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ABSTRACT

The encounter rate between predator and prey is frequently modeled in terms of the 'swept

volume' associated with the relative velocity of the two organisms and an appropriate cross-e sectional area. For the copepods which use feeding currents, an alternative conceptual model

of the process is that the food particles are diffusing towards the predators. Their feeding

currents trap the prey (even though they are weil beyond the range of either visual or

chemical detection) and entrain them towards their waiting arms. The predators thus benefit

from the turbulent motion and diffusion, even though much of it is due to motions with scales

significantly larger than their body's size. The feeding currents serve to dramatically increase

the flux of food.

INTRODUCTION

Rothschild and Osborn's (1988) major point is the existence of relative motion between

predator and prey due to the turbulent motions in the water, and the concomitant increase in

the interaction rate at any given local concentration of predator and prey. A corollary to

this result is the potential for laboratory measurements to incorrectly measure feeding rates,

• due to the significant differences between turbulence in laboratory systems and turbulence in

the ocean. That discussion of the role of turbulence in increasing planktonic contact rates

was based on the conceptual model that predators feed by sweeping through the water and

capturing the prey that is within their reach (Skellam. 1958; Gerritsen and Strickler, 1977).

In this paper, we will look at an alternative model for the process to elucidate the role of

turbulence in the case of copepods which use feeding currents.

For copepods, a large amount of information has come from the high-speed photographic

observations of the detailed feeding activities (Strickler, 1958: Costello et. al., 1990; Marasse

et. al. 1990; and Paffenhöffer and Lewis, 1990». The feeding process consists of swimming

slowly (on the order of 2 mm/s) and entraining particles from as far as 1 cm in front of the

copepod. The food particles are entrained at a significant distance from the predator by
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"feeding currents", created by the copepod itself, which pul! passive particles into the mouth

parts where they are identified, sorted, and the choice morseis, eaten. The relatively slow

swimming speed suggests that the predators may not be swimming through the water and

sweeping up the food but rather capturing local particles which are replenished by diffusion.

Our picture is that particles are captured by the act of entrainment into the feeding currents

which sucks them in for examination and potential demise. The deterministic chain of

events that can lead to eventual capture starts before the particle is even identified, much less

sensed! We will see that the feeding current reaches out far enough from the copepod that

the diffusion has not decreased substantially because of the dissipation by viscous effects.

This same model applies to small fish larvae (Sundby and Fossum, 1990) where visual

perception replaces the feeding current.

There are tradeoffs between "ambush predation" and "actively" chasing food (Jumars,

1993). Energy expenditure is lower for the ambush mode, but its viability is Iimited, among

other things, by the rate at which the food arrives. We will see that by using feeding currents

to expand the capture radius, the copepods get more food brought in by turbulent diffusion,

without having to expend the energy necessary to swim through the volume themselves.

What is the conceptual difference between food being advected towards the predator by the

mean flow and food being advected to the predator by the turbulent flow? It is similar to the

difference between advection and diffusion in the Reynolds' decomposition of motion into a

mean and a fluctuating part. In one sense, the difference is very small since turbulent

diffusion is still an advective transport of material, albeit it done with "turbulent" motions

. other than the "mean" currents. The decomposition depends upon a clear separation

between the scales of motion for turbulence and the mean flow (Davis, 1994a,b), and that

may weil not exist on the scales at which copepods live and feed. However, the irregular

motion of the water and the irregular swimming of the predator and prey often look more

Iike Brownian motion and diffusion rather than the steady movement outlined in Skellam's

derivation [3]. As well, the slow swimming speed of the copepod during feeding, relative to

the water motion, makes a 'swept volume' model less appropriate.

ANALYSIS

How does the rate of food capture depend on the diffusion rate and the range of the feeding

current? We can use a simple turbulent diffusion model for feeding. It can be modeled by a

sphere of radius, ro' with diffusion of food particles to that surface where the concentration is

zero. Uniform boundary conditions simplify the problem without compromising our ability

to examine the viability of the fundamental point. Setting the concentration to zero on the

upper half of the sphere and the flux equal to zero on the lower half of the sphere would be

more re~listic but not amenable to analytic solutions.
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As outlined. the problem is equivalent to heat flow into a sphere with a constant temperature

(Carslaw and Jaeger. 1959). The equation for the concentration. <I>. is:

~
- = V .(K .V<I»dt· •

where K is the diffusivity and the boundary conditions are;

<I> = 0 at r = ro, and

<I> ~ <I> _ as r -4 00, (2)

(1 )

•
where rrepresents the radial coordinate. For turbulent flow, the eddy diffusivity is

proportional to the product of a velocity scale, u', and a length scale, [' (Tennekes and

Lumley, 1972).

K"",u'·[' (3 )

Thus the diffusivity inereases with inereasing spatial seale. The veloeity scale, ur' for the

Kolmogorov speetral distribution of veloeity (homogeneous, isotropie turbulenee) at a

distanee r away from the origin, is,

(4)

where €, is the dissipation rate for the turbulent kinetie energy. This funetional relation can

be seen in Rothsehild and Osborn( 1988, figure I) where they plot relative vetocity as a

funetion of separation and dissipation rate. This relation holds for seales larger than those at

whieh the viscous dissipation oecurs. Combining equations (3) and (4). provides th e

functional form for the diffusivity relative to the particle located at the origin of the

coordiante system. with A representing an unknown, but eonstant value,

(5 )

With the diffusivity and the boundary conditions all spherically symmetrie, the problem

reduces to a differential equation in the radial coordinate only,

~ = J,.~(r2 ·K(r)· ~).
dt r· dr dr

Substituting equation (5) for the turbulent diffusivity

3
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Assuming steady state:

Note that A and c are both constants which can be divided out, making the steady state

solution for the concentration profile independent of the dissipation and the amplitude of the

diffusivity.

o= ~(rI0/3 ö{I».
ar CJr

(

10/3 ()f» Cr . ar = onstant

(8)

(9)

(10)

•

The solution for the concentration as a function of radius does not depend on the amplitude

of the diffusion coefficient.

The magnitude of the gradient is:

~ = 2.<1> . r. 7/3 • r- IO /3
CJr 3 .. 0

The flux is:

Fl K( ) ()f> A 7 ~ A 1/3 7/3 -2 Aux=- r ·_·r=--'V . ·c .r, ·r ·r
CJr 3" 0

(I 1)

( 12)

(13)

The integrated flux across the surface of any sphere, centered on the origin is the same:

J ~ 2 dCl> ( 281t') 1/3 7 nFlux·ds=-4m- ·K(r)· Jr =- -3- ·A·<I>.. ·c ·ro "·

4
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The flux of food, inward towards the predator. increases as the radius to the 2.33 power.

Thus, if a copepod captures food over a sphere I cm in radius. it gets 8.5 times as much food

as it would from a sphere 4 mm in diameter! Thus we see that for a diffusive feeding

procedure, the amount of food increases rapidly with the 'reach ' of the predator.

In order to get a time dependent solution, we will need to use a constant diffusivity. Hence,

let's compare the steady state results for variable diffusivity with the steady state solutians

far a canstant diffusivity, K(r) =/(, Equations (7), (9), (li), (12), (13), and (14) have the

following counterparts:

dcI> =cI> . r. . r-2

ar - 0

FI
dcI> A m -2 Aux =-I(. ar .r =--v _ . I( • ro . r . r

JFlux' dj·= -4m-2 • 1(. acI> =-41t'. cI> •1(. r.ar - 0

(15)

( 16)

( 17)

(18)

( 19)

(20)

The gradient is much steeper for the variable diffusivity (figure 1). For comparison consider

the difference between the two cases if the diffusivities are the same at the surface of the

., A 1/3 4/3 Th . bl d'ff, . . d fl f 28 msphere, I.e. If I( = .C . ro . e vana e I USIVlty pro uces a ux 0 -1t' . -v _ . I( . ro
3

while the constant diffusivity would produce a flux of 41t'· cI> _ . I( . ro. The difference is due

to the larger gradient at the surface of the sphere in the case with the variable diffusivity.

The larger gradient at the surface arises because the diffusivity is greater away from the

sphere and hence, it replenishes the region near the sphere faster. The gradient is greater far
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the variable diffusivity only for a short distance away from the surface. Equating the two

steady state gradients, equations (12) and (17):

cI> -2 7 cI> 7/3 -10/3.r.., =- .r.,
- 0 3 - 0

4/3 7 4/3, =-.,;
3 0

, =1.89"0

(21 )

(22)

(23)

In the case with the variable diffusion, the predator depletes the food in the nearby water.

The concentration is a 80% of cI> .. at , = 2· '0' With a constant diffusivity, the copepod

depletes the food concentration over a much greater range, with the concentration reaching

80% of cI> _ at , = 5· 'ö .

There is a problem with the steady state solutions. The amount of material that must be

consumed by the predator starting from a uniform concentration and eating until the steady

state distributions is established is infinite, for either functional form of the diffusivity.

For the constant diffusivity

Hf (cI> s - cI> _ )dv = j cI> ... '0 . 4;r·,2 . d, = 4;r· cI> _ "0 . j ,. dr ~ 0(,2) ~ 00 (24),
~ ~

and for the variable diffusivity

•..
4;r· cI> _ . '0 7/3 •f ,-1/3 .d, ~ 0(,213) ~ 00

'0

(25)

Thus, rather than consider the steady state solution one should examine the time dependent

problem. Unfortunately, there is no simple solution for the time dependent problem with the

variable diffusivity. Therefore, let us look at some of the characteristics of the time

dependent solution for constant diffusivity, the solution to equation (15), which has a

similarity solution available (Carslaw and Jaeger, 1969).
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( ('0 )) ('0 ) [(, - '0 )]<I> = <I> _ 1- -; + <I>-' -; .erf 2~ (26)

The first tenn is the steady state solution and the second is a decaying, time dependent term.

the flux per unit area is:

~ A ( '0 '0 ((r -'0 ) ) '0 ( 1 ) ((, - '0 ) 2 J) A-1(._., = -1(.<1>_. -2 --, ·e,! +-. ·exp ·,(27)
d, ,,- 2jiä , ..);r·K:-t 4·I(·t

At , = '0' the flux integrated over the surface of the sphere is:

(28)

At t=0, the time dependent term is infinitely large, but it decays rapidly (figure 2) and its

time integral is finite. When (= (' =(~: ). the time dependent tenn has decreased '0 the

same value as the steady state tenn. Figure 3 shows the development of the concentration

distribution (equa~ion 26) as a function of t'. By the time t = 4· t', the time dependent

concentration for the constant diffusivity case is lower than the steady state solution for the

variability diffusivity almost all the way to , = 3· '0'

By the time t = 16· t', the time dependent solution for constant diffusivity has lower

concentration than the steady state solution for variable diffusivity all the way to , = 6.5· '0'

The time dependent constant diffusivity case sets a limit on the development of the variable

'diffusivity distribution, What does the time scaie, (' =(~: ), correspond '0 in 'he ocean.

• Using a value of 1 cm for '0' and a value of 0.1 cm 2/S for 1(, makes the time scale, t', on

the order of 3 seconds. The value for I( represents the mean vertical diffusivity in the ocean

and is lower than the coefficient derived from lateral diffusive processes. Nevertheless, the

time scale is appropriate to the feeding events and processes of copepods and fish larvae.

What is the relative contribution of the two terms to the total flux up to that time?
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= 4;r .1(. cf> _ •(-L+ (2 . r~ )) = 12. cf> _ . ro3 (29)
;r.1( ;r.1(

This amount is about 3 times the amount of food that was in the volume of radius r =ro,

when the copepod arrived, which in our model disappears (but is not eaten) at the moment

the copepod arrives. By the time 1 = 16 '1', the total has climbed to 96· cf> _ •ro
3

, with two-

thirds from the steady state flux and one-third from the transient term.

DISCUSSION

What would constrain a copepod from developing an ever increasing sphere of dining

influence? The volume over which the feeding current ranges is limited by the size of the

copepods appendages and presumably, there are constrairits that limit the size of copepods

based on their anatomical and physiological strategies (MeGowan, 1994). Too large a

eopepod would be an appealing target for the larger fishes. The forms that seems most

consistent with benefiting from the turbulent diffusion of food are the jellyfish, which cover a

large volume with little mass. Thus they get signifieant diffusion with little appeal to

predators of the appropriate size scale due to their low density of edible matter.

Is there some eonsideration whieh forms a criterion for setting a minimum range for the

feeding current of a eopepod? Below a certain seale, dependent on the loeal turbulent

intensity, turbulent eddies are dissipated and the relative velocity is due to a viscous shear of

eddies of larger scale. At these scales the diffusive flux of food particles deereases rapidly with

deereasing separation. Thus, it is appropriate to expect the feeding current should reach out,

as elose as possible, to the seale where the eharacteristics of the turbulent diffusion changes.

Figure 1 in Rothschild and Osbom shows tiu as a function of r for different values of the

dissipation rate, E. For all but the highest dissipation rates, the complete transition to the

tiu r ... e l/3
• rl/ 3 regime oeeurs at seales of 3 to 10 cm, greater than the eopepods feeding

current radius. The effeet is to reduee tiu, and by equation (3) the diffusivity K(r), by up to

a faetor of 3 below the value it would have if the turbulenee continued to the I em scale.

Thus, it appears that the limit on copepod size precludes it from taking full advantage of the

present levels of oceanie turbulenee. It may be that the predators eure this shorteoming by

jittering around their eentral loeation. It is possible for the predator to increase the value of

ro by moving around the origin, along as the wandering keeps the surface eoneentration on

the expanded sphere at zero. A. Brooks (personal eommunieation) notes that many of

Striekler's pictures show several predators in a group. Such a congregation would have an ro
significantly larger than the range of one individuals feeding eurrent. Testing such ideas will

require detailed observations with realistie situations.
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How can we test the hypotheses that feeding currents serve to increase the flux of a

'diffusive' transport of food? Two types of measurements would shed SOme light on the

question. First we should look and see what the effect of a predator is upon the distribution

of prey. Does a predator decrease the eoncentration of food particles at some distance in

front (diffusive ease) or does it just appear to eat its way through the water? In the latter

case, the eoncentration behind the predator will be more depressed than the con.centration in

front. In the diffusive ease the reverse would happen. Second, we ean also examine the path

of particles \vhich are eaten. 00 they move (diffuse) toward the predator or are they just

grabbed by the predator as it goes by?

Where should such studies be performed? Probably not in laboratory experiments - as useful

as they have been and still are! The turbulent speetra are incorrect. At large Reynolds

number, such as we find in the ocean, the peak of the dissipation spectrum is at a wavelength

. (3 )"4about 30 times Kolmogorov scale, Lk = v I e (Tennekes and Lumley, 1972; Gargett et ..

al., 1984). Laboratory experiments (e.g. Hili et. al., 1992) are at relatively low Reynolds

number and therefore have a small range of wavenumbers between the seale of energy input

and the scale of dissipation processes. In these small tanks, the turbulent kinetic energy

occurs at spatial scales that are Httle separated (if at all) from the scales at which the

dissipation occurs. In such cases, it is inappropriate to contemplate an inertial subrange or

use any of the formulas based on such assumptions. Oceanic turbulence has aseparation 0 f

the scales, so that the energy containing eddies are often distinctly larger than those at which

dissipation oecurs. It is the larger scales which are diffusing the food so rapidly that the

deficit appears only in the region very near the predator. Thus, if the larger seales are

missing from the flow the distribution of prey will be different.

Another problem with earlier laboratory experiments involves the 'tethering' of the

copepod. While this procedure makes ~he data gathering much easier, an untethered eopepod

"sees" a different velocity spectrum with considerably less low frequeney energy than a

tethered copepod which is restrained and must face whatever comes. A free floating copepod

drifts with the large scale eddies and eseapes the buffeting. ~lso, when tethered, the food is

adveeted past by the low frequency eddies while f~ee floating predators are not aided by the

mean curren.t and the low frequency eddies which move them also. Fortunately, the

experimental technology (and unfortunately the complexity) is advancing and it is now

possible to follow untethered copepods.

Understanding the feeding process will require detailed oceanic measurements and

visualization of the proeesses, the distribution of prey and the changes with time. These

. measurements are within the realm of the new instrumentation that is being developed. The

important parameters include I) the range at which the prey is entrained by the feeding
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eurrents, 2) the loeal prey eoneentration, 3) the distribution of predators and prey as a

function of time, and 4) the intensity of the turbulence; all measured in relation to the

encounter rate. Future modeling efforts will need to include significant improvements on the

motion of finite size particles in a turbulent field. Treating predators and prey as simple

points is not adequate for quantitative predictions.

CONCLUSIONS

I) Copepod feeding can be considered as turbulent diffusion of the food in towards the region

where the feeding currents serve to capture the food weil before it is identified.

2) The behavior of the eopepods is such that they benefit significantly from the turbulent

processes which enhance their encounter with prey. Specifieally, the feeding currents

generated by eopepods are on appropriate seales to aet in eoneert with turbulent diffusion of

prey.

3) Laboratory measurements show many aspeets of the proeess but eannot realistically

model the oeeanic turbulence over a range of scales, even when matching the intensity in

terms of the dissipation rate.

4) Measurement programs should determine the range at which prey is entrained and the

flux of prey as a function of local concentration and turbulent intensity. The critical

measurements appear to be the distribution of the prey relative to the predator as a function

of time through the feeding process. If the copepods are eating in a swept-volume manner,

the prey will be depleted in the area behind them. If diffusion is the process, the depression

in concentration will be more in front of them.
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Figure I

Concentration of prey as a function of radial distance from the predator. The left curve

represent the solution (equation 11) for the variable diffusivity given in equation (5). The

curve to the right represents the solution for a constant diffusivity (equation 17). The radial

coordinate is in units of TO'



Figure 2

The ratio of the time transient flux to the steady state flux, calculated from equation(28).

Time is plotted in units of (' =(roX,l().
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Figure 3
The progression with time of the concentration profile in the case with constant diffusivity.

The curves show the distribution of %_at time t = t', t =4· t', and t =16· t', where

t ' =(ro~,1() is the time at which the time dependent contribution to the flux has decayed

to equal the steady state value, Le. when the total flux has decreased to twice the steady state

value. The radial coordinate is in units of ro'


