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Index-removal estimation is one ofthe basic approaehes to estim~ting the size of
animal populations. The logic is quite simple: if cateh rate (cateh per unit of sampling
effort) is proportional to animal abundanee, and if a known removal causes the eatch rate to
decline by a specified proportion P, then the removal is equal to 100P % of the population.
For example, if the catch rate is IObefore the removal of 300 animals, and is 7 after the
removal is made, then we calculate that the removal of 300 animals resulted in a loss of (10
-7)/10 = 3/10 ofthe population. Thus, the population size (before the removal) must have
been 1000 animals. Also, the catchability coefficient, q, would be 10/1000 = .01. An
assumption of the method is that all animals have the same probability of capture. Clearly,
this is not the case if the sampling gern: is size-selective. The bias can be minimized by

. making separate, independent estimates for each size-class of animal. However, in
general, we know that the catchability of larger animals is greater than that of smaller
animals. Therefore, we can achieve greater statistical efficieney if we utilize information
on eatehability in the estimation procedure. \Ve propose that one might wish to first
compute separate estimates for each size dass. Then, if the estimated catchability' ,
coefficients show an increasing trend with size class, one could estimate the size-class­
specific population sizes with the constraints that the estimated catchability eoefficients
must be monotonically increasing with size dass. One eould also assume that the
catchability coefficients must be a specified function of size such as a logistic function.
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, Index-removal estimation is one of the basic approaches to estimating the size of
animal populations. The logic is quite simple: if catch rate (catch per unit of sampling
effort) is proportional to animal abundance, and if ~ known removal causes the catch rate to
declinc by a specified proportion P, then thc removal is equal to 100P %of the population.
For example, if the catch rate is 10 before the removal of 300 animals, and is 7 after the
removal is made, theri we calculate that the removal of 300 animals resulted in a loss of (10

.- 7)/10 =3/10 of the population. Thus, the population size (before the removal) must have
. been 1000 animals. More formally,.ifE(c}) and E(C2) Ure the expected values ofthe'
: observed catch rates before and after the removal .. respectively, Und ifR is the number of

animllis removed, then the population size is given by .
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Furthermore, we can calculate the catchability' coefficient by dividing the initiill catch rate by
the estimated initial population size, Le., catchability coefficient =1 0/1000 = 0.01. The
catchability coefficient is the"fraction ofthe population taken by one randomly placed imit
of sampling effort when the fraction taken is small (e.g., less than 2% - see Ricker 1975).

I
This approach is weIl known in the wildlife literature (Petrldes 1949; Eberhardt

1982; Seber 1982; Roseberry and Woolfe 1991) but has receivedlittle attention in thc
fisheries literature (Dawe et al. 1993). Seber (1982) and Routledge (1989) discuss the
statistical theory in detail. In particular, Routledge (1989) generalized the approach to
include J removals and J + 1· surveys. !

. .. I .
For the simplest case described above, the assumptions ofthe method are that: 1)

the population is closed except for the removals which are known exactly, and 2) all
animals havethe same probability of capture whichdoes riot change from survey to survey.
It is easilyverified that heterogeneity of capture probabilities can introduce bias. Suppose,
for example, that the population is composed of 500 males arid 500 females, that males
have a catchability coefficient of 0.01 whereas females have a catchability coefficient of
0.005 (Le., halfthat ofthe males), and that 300 males and 100 ferriales are removed from
the population between the time of thc two surveys. i In the first sUfvey wc would expect to
catch 0.01 x 500 = 5 males if one randomly placed unit of sampling effort is expended. In
the second survey we would expect to catch 0.01 x (500 - 300) = 2 males. Thus, the
calculated size of the initial population of males would be

, . I
. . IN= 5 :.2 x 300 = 500 I

. . . I
which is what we want. Similarly, the size ofthe female population would be calculated to
be 500, as desired. However, suppose that one did not realize that males have a different
catchability coefficient than females and one calculated the size of the total population from
combined data on males and females. In the first 'sufvey, one would expect to catch 7.5
animals (5 males + 2.5 fiIiiales) with one randornly placed unit of sampling effort. In the
second survey, one would cxpect to catch 2 + 2 = 4 animals. Conscqucntly, thc calculatcd
population size would be I ..
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instead of the actual value of 1000'. Note that the,heterogeneity of capture probabilities is a
problem because theremoval was selectivewith respect to capture probabilities (Le.,
proportionately more of the males \~'ere reI1,10ved than of the femalcs).

The problem of heterogencity can be minimized by making separate estimates for .
various subsets of the population. For example, separate estimates could be made for
males Und for females or for different size groups of animals. However, when information
is available on the relative catchability of different groups, this information can be
incorporated in the estimation procedure to increase the statistical efficiency of the "
estimator., For example, one may h~ve good reason to believe that male crabs are more
catchable than females in a trap survey ~eeause of differential behaviour or differentialbody
size amorig the sexes. Similarly, one may believe that large erabs are more eatchable by
traps than small crabs. In these cases; one may wish to introduee order rcs~rietions in the
,estirnation procedure to ensure that the estirnated catchabiIities are consistent with the
available information on relative catchabilities ofthe various groups.

In this paper, we consider a suite of faur models which vary in the amount of
information assumed about thc relative catchabilities of the different groups. The simplest
approach is to make separate, independent estimates for each group: If qualitative
information is 'available about the relative catchabilities of the groups then one can introduce
order restrictions for the catehability coefficients. Orie inight also assurne a functional
relationship for thc way catchability coefficients vary with a covariate. In particular, the
catchability coeffident might be a logistic function of body size. In this ease, we would
estirriate the parameters ofthe functional relationship rather than the catchability coefficients
for each size group. Finally, it rnay happen that a sampling gear selectivity curve is
available from some other study. In this ease, the parameter estirnates of the selectivity
eurve can be incorporated directIy in the population estimation proccdure.

,\Ve begin by assuming that the catches per unit of sampling effort in the surveys
foIIow Poisson or multinomial distributions. This is consistent with previous treatments of
the subject in thc wildlife literature.\Ve then discuss briefly the possibility of assuming
cateh rate follows a normal distribution as suggested by RoutIedgc (1989). Thc normal
distribution would appear to be a more reasonable model for many fishery applieatioris.

Four modcls wilcn catcilcs follow Poisson distributions

, \Ve assurne ihat the expected"value of the total number of animals caught \vhen onc
unit of sampling effort is expended at each of f randomly selected locations is given by

E(C) = qfN = A (say)

where E(.) denotes expected value of the quantity in parentheses, q is the catehability
coefficient, fis the number of units of sampling effort, and N is the population size. Thus,
catch is assumed proportional to sampling effort and to abundance. This assumption is
justified ifthe sampling is with replacernent,(animals ure released unharmed after being
caught) or the fraction of the population caught is negligible so that the population size N
does not change due to thc random sampling. Furthermorc, we assurne that thc total
nurnber of animals caugh~ during the survey: C, follows a Poisson distribution \vith
parameter A, Le., C - P(A). Thus; the probability derisity function for the number of
animaIs caught is



f(C)
AC e-A. _ (gfN)c e-qfn

= C! - C!
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If R animals are removed from the population, the abundance becomes N - Rand, under
the assumption that expected value of the catch is proportional to abundance, the expected
value of the catch becomes E(C) = gf(N-R). If we assurne that the distribution of catch '

, remains Poisson then we can write the lik~lihood, A, for obtai~ing aseries of c;tch~s'{CI'
C2, •.• CJ} from J surveys having respective sampling effort~ {fI, f2, ..• fJ}as

=
(1)

where ~ is the Poisson parameter for the jth random survey and Nj is the number of
animals in the population just before the jth survey. Thus, NI is egual to the original
population N, and

, j-l .
Nj = N- LRk forj~2

k=l
(2)

where Rk is the number of animals removed from the population after the kth survey. Here,
we have treated the removals Rk as known, fixed values.

There are two unknowns, 9 and N, in eguation (1). When the data consist of two
surveys and one removal, the estimates which maximize the likelihood are given by

and

cl = CI!fI =
'N

Cl,,=
N

•
(Cj = C/~ is the catch rate in the jth survey for j = 1,2). When there are more than two
surveys and one removal, the estimates must be found numerically (Routledge 1989).

Method 1: independent estimates by size group
, i

Suppose we have reason to believe that the 1 subgroups in the population have
different catchabilities, qj. Suppose,Jurther, that we believe the catches of the various
subgroups are independent Poisson random variables. This assumption is made explicitly
for some change-in-ratio estimation models (see Seber 1982). Then the likelihood (1) can
be generalized by the introduction of an index i denoting subgroup-specific population sizes
and catchabilities. Thus, the likelihood becomes '

'I J
A = n'.n

i=1 J=1 C··IIr =
C" q·f-·N"(q·f.N..) IJ e- 1 1J IJ

I J II

C.. IIr
(3)



...' (4)

(5)

"'\

e·

Here, the Nij are defined in a manner analogous to equation (2). That is, Nil is the original
number of animals in the population in subgroup i and .

j-l .
. Nij = ~il -' I,Rik fo~ j;::: 2

k=l

where' Rik is the.~umber of animals removed from the-ith subgroup of the' population after
.the k!h..survey. Here, we ~ave again treated the removals Rik as known, fixcd values.

. Equation (3) has 21 unkno~ns: I initial abundanccs U!1d I catchability coefficients.
Itis easily verified that maximizing (4) with respect to the 21 unknowns is equivalent to
maximizing (1) separately for each subgroup in the population.

Method 2: introducing order restrictions for the catchabilities

Suppose we have good reason to believe that ql < q2 < ... ql and we wish to
introduce these order restrictions into the estimation procedure. Let qo =0 and let

. .
and substitute these definitions into the likelihood (3). We now have I initial abundances
and I values of o? to estimate. Note that, regardless of the value of the estimate ßi , the

value of ßi2 must be non-negative and, thus, the estimate of qj must be greater than or equal
to the estimate of qi-l'

:Method 3: introducing a functional relationship for catchability

Often, the catchability of an animal will vary with the animaI's body size. For
example, the' chances of a fish escaping through the meshes of a trawl generally decreases
as the size of the fish increases. In contrast, the ability of some animals to avoid sampling
gear may increase as the animals increase in age or size. In fisheries work, it is common to
model the selectivity of fishing gear as a logistie function of body size. Thus, the
proportion of the animals of length 1that is retained by the gear, p(l), can be ~eseribed by

p(l) = 1
1 + exp(-a(l - 10 »

where a is a shape parameter and 10 is a location parameter. The catchability of animals in
the ith size group would then be proportional to the selectivity for that group:

5

qj = ßp(l) (6)

where ßis an additional parameter relating the catchability to the selectivity of the gear.
Equation (6) ean be substituted for the qj in equation (3). In this case, we estimate the

parameters a and 10 of the logistie curve and the scaling parameter ß, instead of the I
catchabilities, qj.
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l\lethod 4: using independent estimates of gear selectivity

It is often the case that the gear selectivity can be estimated by comparing the
eatehes from two sampling gears with different mesh ,sizes., If gear selectivity parameter
estimates are available from an independent study then one need only estimate the initial
'populati<?n si~es, Nil, and the scaling parameter, ß;ofthe logisticcurve. .

. . 1 .

Discussion j
. I

I

. I '
The methods described here can be used as part of ~ general model building

strategy. One ean start,by looking at separate estimates of eatchability by size group. If
these sho~ a general trend or pattern that is consistent with expectation based on
knowledge ofthe biology ofthe species and the characteristics ofthe sampling gear, then
the estimates might be smoothed somewhat by imposing order restrietions. One might also _
estimate the parameters of a selectivity-with-size model. However, this would require

,sufficient contrast in the data, Le., a sufficient range. of sizes in the data. One could also
use assumed selectivity parameters if these are available from an extemal study. A .
likelihood ratio test eould be used to test if selectivity parameters estimated by the index­
removal method are significantly different from assumed values from an extemal study.
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