

International Council for the Exploration of the Sea

C.M.1994/G:40
Demersal Fish Committee

RUSSIAN INVESTIGATIONS ON COD AND HADDOCK IN THE BARENTS SEA AND ADJACENT WATERS IN NOVEMBER 1993 - JANUARY 1994

by

Yu.M.Lepesevich, M.S.Shevelev, V.A.Ermolchev, M.V.Ermolchev, S.V.Ratushny

Polar Research Institute of Marine Fisheries and Oceanography (PINRO), 6 Knipovich Street, 183763, Murmansk, Russia

ABSTRACT

Annual traditional trawl-acoustic survey for stock assessment and estimation of young cod and haddock in the Barents Sea and adjacent waters was carried out by three Russian research vessels in November 1993 - January 1994.

The investigations over the area surveyed showed the abundance of cod and haddock from the 1992-1993 yearclasses to be estimated at a level close to the long-term mean value. The 1991 cod yearclass is mean abundant and that of haddock is rich one.

Early in 1994 the total abundance and biomass of cod over the area covered made up 783 mill.indiv. and 1252 thou.t, of which 719 mill.indiv. and 1242 thou.t pertained to commercial stock. Total abundance and biomass of haddock reached 1595 mill.indiv. and 887 thou.t, with 1350 mill.indiv. and 843 thou.t constituting the commercial stock.

For some technical reasons not a whole area was surveyed, therefore, the estimates obtained were somewhat lower. Nevertheless, an increment in haddock stock and stabilization of that of cod were noted.

INTRODUCTION

The trawl-acoustic survey to assess juveniles and bottom fish stocks in the Barents Sea and adjacent waters has been regularly carried out since 1984. It was based on the traditional trawl survey for assessment of young bottom fish at the first three years of life, conducted in autumn-winter since 1948 (Trambachev, 1981). This allowed to use the long-term observations by indices for cod and haddock abundance to assess the yearclasses strength (Melyantsev, Salmov, 1985) and to forecast recruitment of commercial stocks. In the second half of 80's the acoustic methods for estimating abundance of bottom fish distributed in a 10m - layer (Zaferman, Serebrov, 1985; Dorchenkov, 1986, 1991) allowed to overcome, to a certain extent, disadvantages of the

methods previosly applied for bottom fish stocks assessment.

MATERIALS AND METHODS

The trawl-acoustic survey for assessment of juveniles and cod and haddock stocks was conducted by the Russian RVs "Professor Marti", "Fridtjof Nansen" and "PINRO" in the Barents Sea and adjacent waters in November 1993 - January 1994 (Fig.1). Compared to 1992 the investigations were done in later time and and a lesser area was covered. In total 346 hauls were done with a bottom trawl from 40 to 800 m depths, 294 of them were taken above 500 m depth.

The survey methods remained without changes (Shevelev, Dorchenkov, Mamylov, 1990). The whole area was splitted into 26 strata pooled into ICES areas I, IIa and IIb.

The survey data were IBM processed using SAE (Stock Abundance Estimation) software, developed in PINRO (Ermolchev V.A., Ermolchev M.V.). The latter allows to estimate the bottom fish abundance and biomass to a high accuracy, especially under inhomogeneous distribution of aggregations density; to determine errors in each stratum, area and total error of post-stratification over the whole area on the basis of analysis for integral variations and fish target strength in the area surveyed.

Upon completing the survey a post-stratification was done, i.e. the whole area was divided into 26 strata for cod and 21 - for haddock. Calculations of abundance, biomass and errors for each stratum, areas (I, IIa and IIb) and the whole area were performed with SAE software by two methods, i.e. classic and selective ones (all the echo-intensities are distributed by several numerical levels). As for the first method, the post stratification error for cod varied from stratum to stratum from 9 to 46%, with total error being 9.5%. By the second one the post-stratification error for some strata decreased by more than 10 times, varying from stratum to stratum from 1.3 to 27.2%, with total error constituting 3.5% - for the whole area, 2.0% - for Subarea I, 10.7% - for Div. IIa and 9.3% - for Div. IIb (Tables 3 and 4). For haddock the error varied by strata within 12-53% and total error made up 16% (the 1st method). The error also decreased for some strata by more than 10 times, varying from 2 to 30% (the 2nd method) and total error made up 4.9% - for the whole area, 5.2% for Subarea I, 8.8% - for Div.IIa and 24.8% - for Div.IIb (Tables 7 and 8).

Total error should also include those caused by other sources, such as species identification of echo-intensities, variation in parameters of environments (temperature, salinity), variation in weather conditions, as well as incomplete assessment of fish distribution and later period of the survey performance. At present it is difficult to determine the error values, however, the cod and haddock stock is suggested to be assessed incompletely during the survey for 1993-1994.

RESULTS AND DISCUSSIONS

In autumn-winter cod and haddock active migration to spawning and wintering grounds led to the fish longer staying in pelagial. 50% of haddock and 53% of cod were distributed in it and fish were easily registered using echosounder.

At the same time the earlier transport of drifting ice and heavy ice coverage did not allow to cover the West Spitsbergen area and reulted in a shortening of the number of stations in the northwest. Besides, unfavourable weather conditions and fuel problems resulted in essential intervals when performing the survey and prevented from investigating the Barents Sea area to the east of 42°E.Compared to 1992 the area surveyed decreased approximately by 20%, mainly due to the areas where an essential amount of young and adult specimens was distributed in 1992 and a duration of the survey was extended by a month. These circumstances reasonably suggest that considerable a underestimation of cod and haddock took place during the survey, particularly in Subarea I. Dense aggregations of cod were found in the frontal zone area in the northwest (Fig. 2). Fish migration along the Spitsbergen Current to the spawning and wintering grounds was not yet a mass one; cod with low fatness continued to feed on polar cod. In the second half of November a peak of cod migration in the western direction was registered in the south of the sea. Simultaneously, a considerable amount of large mature specimens migrating for spawning was found in Div.IIa. Aggregations of mean density, represented mainly by fish above 3 yr, have occupied a vast area (from 23°E to the eastern boundary of the area of operations) in the southern Barents Sea (Fig.2). Pattern of fish distribution indicates availability of essential fish aggregations outside the area surveyed in the east.

Main haddock aggregations were traditionally observed in the southern part under the water temperature above 3°C (Fig.3). Unlike cod, the distribution of haddock both the adult and young specimens, had more eastern direction and a large quantity of fish remained outside the area covered. Only single specimens of haddock were found in catches from the northwest.

Young fish assessment

The 1991 cod yearclass abundance, previously estimated as mean, reached the mean yearclass level in 1993 mainly due to an increase in the index for abundance from Div.IIb (Table 1). The 1992 yearclass at age 1+, being characterized as a rich one at a fingerling stage, occurred to be lower than the average by the results from the 1993 assessment, with the mean catch of this yearclass cod taken from the southern Barents Sea reducing by 10 times. The 1993 yearclass is also estimated to be below the average.

The 1991 haddock yearclass, the abundance of which in 1992 was estimated as above the average, joined a group of abundant yearclasses, what confirmed the estimate for this yearclass obtained from 0-group fish assessment (Table 2). The 1992 yearclass from a category of average ones passed to the level below the mean. The abundance of fingerlings from 1993 is lower than the long-term mean.

The values obtained are probably underestimated. Pattern of distribution of young cod and haddock at age 0+ and 1+ shows an essential amount of fish to remain outside the area surveyed in the northwest and, particularly, in the east. Another reasons for the underestimation of juveniles from the 1992-1993 yearclasses are their distribution mainly in pelagial and later settling into the bottom layers.

A possibility of high young fish mortality is also impossible to exclude as a result of cannibalism and predation, which a reduction in the quantity of capelin - the main food object for cod - contributed to. Another reason for such reduction in abundance of fish at age 0+ and 1+ is, probably, a low survival of fish during the first wintering (for 1992 yearclass) and in autumn 1993 (mainly for fish at age 0+) because of deterioration of the nutritive base.

With allowance for the areas not surveyed the 1991-1993 cod yearclasses and those of haddock for 1992-1993 could be considered as mean abundant what is close to the estimates obtained from 0-group fish survey (Anon., 1993).

Stock assessment

Cod. Total abundance and biomass of cod on the Barents Sea shelf made up 783 mill.indiv. and 1252 thou.t respectively, of which 719 mill.indiv. and 1242 thou.t pertain to commercial stock (Tables 5 and 6). Compared to 1992 the commercial stock abundance grew by 1.2 times, what is somewhat lower than it was expected, considering a recruitment of 1988-1990 rich yearclassess to the stock. Specimens from the 1988-1990 yearclasses (above 80% of commercial stock) constitute the bulk of catches. Biomass of commercial stock decreased by 1.2 times relative to the 1992 level. Along with the underestimation of commercial size fish, this results from a retarded growth rate of specimens due to a deterioration of the nutritive base in 1993 which led to a reduction in fish mean weight, as well as to a withdrawal of adult age groups as a result of fishery. About 50% of the total biomass constitute the 1988-1989 yearclasses.

Haddock. Total abundance and biomass of haddock (Tables 9, 10) made up 1595 mill.indiv. and 887 thou.t, respectively, of which 1350 mill.indiv. and 843 thou.t pertain to commercial stock. Compared to 1992 the haddock commercial stock increased by 5 times and biomass - by 3 times mainly due to a recruitment of the 1990 abundant yearclass to the commercial stock (about 70% of total abundance and 60% of total biomass).

CONCLUSIONS

- 1. The abundance of the 1992-1993 cod and haddock yearclasses is estimated at the level close to the long-term mean. Cod at age 2+ from the 1991 yearclass is set at the level of mean abundant and that of haddock for the same year as a rich one.
- that of haddock for the same year as a rich one.

 2. Early in 1994 the total abundance and biomass of cod constituted 783 mill.indiv. and 1252 thou.t, respectively, of which 719 mill.indiv. and 1252 thou.t pertain to commercial stock. Specimens from the 1988-1990 yearclasses made up the bulk of cod catches. Total abundance and biomass of haddock, relative to the level in 1992, have grown by 5 and 3 times, respectively, and were 1595 mill.indiv. and 887 thou.t, of which 1350 mill.indiv. and 843 thou.t pertain to commercial stock. Specimens from the 1990 abundant yearclass make up the bulk of haddock stock.

REFERENCES

- ANON., 1994.Preliminary report of the International 0-group fish survey in the Barents Sea and adjacent waters in August-September 1993. ICES C.M. 1994/G:3, p.37.
- DORCHENKOV, A.E. 1986. Estimation of abundance and biomass of fish in a bottom layer by hydroacoustic method. In: Rybnoe khozyaistvo, 5:40-43 (in Russian).
- DORCHENKOV, A.E. 1991. Combined trawl-acoustic surveys. NCSD Acoustic Workshop, August, 1991, St.John's, Canada.
- ERMOLCHEV, V.A., ERMOLCHEV, M.V.1994. Status and ways of improving the hydroacoustic method for commercial fish stock assessment at present. In: Materials of PINRO Report Session for 1993. Murmansk, 11 p. (in Russian).
- MELYANTSEV, R.V., SALMOV, V.Z. 1985. Estimate of abundance of cod yearclasses according to young fish survey data. ICES C.M. 1985/G: 10, 12 p.
- SHEVELEV, M.S., DORCHENKOV, A.E., MAMYLOV, V.S., 1990. Soviet investigations of cod, haddock and redfish in the Barents Sea and adjacent waters in 1989. ICES C.M. 1990/ G:8, 22 p. (mimeo).
- TRAMBACHEV, M.F. 1981. Young cod in the Barents Sea and Bear Island-Spitsbergen area in the autumn and winter 1978-1979. Annls.biol.,Copenh.,1981(1979), 36:107-109.
- ZAFERMAN, M.L., SEREBROV, L.I. 1985. Methods and results of studying the coefficients of trawl efficiency. In: Investigations on optimization of fishery and on improvement of fishing gears. VNIRO, Moscow, 84 p. (in Russian).

Table 1. Mean catches of 1-3 years old cod in the southern Barents Sea (I) and in the Bear Island-Spitsbergen area (IIb) in 1976-1993 (spec. per 1-hour trawling).

									 Age												t the
Year- classes	:		1			:			2					3		·-: :	age	of	· 2-3	yéa	rs old
	::	:	IIb	: I	 +IIb	: I	:	IIb	:]	: dll+	I	:	IIb	:	I+IIb	:	1	:	H	;	I+IIb
1976	1		1.		1	1		1		1.	4		<1		3		2		1		1
1977	1		1		1	ຂ		1		1	. 2		1		1		2		1		1
1978	< 1		2	<	1	< 1		< 1		< 1	1		3		2	4	< 1		1		1
1979	41		1	4	4 1	< 1		۷1		< 1	<1		8		3		< 1		5		2
1980	< 1		1	4	< 1	< 1		< 1		4 1	1		8		4		4 1		4		2
1981	< 1		< 1	4	< 1	< 1		< 1		< 1	4		4		4		2		2		2
1982	1		8		4	8		13		10	8		10		9		8		11		9
1983	4		g		6	11		7	4	9	45		41		43		21		20		20
1984	1		1	<	< <u>1</u>	2		S		5	γ		15		10		5		12		B
1985	3		10		6	2		3		2	4		4		4		3		3		3
1986	< 1		2		1	< 1		< 1		۷1	2		5		- 3		1.		2		1
1987	< 1			4	1	< 1		< 1		< 1	< 1		1		1		1		< 1		< 1
1988	< 1		< <u>1</u>	<	(1	< 1		< 1		< 1	7		. 1		4.		3		< 1		2 -
1989	<1		1	4	< 1	4		1		3	7		10		Ą		5		5		5
1990	6	,	1		4	4		4		4	26		72		44	,	15		36		23
1991	3		6		4	3		15	•	6	8		24		15		5		19		11 .
1992	10		60	•	32	1.		6		3											
1995*	2		5		3							•									

^{*} excluding Central and Eastern parts of the southern Barents Sea

Mean catches of young haddock at the first-third years of life in the western, central and coastal Barents Sea in 1970-1993 (spec. per 1-hour trawling)

Y		Years of I	life	;	: Mean at the
Year-class :-	1	2	:	3	: second-third : years of life
: 1970	10	33		31	: 32
1971	3	3		9	6
1972	2	9		3	6
1973	13	6		6	6
1974	15	35		14	24
1975	163	96		59	77
1976	6	13		4	8
1977	1	1		< 1	< 1
1978	< 1	< 1		1	< 1
1979	< 1	< 1		۷ 1	< 1
1980	< 1	< 1		< 1	< 1
1981	< 1	< 1		8	4
1982	23	59		63	61
1983	40	79	6	239	121
1984	g	19		18	19
1985	5	ຂ		3	· දි
1986	< <u>1</u>	1		1	1
1967	< <u>1</u>	< 1		4	2
1988	2	3		21	11
1989	3	25		30	28
1990	81	67		173	118
1991	17	44		69	54
1992	20	8			
1993 *	ნ				•
Mean for 1948-1993	17	SS		31	2.4

 $[\]star$ excluding Central parts of the southern Barents Sea

Table 3. Abundance of cod according to data from trawl-acoustic survey carried out in November 1993 - January 1994, mill. of spec.

Area	: Layer :-						Year	-class						:	Total	: : Error
Ar Ga	•	1993:	1992:	1991:	1990:	1989:	_1988: 	1987:	1986:	1985:	1984:	1983:	1982:	1981+:	:	: +/- %
1	Pelagial Near bottom Water column	1,5 1,8 3,3	1,2	8,4	73,7	79,8, 97,1 176,9	51,3	-	4,1 5,0 9,1	3,7 4,5 8,2	- 2,2	2,7 3,3 6,1	0,1	+ 0,1 0,1	218,7 266,2 484,9	1,5 1,2 2,0
.: Ha	Petagial Near bottom Water column	0,1 0,1 0,2	+ + 0,1	+	0,9	2,4.	3,2	2,6 1,1 3,7	0,3	0,9 0,4 1,3		0,5 0,2 0,7	+ + +		24,8 9,6 34,4	7,8 7,8 10,7
Hh	Pelagial Near bottom Water column	2,2	4,7 2,8 .7,5	11,0	28,5	36,3 21,2 57,6	11,8		1.,5.	2,8 1,6 4,4	1,2	2,6 1,5 4,1	0,1 0,1 0,2	0,2 0,1 0,2	168,6 95,2 263,8	6,9 6,2 9,3
)+11a+ +11b	\Pelagial Near bottom Water column	5,4 4,1 9,5	4,0	19,5	103,2	_	66,3	21,6 21,2 42,8	6,8	7,4 6,5 13,9	4,2 3,5 •7,8	5,8 5,0 10,9	0,2 0,2 0,4	0,2 0,1 0,3	412,1 370,9 783,0	3,0 1,8 3,5

Table 4. Cod biomass according to data from trawl-acoustic survey carried out in November 1993 - January 1994, thou, t

Area	: lovon	•					Yes	ar-clas	SS (•	:	Total	: Error
Д1 12 24	: Layer :	1993	: 1992;	1991:	1990:	1989;	1988:	1987:	1986:	1985:	1984:	1983:	1982:	: 1981+:		: +/- %
	Pelagial Near bottom Water column	+ + +	0,1 (0,1 (0,1)	1,5	46,8.	104,0	108,8	47,6 57,9 105,5	23,3	29,1	17,0	24,5	: 1,7 2,0 3,8	0,7 0,8 1,5	341,7 415,9 757,5	2,5 1,8 2,0
Ha	Pelagial Near bottom Water column	+ +	+ +	+ +	0,8	អ,5	17:77	9,2 3,7 12,9	1,1	2,3	3,3 1,3 4,6	1,6	0,1 + 0,1		49,73 21,8 70,8	
!Th	Pelagial Near bottom Water column	+ + O, 1	. 0,1	2,4	21,9	32,8	28,9	16,6, , 9,7 (26,4	7,8	10,8	H , 4	13,7	0,6	2,3 -1,3 -2,6	270,8 452,9 423,7	6,9 6,2 9,3
+11a+ +11b	Pelagial Near bottom Water column	Q,1 + 0,1	0,3 0,2 0,4	4,0	69,8	141,4	145,4	72,7 71,4 144,2	32,4	42,4	26,7	40,1	2,9 2,7 5,7	3,0 2,1 5,1	662,1 589,9 1252,0	

Table 5. Abundance of cod in the Barents Sea and adjacent waters by the end of 1990-1993 (mill. of spec.)

	Survey	:			. •		Year	-class	•					:	Total
Area :	year	: 1995	: 1992:	1991:	1990:	1989:	1988:	1987:	1986:	1.985:	1984:	1983:	1962:		loval
	1990		::	;	: 28	21	49	: 8	: 19	23 23	: 52	: 63	26	: 6	295
I	1991			10	15	27	78	34	35	41	44	27	3	÷	315
	1992		56	20	1.92	193	61	32	19	24	14	12	2	+	645
	1998	3	2	15	134	1.77	98	32	g	6	4	6	÷	+	485
	1990	. 			+	+	+	+	· 1	2	4	4	4	 1	20
Ha	1991			1	÷	4-	1	1	3	3	3	3	÷	+	15
	1992		+	+	+	1	1.	1	1	 -	÷	+	+	÷	4
•	1993	+	+	, 1	3,	8	11	<u>4</u>	1	1	1	1	-1-		34
	1990					1	2	2 2	 5	8	9	 18	18	4	61
ΠD	1991			22	13	26	23	8	12	14	22	-21	ន	1 1	164
	1992		172	41	141	123	28	12	17	14	15	10	1	+	574
	1993	. <u>6</u>	8	30	. 77	58	32	7	4	4	3	4	÷	+	264
	1990				28 28	22	51	10	25	33	65	 07	42	11	. 070
	1991			33	29	53	1.01	43	50	58	70	51	Ģ	1	494
I+IIa+IIb) 1992		228	61	888	317	110	45	37	56	29	22	3	+	1223
	1993	g	10	45	215	243	136	43	14	14	8	11	÷	i-	788

Table 6. Biomass of ood in the Barents Sea and adjacent waters by the end of 1990-1993 (thou. t)

	Survey:						Ye	ar-cla	ss					:	Total
Area :	year :	1993:	1992:	1991:	1990:	1989:	1988:	1987:	1986:	1985:	1984: 	1983: :	1982:	1981+:	
Ι	1990 1991 1992 1993	+	÷ +	÷ 1 3	1 1 65 85	1 6 217 189	11 41 148 198	3 44 90 105	15 75 82 42	52 152 129 53	114 235 98 31	208 193 96 45	126 25 22 4	50 5 4 1	563 777 952 758
IIa	1990 1991 1992 1993	· ·	6 + +	+ + +	+ + + 3	+ + 1 12 .	+ 1 2 27	+ 2 3 13	1 ៩ ១ -	6 9 8 8	9 10 2 5	20 19 2 6	21. 4 +	11 . 1 +	65 57 16 71
IIb	1990 1991 1992 1993	, +	5 +	+ 3 6	ි 56 59	+ 8 148 89	+ 13 54 78	1 10 33 26	5 27 71 .21	12 47 77 29	22 101 101 23	69 156 77 87	65 26 9 2	32 6 4 4	206 401 638 424
I+IIa+IIb	1990 1991 1992 1993	+	5 +	1 4 9	1 3 121 145	1 14 366 284	11 55 204 299	4 56 126 144	21 106 156 67	47 207 209 91	145 352 201 59	297 670 175 66	214 57 31 6	98 13 6 51	634 1285 1606 1852

Table 7. Abundance of haddock according to data from trawl-acoustic survey carried out in November 1993 - January 1994, mill. of spec.

Anon	Lovon						Year	-class						: fotal	Error
Area :				4		: 1989:	1988:	1987:	•	,	•	.1983:	1982+:		+/- %
	Pelagial Near bottom Water column	7,4	11,2 11,5	95,9 99,0	515,1 531,6		14,6	. 2,0,	1,0 1,1	1,2	10,9 •1,0	1,1	0,5	759,4 783,7 (1543,1)	5,0 1,4° 5,2
Ha	Pelagial Near bottom Water column	1,0	0,6	0,8	2,3	3,7 1,3 5,1	0,5	0,1	0,1	0,1		0,1 + 0,1		18,9 ,6,8 25,6	5,2 7,1 8,8
lib	Pelagial Near bottom Water column	. 0,2	. 0,3		8,5		0,1	+ + + !	+ + +	+ + +		+ + + + + + + + + + + + + + + + + + + +		15,6 10,7 26,2	18,8
]+[]a+ +[]b	Pelagial Near bottom Water column	9,1	12,4	100,4	542,4	113,8 114,5 228,3	15,1	2,1		1,4 1,3 2,6	1,1 1,0 2,1	1,2 1,2 2,4	0,5	793,8 801,2 1595,0	1,4

Table 8. Biomass of haddock according to data from trawl-acoustic survey carried out in November 1993 - January 1994, mill. of spec.

· · · · · · · · · · · · · · · · · · ·		•		•	.• s		Year	-class		•			:		
Area :	Layer	: 1993;	1998:	1991:	1990		• *		•	•		1983;	1982+:	Total :	+/- %
:	Pelagial Near bottom	0,2 0,2	: : 			109,8 113,3	20,6	4,1	ટ,6		2,6,	: - 3,5 - 3,7	•	: - 419,6 - 433,1	5,0 1,4
	Water column	0,4	-										3,2	852,7	5,2
lla .	Pelagial Near bottom Water column	+	0,1	0,1.	1,3	4,6	0,8	0,3	0,1	0,4 0,2 0,6	0,3 0,1 0,4	0,1.	0,1 + 0,1	13,4 4,8 18,2	5,2 7,1 8,8
		· + /	0,7 +			6,3 1,6			 +			+			5,0 16,2
i î p	Near bottom Water column	· +	,0,1	0;1 0;3	5,0 12,3	1,1 2,7	0,1			+ 0,1		0,1		· •	. 18,8 . 24,8
l+11a+	Pologial Near bottom	0,3 0,2	1,1 1,0			113,8 115,8	=	, -	•	3,3 3,0	2,9 2,8	3,9 3,8	1,6 1,7	442,6 444.4	4,7 1,4
+11b	Water column	0,5	2,1	٠,	•	.230,9		=	•	6,3	5,8	7,7	. •	887,0	4,9

Table 9. Abundance of haddock in the Barents Sea and adjacent waters by the end of 1990-1993 (mill. of spec.)

	Survey:						Year	-class						:	Tabai
Area:	year :	. 1998: .	1992:	1991:	1990:	1989:	1988:	1967:	1986:	1985:	1984:	1983:	1982:	1981+:	Total
; -	1990			:	: 536	: 156	: 68	: 27	16	: 23	42 42	43	4	: 1	917
I	1991			96	240	120	68	11	4	\mathfrak{G}	21	17	2	· i·	. 560
	1992		105	200	615	200	34	3	4	7	$\mathfrak G$	÷	-‡-	+	1174
	1998	16	23	195	1047	221	29	4	2	2	2	2	1.	÷	1543
	1990				27	4	4	+	+	+	1	1	-		40
Ha	1991			11	8	1	+	+	- i-	+	· +	÷	+	+	20
	1992		+	+	1	÷	+	÷	+	+	+	+	÷		2
	1993	4	2	3	9	5	. 2	1	-i -	÷	÷	+	÷	÷	20
	1990				80	14	2	+		+	+	÷	÷	÷	48
IIb	1991			133	120	22	1	+	÷	-1-	÷	·÷		•	277
	1992		94	45	142	18	1	+	÷		+	+			299
	1993	1	1.	2	21	2	+	÷	+	- †-		+			26
	1990	, , , , , , , , , , , , , , , , , , ,			594	176	75	28	17	23	43	44	. 4	1	1004
	1991			240	368	143	65	11	4	7	21	17	2	-}-	678
·IIa+III	1992		199	245	758	218	35	3	4	7	G	+	÷	+	1475
	1993	20	26	199	1076	228	31	5	2	3	2	2	1	4.	1595

Table 10. Biomass of haddock in the Barents Sea and adjacent waters by the end of 1990-1993 (thou. t)

	Survey	:						Year	-class						. :	Total
Area:	year	:	1998:	1992:	1991:	1990:	1989:	1988:	1987:	1986:	1985:	1984:	1983:	1982:	1981+:	10021
	1990	-;		;		: 37	: 22	19	: 19	21	a5	75	96	: 12	: 3	 639
I.	1991				8 -	32	- 29	39	17	7	13	47	42	G	1	241
	1992			5	22	188	147	48	6	10	19	19	2	1	+	467
	1993		. +	2	40	510	223	42	8 -	5	6	5	7	3	-+-	853
	1990			*		ຂ	1	 ຂ	·	+	+	1	2 2	+		. 8
Ha	1991				1	1	· 4	- j	· i -	į.		+	i-	+ .	· i -	2
	1992			+	+	+	+	1	+	+	+	÷	+	+		2
	1993		+	÷ ,	1	5	$6 \cdot$	3	1	1	1	+	+	+	+	18
	1990		e ann agus never nebet velle de	• ₋ -		2 2		 1	+	+	+	 1	1	+	+	8
Hb	1991				12	19	12	1.	1	+	-1-	4.	+			46
	1992			3	5	48	17	2	+	+		+	+			75
	1993		+	÷	+	12	3	+ •	+	÷	+		+			16
	1990	·				41	26	23	19	21	 35	76	99	 12	 6	355
	1991				20	52	41	40	18	8	13	48	42	6	1.	289
÷Ha+Hb	1992			8	27	236	164	51	. 7	10	20	20	S	1	+	544
	1993		1	\mathcal{Z}	41	526	231	45	9	6	6	6	8	3	÷	887

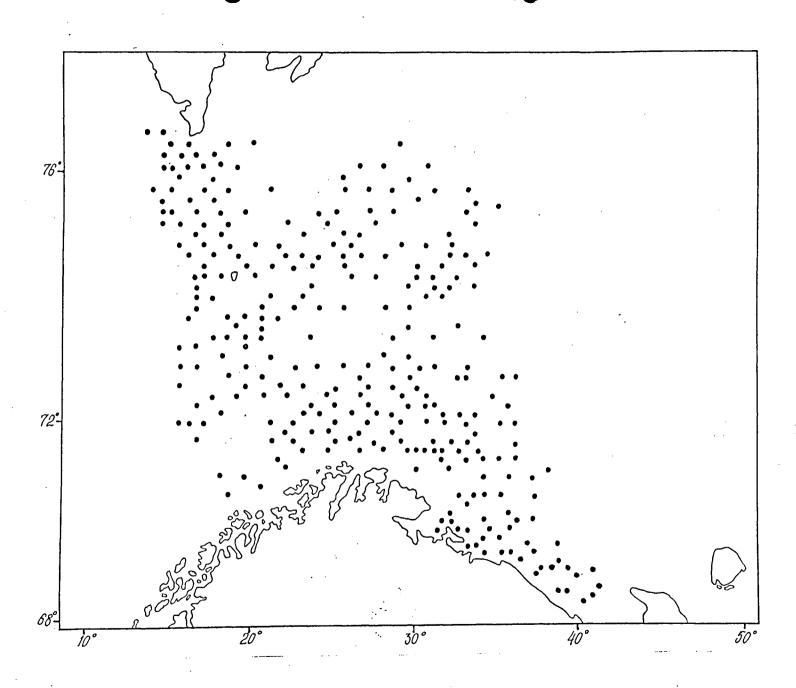


Fig. 1. Trawls stations made in November 1993 - January 1994

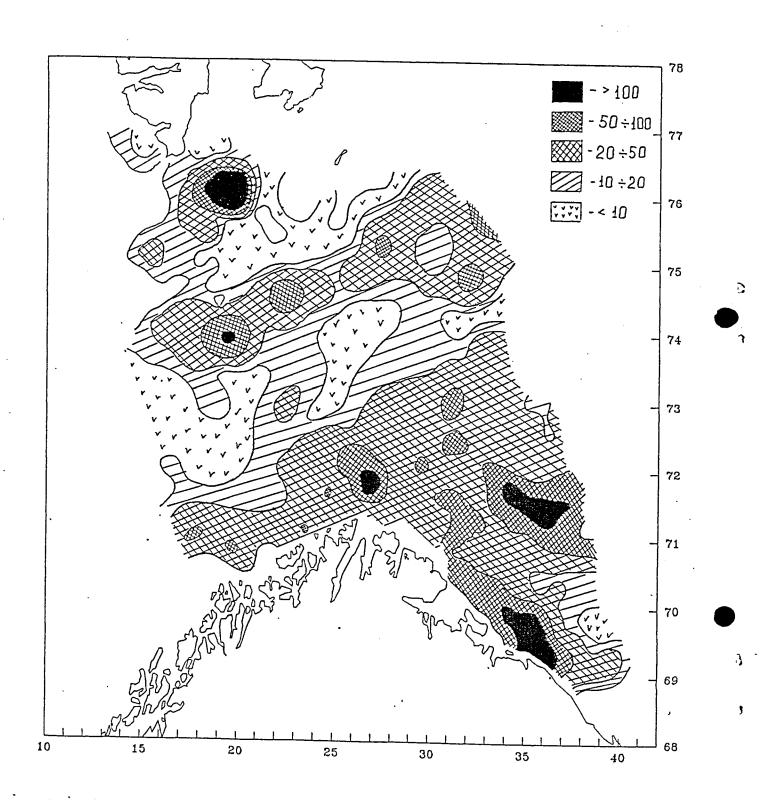


Fig. 2. Distribution of cod echo intensities in November 1993 - January 1994 (m²/mile²)

:

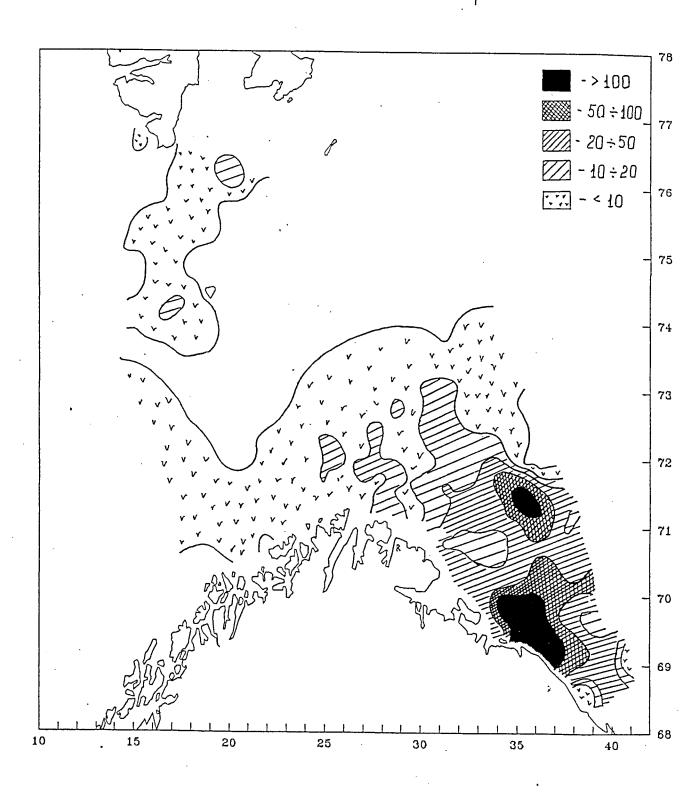


Fig. 3. Distribution of haddock echo intensities in November 1993 - January 1994 (m²/mile²)