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Abstract 
A method for measuring the spatial and temporal distribution of fish school densities and 

exploitation rates using fishery collected acoustic data and voronoi polygons to estimate biomass 
is described. A herring purse seiner fishing on non-spawning feeding aggregations, and a herring 
gillnetter fishing on smaller, highly dense spawning aggregations, in the southern Gulf of St. 
Lawrence, Canada, collected acoustic data during regular fishing activity for this study. An 
individual boat with data collected in this manner was found to represent trends in the entire fleet.   
There was a threshold density beyond which exploitation rates remained low.  This threshold 
provides managers with a method for identifying and eliminating spatial and temporal trends in 
high exploitation rates and preventing overfishing. 

A simulation model calibrated with data from the Pictou 1997 inshore gillnet fishery 
compared the properties of abundance indices derived from fishery acoustic data to those derived 
from survey indices.  The indices were examined over five fish distribution types ranging from a 
single spike to a uniform flat distribution, four conditions of fishing and fish movement, and  
sixteen stock sizes for each of these distribution and conditions.  These data are suitable for 
deriving abundance indices provided the searching covers the entire temporal and spatial 
distribution of the population.  
  The fishery acoustic abundance indices provide a basis for adopting a decision rule 
management strategy, as an alternative to the current F0.1 management strategy for herring 
populations. Decision rules would allow individual spawning components to become the basic 
management unit and would result more responsive management system  for this fishery. 
1. Introduction 

Increasingly, conservation targets are defined not only by fishing mortality, but also by life 
history objectives (Anon 1997).  This increased focus on life history characteristics reflects the 
realization that the spatial and temporal structure of a spawning component will be compromised 
if all the fishing mortality comes from one area and time, even if the fishing mortality summed 
over all components is within conservation limits.  If, however, the overall fishing mortality is kept 
within conservation limits and is distributed in proportion to the relative abundance of the various 
spatial and temporal components it is expected that the conservation goals would be satisfied.  A 
first step in achieving these goals is to provide managers with tools that would allow them to 
spatially and temporally distribute fishing mortality relative to the size of the schools being 
harvested. To meet these targets, information on the spatial and temporal distribution of fish 
biomass and exploitation rates is required (Claytor and Clay 2001).  This paper describes a 
method for deriving indices of the spatial and temporal distribution of fish school densities and 
exploitation rates that depended on cooperative research with the fishing industry.  The method 
was developed using acoustic data collected during regular fishing activity of a gillnet and purse 
seine fishing fleet in the fall herring fishery in the southern Gulf of St. Lawrence, Canada.  

Fish movement and aggregation patterns can create high variance and changing and 
non-linear relationships between the abundance indices and stock size for pelagic species like 
herring, capelin, anchovetta, and sardines.  For example, research surveys are often restricted to 
specific areas and times of year and even small changes in migration timing or aggregation 
patterns may bias results from otherwise robust statistical designs.  Survey estimates with large 
variances and unknown relationships with stock size have resulted from fish movement and 
aggregation patterns for several pelagic stocks in Atlantic Canada and created difficulties in 
assessing their stock status (DFO 1996; DFO 1999ab; Wheeler et al. 1992).  These difficulties 
have lead to criticism of the use of surveys by the fishing industry.  The criticism most often 
voiced by the herring industry in the southern Gulf of St. Lawrence is that the surveys are not 
conducted during times when they observe large schools of fish. In addition, the size of most 
research vessels precludes surveys in shallow water and in areas where fishing gear such as 
lobster traps and gillnets are deployed. These areas are often where the fisheries occur and 
hence are of most interest to the fishing industry.  These factors make it difficult to convince the 
fishing industry that survey indices are unbiased and accurate enough for fishery management 
decisions.  Consequently, these issues are a major source of conflict in stock assessment and 
management. 



 2

Conflicts over surveys are difficult to resolve because there is often no alternative to 
government research vessels for surveys.  Conflicts over catch rates are difficult to resolve 
because the fishing industry and stock assessment scientists often have divergent concerns 
about inconsistencies inherent in using catch rates as abundance indices.  For example, 
scientists are often concerned that catch rates have remained high in spite of population density 
declines because of efficient search methods available to modern fishing fleets (Hilborn and 
Walters 1992).  Alternatively, concerns among industry are that catch rates have been lowered 
because of management or market restrictions on daily catches, interference from other gear, 
and weather (Claytor et al. 1998). 

The problem is made more difficult because providing advice on spatial and temporal 
trends in fishing mortality requires abundance indices collected on scales relevant to single 
spawning components rather than spawning component aggregations.  For example, assessment 
advice for this stock has been provided only for the overall spring and fall spawning stocks and 
not for the local stock components within these seasonal stocks.  The provision of overall advice 
is a concern for industry because sharing the TAC among components is not based on annual 
trends in estimated size of local spawning components, but on an historical sharing formula 
based on catch levels and historical data regarding the relative size of the stocks in the mid-
1980s.  As a result, groups that feel they have taken conservation measures, such as restricting 
boat limits and increasing mesh size, feel they are not reaping the relative benefits of those 
measures. Some industry groups feel penalized for these efforts when the overall TAC declines 
because stocks in other areas are going down, whereas, they feel their stock is increasing.  This 
leads to conflicts in management of the resource and difficulties in ensuring that fishing mortality 
is spread equitably amongst the spawning components.   As a result, in this fishery (Claytor et al. 
1998) there is increasing demand for local area assessment and management and industry-
collected data is the only viable method for collecting the data required for local assessments.  
 The approach developed with the fishing industry to overcome these problems consisted 
of using an acoustic recording system on board fishing vessels that was independent, but parallel 
to the system they used during fishing activity to locate schools.  The system developed 
consisted of a sounder, a transducer, a global positioning system (GPS), and a computer for 
recording data.  The vessel captain turned the system on when leaving port and off when 
returning to port, so that fish densities observed during the entire fishing trip were recorded 
(Claytor et al. 1999).   
 This paper describes how we developed abundance indices from these types of data and 
then tested their performance with simulations that were compatible with the spawning 
aggregations and fisheries associated with the southern Gulf of St. Lawrence gillnet fishery.  
2. Fishery and Fleets 

The data analyzed in this paper come from two of the herring fleets participating in the fall 
southern Gulf of St. Lawrence herring fishery. This fishery consists of several gillnet fleets with a 
total of about 1500 licenses of which about 600 - 1000 are active and a purse seine fleet with six 
active boats.  The gillnet fleets fish inshore on spawning aggregations in five areas of the 
southern Gulf of St. Lawrence. Their allocation is about 80% of the total quota for the area and 
recent average landings range from 30,000 - 60,000t.   Data from the gillnet fleet were collected 
from 7 September - 30 September 1997 from the Pictou, Nova Scotia area, by a commercial 
boat, the 'Broke Again' (Fig. 1A).  In this area, the fleet consists of about 120 boats. The purse 
seine fleet fall fishery occurs on non-spawning feeding aggregations in the Chaleur Bay area and 
recent average landings have ranged from 6,000 - 16,000 t. Data from the purse seine fleet were 
collected from 23 August - 20 October 1995 by a commercial boat the 'Gemini'  (Fig. 1B).   
3. Acoustic data collection and calibration 
3.1 Calibration 

All data collection and processing for these calibrations were done using the Femto  
Hydroacoustic Data Processing System (HDPS).  It is the software and hardware system used on 
all fishing vessels collecting acoustic data in the southern Gulf of St. Lawrence (Claytor et al. 
1998, 1999a,b) and has also been used on fishing vessel surveys for herring stocks in Atlantic 
ocean coastal waters of Nova Scotia, Canada (Melvin 1998a,b),  Newfoundland, Canada   
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(Wheeler et al., 1999), and the eastern United States (Yund 1998)  Fishing vessels have also 
been used to collect acoustic data on groundfish such as cod in Newfoundland (Anderson et al., 
1998) and rockfish in British Columbia, Canada (R. Kieser, PBS, Nanaimo, BC, Canada). The 
software and hardware has been used on research vessel acoustic surveys in several areas, 
including the southern Gulf of St. Lawrence (Clay and Castonguay 1996, Claytor and LeBlanc 
1999).  

A 120 kHz digital sounder was used on the gillnet boat because it would not interfere with 
the 200 kHz or 50 kHz systems used by the gillnet fleet.  These systems were attached to 
separately installed transducers.  For the purse seiners we utilized an extra sounder and 
transducer that was no longer required by the captain for fishing.  Each system was coordinated 
with a global positioning system (GPS).  As a result, the systems used for collecting data were 
completely independent but parallel to those used for fishing.  This independence was essential 
to ensure that calibration settings remained unchanged throughout the data collection.  Once in 
place, two standard calibrations were performed for each installation: 
1. Time varied gain (TVG) calibration - Each sounder has a TVG to adjust the gain of the 
received echo signal  to account for losses due to attenuation and absorption. The TVG 
calibration accounts for the errors in the implementation of this curve. 
2. Ball calibration - This calibration is used to adjust the fixed gain of the TVG curve using one 
known data point, the echo return from a calibration sphere having a known TS. 
Calibrations were conducted according to the methods described by MacLennan and  Simmonds 
(1992) and detailed in Clay and Claytor (1998). 

3.3 Acoustic data preparation for analysis 
The fishing track was identified by recording latitude and longitude once per second using 

Garmin 45XL portable GPS units. Latitude and longitude coordinates for each remaining fix were 
converted to distances (metres) from a common reference (45° latitude, 67° longitude) taking into 
account the curvature of the earth.  

The activities along each fishing track were then identified as traversing (traveling to or 
from port to the fishing grounds), searching which included looking for fish and setting the net on 
the fishing grounds, hauling the net, and other activities that were not part of the directed fishing, 
such as waiting in port and unloading the catch.  Once these activities were identified the fishing 
track was divided into equal 100m increments by activity.  The area backscatter coefficients at 
each of these positions were linearized and a distance weighted average of these linearized 
coefficients along each 100m increment was calculated.  

The next step in the analysis was to estimate target strength of the acoustic signals 
during each night of data collection so that biomass abundance indices could be estimated.  
Samples for estimating length and weight of the acoustically recorded herring for gillnet fishing 
trips were collected from experimental gillnets fished in the Nova Scotia area of the southern Gulf 
of St. Lawrence.  Samples for estimating length and weight of the acoustically recorded herring 
for purse seine fishing trips came from daily sampling from the Gemini by shipboard observers 
(Claytor et al. 1996).  The length - weight relationship from these samples estimated the target 
strength using  Foote’s (1987) formula.  

Only the portion of the fishing track associated with searching and setting the net (see 
above) was selected for spatial analysis.  Searching was generally triggered at densities >= 
0.0625 kg/m2 or about 1/4 herring/ m2 and setting the net occurred only in areas that had been 
searched. Hauling the net was always associated with setting the net, but this activity created a 
lot of debris in the water, primarily from fish scales, and these data were not suitable for biomass 
estimation and were eliminated.  A polygon drawn around the boundary of the searching and 
setting data points defined the area for spatial analysis and biomass estimation (Fig. 1C). The 
density estimate used in all analyses was the biomass estimate within the polygon divided by the 
area of the polygon.  

Details for the data preparation are provided in (Claytor et al. 1998 and Claytor and Clay 
2001).  
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4.  Stock assessment parameters 
 4.1 Methods and models 

The stock assessment parameters presented for this analysis are: density of the schools 
on the fishing grounds as defined above and an exploitation rate index (ER) defined as the 
reported catch / biomass estimate from the school as defined above. Regions for the gillnet 
fishery are defined as: 1; eastern most zone, 2; mid-zone, and 3 as the western most zone of the 
Pictou, Nova Scotia fishing area (Fig.1A).  Regions for the purse seine fishery are defined as: 1; 
Rivière-au-Renard, 2: Gaspé side of Chaleur Bay, 3; Pointe de la Maisonnette, and 4; Miscou 
Bank (Fig. 1B). 

 We have examined other stock assessment parameters, such as the relationship 
between catch / net in gillnets and catch / set in purse seines, with these data and details of those 
analyses are in Claytor and Clay (2001).  Density was estimated using voronoi polygons.  A 
previous comparison of this method to inverse distance weighting and kriging indicated no 
difference in trends among these three methods (Claytor and Clay 2001). 

4.2 Stock assessment parameter results 
A reciprocal model significantly explained the relationship between exploitation rate (ER) 

and density for the each of the purse seine and gillnet fleets (p<0.001) (Fig. 2). These results 
indicate that ER increases as density decreases. 

All above average exploitation rates for the Purse Seine Fleet occurred after 13 
September, 1995 (Fig. 3A,B).  All high exploitation rates in the gillnet fishery occurred at the 
beginning and end of the season when densities were lowest (Fig. 3C,D).   
5. Simulation to test the analytical method 

5.1  Introduction 
A simulation model was developed to determine whether or not biomass estimates from 

acoustic data collected during regular fishing are abundance indices.  The simulation focused on 
three questions for this test.  These were: How does the movement of fish during the searching 
activity affect the estimate? How does the distribution of the fish affect the estimate? How does 
fishing and depleting the resource during the searching activity affect the estimate?  The model 
was restricted to conditions that were compatible with the inshore gillnet herring fishery in the 
southern Gulf of St. Lawrence.  The reason for this restriction was that the scale was smaller and 
the model was more easily developed than one that would have been compatible with the purse 
seine fishery.  A simulation compatible with the purse seine fishery would provide a test for the 
effect of scale in interpreting the results and is planned for the future.  

The simulation objective was to create a variety of models compatible with what is known 
from the literature and experience, rather than an exact replicate of fish movement and fishing 
captain's behavior, and to study the properties of various stock indices under these assumptions.  
The rationale for this approach was that a good index should display consistent properties 
throughout the range of fish and fishing captain's behavior that is plausible according to current 
knowledge and experience. 

5.2 Simulation Methods 
5.2.1 General Model Description 
The model simulates a local spawning herring aggregation and a gillnet fishery. The 1997 

Pictou gillnet fishery was used as the template for the simulation model.   One boat is simulated 
to collect the type of acoustic data obtained during the gillnet fishery and is designated the 
acoustic boat.  It searches for fish schools and fishes following a simple set of searching  and 
fishing rules. Fishing locations for the remainder of the fleet were selected in a manner that was 
consistent with captains being able to locate higher than average densities for fishing. A simple 
probability model using the cumulative distribution of densities was used to determine these 
locations.   

All boats in the fleet were subject to a nightly boat limit.  This regulation had the effect of 
restricting catches even when densities were high and its effect was examined in the simulation.  
The average number of nets used per gillnetter per night in this fishery was five. Catch rates 
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(CPUE) were calculated as the catch divided by nets (kg/net) for the acoustic boat and all fleet 
boats. 

Four conditions of fish movement and fishing fleet activity were examined.  These were 
fishing and movement of the fish school, fishing with no school movement, no fishing but with 
school movement, and no fishing and no school movement.  Five fish distribution types were 
examined.  These were: a single spike (spiky), average, flat, and intermediate between spiky and 
average (IAS), and intermediate between average and flat (IAF) (Fig. 4). The fish schools forming 
these distribution types consisted of one to ten clusters.  Each cluster was defined by a bi-normal 
density function with the cluster centre defined by x-y coordinates and with a cluster covariance 
matrix equal to a multiple of the identity matrix.   Thus, the clusters were radially symmetric about 
their centres.   The number of clusters and their standard deviations varied depending on the type 
of distribution to be created.  These were subsequently quantified using the percentage of the 
area that contains the mid 75% of the biomass, in a manner similar to Swain and Morin (1996). 
The simulated search area was scaled to the average area searched each night in the Pictou, 
Nova Scotia gillnet fishery (490,000 m2). Each of the distributions, except flat, were observed in 
the gillnet data collected in the 1997 Pictou fishery.  Fish movement was simulated by moving the 
cluster centres up to 200 meters every five minutes of simulated time.   

Each night of the simulated fishery consisted of four hours of data collection, searching, 
and fishing.  Small equally spaced time intervals were used to control simulation events.  These 
time intervals were equal to the length of time required for the acoustic boat to travel 100m at the 
average speed observed in the Pictou fishery.  All biomass index data, from fishing and surveys, 
were collected simultaneously during each simulation. 

The simulation tested three biomass indices derived using data collected by a fishing 
boat while it searched for schools of fish, and three indices derived from survey techniques.  The 
searching indices were Searching - Total, where the index was based on data collected 
throughout the simulated fishing trip, Searching - Fishing, where the index was based on data 
collected only up until the time that the boat limit was caught.  These two indices used voronoi 
polygons to derive area weighted biomass indices.  The third index from the searching data was 
simply the arithmetic average of the Searching - Total data points and was designated as 
Arithmetic.   The three survey indices were derived from a simulated random tow survey, a 
simulated random transect survey, and a simulated systematic transect survey.  In total six 
indices were compared against the known simulated biomass (Fig. 5). 

5.2.2 Survey Indices. 
Random tow locations were selected within the search area using a uniform random 

distribution. Tows were evenly distributed at 30 minute intervals and the length of each tow was 
200 meters.  Tows were made in a random direction from each starting point. Starting points for 
random transects were selected along the y axis for each simulation using a uniform random 
distribution and were ordered by distance from the origin. Systematic transects were selected so 
that there was equal spacing between the transects. The time allowed for each transect was 30 
minutes. Data along the transect and tow tracks were estimated in 100 m increments by 
numerical integration.  Biomass indices from the surveys were determined by taking the 
arithmetic average of the data points collected during each of the surveys and expanding these 
densities to the area surveyed.   

5.2.3 Searching Indices 
The acoustic boat started collecting data at the edge of the search area. The acoustic 

boat moved 100 meters at each sampling or clock interval. The searching method consisted of 
random and directed searches. The turning direction of the simulated acoustic boat was 
determined by the change in density of fish observed over each 100 meter increment. The 
decision on turning angle was made every 200 meters for random searches and every 100 
meters during the directed search.  Regardless of when the turning angle decision occurred, data 
were stored every 100 meters as in the real data set. The average density over this increment 
was determined by numerical integration. 

Searching for each simulation began by collecting data during a random search for 20 
time intervals. The direction of turning at each of these decision points was randomly selected 
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from 0 to 360 degrees. After this initial random search period, the directed search algorithm was 
initiated.  The direction of turning was based on the slope of the data points collected at 20 meter 
increments along the 100 meter search track increment.  For example, if the slope and hence, 
biomass was increasing along the track then, the boat tended to keep going in the current 
direction. If the slope and biomass were decreasing then the boat tended to turn back towards the 
direction it had just been searching.  If the slope was near zero (-0.5 to 0.5)  then the boat would 
make a right or left turn between 60ο and 120ο.  The angle of the turn was determined by the 
magnitude of the slope and the direction (left or right) of the turn was randomly determined.   

Using these rules, the boat would tend to circle in one spot if it found a peak in the 
distribution. If it circled 7 times in a small area, then it was directed to fish, or if the boat limit had 
already been caught,  it was directed to search randomly for another 20 time intervals.  In both 
these cases, the direction of the first turn was towards the highest density observed up to that 
point.  

Voronoi polygons as described above were used to estimate biomass using the 
searching data.  The only change in the methodology for the simulation was in defining the 
exterior boundaries of the data points.  In the analysis of the data, polygons drawn around each 
outside data point defined this boundary.  This was not practical for the simulation and the convex 
hull, expanded by 20 metres, was used to define the exterior boundary of the data points in order 
to include the convex hull points in the voronoi polygons (Cressie 1991). The convex hull was 
determined using the MATLAB (1998, ver 5.3) convhull function. Voronoi polygons were 
determined using the MATLAB (1998, ver 5.3) voronoi function altered to output voronoi edge 
coordinates, Delaunay triangle indices, and circle centre indices.  This function produced some 
voronoi polygons whose vertices were outside the convex hull.  The intersection points between 
the polygon edges and the convex hull were found and these points were substituted for the 
vertices that were outside the convex hull.   

The area of each polygon was found using the MATLAB (1998, ver 5.3) polyarea function 
and the biomass in each polygon was determined by multiplying the density of the data point by 
the area.  The sum of these biomass estimates formed the biomass index.  If the boat limit was 
caught before the end of the four hours, the Search - Total estimate usually covered a smaller 
portion of the search area than the Searching - Fishing estimate (Fig. 6). 

5.2.4 Fishing 
 To determine the effect that depleting the resource had on the development of biomass 
indices, a simulated fishery was included in the model.  Depletion occurred from fishing by the 
acoustic boat and the gillnet fleet.  Natural mortality was assumed to be zero during the fishing 
period.  The searching simulation for the rest of the fleet applied rules to the entire fleet rather 
than to individual boats as was done for the acoustic data collection boat.  However, catches for 
the fleet and the acoustic boat were calculated in the same manner and were a function of net 
length, net influence width, local catchability, and stock density at the fishing location in both 
cases. These parameters were equal for each type of boat.   For the acoustic boat, the stock at 
the fishing location was estimated using numerical integration over the net length.  For the fishing 
fleet, the point of the fishing location (described below) was used and this value was assumed to 
be the average over the net length.  This simplifying assumption was made to save computation 
time.  Fishing depleted the overall stock on a cluster by cluster basis.  Each cluster was depleted 
in proportion to its contribution to the density at the fishing location.  Thus, if fishing occurred at 
the centre of one cluster but at the edge of another, most of the fish would be removed from the 
cluster which had the fishing near its centre.  
 Catch rates from the Pictou fishery and simulated acoustic boat and fleets were 
described as functions of density using von Bertalanffy curves (Quinn and Deriso 1999).  SAS 
Proc NLIN (1999) was used to estimate the model parameters and r2 values.  

5.2.5 Fishing - Acoustic boat 
 Fishing by the acoustic boat only occurred during a directed search and only when 
certain conditions associated with the density of the stock and the slope were met.  Fishing 
occurred if the boat was at a density very similar to the highest so far observed by the boat during 
the night.  Fishing could occur at a lower density if the slope was below a critical negative value, 
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or if the boat had gone over the area 7 times as described above.  In addition, if no fishing had 
occurred during the first half of the night, then the critical density threshold for fishing was 
lowered.  Fishing by the acoustic boat continued until the boat limit was caught or the allotted four 
hour time limit was reached.  After the boat limit was caught, the acoustic boat continued to 
collect data under the searching rules but would not fish.  Each fishing event took 30 minutes. 
During this time, data collection by the boat stopped, to simulate the time required for the net to 
be set and hauled.  After each fishing event the boat would search randomly for 20 time intervals 
before beginning the directed search again.  

5.2.6 Fleet Fishing 
 The simulation time interval between fishing events for the fleet was 30 minutes, the 
average time to set and haul nets.  There were eight fishing events spread evenly through the 
four hour searching period.  The fleet size was determined using a function derived from real 
data.  A random effect was added to the fleet size so that it closely resembled the variation in 
number of boats in the Pictou fishery.  Minimum and maximum fleet size were fixed to be 
consistent with the fishery, the minimum number of boats fishing in a night was 10, and the 
maximum was 120, including the acoustic boat.  

There were 8 fleet fishing events throughout the night but not each vessel fished at each 
event.  The proportion of the fleet that fished at each event was determined using the data from 
the acoustic boat.  Three nights of fishing data were collected from the acoustic boat during each 
simulation at a given stock size and condition.  The average number of sets made by the acoustic 
boat during these three trips was used to determine the initial proportion of the fleet fishing on 
each trip.   This average was updated throughout the simulation for each stock size, distribution, 
and fishing - movement condition.  The data from the first three trips were not used in any 
analysis.  

5.2.7 Evaluating indices 
Two methods were examined for evaluating indices.  The first determined the slope 

between the estimated biomass and true stock and the slope between the standard deviation of 
the estimated biomass at each stock size and stock size.  The best indices would not necessarily 
have a one-one relationship with true stock, but would have a relatively precise and linear 
relationship regardless of the distribution, fishing, or movement condition. That is, when the 
slopes of biomass are plotted against distribution type for each condition, the best indices would 
have a positive slope and little variation around the regression line.  

The second method, closed loop (Anon 1998), for evaluating the indices, compared 
exploitation rates that would result from managing the simulated fishery assuming that the indices 
represented a one-one relationship with the true biomass.  For example, what would the true 
exploitation rate be if the target fishing mortality was 20% and a quota was set at 20% of the 
estimated biomass, given that the true simulated biomass is known.  This comparison was made 
using the average exploitation rate that would result at each stock size and by determining the 
percentage of exploitation rates that would be > greater than twice the 20% target.  This method 
was only examined for the Movement – Fishing condition.  

The closed loop evaluations indicate the magnitude of the mistakes that would be made 
using each index.  Such evaluations are one way of taking into account the variability in the 
estimates, of evaluating one index against another, or of evaluating the cost effectiveness of 
collecting data for the different indices.  

5.3 Simulation results 
5.3.1 Model Validation  
A comparison was made between the catches and catch rates (kg/nets), from the 

acoustic boat collecting data during the Pictou 1997 gillnet fishery with those obtained from the 
simulated acoustic boat.  This comparison indicates that the simulated values are consistent with 
those from the 1997 fishery.  Trip catches from the acoustic boat collecting data during the Pictou 
and the simulated fishery were low and rose quickly to an asymptote consistent with the boat limit 
at densities > 2 kg/m2 (Fig. 7).  The exception were catches for the simulated spiky distribution, 
because sometimes the spike was missed entirely resulting in low catches at all densities.   
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Similar trends were observed for catch rates (CPUE).  The catch rates from the acoustic 
boat reached an asymptote slightly below the maximum that would occur if the boat limit were 
caught each time (1500 kg/net).  The number of sets made each night in the fishery by the 
acoustic boat and the simulated acoustic boat declined with increasing density.  This finding is 
consistent with the expectation that fewer sets should be necessary as density increases.  The 
exception were trends associated with the spiky distribution. 

A similar consistency was observed between the Pictou fishery fleet catches and the 
simulated fleet catches.   Catches in the Pictou fishery tended to increase steadily with fish 
density for density < 6 kg/m2.  Catches by the simulated fleet increased similarly and reached an 
asymptote for densities exceeding 6 kg/m2.  This similarity was true for all the distributions.  Catch 
rates showed an asymptote near the boat limit at 4 kg/m2 or less for all distributions and in the 
Pictou fishery.  The number of sets tended to decrease as density increased in the simulated 
fishery.  These data were not available from the Pictou fishery. 

Parameters from von Bertalanffy models were similar for the Pictou 1997 acoustic boat, 
the simulated acoustic boat, the Pictou fleet, and the simulated Pictou fleet.  The model with the 
greatest difference was for the spiky distribution which had a lower asymptotic CPUEinf value than 
the others and a  lower r2 value.  These lower values were probably a function of the difficulty, 
that the simulated acoustic boat occasionally had in finding the spike (Fig. 8).  

5.3.2 Index Comparison - Estimated vs. True Biomass 
 Plots of estimated biomass against true biomass indicate that variance in estimated 
biomass increases as true stock size increases for all distributions in the Movement - Fishing 
condition. Except for the flat distribution, the arithmetic index always over-estimates true biomass 
(slope > 1).  The fishing index usually underestimates biomass except for the spiky distributions.  
The highest variances generally occur with the random tow surveys.  The searching, random tow, 
random transect, and systematic transect methods consistently give biomass estimates that 
appear close to the true values (Fig. 9).   
 Regression analysis on a case by case basis by survey type, distribution, fishing, and 
movement condition indicate that the standard error of the regression slope (sse) is < 0.10 for all 
regressions except those with the spiky distribution.   All regressions were significant (p < 
0.0001).  The low sse's indicate that there will likely not be any differences in interpretation 
between these unweighted regressions and weighted regressions  between the true and 
estimated biomass in the simulation models. 
 For all conditions, the arithmetic index had the widest range in slopes between estimated 
and true biomass, followed by Searching - Fishing.  Random tow indices had the highest 
standard deviations for spiky distributions.  Spiky distributions generally had the highest standard 
deviations,  followed by IAS.   The Searching - Total, random tow, random transect, and 
systematic transect indices generally had slopes between the estimated and true biomass of 
between 0.5 - 1.5 (Fig. 10). 

Overall, the survey methods random tow, random transect, and systematic transect had 
slopes between the true and estimated biomass that were closest to zero.  Searching  - Total 
slopes were higher for spiky compared to flat distributions. Slopes for spiky, IAS, and average 
distributions were close to zero.  There was least variation in slopes with the random transects 
index.   
 Of the four methods most practical to use in forming an abundance index in this situation, 
slopes between random transects and systematic transects were most consistent across 
conditions.  The Searching - Fishing index was the most inconsistent.  The Searching - Total was 
in between the survey methods and the Searching - Fishing index in meeting the goal of 
displaying proportional response to the density, across distribution and condition patterns (Fig. 
11). 
 5.3.3 Index Comparison - TAC closed loop 

Evaluation by the TAC closed loop method indicates that average exploitation rates are 
usually within 10% of the target using the Searching – Total biomass estimate for the spiky 
distribution.  For the other distributions the Searching – Total biomass estimates were similar to 
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the target but well under the target for flat distributions.  In contrast, the arithmetic biomass 
estimates produced exploitation rates that were usually above the target, while the Searching – 
Fishing index gave results that were usually below the target (Fig. 12).  Survey indices usually 
produced average exploitation rates that were similar to the target, except for the spiky 
distribution where they performed worse than the searching indices. 

The percentage of cases with exploitation rates > 40% were greatest for the spiky 
distribution for Searching and Survey biomass estimates.  The arithmetic and Searching - Fishing 
biomass estimates generally had percentages > 40% that were higher than those for Searching – 
Total.  Arithmetic biomass estimates were always produced the highest exploitation rates 
regardless of distribution (Fig. 13).  Percentages of exploitation rates > 40% were similar to 
Searching – Total for all survey indices at the spiky distribution.  For IAS and Average 
distributions, the Searching indices had lower percentages > 40% than the survey indices.   Flat 
and IAF distributions had no cases > 40% for any index method. 

6.1 Discussion 
Three important points regarding collaborative projects arise from these results and our 

experience in developing collaborative assessment projects with industry.  First, new methods of 
data collection and analysis are likely to be required and a flexible approach is needed,  second, 
testing the new methods in order to determine appropriate protocols is essential, and third,  new 
assessment and management strategys can result from successful implementation of these 
projects. 

Taking a flexible approach to data collection was an important reason for the success of 
this project.  Several concerns and management requirements required us to seek and evaluate 
new methods for gathering stock assessment data.  First, we needed to develop a method that 
would identify the spatial and temporal trends in abundance and exploitation for individual 
spawning components. Second, we needed to overcome the concerns that industry had with 
traditional surveys and catch rate analyses. The fish movement and aggregation patterns of 
southern Gulf of St. Lawrence herring preclude the use of one time surveys for this task. We 
solved these problems by developing a data collection method that used the everyday fishing 
tools employed by industry in the fishery. 

Our solution was to let the fishing fleet find the schools in the area and then use a boat 
equipped with automated acoustic recording gear to collect quantitative data on the schools being 
fished. This method allowed us to collect data that was compatible with the way that industry 
gathers information on stock size.  Flexibility was required to find and develop an analytical 
method that could quantify industry's experience on the water and produce estimators that could 
be evaluated for their use as abundance indices.  We chose voronoi polygons as the most 
convenient method for us, but results were similar using inverse distance weighting and kriging 
methods (Claytor and Clay 2001).  We then tested these methods using a simulation that was 
compatible with the characteristics of the gillnet fishery and spawning fish aggregations from 
which the method and data collection originated.  

The results of these simulations indicate that data collected during regular fishing activity 
(Searching - Total) can be used to derive useful abundance indices. The Searching - Total index 
had lower variance, lower bias, and lower risk of high exploitation rates than survey indices.  
Survey indices were, however, slightly more consistent overall conditions than the Searching - 
Total index. As a result, management actions are likely to be similar whether assessments are 
based on Searching - Total or survey indices.   

The results of the Searching – Total index are important because they indicate that clear 
protocols must be developed for collecting data.  For example, if data collection ceases 
immediately after nightly limits are caught then the resulting estimates are not suitable indices.   
Protocols must ensure that the entire school is covered during the data collection.  One proposal 
from the Pictou group is that a boat be designated to collect data for the night rather than fish.  
This proposal has not been implemented because of cost and emphasizes the importance of 
developing clear protocols for data collection. These protocols will likely require some flexibility on 
the part of industry. 
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The fishery acoustic abundance indices developed in this project provide a basis for 
adopting spawning component life history targets as well as exploitation rate targets as a 
management strategy for this fishery.   The addition of spawning component life history targets 
would represent a change from the current F0.1 management strategy for this herring population. 
The total allowable catch (TAC) has generally been set at the best estimate of F0.1 for the entire 
spring or fall spawning stock. Inshore fleets associated with geographically defined spawning 
components are annually assigned proportions of the TAC.  These proportions were established 
in the late 1980s.  A six vessel purse seine fleet is allocated a fixed percentage of the overall 
TAC. This management strategy combines all the herring populations within the southern Gulf of 
St. Lawrence as the basic management unit and has not been greatly modified since its 
implementation.   

This change in management could be implemented by adopting a decision rule strategy 
that puts the emphasis on localized data collection in determining whether or not specific goals 
have been met, and serves as a basis for setting and changing the rules that govern a fishery.  
The elements of this strategy have been described by Pearse and Walters (1992) and de la Mare 
(1998) and a form of these has been implemented in the 4Vn overwintering southern Gulf of St. 
Lawrence herring fishery (Claytor 2000). 

The abundance and exploitation rate indices derived from the acoustic data allow 
managers to directly measure the effects of decisions regarding when to fish and where to fish.  
For example, even without formal definition of these rules, it is clear that the gillnet exploitation 
rates which are 2 to 4 times the average should be avoided and could be prevented by shortening 
the season.   

One advantage of the decision rule approach is that the process becomes transparent to 
the fishing industry. In contrast to the current model which requires the use of population and 
statistical models to provide assessment advice, the decision rule strategy utilizes the abundance 
and exploitation indices directly to make decisions regarding the elimination of high exploitation 
rates and identification of under-utilized fishing opportunities.   

Another advantage of this approach is that it provides the fishing industry with the 
flexibility to collect data outside the fishing season, in order to determine the effects of the 
decision rules on the population.  The Pictou, Nova Scotia group has conducted systematic 
surveys before and after the fishing season for this purpose.  In 1997,  pre-season surveys led to 
a fleet decision to delay the opening of the season by one week.   

While indices derived from these data could be processed and made available for real 
time in-season management, such opportunities are limited within the southern Gulf of St. 
Lawrence because many of the fisheries occur simultaneously.   A more realistic approach for 
this fishery would be to adopt rules for the fishing season, collect the data, and evaluate the 
performance of the decision rules as part of an annual stock assessment (Claytor 2000).  In-
season management by this method may be possible in areas where a single fleet sequentially 
harvests populations from various geographic areas.  

Throughout this paper we have restricted our interpretations of acoustic biomass 
estimates to those of relative rather absolute estimates.  Some of the factors that preclude an 
absolute biomass interpretation are: the variability of backscattering in high target concentrations, 
the relationship between target strength and fish size, vessel avoidance, and acoustic extinction 
from near surface reverberation (MacLennan and Simmonds 1992; Clay and Claytor 1998; Fréon 
and Misund 1999).   The fisheries we examined occur over a short period of time and on a single 
species in particular phases of its life history, either as spawning or feeding aggregations.  As a 
result, our estimates are likely to be relatively consistent and while we cannot claim that we have 
estimates of absolute biomass of the schools, spatial and temporal changes in exploitation rate in 
these fisheries may be identified from changes in relative indices.   

The indices of spatial and temporal exploitation rates provided by the fishery collected 
acoustic data provide a foundation for establishing a management strategy based on decision 
rules in the southern Gulf of St. Lawrence herring fishery.  By providing a nightly measure of 
'proven stock' (Pearce and Walters 1992) they furnish a method for investigating biological and 
management factors that lead to the feedback effects of the decision rules.   
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                                     A 

 
                                     B 

 
                                     C 
 
Fig. 1.  (A) Fishing and searching tracks for Pictou area gillnetter from 7 September - 30 

September, 1997.  Key to map regions: 1; Eastern area, 2; Mid-zone, 3; Western area.  
(B) Fishing and searching tracks for Chaleur Bay area purse seiner from 23 August - 20 
October, 1995. Key to map regions: 1; Rivière-au-Renard, 2: Gaspé side of Chaleur Bay, 
3; Ponte de la Maisonette, and 4; Miscou Bank. (C). An example of an identified herring 
school from Pictou area gillnetter data collection, 26 September, 1997.  Solid squares are 
fish densities >= 0.0625 kg/m2, open squares are fish densities < 0.0625 kg/m2.  School 
is outlined by polygon used to delineate school area(Claytor and Clay 2001). 
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Fig. 2.  Scatterplots and regression lines for relationship between exploitation rate index (ER) and 

fish density for purse seine and gillnet boat collecting acoustic data (Claytor and Clay 
2001). 
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Fig. 3.  Distribution over time by region of ER and fish density for (A, B) purse seiner and (C, D) 

gillnet collected data.  Regions are those defined in Fig. 1A, B (Claytor and Clay 2001). 
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Simulation Pictou 1997 

  

  

  

 
Fig. 4. Sample of distributions tested in simulation compared to samples from Pictou 1997 gillnet fishery.  

Black lines show the fishing track of the simulated gillnet test fishing boat as it collected acoustic 
data. 
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Fig. 5. Illustration of searching, random tows, random transects, and systematic transects 

average distribution. 
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Fig. 6.  Illustration of final voronoi diagram for estimation of biomass using Searching – Total 

(upper) and Searching – Fishing (lower) for an average distribution. 
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Fig.  7.  Illustration of gillnet data from boat collecting data at Pictou, Nova Scotia, 1997 compared 

to simulation Acoustic Boat at various distributions. 
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Fig. 8.  von Bertalanffy models for acoustic boat collecting data from Pictou, Nova Scotia 1997 

inshore fishery and simulated acoustic boat at various distributions. 
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Fig. 9. Scatterplots of true and estimated biomass for Movement - Fishing condition for simulation 

for all distributions and survey types. 
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Fig. 10.   Summary of analysis of regression between true and estimated biomass for six indices 

and five distribution types, for the Movement - Fishing condition.   The standard deviation 
of the biomass estimates are plotted against the slope of the regression for each 
distribution.   
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Fig. 11. Summary of slopes between estimated and true biomass and distributions for key survey 

type, all distributions and conditions. 
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Searching Survey 
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Fig. 12. Average exploitation rates obtained using a target of 20% to set the TAC based on the 

estimated biomass, for each data collection method, all distributions, and the Fishing - 
Movement condition. 
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Acoustic Boat – Fishing Activity Data Survey Data 
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Fig. 13.  Trends in the percentage of exploitation rates that were over 40% or double the target 

for each data collection method on each distribution, as a function of biomass.  
Percentages for InterAveFlat (IAF) and Flat were all zero and are not shown. 
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