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Age composition is often estimated by measuring the lengths of a large number of fish and
aging a small portion of the measured fish. The small sample cross-classifed by length and
age can be used to estimate classification rates and these, in turn, can be used in
conjunction with the estimated length distribution to obtain an estimate of the population
age composition. There are two approaches to this problem characterized by the way in
which the classification rates are defined. The simplest approach uses estimates of the
probability P(ilj) that a fish is actually age i given that the length is j. The more complicated
approach uses estimates of the probability P(jli) that the length is j given that a fish is
actually age i. The latter approach involves esttmatmg more parameters and is less precise
than the former. However, it avoids the necessity for the cross-classified sample to be
from the same population as the population from which the large sample was drawn for
estimating the length composition. In this paper, we show that the two approaches can be
combined when there are multiple samples. For example, one might have two samples
obtained by random sampling of the population, and a third, cross-classified, sample from
another population, such as the one in the previous year, with different composition but
identical classification probabilities P(jli). We also show how to modify the method to
allow for a fixed number to be aged from each length category.

1. INTRODUCTION

Each year, fishery scientists examine otoliths and other skeletal hard parts from
thousands of fish in order to determine the age of individual fish; this information is then
used to estimate the age composition in the catches. Typically, lengths are determined for a
large sample of fish and the lengths and corresponding ages are determined for a much
smaller sample. The length frequency information can be obtained at low cost; it provides
information on the age composition in the population since age and length are correlated.


iud
ICES-paper-Thünenstempel


the length

EO— -

B ot e hama

Information is often available from previous years but this prior information is not
combined with the current data on ages and lengths in order to estimate the age composition
in the current year. . This seems a pity since the data from previous years is essentially free
and can be used to he]p mterpret the lenoth frequency data from the current year.

3

In thrs paper, we review the two basrc approaches to age -length keys - forward or
classic keys and inverse keys. The forward key requires information from the current year
whereas the inverse key can make use of information from previous years. When the
forward key is appropriate, it is more efficient (i.e. Jhas lower variance) than the inverse
key. This assertion is consistent with experience and can also be justified by the fact that

“the inverse key involves estimating more parameters than the forward key. (We also havea
" . proof, which is available upon request, that the variance of the forward key is smaller than -
.that of the inverse key.) We show how to combine the two approaches in a single analysis

to achieve even greater efficiency. We then generalize the inverse key approach and the
combined approach to allow for length stratification. The goal is to use information from

- previous years to aid in the estimation of age composition in the current year. An added

benefit is that information from the current year provrdes for revrsed estimates with higher

“precision of the age composmon in previous years. §

We illustrate the logic of the two approaches by considering a srmple case in which
the age and length are determined for each of n fish; each examination assigns an age of 1

-or2tothe fishanda length of 1 or 2 to the fish. The result is a 2x2 cross-classified table

as in Figure 1. There is also a sample of size N on whrch observations are made on only

e s B O

Figure 1. Notatron for the results of determining the length and age of n fish (left) and for
determining the length of N additional fish (right). :
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1.1 Approach 1 - the forward or classic ke ey

Assume that the n cross-classified fish and the N fish exammed for just the length
are simple random samples from the same populatron Then, the probability P(ilj) that a

fish is actually of age i (i = 1 or 2), given that it has length j (j = 1 or 2), is the same for
both samples. One can estimate these conditional prpbabllmes by

AL
P@l)) = q;; = njj/n;




where the A symbol denotes an estimate and the rest of the notation is as in Figure 1.
Denote the 2 x 2 matrix with elements g; by Q and the vector of length proportions by

Yl + N.q .
" E= N + e = [;] .
’ Y2 + N _ 2
' N +n )
Then, intuitively, the ‘age composition A might be estimated by
o . .
A =QE

A ' ' o
where A = [4}, 4,]T is the vector of estimated proportions at age. Thus,
2 A ’
= .z; B(ilj) ej :

In this example the conditional probabxlmes are estimated from the first sample and the
marginal probabilities for length, P(j), are estimated from both samples as ;..

This estimator can be shown to be of maximum likelihood (see Tenenbein 1970;
Hochberg 1977; Jolayema 1990). It is also an example of stratified random sampling
where the units are post-stratified by length (Swensen 1988). Related estimators, which
are not fully efficient, are discussed by White and Castleman (1981) and Hand (1986).

In fisheries research, this approach is usually modified slightly. The number of
fish aged from each length category, n ;, is fixed by the investigator (see section 3.1). The
only change to the estimation procedure is to estimate the length composition, E, by the
proportion of fish observed in each class:

Yy

N

Y

N
The estimator is still of maximum likelihood. The variance changes, however.
1.2 Approach' 2 - the inverse key

It may happen that the cross-classified sample and the length sample are obtained
from different populations. For example, in the first year of a study both the lengths and
ages might be recorded for a sample but in the second year only the lengths are recorded.
The conditional probabilities P(ilj) from the first year will not be applicable to the results in
the second year if the population composition has changed (Kimura 1977; Westrheim and
Ricker 1978). To see this, consider the probability that a fish is actually age 1 given that
the length is 1. If, in the first year, all fish are age 1 then all of the fish of length 1 will in
fact be age 1 (P(i=1lj=1) = 1). If, in the second year, none of the fish are age 1 then none
of the fish of length 1 will in fact be age 1 (P(i=1lj=1) is now 0).
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There may be a way out of this dilemma. The probability that a fish is length j
given that it is age i, P(jli), might not vary with the population composition. Thus, the age
composition of the fish population will change each year as a variable number of young
fish are recruited into the population and thus the probability that a fish is a certain age
given its size, P(age-lllength—J), will vary from year to year. On the other hand, the
distribution of size about age, P(length=jlage=i), should not change much as the populanon -
changes in composition except inasmuch as the growth may be somewhat dependent on

" environmental conditions. It thus may be entirely reasonable to suppose that -

Prob(length—ﬁage—x) is constant from one year to the next or one area to the next.

Deﬁne the matrix P to have elements Pij glven by
Py = njj/n;. j

; :

where the n;; are the cell counts from a cross- cla551ﬁed sample from a prior time. Also,

define the vector E to have elements B

L

: Y, - *
E = . ' .

; Yo/N | \

l

that is, the vector E contains estimates of the margmal probablhtles P(j) obtained from just
the length survey in the current year. Then, mtumvely, the age composition should be
related to the length composition by

E = PTvA X

e A o o i 2 o

The age composition can be estimated by premultiplying each side by the generalized

inverse of PT (assuming the number of length classes is = the number of age classes).
Thus,
A = @®PY'PE (1)

Equation (1) is a least squares estimator.

— —— ———— G An

It can be seen that when the estimates from (1) are feasible, they are maximum
likelihood estimates. Clark (1981) developed a fitting procedure which restricts the
parameter estimates to the feasible region. Hoenig and Helsey (1986) developed a model
with a more realistic error structure in which the uncertainty in both the classification rates
and the length composition is accounted for exphc1tly as functions of the sample sizes.

~ This general approach has appeared in the apphed literature a number of times, e.g.,
as a hypothetical example of correcting deer age composition (Searle 1966 p. 93-4); as a
method of correcting stock composition estimates for mixed fisheries - see Worlund and
Fredin (1962), Fukuhara et al. (1962), Berggren and Lieberman (1978), Pellaand -,
Robertson (1978), and van Winkle et al. (1988); as a'means of estimating prevalence of
diseases - see Rogan and Gladen ( 1978) Greenland and Kleinbaum (1983), Hand (1986);
as a correction for misclassification in a fourfold table relating disease status to risk factors
(Kleinbaum et al. 1982 and references therein); as a method of correcting estimates of deer
harvest composition obtained from hunter reports (D. Ingebrigtsen, MN Department of
Natural Resources, pers. comm.); and for converting length-frequency distributions to age-
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frequency distributions (Clark 1981; Bartoo and Parker 1983; Kimura and Chikuni 1987;
Hoenig and Heisey 1987). . .

- Thus, there are two approaches to using estimates of classification probablhtles to
convert a vector of length frequencies to an estimate of age composition. ‘Method 1 is
straightforward, is well known, and requires that the classification probabilities be
. estimated from a random sample of the populatlon to which they will be applied. Method 2
is more complicated and involves a backward or inverse type of reasoning. For method 2, .
-the classification rates are conditional on the age rather than on the length. The method has
been repeatedly derived in the applied literature but does not appear to be well established in -

* _ the statistical literature. In the next section, we show how the two methods can be

combined. ‘
2. COMBINED METHOD

In the previous section we used matrix notauon to make clear the difference

- between the two general approaches to age-length keys. In order to show how the two
approaches can be combined, it is easier to easier to work with the likelihood for the data.

"The likelihood for the full data set is the product of the likelihoods for each datum.

2.1 Three samples

Assume that we have three samples of fixed size. ‘Sample 1 is a random sample of

size n collected during a prior time period or from a nearby location. All nj fish were

- classified according to age and length. Sample 2 is a random sample of size n, from the
population of interest; all fish in this sample are classified by both variables. Sample 3 is a
random sample of size N, from the population of interest and all fish are classified
according to just the length. The subscript denotes the population (e.g., time period) from.
which the sample was drawn. We denote the count of fish with age classification i and
length classification j in samples 1 and 2 by nj;; and njj,, respectively. The count of fish in
sample 3 with length classification j is denoted by Yj;. We assume that P(jli) for sample 1
is the same as for samples 2 and 3, and we denote lhlS by P(jli){2. In general, subscripts
on probabilities are used to denote the population or populations to which the probabilities

apply.
Likeliho.od for method 1

Approach 1 utilizes the information in samples 2 and 3. The likelihood for samples
2 and 3 is the product of independent multinomials and can be written

2 2 ' G 2 v
Ay < IT IT [PGl), PG)1"2 T1PG), 12
. i=l j=1 =1

<

There are six parameters in A; but only three parameters need to be estimated: two
conditional probabilities and one marginal probability P(j),. This is because there are three
constraints that must be satisfied: P(i=1lj=1), + P(i=2lj=1), = 1, P(l—llj-2)2 + P(l—-2|_]—2)2
=1, and P(=1); + P(=2); = 1.

The goal is to estimate the proportion P(1)2 that is age i and, by the i mvarlance
principle of maximum likelihood estimation, this can be accomplished by



A 2 A A
P, = 3 ba,bo,
=
Likelihood for method 2. f

. Approach 2 utilizes the mformatlon in samples 1 and 3 The hkehhood is agam the
product of two multmommls

;

Ay o n n [P(l“)lz P(x)ll“'ﬂ n [ ZP(lh)lzP(l)zl ¥j3 :

j=1"i=l

There are eight parameters in the model but only four parameters need be estimated:
_ one P(x)l and one P(i),, and two conditional probabilities. This is because of the .
constraints P(i=1)| + P(i=2)| = 1, P(i=1); + P(1-2)2 =1, P(lll)lz +PQ2I)p =1, and
P(112) 15 + P(212) o = 1.

Combined likelihood;

The likelihood for all of the data can be written as

Aj e n H[P(l“)n P(x)ll“'ﬂ n Jn [PGli),, P(x)zl“lﬂ r1 [ EP(III)lz P(i),] Yi2
: L j=

J=1i=l

Here, we have rewritten the likelihood for sample 2 (mlddle) and 3 (right) in terms of

P(jli),,, However, it should be noted that this hkehhood reduces to A (the classic key)
whenn; =0.

2.2 Combined method - generalizations

It may occur that four samples are available: the three samples discussed in section
2.1 plus a length-frequency sample from the same population as the population from which
sample 1 was drawn. We can use this additional sample to obtain improved estimates of
P(i);. This is of interest not only for its own sake but also because the P(i); occur in the
formulae for the variance-covariance matrix when thlS is calculated on the basis of expected
information. :

A general form of the likelihood is presented below which allows for I age classes,
J length classes, and K surveys. Here, a survey refers to fish examined from the same
time and place. In each survey, both variables are noted on a random sample and,
optionally, just the length is noted on another random sample. Denote the number _
classxﬁed as length j in the kth survey for the sample in which just the length is noted by
Yk (note that Yy can be 0). Then, the general form of the likelihood is proportional to

A ‘111 0 ILIPGH PaMk T Iﬁ[iml‘) P(‘)-]Yik
o 1 1 } 1 1 .
L == ) S = = = e

i
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Here, P(jli) is assumed to pertain to all samples, P(i)y pertains to all samples within the kth
survey, and nj;y is the number of fish cross-classified as ij in the kth survey.

3. ALLOWING FOR STRATIFiCATION BY LENGTH

Until now, we have assumed that the fish which are aged are a random sample of
the fish which were measured forlength. In practice, one is likely to consider the lengths
when selecting the fish to age, e.g., one might choose equal numbers of fish from each
length class. Indeed, there is good reason to consider the lengths when selecting the
sample for aging: otherwise one might obtain by chance a sample in which none of the fish
were from a particular length class and one would not be able to estimate some of the
- classification rates.

3.1 Classic key

Haitovsky and Rapp (1992) modified Approach 1 to allow for fixed numbers from
each length category to be aged.. As indicated earlier, the estimates of age composition are
the same under length stratification as under simple rand_om sampling but the estimates of -
variance differ. The likelihood is proportional to

| J nj; Y;
o< H HP(IU) Y HPO) L

i=1 _]-— .

3.2 Inverse key'

Here, we show how the inverse key (Approach 2) can be modified to allow for
stratification by length. For ease of exposition, we revert back to the case where there are 2
ages and 2 lengths; extension to the general case of I ages and J length classes is
straightforward. Assume that at a previous time a sample of N fish was randomly selected
and measured resulting in Yy fish being classified as length 1 and Y5 fish as length 2,

- Y1 + Y71 =Nj. Suppose further that ages are determmed forn 1y and n5 fish of length

1 and 2, respectively. This results in a cross-classified table with fixed column totals of
nq and n 21 with table entries of nj;; where the i indexes the age classification and the j
mdexes the length classification.

The likelihood for the N fish classified by just the length is simply a binomial

N1 peiz1), Y11 pgi=g), Y21
By = (Yn) PG=1); "1 PG=2)

(Y“) (3 PG PO L3 PG Py

The likelihood for the cross-classified table is the product of two binomials, one for each
- column :

An g = (n“‘)P(l'—l[] 1),"11 p(i=2lj= 1)"211(-12211) P(i=11j=2),"121 P(i=21j=2),"221.



Now, in the population at large,

P(jli) P(i)4

P(l), = Z p(jli) P(i);

’ 'by Bayes rule. Substxtutmg this into the product of the likelihoods AN1 and An 11021
.ylelds the llkehhood for the prior data itis proportxonal to ,

Yi1

Aprir = [2P0=‘ui=1> PG | [2<Pu—2h> P(nn]

[P(] lh—l)P(x—l)l] i [P(] 1I1—2)P(1—2)1]"2“ [P(]—-2I1—1)P(1-1) ]"‘2‘
Z P11 P(i)y % P(1Ii) PG)y 3 P P(l)l

221

[P(]—2l1—2)P(1—2) ]
Z P(211)P(i);

There are three unknowns for the prior data: two conditional probabilities (e.g., P(j=1li=1)
and P(j=11i=2)) and one marginal probability (e.g., P(i=1)). Thus, when the prior data
have been stratified by length, the likelihood still contains information on the conditional
probabilities that are used to model the current data. Note that it is necessary to know the

results of the length survey, i.e., the Y; ils unllke for the estimators in Section 1 for Wthh i

knowledge of the Yjy is optlonal

The likelihood for the current length sample is a multinomial |

: _ Y12.
Acurent < [éll’(jﬂli) pi] [ 3 pa=2i pa, ]

The full likelihood for the inverse key under length stratification is simply the product of
Aprior and Acyrrent-

3 3 Combined key

The data for the current survey are handled in the same way as those from prior
surveys when the cross-classified table is generated by fixing the numbers in each length

category.: These results generalize easily to the case where there are I age categories and J
length categories. The complete likelihood for all of the data (prior and current) is

. proportional to




o

I J] K PG P .n'.lkJ
n-n[ (ili) Py ]

A T [ZP(J un)P(n)k]
ZPOII) Pi) - I P

“i=1 j=1 k=1

/4. VARIANCE ESTIMATION.

Varlances and covariances of the estimates of age composition (and classification

‘rates) can be estimated using standard methods for maximum likelihood estimation. For

example, if Newton's method is used to find the values of the parameters which maximize
the logarithm of the likelihood function (i.e., the maximum likelihood estimates), then the
values of the mixed second partial derivatives of the log-likelihood will be obtained as a by-
product. The matrix of second partial derivatives evaluated at the parameter estimates is
called the information matrix; the negative of the inverse of this matrix is an estimate of the
variance-covariance matrix. :

The variance-covariance matrix can also be obtained when the parameters are
estimated using iteratively reweighted least squares (see section 6).

5. TEST OF ASSUMPTIONS

The combined key is based on the assumption that the conditional probabilities of
length given age do not vary from population to population. This assumption can be tested
using a likelihood ratio test. For example, suppose that some fish are aged last year and
this year. We construct two likelihoods for the data: the first is under the assumption that
the P(jli) are the same in both years (this is the restricted model); the second is under the
assumption that there are different P(jli) in the different years (this is the full model). Note
that for the full model we estimate more parameters. The ratio of the maximum of the
likelihood for the restricted model divided by the maximum of the likelihood for the full

model is the likelihood ratio test statistic A; the asymptotic distribution of -2 In A is 2 with
degrees of freedom equal to the difference in the degrees of freedom for the two models.

" 6. FITTING THE MODEL BY IRLS

Maximizing the likelihoods presented in this paper is not a techmcally difficult task.
However, it is worth noting that the maximum likelihood estimates can be found by
iteratively reweighted least squares. Thus, procedures such as PROC NLIN in SAS can be
used to obtain the estimates, variance-covariance matrix, likelihood value, etc. The reader
is referred to Green (1984) and Jennrich and Moore (1975) for details.

7. DISCUSSION

The methods con51dered here combine two previously unrelated approaches. The
general approach allows one to use previous information whose cost is essentially free.
Often, the previous information on age will have been collected according to a scheme in
which the population is (post-)stratifed by the length categories. This presents no problem
if the estimate of the population length composition is known. Hoenig and Heisey (1986)
did not stress this point; it appears that some people have used the inverse key approach
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without accounting for the fact that the number of fish aged from each length category was
fixed by the investigator and was not necessarrly proportional to the number of fish in the
-lcngth category.
{
The use of prevrous data is based on the assumptlon that the classification rates
(P(lengthlage)) have not changed from sample to sample. This assumption can be tested -
usmg standard methods such as a lrkehhood ratio test!

We have not. encountered any computauonal dlfﬁcultres with the general approach
This may be due to the fact that good starting values can usually be obtained by using one
of the traditional approaches in a preliminary analysrs,to obtain starting values.
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