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Individual based statistics for a spatially distributed population,
with an application on mackereI.
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Abstract

When studying statistically the spatial distribution of a fish versus environmental parame­
ters (e.g. temperature), fish density at a point is often considered as a response to the parameter
at this location (regression techniques). However, since for instance favorable temperatures can
extend outside the area of presence of fish, regressions depend on the domain chosen for their
computation.

Another approach can be used, which starts from the individuals of the population. As
fish are all the more numerous at a location that the density is larger, the densities give the
probabilities by which statistics are to be weighted. As examples:

- the mean loeation is given by the center of gravity of coordinates, with the assoeiated
inertia as variance;

- the distribution of temperature for individuals is given by the relative abundance of fish
(sum of densities) within each temperature dass. It can be summarizes by the mean (center of
gravity) and the varianee (inertia) of temperatures per individual.

This individual based approach is illustrated on the maekerel eggs distribution observed
during the ICES triennal surveys.
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1 Introduction

In most cases, geostatistics is used to describe a regionalized variable (e.g. fish density) within
a domain. Some stationarity hypotheses (of the variable, of its increments, etc...) are usually
required to describe the variable statistically, enabling sophisticated estimations. When study­
ing a spatially distributed abundance of fish a more basic approach can be used, which is not
based upon the definition of a domain and a stationarity hypothesis for the variable and which
is appropriate when there are few high peaks of density, and a lot of very small values.

This approach, described in the first two parts, is related to the transitive geostatistics and to
the covariogram (Matheron, 1971). It involves the entire population and its interpretation gets
a biological meaning as it calls upon statistics per individual. The problem of the estimation
of the main tools can be found in Bez et al. (1996).

2 Presentation of the data

The dataset chosen for the illustration of this paper comes from the leES triennal "mackerel
and horse mackerel egg production" surveys. The sampling is designed to cover the production
of eggs in space and time. It is based on a regular grid 0.50 longitude x 0.50 latitude (about
15 x 30 nautical miles (n.m.)). Some additional samples, and some difficulties at sea cause
irregularities in the final sampling (Fig. 1). Each spawning season is divided into 4 or 5
periods. This leads to 23 irregular 2D datasets (from 1980 to 1995).
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Figure 1: Proportional representation of the egg density. 1995 period 2.
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3 Basic tools : statistics per individual

3.1 Density, abundance and distribution of a random individual

The fish density taken as a regionalized variable, positive or zero, will be denoted by z(x). For
instance x is a point in 2D. The sum of z(x) over space gives the abundance Q = f z(x)dx.

Individuals are an the more numerous at a location when the density at this location is
larger. So if we consider an individual I taken at random, the probability density function of
its location Xr is the relative density z'(x) = z(x)/Q, which sums to one.

Consider now another regionalized variable, e.g. an environmental variable such as sea
surface temperature (t(x». Then the distribution of temperature for a random individual
(denoted tr) is obtained by the distribution of temperatures weighted by the relative densities.
As summing the densities within a dass of temperature gives the abundance of that dass,
the probability that an individual belongs to a dass of temperature is given by the relative
abundance of that dass.

3.2 Center of gravity

The average position of the population can be described by the center of gravity of locations:

E( ) - f xz(x)dx - j .'( )dXr - f - xz x xz(x)dx

which is also the mean location of individuals (or the expected location of an individual taken
at random).

In the same manner we can define the center of gravity for any other variable, e.g. the mean
temperature of individuals :

E( ) = ft(x)z(x)dx =j ()'( )d
tr f z(x)dx t x z x x

3.3 Inertia

Since an individuals are not located at the center, the statistical dispersion of their locations
can be described by their inertia:

( ) fex - E(Xr)2 Z(x)dx j( E( »2'()dt:ar xr = f)d = x - xr z x xz(x x

which is also the variance of the locations of individuals.
This inertia, in turn, can be split into orthogonal directions in space. The first one is the

direction which explains the maximum of inertia. The second one is orthogonal (in 3D it is the
orthogonal direction carrying the maximum of the residual inertia, etc). This decomposition is
nothing but the result of a Principal Component Analysis on the coordinates, weighted by the
density z(x) (i.e. the coordinates of individuals).

Inertia can also be defined for other variables, giving for instance the variance of the tem­
peratures of the individuals.

3.4 Application: description of a serie of surveys

The center of gravity of the location of eggs for each sampling period is represented by the
number of the period with a size an the larger that the abundance of the period is large (Fig.
2). We can observe that the peak of spawning (largest size number) has shifted slightly to the
west from 1983 to 1995. This is not due to a shift ofthe sampling as was checked by computing
the center of gravity of the sampling pattern (unweighted mean location of sampies).
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The variance (inertia) of location is displayed by 2 orthogonal segments centered on the
center of gravity with directions the principal axes and with lengths twice the square root of
the inertia they explain. The major part of inertia is carried by the first axis, more or less
parallel to the shelf edge, for instance as in 1986 (Fig. 2).
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Figure 2: Centre of gravity of the location of eggs per period and per year with a size a11 the
larger that the abundance of the period is large. Inertia of the location of eggs in 1986 split
into principal axes.

3.5 Center of gravity for density or mean density of individuals

A direct mean of densities \vould refer to a domain, or would be zero if we consider the whole
infinite space. This problem disappears by taking the sum of densities, that is the abundance.
Then a way to measure the dispersion of densities could be I z(x)2dx (which happens to be
the covariogram at distance zero).

It may be convenient to divide this by Q. As z(x)/Q is the probability distribution of a
random individual,

f z(x)2dx J
E(z[) = I z(x)dx = z(x)z'(x)dx

is the center of gravity of density, also the mean density of individuals.
From this we can define an equivalent surface, that is, the surface which would give the

same abundance with a density constant and equal to the above mean density. It is easy to see
that the inverse of this surface is nothing but I z'(x)2dx.

Besides the mean, it is also possible to compute the inertia or variance of the density for
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individuals :

() f(z(x) - E(zr))2 z(x)dx J( () E( ))2'()d
var zr = f z(x)dx = z x - Zr z x x

and to deduce a coefficient of variation for the density of individuals.
Note that the mean and variance of density for individuals are different from the mean and

variance of densities which could be computed directly within a domain. Generally the distri­
bution of z(x) (the usual histogram) is skew, with a large coefficient of variation. Considering
the distribution of density per individual, the mean density is larger, with a lower coefficient of
variation, since individuals are stacked within the high densities.

•
3.6 Application: statistics per mackerel egg

For each such regular 2D dataset basic, statistics are presented versus the date given by the mean
julian day of each sampling period (Fig. 3). The abundance of eggs is clearly bell-shaped with
a maximum production generally at the end of May (julian day=150) or one month earlier in
1992. Coefficients of variation of density per individual are lower than 1 with no clear tendancy.
Except in 1983, the mean density per individual fluctuates around 450 eggs/m2 up to the end
of may and decreases afterwards. In the mean time the equivalent surface regularly increase
from april to may and drops afterwards. This leads to interpret the raise of egg production
essentially by a geographie extension of the spawning area (geometrical effect).
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Figure 3: Analysis of aseries of surveys. Statistics per period versus the date: (a) abundance
(in 10:3 eggs), (b) mean density per individual (eggs/m2 ), (c) coefficient of variation of density
per individual and (d) equivalent surface (n.m. 2 ).
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In 1989, a finer analysis has been made looking at the early life stages of mackerel (eggs and
larvae). The center of gravity and inertia of sea surface temperature per individual has been
computed for the stage I and V eggs and plotted versus the date (Fig. 4). Over the spawning
season the mean temperature which increases from 12 to 16°C is the same for the two stages.
Nevertheless their inertia is significantly different at the beginning of the season. This indicates
that the survival eggs are more concentrated around a given temperature than the spwan eggs.
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Figure 4: Sea surface temperature per individual versus the date: (a) center of gravity (b)
inertia. Comparison of the stage I eggs and the stage V eggs of mackerel (1989)

4 Covariogram

4.1 Definition

A spatial description of z(x) is given by its (transitive) covariogram:

g(h) =Jz(x)z(x +h)dx

The covariogram is symmetrical in h (g(-h) = g(h)) and maximum at the origin (g(h) :::;
g(O)) and sums to the square of the abundance f g(h)dh = Q2. In each direction it is zero be­
yond a certain distance called the range giving the extension ofthe population in this direction.
Hs behavior at short distances in terms of continuity and derivability is related to the degree
of spatial regularity of the regionalized variable.

4.2 Distance between individuals

More interestingl,y, the relative covariogram g(h)/Q2 has a meaning in term of individuals within
a population. If we take independently two individuals at random in the global population, the
distance behveen them is a (vectorial) random variable, and its probability density function is
the relative covariogram (l\1atheron, 1971, exercise 16 p.47).

4.3 Application: covariogram of mackerel egg density

In the case of the mackerel eggs distribution, the drop from the distance 0 whieh can be
interpreted as a nugget effeet is very hirge and more or less the same whatever the direction
(Fig. 5), indicating a highly irregular variable isotropie at short distanees. The range is different
aceording to the direction whieh means that the distribution is anisotropie at long distanees.
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Figure 5: Experimental relative covariogram. Four directions. Mackerel eggs

5 Conclusion

In this paper we have emphasized the advantages of using sums (e.g. abundances) rather than
means (averages) when analysing regionalized fish density. This does not require the definition
of a domain, is not sensitive to the zeroes and the smallest values and does not necessitate
any stationarity hypothesis. It leads to the probability distribution, mean (center of gravity)
or varianee (inertia) of any characteristic (Ioeation, density, environmental parameter) for an
individual taken at random. Considering two random individuals leads to the description of
spatial structure through the covariogram.

Acknowledgements: these developments have been made within the european program
AIR 93 1105 SEFOS (Shelf Edge Fisheries and Oceanographic Study). Its aim is to describe
and to link the spatial and temporal variability of some commercial european species with
hydrographieal parameters. Authors thank Lowestoft Institute (MAFF) for the data they
provided.

References

[1] Anon., 1993. Report of the mackerel/horse mackerel egg production workshop. Aberdeen,
8-12 Mareh 1993, ICES CM1993/H:4, 142 p.

7



[2] Bez N., J. Rivoirard, J .C. Poulard, 1995. Approche transitive et densites de poissons.
Compte-rendu des journees de Geostatistique, 15-16 juin 1995 Fontainebleau, France,
Cahiers de Geostatistique, 5, 161-177 pp.

[3] Bez N., J. Rivoirard, Ph. Guiblin, and M. Walsh, 1996. Covariogram and related tools
for structural analysis of fish survey data. Fifth International Geostatistics Congress. (in
press).

[4] Matheron G., 1971. The theory of regionalized variables and its applications. Les cahiers
du Centre de Morphologie Mathematique de Fontainebleau, n05, ENSMP, Fontainebleau,
France, 211 p.

[5] Matheron G, 1989. Estimating and choosing - An essay on probability in practice. Ed.
Springler-Verlag, 141 p.

8

•

,


