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Index-removal estimation is one of the basic approaches to estlmatmg the size of
animal populations. The logic is quite simple: if catch rate (catch per unit of sampling
effort) is proportional to animal abundance, and if a known removal causes the catch rate to

-decline by a specified proportion P, then the removal is equal to 100P % of the population.
For example, if the catch rate is 10 before the removal of 300 animals, and is 7 after the
removal is made, then we calculate that the removal of 300 animals resulted in a loss of (10
- 7)/10 = 3/10 of the population. Thus, the population size (before the removal) must have
been 1000 animals. Also, the catchability coefficient, q, would be 10/1000 =.01. An
assumption of the method is that all animals have the same probability of capture. Clearly,
this is not the case if the sampling gear is size-selective. The bias can be minimized by

" making separate, independent estimates for each size-class of animal. However, in
general, we know that the catchability of larger animals is greater than that of smaller
animals. Therefore, we can achieve greater statistical efficiency if we utilize information
on catchability in the estimation procedure. We propose that one might wish to first
compute separate estimates for each size class. Then, if the estimated catchability -
coefficients show an increasing trend with size class, one could estimate the size-class-
specific population sizes with the constraints that the estimated catchability coefficients
must be monotonically increasing with siz€ class. One could also assume that the
catchability coefficients must be a specified function of size such as a logistic function.
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Index-removal estimation is one of the basic approaches to esttmatmg the size of

- animal populatlons The logic is quite simple: if catch rate (catch per unit of sampling

effort) is proportional to animal abundance, and if a known removal causes the catch rate to
decline by a specified proportion P, then the removal is equal to 100P % of the population.

. For example if the catch rate is 10 before the removal of 300 animals, and is 7 after the

removal is made, then we calculate that the removal of 300 animals resulted in a loss of (10

_+=T7)/10 = 3/10 of the population. Thus, the population size (before the removal) must have

been 1000 animals. More formally, if E(c;) and E(cz) are the expected values of the -

* observed catch rates before and after the removal, respectively, and if R is the number of

ammals removed then the population size is gtven by
. l
: . !
. . N_ E(Cl)R o
= E(cp - Ecp)
| |
Furthermore, we can calculate the catchab'llxty' coefficient by dividing the initial catch rate by
the estimated initial populatlon size, i.e., catchability coefficient = 10/1000 = 0.01. The
catchability coefficient is the fraction of the populatlon taken by one randomly placed unit
of sampling effort when the fraction taken is small (e.g., less than 2% - see Rlcker 1975)

|
. This approach is well known in the wildlife literature (Petrides 1949; Eberhardt
1982; Seber 1982; Roseberry and Woolfe 1991) but has received little attention in the
ﬁsherles literature (Dawe et al. 1993). Seber (1982) and Routledge (1989) discuss the
statistical theory in detail. In particular, Routledge (1989) generahzed the approach to
1nc1ude J removals and J + 1-surveys. |

For the smplest case dCSCl‘led above, the as'sumptlons of the method are that 1)
the population is closed except for the removals which are known exactly, and 2) all
animals have the same probability of capture which does not change from survey to survey.
It is easily verified that heterogeneity of capture probabilities can introduce bias. Suppose,
for example, that the population is composed of 500 males and 500 females, that males
have a catchability coefficient of 0.01 whereas females have a catchability coefficient of
0.005 (i.e., half that of the males), and that 300 males and 100 females are removed from
the populatlon between the time of the two surveys.| In the first survey we would expect to
catch 0.01 x 500 = 5 males if one randomly placed unit of sampling effort is expended. In
the second survey we would expect to catch 0.01 x (500 - 300) = 2 males. Thus, the
calculated size of the initial population of males would be

g | | 1
N = ==5x300 = 500 l

which is what we want Slmllarly, the size of the female population would be calculated to
be 500, as desired. However, suppose that one did not realize that males have a different
catchability coefficient than females and one calculated the size of the total population from
combined data on males and females. In the first survey, one would expect to catch 7.5
animals (5 males + 2.5 females) with one randomly placed unit of sampling effort. In the
second survey, one would expect to catch2 +2=4 animals. Consequently, the calculated
population size would be

7.5
7.5-4%

x400 = 857




Vaem P R T T

instead of the actual value of 1000. Note that the heterogeneity of capture probabllmes isa

. problem because the removal was selective with respect to capture probabilities (1 e,

proportionately more of the males were remox ed than of lhe females).

The problcm of heterogeneity can be minimized by makmg separate estimates for
various subsets of the population. For example, separate estimates could be made for
males and for females or for different size groups of animals. However, when information
is available on the relative catchability of different groups, this information can be
mcorporated in the estimation procedure to increase the statistical efficiency of the
estimator.. For cxample one may have good reason to believe that male crabs are more

_ catchable than fernales in a trap survey because of differential behaviour or differential body

size among the sexes. Similarly, one may believe that large crabs are more catchable by
traps than small crabs. In these cases, one may wish to introduce order restrictions in the

-estimation procedure to ensure that the estimated catchabilities are consistent with the

available information on relative catchabilities of the various groups.

In this paper, we consider a suxte of four models which vary in the amount of
information assumed about the relative catchabilities of the different groups. The simplest
approach is to make separate, independent estimates for each group. If qualitative
information is available about the relative catchabilities of the groups then one can introduce
order restrictions for the catchability coefficients. One might also assume a functional
relationship for the way catchability coefficients vary with a covariate. In particular, the
catchability coefficient might be a logistic function of body size. In this case, we would
estimate the parameters of the functional relationship rather than the catchability coefficients
for each size group. Finally, it may happen that a sampling gear selectivity curve is
available from some other study. In this case, the parameter estimates of the selectivity
curve can be incorporated directly in the population estimation procedure.

We begin by assuming that the catches per unit of sampling effort in the surveys
follow Poisson or multinomial distributions. This is consistent with previous treatments of
the subject in the wildlife literature. We then discuss briefly the possibility of assuming
catch rate follows a normal distribution as suggested by Routledge (1989). The normal
dlstnbutxon would appear to be a more reasonable model for many fishery applications.

Four models when catches follow Poisson distributions

We assume that the expected value of the total number of animals caught when one
unit of sampling effort is expended at each of f randomly selected locations is given by

E(C) = qfN = A (say)

where E(.) denotes expected value of the quantity in parentheses, q is the catchablllty
coefficient, f is the number of units of sampling effort, and N is the population size. Thus,
catch is assumed proportional to sampling effort and to abundance. This assumption is
Justified if the sampling is with replacement (animals are released unharmed after being

‘caught) or the fraction of the population caught is negligible so that the population size N

does not change due to the random sampling. Furthermore, we assume that the total

_number of animals caught during the survey, 'C, follows a Poisson distribution with

parameter A, i.e.,, C ~ P(k) Thus, the probablllty densxty function for the number of
animals caught is



AC e-A _ (gfN)C e-afn -
ct - C! :

f(C) =

If R animals are removed from the populatioh, the abundance becomes N - R and, under
the assumption that expected value of the catch is proportional to abundance, the expected
value of the catch becomes E(C) = qf(N-R). If we assume that the distribution of catch -

- remains Poisson then we can write the likelihood, A, for obtaining a series of catches {C;, . ..

Cy, ... Gy} from J surveys having respective sampling efforts {fy, f5, ... fy} as

TS é’j‘i _ (afN N)CJ e-afiN
A=T1 o ot

(1) : _
where A; is the Poisson parameter for the jth random survey and N; is the number of
animals in the population just before the jth survey. Thus, Ny is equal to the original
population N, and

ST - |
Nj = N-kzlkk forj>2 | | | @)

where Ry, is the number of animals removed from the population after the kth survey. Here,
we have treated the removals Ry as known, fixed values. :

There are two unknowns, q and N, in equation (1). When the data consist of two
surveys and one removal, the estimates which maximize the likelihood are given by

ICI _ C]/fl R _ C1 R
- Cl/fl - C2/f2 - Cl - Cy
and

(c; = Cj/f; is the catch rate in the jth survey for j = 1 ,2). When there are more than two
surveys and one removal, the estimates must be found numerically (Routledge 1989).

Method 1: independent estimates by size gljoup

Suppose we have reason to believe that the I subgroups in the population have
different catchabilities, q;. Suppose, further, that we believe the catches of the various
subgroups are independent Poisson random variables. This assumption is made explicitly
for some change-in-ratio estimation models (see Seber 1982). Then the likelihood (1) can
be generalized by the introduction of an index i denoting subgroup-specific population sizes
and catchabilities. Thus, the likelihood becomes .

A CeM (gifyNy S e difiNi
A H n Cij! - ‘ Cij! : 3)

i=1 _]"‘




" Here, the N; jj are defined in a manner analogous to equation (2). That is, N, is the original
number of ammals in the population in subgroup i and
-l ‘
Nij = Nir- ZRk forjz2 . @
k-l .

where R;y is the number of ammals removed from the'ith subgroup of the population after
~ the kth survey. Here we have again treated the removals R;; as known, fixed values

- Equation (3) has 2I unknowns: I initial abundances and I catchablllty coefﬁcxents
Itis easily verified that maximizing (4) with respect to the 21 unknowns is equivalent to
max1mxzmg (1) separately for each subgroup in the population.

Method 2: mtroducmg order restrlctlons for the catchabilities

Suppose we have good reason to believe that q; < q; < ... gy and we w1sh to
introduce thése order restrictions into the estimation procedure. Let q, =0 and let

q; = Qj.1 +9;2, fori=1,2,..1

and substitute these definitions into the likelihood (3). We now have I initial abundances
and I values of §;2 to estimate. Note that, regardless of the value of the estimate Si, the

value of Siz must be non-negative and, thus, the estimate of g; must be greater than or equal
to the estimate of q;_y.

Method 3: introducing a functional relationship for catchability

Often, the catchability of an animal will vary with the animal's body size. For
example, the chances of a fish escaping through the meshes of a trawl generally decreases
as the size of the fish increases. In contrast, the ability of some animals to avoid sampling
gear may increase as the animals increase in age or size. In fisheries work, it is common to
model the selectivity of fishing gear as a logistic function of body size. Thus, the
proportion of the animals of length I that is retained by the gear, p(l), can be described by

1 .
D= 5
p() 1 + exp(-a(l-1y,)) ( )

where o is a shape parameter and 1, is a location parameter. The catchability of animals in
the ith size group would then be proportional to the selectivity for that group:

q = PBpd) . . (6)

where B is an additional parameter relating the catchability to the selectivity of the gear.
Equation (6) can be substituted for the q; in equation (3). In this case, we estimate the

parameters ¢ and 1, of the logistic curve and the scaling parameter P, instead of the I
catchabilities, q;.



i
3
i
i
H

Method 4: u.sing independen.t estimates of gear selectivity

It is often the case that the gear selectivity can be estimated by comparing the
catches from two sampling gears with different mesh sizes. If gear selectivity parameter
estimates are available from an independent study then one need only estimate the 1nma1

'populatlon sizes, Njj, and the scaling parameter B, of the logistic curve
Discussion |
4
|
. The methods described here can be used as part of a general model bu1ld1ng
strategy. One can start by looking at separate estimates of catchability by size group. If'
these show a general trend or pattern that is consistent with expectation based on
knowledge of the biology of the species and the characterlstlcs of the sampling gear, then
the estimates might be smoothed somewhat by imposing order restrictions. One might also
estimate the parameters of a selectivity-with-size model. However, this would require
.sufficient contrast in the data, i.e., a sufficient range of sizes in the data. One could also
- use assumed selectivity parameters if these are available from an external study. A
likelihood ratio test could be used to test if selectivity parameters estimated by the index-
removal method are significantly dlfferent from assumed values from an external study.
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