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Bibllothe. When dealing with the problem of stock and TAC assessment one has 1o operate

ON THE STABILITY OF DYNAMIC
SURPLUS PRODUCTION MODELS

Z.1.Kizner

Bar-1lan University, Dept. of Life Sciences. Ramat-Gan, 52900, Isracl.

ABSTRACT

The present work had been initiated by the specific situation that arose in ICSEAF in
the last years of its existence (1988 - 1990) when three kinds of dynamic surplus
production models were used as official methods for total allowable catch (TAC)
assessment. Nevertheless, now that the dynamic surplus production models are being
introduced to TAC forecasting very broadly, the discussion of theirstability based on the
results of analysis of the models used in ICSEAF for forecasting Cape hake TAC looks to
be meaningful.

The stability of the Butterworth - Andrew (1984), the Lleonart - Salat - Roel (1985),
the Babayan - Kizner (1988) dynamic surplus production models, as well as of some
newer models by Kizner (1989, 1990) with the control through both catch and fishing
effort, is discussed. As the models considered are discrete ones, direct analysis of the
behavior of the perturbations is performed. Not only stationary states are considered,
therefore a special notion of a critical boundary (dependent on the current fishing effort)
is introduced.

The analysis carried out shows that the models with the control through fishing effort
are preferable from the point of view of their stability (and therefore from the practical
point of view) as the fishing effort acts as a stabilizing factor: as a matter of fact the
population biomass never falls below the critical boundary. Models with the control
through catch are also admissible, but when the biomass becomes lower than the critical
level, the instability grows, and it is only afier the solution transcends the critical level that
the instability begins to decrease.
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¥ sometimes with commercial fishery data which do not reflect the age structure of the

exploitable population. In such a case a surplus production model can serve as a
mathematical instrument of the investigation. While only traditional (i.e. equilibrium)
models were in use it was possible to discuss the reliability and accuracy of the estimates
obtained, but the question of their stability did not arise. But now that the dynamic surplus
production models are being introduced 1o TAC forecasting the question becomes not
only meaningful but a very important one.

One cannot state that an unstable model is, a priori, worse than a stable one.
Nevertheless, the stability analysis, clarifying the conditions of the stability and the growth
rates of unstable modes, make it possible to use surplus production models in TAC
forecasting more deliberately and effectively.

The present work had been initiated by the specific situation that arose in ICSEAF in

the last years of its existence (1988 - 1990) when three kinds of dynamic surplus.

production models were used as official methods for Cape hake TAC assessment. The
stability of a number of models used in ICSEAF for forecasting Cape hake TACs is
discussed here. Those are the Butterworth - Andrew (1984), the Lleonart - Salat - Roel
(1985) (hereinafier referred 10 as Lleonart et al.), the Babayan - Kizner (1988) models,
and three new models (one of them can be regarded as a modification of the Butterworth -
Andrew model) suggested by Kizner (MS 1989, MS 1990). For simplicity of the following
exposition it is convenient to examine two models by Kizner prior to the Babayan - Kizner
one and the Butterworth - Andrew model along with its modification after the
Babayan - Kizner model (regardless of the chronology).

1t should be noted that the problem of the stability of stationary states of dynamic
production models with different surplus production functions had been examined by many
authors (see e.g. May, Beddington, Horwood, Shepherd, 1978); the technique of such an
examination is a classic one and leads to an eigenvalue problem. The models which are
considered below are discrete ones, therefore direct analysis of the behavior of the
perturbations is performed, and not only stationary states are considered.

THE LLEONART ET AL. MODEL

The model is a generalization of the traditional (equilibrium) surplus production
Schaefer or Fox model expressed in terms of dependence of catch per unit effort (CPUE)
upon the fishing effort; it is based on the concept of stock inertia:

Uipy = gy + (1-g)F(F). m
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Here

i, - CPUE for the yeari,

f, - fishing effort in the year i (supposed to be known),

g - inertia coefficient (0<g<1),

F - a function relating CPUE to fishing effort in the traditional (equilibrium) models
(u = F(f)); for the Shaefer- and the Fox-type models F(f) = a - bf and F(f) = ae™¥f
respectively.

Supposing that a solution of equation (1), u;, is a sum of a certain unperturbed solution

U and of its perturbation g;,

then substituting (2) into (1) and taking into account that U;,, = gU; + (1-g)F(f)), one gets:
€. LE; 3)

It is evident from (3) that the perturbation g; does not grow with the increase of i (i.e. the
passage of time): it is either constant for fully inertial stocks (g = 1) or decreases as a
geometrical progression does in other cases (for 0<g<1, to be more accurate).

So, the Lleonart et al. model is asymptotically stable for 0<g<1, and neutrally stable at
g =1, The result obtained is valid for stationary states of the model as well.

CATCH CONTROLLED MODEL

Two equations expressing balance of the stock biomass and the proportion between the
biomass and CPUE:

B,,, =B;+P(@B)-C, “)
“v=qB, - )
will serve as a basis of the following construct* ions.
Here
B; - biomass at start of the year i,
v; - CPUE at start of the year i,
C - catch in the year i,

P - production function: P(B;) = rB(1-B/K) and P(B;) = rB,(1-InB,/InK) according to
Schaefer® and Fox respectively,

q, 1, K - positive constants: q - catchability coeflicient, K - carrying capacity, r - intrincic
growth rate,

Here and below we operate only with 'model’ (estimated) variables (except C; and f}), thus

there is no need to mark them with any special sign, such as *, for example.

Substitution of (5) into (4) reduces the system (4), (5) to one equation with
respect to CPUE:

* Such form of the production function or the 'rate of population increase' for describing continuouse
dynamics of unexploited populations goes back to P.F.Verhulst.

Vier = Vi ¥ qP(v/q) - qC;. ©)
This model, suggested by the author (Kizner, MS 1989, MS 1990) can be called
the model with the control through catch (C; which is supposed to be known for a
period i=1,...,n). The 'model' CPUE dynamics during the period of fishing history can be
evaluated from the equation (6) if the start v, e.g. v, (see Annex), is given.

The equation (6) is a nonlinear one (with respect to v;) and study of its finite
perturbations would be a complicated problem, therefore only the linear stability analysis
of the dynamic system will be carried out, i.e. the perturbations will be regarded as small
ones, For the Schaefer production function the equation (6) takes the form:

Vi =V; T 1v(1-v/gK) - qC;. )

Afler expanding v; into a sum
v,=V;ty, (8)

where V, is the unperturbed solution of (7) and v, is its small perturbation, and substituting
(8) into (7) one gets:

Voo = [1 + 1(1-2V/qK), ©)

Now it is clear that there exists a critical level of the unperturbed solution V; of (7):
Ver = qK/2;

in terms of the biomass it is Beg = K/2, i.e. the maximum surplus production level, Byy,
providing MSY. Indeed, 1-2V/qK <0 when V; 2 Vy, and in this case the coeflicient

" by v; in(9) (i.e. the expression in square brackets) is less than 1, and on the contrary,

1-2V/gK > 0 and the coefficient by v; is more than 1 when Vi< V.

It should be noted that though the concrete value of the parameter r does depend on
the initial data as well as on the time scale accepted, usually r <1 for the Schaefer-type
model (e.g. for the Cape hakes r varies from about 0.3 to 0.5). Furthermore, as usual
V; < gK: only in the early years of the period of intensive commercial fishery the CPUE
can be close to gK or a bit higher. Therefore, in the context of the stability analysis of the
models one undoubtedly can assume that r(1-2V,/gK) > -1.

Thus,
ViV 1 when V; 2 Vg
(f V;=V¢y then v, /v, =1),
v lv,> 1 when V; < Vgg

It is clear now that while V; 2 V¢, the perturbation does not grow with the growth of
i, whereas it does grow monotonically wile V; < V. The perturbation grows or decreases



no slower than a geometric progression if V; stays separated from Vg (i-e. Vi-Vp stays
finite). One can say that when V; <V, the zero mode is unstable.

Because of generality of the conclusion made it remains valid for stationary states of
the model under consideration.

For the Fox-type model the linear stability analysis (which requires to use the power
expansion of the logarithm) gives qualitatively the same results. In panicular, the critical
level is the level of maximum surplus production Ve = gK/e (or Beg = Bysy = Kle)
providing MSY. Moreover, it can be shown that in the case of an arbitrary production
function P with one maximum, B,,qy is the critical level (in the terms of biomass) for the
stability.

The procedure of TAC forecasting is the same for both new modifications of the
model. Its stability will be discussed below.

EFFORT CONTROLLED MODEL

Another model also suggested by Kizner (MS 1989, MS 1990) which will be called
the model with the control through fishing effort comes from the previous one afier
replacing C; in (4) and (7) by f(v; + v;,, /2. In other words, now it is the fishing effort
rather than the catch that becomes the external control action upon the stock. This
considerably changes the type of the equation of the dynamics. When P is the Schaefer
function, the governing equation is:

Vi= v, + v(1-vifqK) - gfi(v; + v )2,
which gives:
1-qf/2 +1(1-v/qK)
Vi B ——e v, (10)
1+qf/2
Acting in accordance with the above described scheme and substituting (8) into (10),
one gets in the linear approximation the following equations for the perturbations:

¥, = o+ p(1-2V/qK)]y, an
where o; = (1-qf/2)/(1+q£/2) and p, = 1/(1+qf/2).

Strictly speaking, any critical level (i.e. a constant bound) does not exist in this case:
the perturbation does not grow now when V; 2 [(a;+p;-1)/p;JqK/2 = (3-qf/r)*qK/2 (the
upper boundary is not given because, as it was argued above, usually V;< qK). That is why
the term *critical boundary’, VP, which is determined by the equation V;* = (1-qf/r)qK/2,
is more appropriate here.

It is evident that the critical boundary itself and the values of V; providing an opposite
inequality lie lower than qK/2; the higher the fishing effort is the Jower the critical

boundary falls. E.g., for the Cape hake of the ICSEAF Divisions 1.3+1.4 the fitting of the
model brings one to K = 2.6:10%(-10%), r~ 0.40, q = 0.42-10(-102h"), while gf; varies
from 0.07 1o 0.36. Hence the critical boundary lies Jower than 0.41qK. In fact it lies lower
than the actual and the estimated CPUE values for the majority of real intensively
exploited stocks, and for the Cape hake among them (Figure 1), because the fishing effort
acts as a stabilizing factor here. The instability could appear in the present model only in
such a hardly probable situation when the stock was diminished to a very low level as
compared to the carrying capacity and then the fishery intensity was reduced greatly.

The conclusion made is valid for every solution of the equation (10) including
stationary states (i.e. for limit states achieved at fi = const).

TAC forecasts in both of the models described above are calculated as

TAClmn = fo l(vmm + vlmm ‘)/2,

where
1-qfy /2 + 1(1-v,, 4 /qK)

v,

A\ = neho

1+qf, /2

for k = 1,...,m (the first forecasted CPUE value, v,,,, is determined byﬂ (M or(11))In
view of the fact that the limit of the succession of the forecasted (with a fixed £, = f5, for
all k) values of CPUE is higher than qK/2, the TAC forecasis are stable if started from a
CPUE level which is not lower than qK/2 for the model with the control through catch,
and (1-gfy,/r)qK/2 for the mode! with the control through fishing effor, i.e. practically
always for the latter model. )

The resulls obtained are valid in the case of the model with the Fox surplus production

function too.

THE BABAYAN - KIZNER MODEL

This model (the very model suggested by Babayan and Kizner in 1988) can be also
called a ‘central difference’ version of the model] with the control through catch. It comes
from equations (4) and (5) supplemented by the relationship

v = (u, +u)/2. (12

Equations (4), (5), (12) give the following principal equation of the model in the case of
the Schaefer surplus production function:

U= Uy + oy o)1 - (u+u)2gK] - 2qC; (13)

In contrast to the governing equations of the two previous models, the CPUE change
corresponding 10 the year i is in fact represented in (13) by the central difference u,,y - u;,;.
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When analyzing the stability of the solution of the equation (13) the results of the
examination of the first modification are useful. Indeed, substituting the expansion (2),
where now ¢; is a small perturbation, in (13) and using the following designations

U, +U)2=V, (&g *e)2=v,
one can see that changes of the variable v, are governed by the equation (9). Since the
behavior of the variable v, is known, it is easy to study the behavior of ¢; from the
relationships

€1 =2(v;y - V) £, € =2v,-€,,. (14)

It was found that v, decreases when V> Vo, = qK/2 or qK/e (for the Fox-type model).
Hence, if this condition is maintained sufficiently long, the ratio €;,,/e; , becomes close to 1
and ¢/g;, 10 -1. In other words, a saw-tooth swing of the solution of the equation (13)
must be observed, i.e. the highest mode is unstable.

When V; < V¢, the mean perturbation v; grows, hence (see (14)) sooner or Jater the
perturbation ¢; will become positive and growing. Thus, below the critical level at least the
zero mode is unstable.

The conclusion made is valid for stationary states as well, but the TACs are forecasted
here as TAC,,,,, = f5.41,,,m» Where

Ukt = UpekF T 0 (1 (U H0,0 29K ] - 2000

for k = 1,...,m (the first forecasted CPUE value, u,,,,, is determined by (13)).
This equation differs from (13), but the analysis of the following equation describing
the behavior of the perturbation,

where f, = 0.45r/q, Vy,= 0.55qK, shows that the modulus of the perturbation grows,
and there is a saw-tooth swing. So, the highest mode is unstable now.

The same conclusion is valid for the model with the Fox surplus production function.

THE BUTTERWORTH - ANDREW MODEL

The model is based on the equation (4) and the relationship

u,=q(B, +B,,,)2. v @as)
Here the catch serves as the control action upon the stock. That is the original version
of the model, but one can modify it replacing (4) by

» B,.= B, + P(B) - fu, (16)
Expanding B; into a sum of an unperturbed solution &; and of its small perturbation p,,

B, =8+, (17)

" Eanienr™ [1(1-2V0 /aK )20 Je o+ [14r(1-2Vo [aK) e, T T T

and substituting (17) into (4), one gets the equation for the variable p; which coincides
with the equation (9) for the variable v, if P is the Schaefer function and with an
analogous equation, if P is the Fox function.

Just as for the original version, after substituting (2) and (17) into (15) and (16) one
can obtain the equation for the variable B, which coincides with the equation (11) for the
variable v,. ’

Hence, the stability conditions and the instability characteristics of the original and
modified versions of the Butterworth - Andrew model are analogous to those of the two
described above corresponding models with the control through catch and through fishing
effort by Kizner.

CONCLUSION

The TAC forecasts depend on the level of estimated CPUE for the end of the historical
period, since it serves as a start level for the forecasts, and the errors in determining this
level do depend on whether the solution describing the CPUE dynamics is stable or not.
That is why when considering the reliability of the forecasts, one has to take into account
not only the stability or instability of the forecasts themselves but the stability
characteristics of the initial dynamic model as well.

The analysis carried out shows that the models with the control through fishing effort
are preferable from the point of view of their stability (and therefore from the practical
point of view) because the fishing effort acts as a stabilizing factor upon an exploited
population. Models with the control through catch are also admissible, but when the

- solution falls below the critical level, the instability grows, and it is only afier the solution -

transcends the critical level that the instability begins to decrease. The ‘central difference’
Babayan - Kizner mode! is the most unstable, which is why preliminary smoothing of the
initial data series is required 1o be able to use this model, and forecasting only one or two
years ahead can be recommended.

The linear Lleonart et al. model is always stable, not that it can pretend to give a
substantial description of an exploited fish stock dynamics.

ACKNOWLEDGEMENT

The presented stability analysis of a few kinds of models had been carried out for the
ICSEAF Scientific Counsel, and the corresponding paper (Kizner, ME 1990) was bound
10 appear in the first volume of a new periodic edition ‘Collection of Selected ICSEAF
Scientific Papers’. Unfortunately, the dissolution of ICSEAF in 1990 caused cancellation
of its planes of scientific publication.

“
..




o 9
The author is pleased to thank Dr. J. Shepherd and Dr. G.Stefannson for their interest
in the present work and useful recommendations.

REFERENCE

1. Babayan, V.K. and Z.ILKimner 1988 - Dynamic models for TAC assessment: logic,
potentialities, development. Colln scient. Pap. int. Commn SE. Atl. Fish. 15(1): 69-83.

2. Butterworth, D.S. and P.A.Andrew 1984 - Dynamic catch-effort models for hake
stocks in JICSEAF Divisions 1.3 - 2.2. Colln scient. Pap. int. Commn SE. Aul. Fish.
11(1): 29-58.

3. Kizner, Z.J. MS 1989 - On the stability of dynamic surplus production models used in
ICSEAF. Resume. ICSEAF/89/M.P./12, 1989.

4. Kizner, Z.1. MS 1990 - On the stability of dynamic surplus production models used in
ICSEAF. ICSEAF/SAC/90/S.P./3, 1990.

5. Lleonart, J., J.Salat and B.Rocl 1985 - A dynamic production model. Colln scient,
Pap. int. Commn SE. Atl. Fish. 12(I): 119-146.

6. May, RM., J.W.Horwood and J.G.Shepherd 1978 - Exploiting natural populations in
an uncertain world. Mathematical biosciences 42, pp. 219-252

ANNEX

It should be appropriate to describe here briefly the mode of fitting for the models with
the control through catch and fishing effort by Kizner, so as to give a complete view of the
usage of the models. The procedure is as follows.

First the initial (start) 'model' CPUE must be evaluated as

v, = (CPUE,** + CPUE,*»)12,

where the actual (observed) CPUEs are provided by the marc ‘obs’

Then the first approximations of the model parameters q, r, K, must be given (the
values of the parameters of the corresponding :process error models can be 1aken) and the
first approximations of the estimated v; (for i = 3,...,n+1) must be evaluated through (7)
or (10) (or through analogous equations for the case of the Fox surplus production
function).

Every next approximation of the estimates of the series {v;} and of the set of the model
parameters must be found in the course of the iterative procedure of minimizing the

functional

é[(vﬁvi,,)/z - CPUE™T

if the error is supposed to be additive, or

iizun((vi-'.viﬂ)/z) - In CPUE#s)?

i the error is supposed to be multiplicative, )
On the output of the procedure described one has got the final estimates of g, 1, X, as

well asv;fori=3,..., nt+l.

Figure Caption

Tig 1. Actual data, estimated CPUEs and the critical boundary for the model with the
control through fishing effort (the second modification of the Babayan - Kizner model):
crosses - actual CPUEs, 1 - estimated CPUEs, 2 - fising effort, 3 - critical boundary.
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