u j • (16)

Expanding Bi into a sum ofan unperturbed solution lßi and of its small perturbation f\;,

(17)
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ANNEX

It should be appropriate to deseribe here briefly the mode of fitting for the models with

the controlthrough eateh and fishing elfort by Kizner. so as to give a eomplete view ofthe

usage ofthe models. The proeedure is as folIows.

First the initial (start) 'model' CPUE must be evaluated as

v2 = (CPUE.obs + CPUE201'')12.

where the aetual (observed) CPUEs are provided by the mare lobs'

Then the first approximations of the model parameters q. r, K. must be given (the

vaJues of the parameters of the corresponding :proeess error models can be taken) and the

first approximations of the estimated Vi (for i = 3•...•n+ I) must be evaluated through (7)

or (10) (or through analogous equations for the case of the Fox surplus production

funetion).
Every next approximation ofthe estimates ofthe series {Vi} and ofthe set ofthe model

parameters must be found in the course of the iterative procedure of minimizing the

funetional

.! f

ifthe error is supposed 10 be additive, or

if the error is supposed to be multiplieative.

On the output of the proeedure deseribed one has got the final estimates of q, r, K, as

weil as vi for i = 3..... n+1.

Figure Cliptioll

Fig 1. Actual data. estimated CPUEs and the eritieal boundary for the model with the

eontrolthrough fishing elfort (the seeond modifieation of the Babayan • Kizner model):

crosses - aetual CPUEs, I· estimated CPUEs, 2· fising elfort, 3 - eritieal boundary.
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