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Abstract 

 

Foremost amongst the competing aims for fisheries management is the maintenance of fish stocks for the forseeable 

future.  To this end, it is imperative that managers are equipped with indicators of the expected level and variability of 

future population levels over the medium-term (typically, a five- to ten-year) time-scale, and that these indicators are 
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simulation approach currently employed within ICES stock assessment working groups by including characterisations 

of the time-series structure of residuals to fitted stock-recruitment models.  The effect of the imposition of different 

hypothesised future environmental regimes is also investigated.  North Sea cod (Gadus morhua L.) is presented as a 

germane and timely case study.  We use the probability of the spawning stock biomass falling below the precautionary 

level of biomass, Bpa, as a diagnostic statistic to monitor projected performance.  The relevance and utility of these new 

models for fisheries management is discussed, together with potential implications. 
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1. Introduction  

 

Many strategic management decisions for fisheries within  ICES' remit are currently made on the basis of medium-term 

projections of age-structured population dynamics.  Such projections generally take the form of stochastic simulations 

of stock performance over a future 10-year time period, and are used to determine appropriate levels of fishing 

mortality that should minimise the risk of stock collapse.  The exploitation pressure on most commercially-important 

species within EU waters is such that few fish survive for longer than five years, and projections are therefore largely 

driven by the assumed recruitment model and the initial position of the stock on the stock-recruitment curve.  The 

current practice is to fit a parametric curve to the stock-recruitment scatterplot arising from historical assessment, take 

random samples from the time-series of residuals to this curve, and use these samples to determine recruitment values 
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in projections.  The purpose of this paper is to highlight the principal statistical deficiency in this approach, correct it 

and compare the new results with the old for the North Sea cod population.  The feasibility of incorporating an index of 

environmental effects into the projection process is also investigated. 

 

2. Medium-term projection methodologies 

 

2.1. The bootstrapped-residual approach 

 

The most widely used method for simulating medium-term projections in the ICES assessment framework is the 

WGMTERM software and its descendants (Reeves and Cook, 1994).  This is a relatively simple program designed to 

explore the likely response of an assessed population to fixed rates of fishing and natural mortality, given initial 

population-at-age estimates and an assumed parametric stock-recruitment model.  Each WGMTERM analysis consists of 

a number of simulation runs (up to 1000), each projecting the development of the stock over a number of consecutive 

years (typically, up to 10).  The vector of initial population sizes at the start of each run can be drawn from the 

distribution of possible sizes determined by the standard deviations of historical population estimates, although this 

option was not used in the following analysis as the aim was to compare the effects of different recruitment models, 

without the complication of added variability.  The underlying model governing stock size is a standard Baranov (1918) 

age-structured model, in which exponential population decay is determined by the fixed rates of fishing mortality YiF ,  

and natural mortality .,YiM   Thus the population at age i in year Y is given by 

,e 1,1

1,1,
−−−

−−= YiZ
YiYi NN  

where YiYiYi MFZ ,,, +=  measures the total mortality due to fishing and natural causes.  A deterministic value of 

recruitment for each year in each simulation run is given by the fitted stock-recruitment model.  To this is added a 

residual drawn at random (or bootstrapped) from the time-series of residuals to the fitted stock-recruitment curve. The 

principal output metrics are percentiles of the projected spawning-stock biomass (SSB, denoted by YS ), where 

.
1

,,,�
=

=
A

i
YiYiYiY MatWNS  

Here YiW ,  are weights-at-age, YiMat ,  are proportions mature-at-age, and A is the maximum age allowed for in the 

population.   

The problem with this standard approach is that there is likely to be some degree of structure in the time-series of 

recruitment residuals, be it autoregressive or moving-average or both, and simple random sampling of residuals does 

not account for this.  This paper describes new modifications to medium-term methodology to accommodate this issue. 
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2.2. Time-series data 

 

Data on spawning-stock biomass S and recruitment R for North Sea cod were taken from the relevant stock summary in 

ICES (2000), ensuring that each value of R was paired with the correct value of S (so that iai RS �−  in year i, where a 

is age at recruitment).  Stock-recruitment pairs post-dating the 1996 year-class were excluded from the analysis: the 

VPA-derived recruitment estimate for 1997 is likely to have been poorly defined due to lack of convergence  in the 

VPA method, whilst those for 1998 and 1999 were RCT3 estimates (Shepherd, 1997) which are thought to be 

uncertain. 

 

2.3. Stock-recruitment modelling 

 

Scatterplots of R and S are shown in Figure 2.3.  Parameters for stock-recruitment models, namely those due to Ricker 

(1954), Beverton and Holt (1957), and Shepherd (1982), were estimated using non-linear least-squares regression with 

lognormal errors.  In addition, parameters for the Saila-Lorda or gamma model SSR βγα −= e were fitted to ascertain the 

presence of statistically-significant depensation: that is, decreasing recruits-per-spawner with decreasing stock size 

(Saila and Lorda, 1980; Iles, 1994; Quinn II and Deriso, 1999).  Although the estimated Saila-Lorda depensation 

parameter 0.1973.1ˆ >=γ , indicating depensation at low stock sizes, the curve could not be assumed to be significantly 

depensatory as an F-test comparing the fit of the Saila-Lorda and Ricker curves did not show the former to be 

statistically better.   

 

The use of an assumed lognormal error distribution leads to a lognormal bias of ( )2exp 2σ−  in the expected value of 

the fitted curve, where [ ]RlnVar2 =σ  (McCullagh and Nelder, 1983).  Hence in analyses where it is the expectation or 

mean of the curve that is of interest, the estimates of R obtained from the curve must be inflated by a bias-correction 

term of ( )2exp 2σ .  However, stochastic projection of recruitment produces percentiles of the distribution of projected 

values: this does not involve the estimation of an expected value and therefore does not call for bias-correction. 

 

Parameter estimates and a goodness-of-fit statistic, R2 adjusted for the number of parameters, were noted for each 

model fit (Table 2.3). While such diagnostics are useful in selecting between similar models (for example, assessing 

whether the additional parameter in the Shepherd model is justified on statistical grounds), equal attention must be paid 

to the biological plausibility of the chosen model.  Cod are thought to be cannibalistic on their young, leading to stock-

dependent density effects which are encapsulated by the Ricker and Shepherd models but not by the Beverton-Holt 

model.  A further consideration is that the projection performance of the chosen model should be plausible.  In the case 

of cod, projections will start near the lower limit of the historically-observed range of S and it would be expected that 

the stock-recruitment trajectory would tend towards the origin at current high levels of fishing mortality.  For many 

stocks, a formulation such as the Beverton-Holt model will have a steep slope at the origin and consequently high R 

until close to the origin, and may thus not simulate the expected decline in S as well as over-compensatory curves such 

as the Shepherd model which will often be nearly linear in this region.  In the event all the models fitted here (except 

the depensatory Saila-Lorda model) look very similar at low S, but this needn't always be the case.  The whole question 
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of the systematic selection of recruitment models on the basis of desirable properties they may have for population 

projections and subsequent management decisions in one that must be pursued further. 

 

Given that projection performance factors were inconclusive for North Sea cod, the decision on which model to use 

was based on analysis of the R2 diagnostic (Table 2.3) and the fact that cannibalism is not modelled by the Beverton-

Holt model.  Of the two models in which cannibalism could be encapsulated, the Ricker had by far the better adjusted 

R2 value and was selected for that reason. 

 

For analyses using the standard ICES Working Group bootstrapped-residual approach, the Ricker formulation used in 

projections was ,e S
i SrR βα −=  where iii RRr ˆ=  is a randomly-selected residual ratio from the Ricker model fit to 

historical stock-recruit data.  When this method was modified by the addition of ARMA time-series modelling the 

equation used became ,e xSSR +−= βα  where x is a random variable giving rise to stochastic fluctuations in projections 

(see §2.5).  

 

Table 2.3. Goodness-of-fit diagnostics for parametric model fits to 1963–1996 North Sea cod stock-recruitment 

data.  The measure given is an R2 statistic adjusted for the number of parameters.  The selected model is highlighted in 

bold text. 

 

 Ricker Beverton-Holt Shepherd Saila-Lorda 

Adjusted R2 15.20% 13.13% 11.35% 14.93% 

 

Figure 2.3. Beverton-Holt, Ricker, Saila-Lorda and Shepherd models fitted to stock-recruitment data for North 

Sea cod, 1963–1996.  The solid lines give the least-squares fits on a lognormal scale, the dotted lines show the fits 

corrected for the lognormal bias. 
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2.4. Time-series model fitting 

 

Time-series models for this study were fitted to ),ˆln( RRxi =  the logarithm of the ratio of observed to fitted 

recruitments, based on the Ricker stock-recruitment model (see §2.3).  The reasons for this were two-fold: to reduce the 

significance of outliers, and to incorporate the possibility of lower R at low S in projections.  Model fitting was carried 

out using the S-PLUS statistical package (MathSoft Inc., 1999), following and expanding upon methodology outlined 

in Box and Jenkins (1976) and Venables and Ripley (1999).  

 

ARMA time-series modelling  is an attempt to describe the behaviour of a data series in terms of a combination of 

autoregressive (AR) and moving-average (MA) effects.  In order to conform to requirements for stationarity, it may 

also be necessary in general to difference the series.  For the analyses described here, however, this was not the case: 

because the series in question are residuals from a fitted parametric model, they tend to fluctuate around a stationary 

mean of zero without any requirement for further intervention. If a mean value is not being fitted, an ARMA(p,q) 

model fitted to a series ix  is given by  

,22112211 qiqiitpipiii aaaaxxxx −−−−−− Θ−−Θ−Θ−=Φ−−Φ−Φ− ��  

where p and q are the order of the AR and MA components of the model respectively, iΦ  and iΘ  are AR and MA 

parameters to be fitted, and ( )2
ARMA,0~ σNai  are independent identically-distributed random variates known as 

innovations.    

 

The customary initial exploratory analysis for ARMA modelling consists of plots of the autocorrelation function (ACF) 

and partial autocorrelation function (PACF) for the original series ix .  However, given the restricted length of the 

North Sea cod series, it was not possible to ascertain much evidence of autoregressive or moving-average time-series 

dynamics from these plots, and there was little noticeable pattern in the ACF and PACF.  Because of this, and to ensure 

that well-fitting models did not get overlooked, we estimated systematically ARMA model fits for all combinations of 

AR and MA orders from zero up to three.  The maximal order of the AR and MA terms was chosen to ensure that only 

parsimonious models are considered. 

 

Resulting values of AIC (Akaike, 1973), and the corresponding value adjusted for a small sample size (AICe: Hurvich 

and Tsai, 1989), are shown in Table 2.4, while ranked order plots are given in Figure 2.4.1.  For both diagnostics there 

is a clear step between the two best-fitting models (ARMA(1,0) and ARMA(0,1)) and the rest.  However, the 

distinction between ARMA(1,0) and ARMA(0,1) in terms of AIC or AICe is not convincing, so a series of additional 

time-series diagnostics were produced.  The results for each model are given in Figure 2.4.2 and can be interpreted as 

follows.  The three left-hand plots for each model (standardised residuals, ACF and PACF) should show few outliers 

and little clear autocorrelation (that is, series of all-negative or all-positive values).  The standardised residuals should 

also follow an approximately normal distribution.  Hence, the histogram on the top right should be roughly unimodal 

and symmetric, and the accompanying quantile (or Q-Q) plot (Wilk and Gnanadesikan, 1968) should follow the fitted 

diagonal with little deviation.  The cumulative periodogram of standardised residuals should also follow as closely as 

possible the diagonal: any persistent bias suggests a poorly fitting model (Bartlett, 1955).  Finally, the sample 

projections plotted at the bottom right-hand corner should evince a similar level of variability to that seen in the 
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historical time-series.  Unfortunately, in this case the diagnostics for the ARMA(1,0) and ARMA(0,1) models shed no 

further light on which should be used in projections, and it would seem that either would be equally valid.  For the 

purposes of pedagogy and familiarity, the autoregressive ARMA(1,0) model has been used in this paper.  A theoretical 

comparison of the ARMA(1,0) and ARMA(0,1) models warrants attention but will not be considered further in this 

paper.   

 

Table 2.4. Values of Akaike information criterion (AIC) resulting from ARMA(p,q) model fits to the 1963–

1996 North Sea cod time-series of ),ˆln( RR  the logged ratio of observed to fitted recruitment for a Ricker curve.  The 

values of AICe, a small-sample adjustment to AIC, are given in parentheses.  The selected model is highlighted in bold 

text.  nc = ARMA fit procedure did not converge. 

 

 

Moving average order q  

Autoregressive order p 0 1 2 3 

0  48.597 (48.984) 50.578 (51.378) 52.577 (53.956) 

1 48.579 (48.966) 50.577 (51.377) 52.577 (53.956) nc 

2 50.577 (51.377) 52.575 (53.954) nc nc 

3 52.577 (53.956) 54.560 (56.703) nc nc 
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Figure 2.4.1. AIC (open points) and AICe (closed points) diagnostics for ARMA time-series model fits to log 

residual ratios )ˆln( RR  for North Sea cod, 1963–1996.  Models range from ARMA(1,0) (model 1) and ARMA(0,1) 

(model 2), to ARMA(3,1) (model 10). 
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Figure 2.4.2. Time-series diagnostic plots for North Sea cod, 1963–1996.  a.  ARMA(1,0): AIC = 48.5787, 

,1842.01 −=φ  .2631.02
ARMA =σ   b.  ARMA(0,1): AIC = 48.5966, ,1805.01 =θ  .2632.02

ARMA =σ  

 

a. 

Plot of Standardized Residuals

0 10 20 30

-1
0

1

ACF Plot of Residuals

AC
F

0 5 10 15-1
.0

-0
.5

0.
0

0.
5

1.
0

PACF Plot of Residuals

PA
C

F

2 4 6 8 10 12 14

-0
.4

-0
.2

0.
0

0.
2

0.
4

ARIMA(1,0,0) Model with Mean 0

-3 -2 -1 0 1 2 3

0
1

2
3

4
5

6

Histogram of standardised residuals

QQ plot of std. resid.

-2 -1 0 1 2
-1

0
1

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative p-gram of std. resid.

0 10 20 30 40

-1
.0

-0
.5

0.
0

0.
5

1.
0

Projections

 
b. 

Plot of Standardized Residuals

0 10 20 30

-1
0

1
2

ACF Plot of Residuals

AC
F

0 5 10 15-1
.0

-0
.5

0.
0

0.
5

1.
0

PACF Plot of Residuals

PA
C

F

2 4 6 8 10 12 14

-0
.4

-0
.2

0.
0

0.
2

0.
4

ARIMA(0,0,1) Model with Mean 0

-3 -2 -1 0 1 2 3

0
2

4
6

Histogram of standardised residuals

QQ plot of std. resid.

-2 -1 0 1 2

-1
0

1
2

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative p-gram of std. resid.

0 10 20 30 40

-1
.0

-0
.5

0.
0

0.
5

1.
0

Projections

 
 



 

 9

2.5. Time-series projection methodology 

 

For each simulation run, a vector [ ]ia=A  of innovations was created by random draws from a normal distribution with 

mean 0 and variance given by the variance of the ARMA model fit, so that ( )2
ARMA,0N~ σia .  North Sea cod recruit at 

age 1, so the first value of the projected time-series vector [ ]ix=X  was given by the logged residual ratio for the final 

historical assessment year.  Subsequent values of X were generated from this point using the innovations vector.  For 

an autoregressive ARMA(1,0) model with parameter 1φ  the ith projection value is 

,11 iii axx += −φ  

while the equivalent for a moving-average ARMA(0,1) model with parameter 1θ  is 

.11 −−= iii aax θ  

The required projected Ricker recruitment is then 

,e 1

1
ii xS

ii SR +−
−

−= βα  

assuming age at recruitment to be 1.  Once recruitment is calculated, population dynamics are processed as for the 

standard bootstrapped-residual approach described in §2.1. 

 

2.6. Inclusion of a temperature index in the cod stock recruitment relationship 

 

The potential effect of changes in climate on fish stocks is  a topical issue, and for some stocks strong links between 

climatic signals and recruitment have been demonstrated (Borja et al. 1996, 1998; Planque and Frédou, 1999), although 

the mechanisms driving these relationships are not well understood. For cod stocks towards the southern  margin of 

their range, such as the North Sea cod, increasing temperature has been shown to be negatively correlated with 

recruitment (O'Brien et al., 2000).  Temperature may be incorporated in the Ricker stock-recruitment model by 

including the temperature signal and associated parameter as an extra exponential term 

,ee TSSR ϕβα −=  

where T is the temperature index and ϕ a parameter relating recruitment to temperature (Hilborn and Walters, 1992).  

As before, parameters were estimated by least-squares minimisation of the log-recruitment residuals.  The temperature 

regime for the projections was obtained by randomly selecting a temperature for each year from the North Sea 

temperature signal for the period (1987-1996). The temperature signal used was the mean annual North Sea sea surface 

temperature for the months February to June, derived from the Comprehensive Ocean Atmosphere Dataset (COADS) 

and provided by the National Center for Atmospheric Research (NCAR, Boulder, Co.). It must be emphasised that 

these temperature data were chosen because they correlate reasonably well with cod recruitment, and temperature 

seems to be an appropriate proxy for some of the underlying (and unknown) biological drivers of recruitment.  It is not 

possible to precisely predict future temperature regimes, and the use of temperature as a predictor of recruitment is 

therefore  limited to the investigation of alternative future scenarios and subsequent management responses. 
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3. Medium-term projection results  

 

Projections of population dynamics for a standard Working Group bootstrapped-residual model (denoted in output 

figures by Working.Group), the alteration to incorporate a temperature index (Temperature), and the ARMA model 

(ARMA) were performed for 10 years and 1000 iterations each, respectively.  Stochasticity was introduced through 

recruitment projections only: all other variables, including starting population values, were fixed in order to clarify the 

effect of the different methods of resampling recruitment.  Plots of percentiles of projected recruitment and SSB are 

given in Figures 3.1 and 3.2, along with point estimates produced by the 1999 Working Group (ICES 2000) based on 

final-year VPA results and RCT3 recruitment estimates.  The point estimates for recruitment in 1998 and 1999 were the 

two smallest recruiting year-classes in the entire time-series, so it should not be surprising that these values lie outside 

the 90% confidence intervals of all of the models.  It is more pertinent to note that the point estimate of SSB for 1999 

lies very close to the median projected value of every model.  For both recruitment and SSB the spread of projections 

from the ARMA model is very much tighter than from the other two: this is to be expected as time-series variation is 

explicitly modelled in this case.  The median recruitment and SSB levels are slightly higher for the bootstrapped-

residual than for the ARMA model: inclusion of a temperature effect in the former slightly reduces the medians, as 

would be expected given that the temperature data on which the projections were based were taken from a relatively 

warm period (1987-1996).   

 

Figure 3.3 gives probability profiles for projected SSB in 2001 and 2006 under a range of F-multipliers.  These support 

the conclusions reached from the projection plots, namely: a) ARMA projections are less uncertain than those from 

bootstrapped-residual models, and b) the incorporation of a temperature signal reduces recruitment, although this is a 

function of the period from which temperature data were taken.  A caveat is provided by the values of 82−F  giving a 

10% probability of SSB in 2006 being less than Bpa  given in Table 3.1: although the median SSB from the ARMA 

model is lower than that from the bootstrapped-residual model, the reduced uncertainty of the former mean that the 

10th percentile of the SSB distribution is actually higher, leading to a higher estimate for a precautionary F. 

 

Table 3.1. Values of 82−F  giving a 10% probability of SSB in 2006 being less than Bpa = 70000 kg. 

 

Model 
82−F  

Working Group bootstrapped-residual 0.730 

Working Group  bootstrapped-residual with temperature covariate 0.685 

ARMA 0.770 

 

A final diagnostic tool is presented in Figure 3.4.  Here the median recruitment projection for each model has been 

plotted alongside a deterministic projection: that is, one in which recruitment is based purely on the fitted stock-

recruitment curve, with no stochasticity.  Deviation between the median and deterministic projections for a given model 

would suggest that there is structure in the historical data that has not been adequately encapsulated by that model.  It is 

clear that the ARMA model has less systematic bias and is thus preferable on this basis. 
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Figure 3.1. Projected recruitment for North Sea cod, 1963–1996 (10 years, 1000 simulation runs), under three 

different projection models.  Plotted percentiles are 5% (dotted), 25% (dashed), 50% (solid), 75% (dashed), and 95% 

(dotted).  Recruitment estimated by the Working Group (ICES, 2000) is shown as points. 
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Figure 3.2. Projected SSB for North Sea cod, 1963–1996 (10 years, 1000 simulation runs), under three different 

projection models.  Plotted percentiles are 5% (dotted), 25% (dashed), 50% (solid), 75% (dashed), and 95% (dotted). 

SSB estimated by the Working Group (ICES, 2000) is shown as points. 
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Figure 3.3. Probability profiles for North Sea cod SSB in 2001 and 2006, under three projection models and a 

range of imposed rates of fishing mortality (Fbar).  Displayed percentiles are 50% (solid), 5%, 10%, 25% and 95% (all 

dotted).  The reference and limit levels of SSB (respectively, Bpa = 140,000 kt and Blim = 70,000 kt) are shown as solid 

horizontal lines. 
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Figure 3.4. Diagnostic plot of deterministic (dotted line) and median (solid line) projections for North Sea cod, 

under three different projection models.  For the Temperature model, the deterministic recruitment is derived assuming 

temperature to be equal to the mean of the last ten years, while the median recruitment is the median of 1000 stochastic 

runs where temperature was selected randomly from that ten year period.  For the other models, the deterministic 

recruitment is obtained by removing any variability in the projection of recruitment. 
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4. Discussion  

 

While we await the results of several contemporaneous large-scale biological process studies the need for simple 

empirical methods of population projection is clear.  If these are to be useful we would be well-advised to make them 

as statistically appropriate as possible, giving due regard to the use to which the methods are to be put.  The ARMA 

model does not pretend to model biology directly, but is an attempt to improve the current empirical approach by 

accounting for time-series structure in the historical data and producing projections conforming to that same structure.  

The outputs of SSB distributions from the ARMA model are at a slightly lower level than those from the bootstrapped-

residual model, and with less uncertainty: the second feature is due to the fact that the time-series structure in the 

recruitment residuals is now modelled explicitly rather than being allowed to influence randomly the outputs.  Given 

this, we propose that ARMA time-series models might be contemplated for medium-term projections by assessment 

working groups when evidence of historical time-series structure exists.  Including a temperature signal as a covariate 

in the stock-recruitment relationship may help to explain more of the variation for some stocks.  However, since the 

mechanisms driving the relationship are poorly understood it may be that temperature is merely a proxy for the true 

causal environmental factor(s).  Further, prediction of climatic variables into the future, particularly for several years, is 

difficult or impossible so projections are limited to "what if?" scenarios under various broad environmental regimes.  

Nonetheless given current concerns of global warming there may be value in such exercises. 

 

There are a number of additional analyses to be carried out in the future to extend the relevance of these findings for 

fisheries management. The statistical properties of the parametric estimation procedure are worthy of further 

investigation since the estimating equations are reminiscent of those first proposed by Aitken (1935) and might be 

improved. The starting date for projections could be pushed progressively further back in time, allowing more 

extensive evaluation of the degree to which projections from different models agree with estimated SSB values.  

Bootstrapped sensitivity tests could be used to build up a distribution of median projected SSB levels, thus yielding a 

measure of the robustness of this metric of projection performance. Where ARMA modelling is inappropriate, 

investigations could be undertaken into alternative schemes, whereby blocks of residuals are resampled, which would 

retain some of the time-series structure in projections.  The selection of models with due regard to plausible 

performance in projections should be studied further.  
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