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Abstract

Fishery statistics for two abundant Southwest Atlantic squid, Illex argentinus

(Ommastrephidae) and Loligo gahi (Loliginidae), in Falkland waters between 1987

and 1999 were analysed. Despite fisheries regulation producing reasonably consistent

fishing effort, the total catch and CPUE of both squid varied considerably from year

to year. The areas of concentration of the two species are usually separated, with I.

argentinus most abundant to the north-west of the Islands in February-May and L.

gahi to the south-east in February-May (first season) and August-October (second

season). However, in some years, I. argentinus do intrude in great numbers into

nursery or feeding areas of L. gahi in April-May possibly affecting, either directly (via

predation) or indirectly (by competition for food) the abundance and recruitment of

the second cohort of L. gahi. Catches and CPUE of I. argentinus in the first half of the

season (February-March) did not correlate with those of L. gahi in February-May. In

contrast, catches and CPUE of I. argentinus in the second half of the season (April-

May) are negatively correlated with those of L. gahi in April-May and August-

October of the same year. Possible reasons for such negative correlations in

abundance of the two squid species, and their implications for fisheries management,

are discussed.
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Introduction
The Falkland Islands Interim Conservation and Management Zone and Outer

Conservation Zone (FICZ and FOCZ) support two main squid fisheries in the

Southwest Atlantic targeting the ommastrephid squid Illex argentinus and loliginid

squid Loligo gahi. The total annual catch within the FICZ/FOCZ exceeded 300,000

tonnes in 1999 (FIG, 2000). The catch of each species has varied from year to year,

ranging from 64,000 to 266,000 tonnes (mean 130,000 tonnes) for I. argentinus and

from 26,000 to 98,000 tonnes (mean 61,000 tonnes) for L. gahi in 1990-1999 (FIG,

2000). The reasons for these variations in catch (and, presumably, in abundance of

squid) are largely unknown.

Illex argentinus is the most important squid fishery resource of the Southwest

Atlantic. During the first half of the year it is fished in the FICZ/FOCZ and Argentine

Exclusive Economic Zone, as well as in international waters of 45-47°S.  The south

Patagonian and Falkland shelves are used as feeding grounds by the two most

abundant winter-spawning groups of I. argentinus: the boanerensis north Patagonian

stock (BNPS) and the south Patagonian stock (SPS) (Brunetti, 1988). Squid of both

groups migrate to this area from their nursery grounds (the continental slope of

northern Argentina and Uruguay) in February, feed during the austral summer and

autumn and emigrate to their spawning grounds in May-June (Hatanaka, 1988;

Haimovici et al., 1998). In both the FICZ/FOCZ and Argentine EEZ, I. argentinus is

fished mainly by Asian jigging vessels (Csirke, 1987). Two main waves of abundance

are usually observed in the I. argentinus fishery on the southern Patagonian shelf

(Arkhipkin, 2000). The first wave appears in February in the north-west of the

FICZ/FOCZ and feeds mainly in that region. By the start of April squid of this wave

are concentrated on the shelf break in the north-east of the zones before their

northward migration, causing a significant peak in catches. The second wave starts to

move from the Argentine EEZ to the western part of the FICZ in the second half of

April. Squid of this wave migrate across the zone from the south-west to north-east,

and again concentrate on the shelf break north of 50°30’S, resulting in the second

peak of catches in the beginning of May. Aggregations of I. argentinus remain in the

zones until the middle of June (FIG, 2000).

Loligo gahi is another important squid fishery resource within the FICZ

(Patterson, 1988). Juvenile L. gahi move from the inner shelf to the outer shelf and
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shelf break of the Falkland Islands, feed and grow there as immature and maturing

adults and, upon maturation, return to shallow waters to spawn (Hatfield and

Rodhouse, 1994). It is assumed that there are at least two cohorts of L. gahi with

different spawning periods (autumn and spring) and growth rates (Agnew et al.,

1998a). This squid is targeted by a trawl fleet primarily during its feeding period

within the ‘Loligo box’, the region located to the south-east of the Falkland Islands.

The whole fishing season is split into two parts (February-May and August-October).

During the first season both cohorts (with a predominance of the autumn spawners)

are fished, whereas during the second season only the second cohort is exploited

(Hatfield and des Clers, 1998).

Until now little has been known about the interactions between the two squid

species. Both are opportunistic predators eating all possible pelagic prey, primarily

abundant amphipod and euphausiid crustaceans (Guerra et al., 1991; Brunetti et al.,

1998). With its slimmer body and smaller size (mean mantle length, ML, of adults is

140-160 mm) L. gahi is a more likely potential prey for the larger and more robust

(320-390 mm adult ML) I. argentinus, than the reverse. On the Patagonian shelf L.

gahi has been reported in the diet of I. argentinus (10-15% frequency of occurrence)

during the austral summer and autumn (Ivanovic and Brunetti, 1994).

In the Falkland Islands Fisheries Department, fisheries catch and effort data

has been gathered on a daily basis since the beginning of the licensed fishery in 1986

(FIG, 2000).  This series offers the potential to make real progress in understanding

fishery dynamics and interactions. In this paper we examine the relationship between

abundance of the major squid species I. argentinus and L. gahi. Our aim is to better

understand the factors that affect recruitment to the Falkland squid fisheries and so

improve stock assessment and prediction capabilities and guide management for

continued conservation of the stocks.

Materials & Methods

The overall distribution of Illex argentinus and Loligo gahi in the Falkland

Island’s fishery zones was compared by considering the total catch reported in the

period 1987 to 1999 inclusive (Figure 1).  All licensed vessels in the Falkland’s zones

submit daily catch reports identifying midday and midnight position on a 0.5°

longitude by 0.25° latitude grid system.  The majority of the I. argentinus catch is

taken by jigging vessels so midnight position was used to assign their daily catch to a
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particular grid square, whereas L. gahi is fished by trawlers and midday position was

used in this case.

For the separation of catch by wave of abundance, fishing season, or area, and

for the calculation of catch per unit effort (CPUE), we considered only those vessels

licensed to target I. argentinus or L. gahi. Data for the licensed fishery from 1989 to

1999 was included. All catches of I. argentinus during February and March were

considered to be from the first wave of abundance (wave 1 = BNPS; Brunetti, 1988)

and all catches from May and June were assigned to the second wave (wave 2 = SPS;

Brunetti, 1988; Arkhipkin, 1993, 2000). In April catches south of 49.5°S and west of

60.25°W (Figure 2) were assigned to wave 2 while catches north and east of this area

were assigned to wave 1.  This division is supported by length-frequency and maturity

data.  In the case of L. gahi the fishery operates in two seasons. The first season runs

from 1 February to 31 May, and the second season from 1 August to 31 October.  L.

gahi licenses allow fishing to the south and east of the Falkland Islands.  This area

was split into two sub-regions: north and south of 52° S (Figure 3).  The fishery for I.

argentinus takes place in a single season, currently running from 15 February to 15

June. The fishery season for either species may be ended earlier than the normal

season closing date if within-season stock assessments indicate the stock has reached

a minimum escapement threshold.

Calculation of CPUE for I. argentinus was restricted to the licensed jigging

fleet, which takes the majority of the annual catch (95.4% in 1999; FIG, 2000).  Effort

was calculated as jig line hours (vessels report the number of lines used and time

spent jigging daily), and CPUE expressed as kg line-hour-1.  The licensed fishery for

L. gahi is restricted to trawlers (which report daily trawling time) and CPUE was

calculated as metric tonnes (MT) hr-1.  The median CPUE (where CPUE was

calculated daily for each licensed vessel fishing) in a given period was used as a

general measure of abundance (usually referred to simply as CPUE in the remainder

of this paper).  This was chosen in preference to the standard stock estimates

(calculated by depletion methods) as these currently consider only total stock for I.

argentinus (Basson, et al. 1996) and total first/second season stock for L. gahi

(Agnew, et al. 1998a) and so do not allow an easy separation of the estimated stock

size by area (for L. gahi) or by wave of abundance (for I. argentinus).

To further illustrate the annual patterns in abundance for the various groups

the annual deviation in CPUE from the long term mean CPUE of the group over the
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period 1989-1999 was calculated.  To allow comparison between stocks this deviation

was expressed as a proportion of the long term mean.

The relationship between CPUE for the two waves of I. argentinus and CPUE

for L. gahi in each region and season was investigated by calculating Spearman’s rank

correlation between the data sets. All statistical calculations were carried out using the

R statistical package, v 1.1.0 (Ihaka and Gentleman, 1996).  Median CPUE was also

calculated on a monthly basis for each stock and comparisons between months also

made using Spearman’s rank correlation.

Results

Distribution

Generally the distributions of I. argentinus and L. gahi within the FICZ/FOCZ

are quite similar. Both squid are encountered almost everywhere around the Islands

with the exception of the southern part of the Zones (mainly Burdwood Bank). In the

east, however, I. argentinus tend to occur further offshore than L. gahi. Unlike L.

gahi, I. argentinus do not appear in the shallow nearshore waters (<50 m depths) of

the Falklands. However the dispersal of both squid is very different. The densest

aggregations (and, correspondingly, catches) of I. argentinus are noted in the north-

western and north-eastern parts of the Zones, whereas L. gahi is most abundant in the

southern and eastern parts of the FICZ/FOCZ (the ‘Loligo box’) (Figure 1). Thus the

bulk of the populations of I. argentinus and L. gahi are separated spatially on the

Falkland shelf.

The dispersal of I. argentinus and L. gahi varies in years of high and low

abundance, to a greater extent in I. argentinus than L. gahi. For example, in a year of

low I. argentinus abundance (1994) the first wave was observed basically along the

northern perimeter of the FICZ, never approaching the vicinity of the Islands. The

second wave was abundant only along the north-western periphery of the FICZ

(Figure 2a, c). In a year of high abundance (1999) the dispersal of both waves was

much wider. Squid of wave 1 were also abundant in the central northern part of the

Zone, even approaching the shallow waters to the north and north-east of the Islands.

Squid of wave 2 penetrated in great numbers down to 52°S in the western part of the

FICZ and also into the shallow waters to the north of the Falklands (Figure 2b, d).

The annual variation in dispersal of L. gahi is not as evident as that of I.

argentinus because the Loligo-licensed trawlers are allowed to fish only in a certain
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region of the FICZ (the “Loligo box” ; Hatfield and Des Clers, 1998). In a year of high

abundance (1994) the distribution of L. gahi was somewhat wider during both seasons

than in a year of low abundance (1999) (Figure 3).

I llex argentinus fishery statistics

The total catch of both waves of I. argentinus by jigging vessels varied over

the last decade. In 1989-1992, the catches were at a high level, ranging from 50 to 120

thousand tonnes. In 1993, there was a decline in the total catch of wave 1 with a

corresponding increase in catch of wave 2. In 1994-1996 the catches were quite low,

especially those of wave 2. Catches increased again at the end of the decade with the

highest total catch occurring in 1999 when wave 1 catch exceeded all previous levels

(Figure 4a). CPUE of the jigging fleet showed similar variability over the whole

period, and was usually higher for wave 1 than wave 2 (Figure 4a). Total jigging

effort was highest in 1989 and 1991-1993. From 1994 it stabilised at a level of around

four million jig line hours for wave 2, but remained more variable for wave 1,

dropping to two million jig line hours in 1998. The I. argentinus season duration was

91 days in 1990-1993 and was increased to 100-120 days in 1994-1999 (Figure 4b).

Daily I. argentinus CPUE showed different trends throughout the fishing

season in different years. In 1992, a year of intermediate abundance, daily CPUE was

high in the first half of the fishing season (February-March) but decreased markedly

during the second half of the season (April-May). In 1999, a year of high abundance,

CPUE were high for longer (February-May), decreasing only in June (Figure 5).

Loligo gahi fishery statistics

Statistics for both seasons of the L. gahi fishery are shown in Figure 6. During

the first season, the total catch was greatest in 1989 in the southern area (105,000

tonnes), declining thereafter until 1993. Another peak in catch from this area occurred

in 1995. First season catch in the northern area was continuously low with the

exception of 1996 when it reached 17,000 tonnes.  During the second season the total

catch was greatest in the northern area in 1995 (24,000 tonnes) and in southern area in

1994 (20,000 tonnes) (Figure 6a).

The CPUE time series showed basically the same pattern throughout the

decade as the corresponding catch series. The highest CPUE was recorded in the
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southern area for the first season in 1995 (5.6 t/hr) and for the second season in 1992

(2.0 t/hr) (Figure 6b). However, although season 1 catch was always higher in the

south, CPUE in the northern area exceeded that in the southern area in some years.

Low annual catches in the northern area, even when median CPUE is high, may result

from variability in catches in the northern area. In 1999 it appeared that fishing

vessels preferred to have high catches in the northern region for several days then, as

soon as CPUE dropped, moved to the southern region where median CPUE was lower

but catch was more stable.

The duration of both fishing seasons was practically constant throughout the

decade except 1997, when the second season was closed earlier (Figure 6c). Trends in

daily CPUEs in L. gahi fishery in years of high (1992) and low (1999) abundance are

shown in Figure 5.

Correlation between I. argentinus and L. gahi abundance

To illustrate potential relationships in the abundance of different groupings of

the two squid species, the proportional deviation from the long term mean of median

CPUE (Table 1) for each grouping was constructed over the period from 1989 to 1999

(Figure 7). Of all the groupings of L. gahi, only the southern area in the second season

demonstrated a consistent inverse pattern in CPUE relative to the two I. argentinus

groupings (Figure 7d). This L. gahi grouping was the only one that showed a negative

correlation with I. argentinus abundance (wave 2) that was significant at the 5% level

(Figure 8).

An analysis of monthly median CPUE for both waves of I. argentinus and for

both regions of L. gahi fishery also shows significant negative correlation between

abundances of the two species. In the northern area a strong negative correlation was

observed between abundance of I. argentinus in April (both waves) and L. gahi

abundance in April (p<0.05) and in August-September (p<0.1) of the same year. The

May abundance of the I. argentinus wave 2 correlates negatively with the L. gahi

abundance in the following August-September (Table 2).

In the southern area, the April abundances of I. argentinus correlated

negatively with the following May, August and September abundances of L. gahi.

Median CPUE of the I. argentinus wave 2 in May in has a negative correlation with

that of L. gahi in May and August (Table 3).
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Examination of the relationship between the second season L. gahi CPUE in

the south and wave 2 I. argentinus CPUE (Figure 8) suggests that there is a threshold

level of wave 2 I. argentinus abundance at approximately 9 kg line-hr-1.  When this

threshold is exceeded the second season CPUE for L. gahi in the southern area is

invariably low (Figure 8, Figure 9). It is clear that there is a distinction in second

season L. gahi CPUE in the south between years where I. argentinus wave 2

abundance exceeded this threshold and years where it did not.

Once this effect of the second wave I. argentinus abundance is taken into

account the remaining variation in median CPUE is suggestive of a traditional stock-

recruit relationship with highest recruitment resulting from the intermediate

population sizes in the previous year (Figure 9).  Fitting the Ricker stock-recruit curve

separately to years where the wave two I. argentinus abundance exceeded the

threshold median CPUE of 9 kg line-hr-1, and years where it did not, did not yield

very satisfactory fits. A generalised linear model (GLM) was therefore constructed for

the second season CPUE of L. gahi in the southern area based on two factors.  One

factor indicated whether the median CPUE of wave 2 I. argentinus in the current year

exceeded the threshold level of 9 kg line-hr-1, while the other factor had three levels

indicating the CPUE of the second season L. gahi in the southern area in the

preceding year.  This was allocated 3 levels: less than 0.55 tonnes hr-1, between 0.55

and 1.2 tonnes hr-1, and greater than 1.2 tonnes hr-1.  A gamma error distribution with

log link function was used in the model fitting.  The model fit is summarised in Table

4 and compared with the realised time series in Figure 10.  The model accounts for

75% of the null deviance (Table 4).

Discussion

There could be several reasons for the strong negative correlations in the

abundance of some groups of I. argentinus and L. gahi on the Falkland Shelf.  L. gahi

is the coldest water dwelling loliginid species spending its entire ontogenesis, and

reaching its highest abundance, in waters associated with the Falkland Current which

derives from the Antarctic Circumpolar Current (Hatfield and Des Clers, 1998). In

contrast, I. argentinus is a temperate species associated mainly with waters of the

Patagonian Shelf (Haimovici et al., 1998). It has recently been shown that fluctuations

in abundance of both squid depend on environmental conditions in their spawning

grounds. Catches of I. argentinus within the FICZ/FOCZ were negatively correlated
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with the sea surface temperature during the peak of their spawning in July of the

previous year (Waluda et al., 1999). Agnew et al. (in prep.) have demonstrated that

lower sea-surface temperatures in October precede higher recruitment of the second

cohort of L. gahi the following April. Thus, assuming that SST is a proxy for the

environmental conditions determining the abundance of squid populations in the

Southwest Atlantic, and taking into account their annual life cycle (Arkhipkin, 1990;

Hatfield, 1991), one could expect a higher abundance of colder water species (in this

case, L. gahi) and a lower abundance of warmer water species (such as I. argentinus)

in a colder year, and vice versa. Generally, our data do not support this assumption:

the correlation between total catch of the two species, as well as overall CPUE in the

same year, is low and non-significant.

However, by splitting both squid species into their natural cohorts (or waves of

abundance) (Agnew et al., 1998b; Arkhipkin, 2000), and by analysing both catch and

CPUE separately for each period and month, evidence of a relationship between the

species emerges. There are some groupings of I. argentinus and L. gahi with strong

negative correlation and there are others that are uncorrelated. As noted earlier, both

squid are voracious predators. L. gahi, however, is abundant only around the Falkland

Islands.  This is far from the supposed I. argentinus spawning and nursery grounds

(the southern Brazilian and northern Argentinian continental slopes; Haimovici et al.,

1998) and, therefore, predatory impact of L. gahi on I. argentinus recruitment may be

neglected. The opposite situation is observed with I. argentinus. This squid migrates

to the Falkland shelf seasonally (austral summer and autumn). On arrival the

migrating I. argentinus are already much larger (> 220-240 mm ML), and have higher

growth rates, than the local L. gahi (100-130 mm ML) (Rodhouse and Hatfield, 1990;

Hatfield and Rodhouse, 1994).

Possible impact of I. argentinus on L. gahi

I. argentinus may affect L. gahi populations either indirectly (by competing

for planktonic crustacean prey) or directly (by feeding on adult squid of the first

cohort and/or small juveniles of the second cohort of L. gahi). It seems that

competition for food resources is the less important relationship between the two

squid, as the abundance of the first wave of I. argentinus does not correlate with that

of the first season of L. gahi in February-March. However, I. argentinus of second

wave do intrude into areas of L. gahi aggregations (to the west and north of the
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Islands) in April-May. There are indications that during this period I. argentinus

quickly switch from a crustacean to a squid diet, as their stomachs have been found

full of L. gahi (unpublished FIFD scientific observer data). In the northern region

fishing grounds for both squid species are very close (northwest of East Falkland) and

an immediate impact of the second wave (and end of the first wave) of I. argentinus

on L. gahi abundance is pronounced in April.  Our method of dividing the April I.

argentinus catches between the two waves is somewhat arbitrary.  Although it is

broadly in line with the biological patterns observed, it does not take account of inter-

annual variation in the size and maturity characteristics that distinguish the two

waves.  This may well be responsible for the fact that the correlation between L. gahi

abundance and I. argentinus abundance in April are similar for both waves.

In the southern region the fishing grounds for the two species are further apart

(west of the Islands for I. argentinus and south for L. gahi). It is not surprising,

therefore, that significant negative correlations were observed between April

abundance of I. argentinus and May abundance of L. gahi: it should take some time

(several weeks) for the slowly migrating L. gahi to reach their main feeding grounds

(south of the Islands) from nursery grounds located west of West Falkland (our data).

However the correlation between second wave I. argentinus and southern region L.

gahi abundances in May also suggests some direct interaction closer to the fishing

grounds.  The strong negative correlation between abundance of I. argentinus in

April-May and L. gahi in the following August-September suggests that large I.

argentinus of the second wave may be feeding on small juveniles and immatures of

the second cohort of L. gahi, which starts recruiting to the fishery in April-May

(Agnew et al., 1998b). It is notable that the I. argentinus abundance in April-May

seems to have a threshold level below which I. argentinus do not appear to affect L.

gahi abundance. However, when this threshold abundance is exceeded, there is

invariably depletion of those L. gahi groups which are unfortunate enough to coincide

with pre-spawning migratory schools of I. argentinus (Arkhipkin, 1993).

Despite its wide distribution in the shelf waters of the Southwest Atlantic and

Southeast Pacific (Roper et al., 1984), L. gahi is very abundant only in a rather small

region located to the south-east of the Falkland Islands which seems to be an

ecological ‘ refuge’  for this species. But even in this refuge squid of the second cohort

of L. gahi are vulnerable seasonally to predation by I. argentinus as it migrates in

great numbers to feed in shallow waters around the Falkland Islands. It is notable that,
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in some years, dense aggregations of L. gahi are encountered on the Patagonian shelf

break as far north as 45-47°S in September-October, i.e. during the almost complete

absence of I. argentinus in that area. As soon as I. argentinus migrate into the region

of 45-47°S in December, the abundance of L. gahi sharply declines (Chesheva, 1990).

In other parts of its distribution L. gahi is never abundant, possibly as a result of

predation pressure by more powerful and larger co-habitant ommastrephid squids, I.

argentinus in the Southwest Atlantic and Dosidicus gigas in the Southeast Pacific.

Implications for fishery management

Squid fishery management and stock assessment have proved to be difficult

tasks due to the high variation in squid abundance from year to year, a complicated

population structure, and short life cycle (Rosenberg et al., 1990). Management in the

Falkland’s zones is currently based largely on in-season assessments using methods

based on Leslie-DeLury depletion analyses, which are generally reliable only after the

peak of catches and even then not in all years (Basson et al., 1996; Agnew et al.,

1998). This fact motivates the search for additional models for squid stock assessment

and prediction that can contribute to the management of the fishery. It was recently

found that models using a stock-recruit relationship and sea-surface temperatures on

the spawning ground during spawning of a given cohort fitted the data more

successfully than common stock-recruit models (Waluda et al., 1999, Agnew et al., in

prep). The simple GLM constructed in the present study illustrates the potential of

incorporating another important parameter (predator abundance) in predicting likely

abundance of squid (i.e. the second cohort of L. gahi) before the season opens. The

model fitted is, of course, very simplistic.  The presence of only three factor levels for

preceding year CPUE, and a single factor for I. argentinus abundance in the current

year rather limits the possible predicted values. Nevertheless, the model successfully

captures the pattern in median CPUE from year to year.  With the small number of

data points it is perhaps not surprising that the fitted values for the factors

representing preceding year CPUE are not significantly different from zero, or indeed

that the model can account for a rather large proportion of the null deviance.

However, predicting forthcoming squid recruitment using factors such as predator

abundance and environmental data is a very useful step forward for fisheries

management.  It offers the potential of refining the licensed effort based on likely
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abundance, with the aim of meeting conservation targets while reducing the likelihood

of early fishery closures, and associated disruption to the fishery, should in-season

assessments reveal that recruitment has been low.
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Table 1. Long term mean of median CPUE for each grouping of squid over the period
1989 to 1999 in the FICZ/FOCZ.

Species Region Grouping Mean
Illex argentinus wave 1 15.7 kg line-hr-1

Illex argentinus wave 2 8.7 kg line-hr-1

Loligo gahi northern region season 1 1.46 t hr-1

Loligo gahi northern region season 2 0.78 t hr-1

Loligo gahi southern region season 1 2.20 t hr-1

Loligo gahi southern region season 2 0.85 t hr-1

Table 2.  Spearman’s rank correlation (and, in parenthesis, probability that correlation
is non-zero) between monthly median CPUE for Loligo gahi in the northern area and
Illex argentinus monthly median CPUE in the current year.  Bold type highlights
correlations that are significant at the 5% level, while italics indicate significance at
the 10% level.

Illex argentinus wave 1 Illex argentinus wave 2
Feb Mar Apr Apr May Jun

Feb 0.400 (0.750)

Mar 0.143 (0.803) -0.282 (0.402)

Apr 0.314 (0.564) -0.291 (0.386) -0.682 (0.025) -0.692 (0.023)
May 0.714 (0.136) 0.036 (0.924) -0.309 (0.356) -0.301 (0.371) -0.309 (0.356)

Aug 0.200 (0.714) -0.196 (0.558) -0.597 (0.056) -0.589 (0.061) -0.556 (0.082) -0.600 (0.350)

Sep 0.257 (0.658) -0.209 (0.539) -0.591 (0.061) -0.574 (0.071) -0.700 (0.021) -0.900 (0.083)

Oct -0.200 (0.783) 0.067 (0.838) -0.080 (0.838) -0.049 (0.892) -0.006 (1.000) 0.400 (0.750)

Table 3.  Spearman’s rank correlation (and, in parenthesis, probability that correlation
is non-zero) between monthly median CPUE for Loligo gahi in the southern area and
Illex argentinus monthly median CPUE in the current year.  See Table 2 for details.

Illex argentinus wave 1 Illex argentinus wave 2
Feb Mar Apr Apr May Jun

Feb 0.257 (0.658)

Mar 0.200 (0.714) -0.055 (0.881)

Apr 0.086 (0.919) -0.355 (0.286) -0.473 (0.146) -0.478 (0.137)

May 0.086 (0.919) -0.309 (0.356) -0.655 (0.034) -0.620 (0.048) -0.791 (0.006)

Aug 0.429 (0.419) -0.209 (0.539) -0.564 (0.076) -0.524 (0.100) -0.600 (0.056) -0.300 (0.683)

Sep 0.200 (0.714) -0.456 (0.163) -0.629 (0.044) -0.614 (0.048) -0.497 (0.121) -0.500 (0.450)

Oct -0.359 (0.517) -0.280 (0.427) -0.353 (0.313) -0.317 (0.368) -0.164 (0.657) -0.316 (0.750)



16

Table 4.  Summary of the parameters and fit of the GLM for median CPUE of L. gahi
in the second season south of 52°S.  In the coefficients x1 represents the median
CPUE in the preceding year and x2 represents the median CPUE of the second wave
of I. argentinus in the current year. Fitting was carried out using treatment contrasts,
so values are relative to the case where CPUE in the preceding season was < 0.55
tonnes hr-1 and the I. argentinus threshold was not exceeded.

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.211 0.217 -0.972 0.3686
0.55<=x1<=1.2 0.516 0.273 1.890 0.1077
x1>1.2 -0.030 0.325 -0.093 0.9288
x2 > 9 -0.788 0.217 -3.633 0.0109

Deviance Residuals:
Min 1Q Median 3Q Max

-0.4235 -0.1636 -0.0007 0.1104 0.4379

Fitting statistics:
Dispersion parameter for Gamma family taken to be 0.0940
Null deviance: 2.29047  on 9  degrees of freedom
Residual deviance: 0.55644  on 6  degrees of freedom
AIC: 4.5769
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Figure captions

Figure 1.  Total catch (metric tonnes) by reporting grid (see text) in Falkland Island

fishery zones in the period 1987-1999 of (a) Illex argentinus and (b) Loligo gahi.

Figure 2. Total catch of Illex argentinus by licensed jiggers reporting grid square in

1994 (left column) and 1999 (right column).  The top row shows the catch assigned to

the first wave, and the bottom row the catch assigned to the second wave.  The

heavier lines denote the area used to separate the catch by wave in April.

Figure 3. Total licensed catch of Loligo gahi by reporting grid square in 1994 (left

column) and 1999 (right column).  The top row of shows the catch during the first

season and the bottom row the second season.  The heavy line shows the separation

between the northern and southern fishery areas.

Figure 4.  Time series of (a) total catch and median CPUE, and (b) total effort and

season duration for vessels licensed to target Illex argentinus in the Falkland Islands’

fishery zones from 1989 to 1999.

Figure 5. Daily CPUE for Illex argentinus (left column) and the second season of

Loligo gahi south of 52° S (right column) in 1992 and 1999.  Daily CPUE is

calculated for each licensed vessel which is fishing, and each day’s CPUE values are

presented as a boxplot (McGill, et al. 1978) to illustrate both the variability and

central tendency of the daily data.

Figure 6. Time series of (a) total catch, (b) median CPUE, and (c) total effort and

season duration for vessels licensed to target Loligo gahi in the Falkland Island’s

fishery zones from 1989 to 1999. Separate time series are presented for the two

seasons in the northern and southern areas.

Figure 7.  Deviations in L. gahi CPUE from the long term mean group value over the

period 1989-1999 expressed as a proportion of the long term mean (a) first season

north of 52°; (b) first season south of 52° S; (c) second season north of 52° S; (d)

second season south of 52° S.  In each case the deviation from the long term mean

group CPUE is also shown for I. argentinus waves one and two.
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Figure 8. Relationship between median CPUE for the two waves of I. argentinus and

median CPUE for each season of L. gahi in the northern and southern fishery areas.

Figure 9.  Relationship between median CPUE in the current year and that in the

previous year for L. gahi in the second season south of 52°S.  Circles mark those

points where the median CPUE of second wave 1. argentinus in the current year was

less than 9 kg line-hr-1, stars mark those points where this threshold was exceeded.

The dashed vertical lines illustrate the division of median CPUE in the preceding

season into the three factor levels used in the GLM (see text).

Figure 10. Circles and solid lines: realised time series for median CPUE of second

season L. gahi in the southern area compared with (crosses and dashed lines) output of

the GLM with three factor levels for preceding year L. gahi CPUE and a factor

indicating whether the threshold abundance of wave 2 I. argentinus was exceeded in

the current year.
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