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ABSTRACT

As part of the EU funded project CLUSTER a database was constructed of herring schools
identified during a series of acoustic surveys in the NW North Sea. @ Among other
descriptors, the database included each schools’; height, length, S; and density. The
number of schools per 1 nmi EDSU (Elementary Distance Sampling Unit) was also recorded.
The relationship between these descriptors and a range of external variables (eg bottom
depth, time of day, and location) were examined using a suite of multiple regression models.

The results indicate strong non-linear dependencies on time of day and water depth.
Herring school count per EDSU tends to be high during the middle part of the day and lower
at dawn and dusk. Furthermore, the ‘shape’ of this dependence on tme of day is
non-constant and changes with location. In some areas, for example, herring school count
peaks in the morning, and is unimodal; in others it can be bimodal with a peak in the
afternoon. Possible explanations for such patterns will be discussed.

Since regression models allow variability due to a mix of explanatory covar:ates to be
assayed and divided, the overall framework can then be used to explore further nto the
relationships. In this paper we present results showing the density dependent relations
among herring schools in the North Sea, ie to what extent does the local school apundance
influence the size (energy) of a given school. To achieve this we use the regresson models
to remove the effect of time of day, longitude, latitude and bottom depth  After this the
impact of local school abundance on school size can be ascertained by careful examination
of the residuals. The results of this analysis and its implications will be Jescribed and
discussed.



INTRODUCTION

This work was inspired by the CLUSTER project which is part of the European Community
FAIR programme (1997-1 999). The goal of CLUSTER is to characterise schooling
behaviour among a range of European pelagic fish species using data collected during
acoustic surveys (Reid et al., 2000). Here, we focus on acoustic survey data collected by
the Aberdeen Marine Laboratory in the north-west North Sea in July 1991, 1993-1997 (see
Fig. 1). The surveys cover the waters surrounding Orkney and Shetland where the most
abundant pelagic fish are pre-spawning Clupea harengus (Atlantic herring).

The present contribution examines how environmental information (location, time of day and
water column depth) influences the numbers of herring schools detected by echo-sounder
and how the numbers of fish within each of those schools (back-scattering energy) is
simultaneously related to the number of schools recorded in a particular location. We refer
to the number of schools in a particular area as the ‘density’. Our Null Hypothesis is:

“Small Herring School Size In A Particular Location Is Caused By High Counts Of Nearby
Herring Schools.”

Addressing this hypothesis is not as trivial as it first appears. It is well established that both

counts of herring schools in a particular area and the measurement of each individual school
size or acoustic backscattering energy (S,) depend on a host of external factors which can
be termed covariables or predictor variables, eg depth or time of day (Swartzman et al.,
1995; Swartzmann, 1997; Petitgas and Levenez, 1996). At midday more herring schools are
counted, mainly because individual fish and very small groups collect together probably for
protection from predators. On the other hand fewer schools are seen at midnight as fish
disperse, typically towards the surface to feed (Edwards and Armstrong, 1993). Since
interest here centres on a specific effect, viz density-dependence, which is linked to and
probably interacts with all the major spatial and temporal effects, it is clear that signal from
the important temporal and spatial predictors should be removed before there is any
evidence that small or large school size might be caused by high local school count.

Another way of seeing this is to consider a specific point in space and time and ask whether
the herring schools seen there are either larger or smaller than would be expected given that

point in space and time and if so, can any of that extra unexplained variability be attributed to

the count (density) of herring schools recorded locally?

Both counts of herring schools and their associated S,, therefore, depend on multifarious
factors and it is clear that statistical procedures should be deployed that allow the removal of
such complex trends before the influence of local school count can be quantified.

In this paper we describe one reasonable attempt to find stochastic models for describing
average school size and average school count using covariates of location, time of day and
bottom depth, confirmed during preliminary analyses as among the most influential
variables.  Residual variation from each model should then provide information on the
dependence of herring school S, on local school count (density) since variation due to the
external factors described above should have been removed.



MATERIALS AND METHODS
Acoustic Surveys and Data

Data for six (1991, 1993-1997) acoustic surveys, all done between mid and late July, were
available for the present work (Table 1). The data were collected by FRV Scotia using the
Simrad EK500 38-kHz echo-sounder. Data were stored using the BI500 high volume echo
data format. The archived BI500 data were then transformed into matrix images in such a
manner that each pixel in the image corresponded to a single acoustic back-scattering
strength sample from a single echo-sounder transmission.

Information on each school was then extracted using image-processing software (Image-Pro
Plus, Media Cybernetics). This procedure combines automated image filtering algorithms
with interactive decisions made by the user (Reid and Simmonds, 1993). The threshold for
elimination of background scatters was set at -60 dB which provides the optimum effective
beam angle for the school volume back-scatter (Sv) of the schools collected. The effective
beam angle that samples a school varies with the difference ASv between the echo-
integration threshold and the true Sv of the school. Herring schools have a volume back-
scattering strength in the region of -40 to -45 dB. When ASv is in the range (-25<ASv>-10
dB) the beam is relatively large but insensitive to variations in the ASv. Following thresh-
holding a single pass of the morphological filters was used for object preparation. |t was
found that a -60 dB threshold coupled with the single pass best preserved school
morphology and biomass. The objects detected are presented to the user as ‘schools’ and it
is possible to discriminate those of herring from those of other species.

Information is collected almost continually during an acoustic survey as the research vessel
steams along its transect path (Fig. 1). In our data, the survey path is divided into 15 minute
time intervals termed EDSUs (Elementary Distance Sampling Unit). The herring schools
detected by the echo-sounder within each of these compartments are then counted,
measured and their biomass determined (Reid et al., 2000). Physical information for each
EDSU is also recorded, eg mean depth per EDSU, and mean sea-surface temperature per
EDSU, which may be useful in explaining the fish distributions (Reid et al, 2000).

Statistical Analyses

Here, we are interested in counts of herring schools recorded per ESDU and the associated

back-scattering energy (S,) of each school. School count and school energy (S,) both
depend on levels of various other factors in the data (eg depth, longitude, or time of day) and

regression models are the most obvious choice for partitioning the signals from each (Bailey
et al, 1998; Beare et a, 1998; Daskalov, 1998; Venables and Ripley, 1994; Lindsey, 1995).

Discrete. count data (numbers of herring schools per EDSU) and continuous data for the
school energy (S,) can both be handled within the frameworks of Generalised Linear Models
(GLMs) and/or Generalised Additive Models (GAMs) (McCullagh and Nelder. 1989; Hastie
and Tibshirani, 1990).

The Poisson distribution is appropriate for count data (Lindsey, 1995) and it was our first
choice here for modelling counts of herring schools per EDSU. Application of GLMs and
GAMs from the Poisson family to the count data, however, tended to produce over-dispersed
models with unacceptably high residual variability (Lindsey, 1995). This large residual
variability, caused by clustering of the count data in space and time, makes discrmination
between models using conventional Chi-square or Akaike Information Criterion [AIC) tests
unreliable. Methods for correcting for over-dispersion in Poisson models are avaiable (see



McCullagh and Nelder, 1983; Lindsey, 1995; Beare and McKenzie, 1999) but were not used
here. Instead we opted to account for the higher than expected residual deviances directly
by modelling the mean/variance relationship in the data using GLMs and GAMs from the
Quasi ‘family’ (Venables and Ripley, 1994, Lindsey, 1995). Data for school acoustic back-
scattering energy (S,) were also modelled with GLMs and GAMSs, but this time Gamma error
proved to be appropriate since school S; data are skewed and always positive. Non-linear
dependence was described within the GLMs using parametric natural spline functions, and
within the GAMs using non-parametric locally-weighted regression smoothers.

RESULTS

Sampling intensity was similar during each of the six surveys (Table 2a), although the
numbers of herring schools recorded varied dramatically (Table 2b). In 1997, for example,
1,863 herring schools were seen in 2,239 EDSUs, while in 1995 only 816 schools were seen
in 2,052 EDSUs. This information can be translated into a rate of herring school encounter
per EDSU (see Table 2b). Mean encounter rates of herring schools in 1995, for example,
were half those recorded during the 1996 and 1997 surveys (see Table 2b).

Spatial distributions of the herring school abundance also varied between surveys. In July

1991, most herring were seen north-west of Shetland (see Fig. 1). In 1993 and 1994 highest
herring school counts were noted in the Fair Isle current, while more recently (1995, 1996
and 1997) herring were most prevalent to the west of Orkney and Shetland, between the 100

m and 200 m depth contours (Fig. 1).

Generalised Additive Models (GAMs)

As stated, the specific aim of this study is to explore how herring school S, recorded during
six acoustic surveys depends on herring school density, ie the count of schools recorded
nearby. To this end the two response variables, counts of herring schools EDSU and the
energy (S,) of each school, were modelled using GAMs from the Quasi and Gamma families
respectively.

In order to reduce complexity, only longitude, latitude and time of day were considered. The
data from each of the six surveys were modelled separately, thereby allowing the spatio-
temporal patterns from each to be different. The GAM fits to the count data for 1991 and
1993 surveys are summarised in the analysis of deviance tables (Table 33, b).

Terms fitted are described in Tables 3a and b using S-plus notation. ‘Lo’ refers to a locally-
weighted regression smoother (Chambers and Hastie, 1991) while ‘Lon’, ‘Lat’ and ‘Time’ are
longitude, latitude and time of day respectively. The third and sixth columns show the
amount of deviance (variance) reduced following successive introduction of extra terms into
the models. The second and fifth columns reflect the ‘cost’ in degrees of freedom of that
reduction in deviance (variance). In the last column we test whether that reduction in
deviance is statistically significant given the extra ‘cost’ in model complexity (degrees of
freedom). In the case of the 1991 survey data, the third model is the one chosen because
the residual deviance is reduced by 490 from 3,102 to 2,611. To get this ‘better’ model we
actually need 11 less degrees of freedom (see Table 3a).

The analysis of deviance tests between models 1 and 2 gauges whether time of day
explains significant quantities of deviance (variance) when covariables of location are
also included; the test between models 2 and 3 ascertains whether the effect of longitude



depends on latitude when fime of day is included; while the last test, between models 3 and

4 assays whether the effect of time of day depends simultaneously on longitude and latitude.
In other words the last model allows the spatial pattern of herring school occurrence to vary
with time of day and tests whether this model is an improvement (statistically) over the one
where the spatial pattern is the same at each time of day. For the 1991-1997 surveys,

locational covariables, here longitude and latitude, interacted significantly with each other.
Time of day, whilst significant as an additive term, was (statistically) independent of both
longitude and latitude. This means that for all of the surveys, the shape of the spatial pattern

of herring school count per EDSU did not vary with time of day, only the average level

changed (Fig. 2).

The equivalent of model 3 (Table 3a), but this time with Gamma error, was chosen to
summarise the herring school S, data. The spatial patterns of average herring school
energy are fairly inconsistent between surveys although schools tended to have larger
energies around Shetland and in the southern part of the study area in most years. The
schools are also larger in the evening. It should be noted here that the average school
energy is not necessarily related to total herring biomass. Figure 3 provides a summary only
of where the largest herring schools are located; not where there are most herring.

GAM-Derived Partial Regressions

Residuals from the two GAM regressions (Figs 2 and 3) are plotted against each other in
Figure 4. A linear model was then fitted through the data by least squares. Negative slopes

indicate negative density-dependence and vice-versa. According to Figure 4, herring school
size/energy (S,) recorded during the ‘91, ‘93, ‘94 and ‘96 surveys was independent of local
school count. In other words, the S, of any herring school at a particular point in space and
time does not depend on the count of schools recorded nearby. In the ‘95 and ‘97 surveys,

herring school S;, however, did exhibit some negative density dependence. Some schools
had a lower S, than expected at a specific location, time of day, while others had larger than
expected S, for that location and time of day.

Hexagonal Bins and Generalised Linear Models

The GAM-based analyses of the acoustic data described above reveal interesting patterns,
some of which are difficult to explain. Spurious effects may have been caused by non-
random sampling, the impact of which can be difficult to assess when using the globally
encompassing, GAM-based methods described above. Consequently we opted to
investigate the same problem in a different way by sub-setting the data into smaller spatial
compartments as opposed to trying to'model dependence on location directly as was done in
the GAM-based approach.

To do this, the same data used above were divided into arbitrary spatial compartments using
a procedure known as ‘Hexagonal Binning’ available with S-plus (see Carr et a/., 1987; Carr,
1991; Kaluzny et a/., 1997 for details). Locations of sub-regions selected by the procedure
are displayed (Fig, 5) and the numbers of observations within each are given in parentheses.

Data within each of the 14 sub-regions could then be extracted and modelled as separate
subsets of the main data-set. The procedure is intended to lessen the impact of location on

our interpretations and allows the more straightforward isolation and assessment of possible
sources of bias due to non-random sampling.

In the GAMs described above, longitude, latitude and time of day were used directly as



predictor variables and separate models were fitted to the data from each survey (Figs 2 and

3). Here, since the impact of location has been reduced by aggregating the data into
‘hexagonal bins’ or ‘sub-regions’, we examine the effect of time of day and bottom depth on

the count of herring schools per EDSU and their S, within each sub-region (Fig. 5). GLMs
with Quasi error were appropriate for the counts, and GLMs with Gamma error for the school
S, data. A discrete six-level factor entered the models denoting survey.

The first task was to convince ourselves that the data within each sub-region were actually
representative over a sensible range of permutations of bottom depth and time of day for
each survey. For instance at noon, in Sub-region 14 during the 1991 survey, there should
be observations reasonably evenly spread along the entire depth range within the area.
Similarly at 100 m in 1993 in Sub-region 10, sampling must have been done at regular
intervals throughout the day. These important aspects are more transparent and easier to
interpret when smaller subsets of the data are examined (Beare and McKenzie, 1999).

The results of the analyses on the individual hexagonal sub-regions of >300 observations
are described below. The model selection procedure was guided, in addition to statistical
considerations, by our biological knowledge of the data. The dependence of herring counts
and school S; on time of day and bottom depth was unlikely to be linear (Figs 2, 3 and 4)
and so, after experimentation, both the discrete count data and the continuous school S,
data were fitted to the time of day, depth and survey variables using parametric natural
spline functions.

‘Best’ models were selected using a painstaking, manual approach. This was favoured over
automated procedures which may often obscure difficulties associated with non-random
sampling (Beare and McKenzie, 1999a, b, c). The use of natural spline functions to model

non-linearity involves the selection of a degrees of freedom parameter. This quantity is
reflected in the flexibility of the curve fitted. Separate models fitted to each covariate
separately (time of day, bottom depth and year) initially provided useful guides as to
reasonable numbers of degrees of freedom needed in the spline function and hence the
shape needed for each covariate. Once such shapes were established, all of the covariates
were combined in a single multiple regression model. Further diagnostic checks were then

done, and the importance of each covariate, given the presence of others in the model, was
assayed statistically. Lastly, standard model checking and residual analyses were done
(Chambers and Hastie, 1992) and the significance of the fit to the data was ascertained
using Chi-square tests (see Beare and McKenzie, 19993, b, c).

Interaction terms between the three covariates (time of day, bottom depth and year/survey)
were not included, although there is evidence that some may well be statistically ‘significant’.
This option was taken for a variety of reasons. Firstly, it drastically simplifies the model-
selection problem, and secondly all the GLMs selected with covariates as independent terms
“fitted” the data adequately. It should also be noted that interactions are actually allowed to
occur within our overall data-analytic framework (both GLM and GAM) via the separate
modelling of the data in smaller subsets. The shapes of time of day and/or depth
dependencies, for example, can and do vary between surveys (Figs 2 and 3) and between
sub-regions (Figs 6, 7, 8 and 9) and the global perception by the investigator 1S that
interactions are occurring throughout the analysis; although not formally fitted within the
models (GLM).

Our opinion is that the ‘simple’ GLM summaries we obtained by modeling the terms
independently are useful descriptions of the data which provide novel insights into schooling
behaviour of herring.  Further, since the models fit they are useful for removing signals due



to bottom depth and time of day they allow the sole impact of school count per EDSU on
school §, to be examined with a satisfactory level of confidence.

Sub-Region 2

Sub-region 2 is located to the south-west of Orkney. During the six surveys, a total of 422
observations were made. The maximum number of herring schools seen within an EDSU
was eight during the July 1994 survey. Sea surface temperature and salinity ranges are
given in Table 4a. The bottom depth and temporal (hourly) ranges of sampling spanned in
sub-region 2 during each survey also varied. In 1995, for example, observations were only
available from 0206 to 0430 GMT at depths of between 79 m and 84 m.

During all surveys the majority (335) of the EDSUs covered had zero school counts. Of the
EDSUs where herring schools were counted, school Sa varied between a minimum of 2.6 via
a median of 23.7 to a maximum of 2,081.

Only data from the 1991, 1994 and 1996 surveys were used in the GLMs. Time of day was
significant and its dependence was summarised using a natural spline function (de Boor,
1978) with 4 degrees of freedom (df) (see Fig. 6). The effect of bottom depth was
significant, non-linear and also required 4 df (Table 5). The diel pattern of herring school
abundance was weakly bimodal with peaks at ca 0700 GMT and ca 1500 GMT but these
conclusions should be treated cautiously due to data-sparsity (Fig. 6).

The output from the model also permits dependence due to bottom depth within each sub-
region, given a particular time of day, to be examined. Identical data matrices used in
plotting Figure 6 were thus transposed to produce Figure 7 which allows dependence on
bottom depth, given a particular time of day to be visualised. Numbers of herring schools
seen increases with bottom depth in Sub-region 2 and it can also be noted here that the
magnitude of variability due to time of day is comparatively small (Fig. 7).

GLMs from the Gamma family were used to summarise the dependence of school S, on the

time of day, bottom depth and year covariates. In Sub-region 2, 4df were selected for time
of day while bottom depth, given the inclusion of time of day, failed to explain significant
guantities of the variability (Table 6; Figs 8 and 9). School S; was high in the morning and
evening, although there was an odd peak at ca 1100 which may be due to a sampling

inconsistency. The indirect relationship between the average herring school count and their
S, is clear (compare Figs 6 and 8).

Sub-Region 3

The 1993 and 1995 surveys were omitted from the analysis due to data sparsity. Sampling
done is summarised in Table 4b. Time of day, depth and year all explained statistically
significant amounts of variability in the school counts. Time of day required a spline function
with 5 df (Table 5), depth 3 df and year entered the model as a four-level factor.

Peak numbers of herring schools were seen at ca 0900 GMT (Fig. 6) after when average

counts fell, although there was a small ‘shoulder’ at ca 1500 GMT. Mean herring school

counts declined as bottom depths increased between 90 m and 150 m and the rate of
decline increased after 125 m.



Average school S, also depended on time of day, bottom depth and survey. Five df were
used for time of day, while bottom depth was found to be linear (Table 6). The shapes of
these dependencies are displayed in Figures 8 and 9. Herring school S, exhibited broadly
opposite behaviour to the counts (Figs 6 and 7) decreasing gradually with bottom depth.
Herring schools had the highest average S, in the morning, after which time S, decreased
and a minimum was recorded at ca 1400 GMT (Figs 8 and 9).

Sub-Region 5

Sub-region 5 is situated west of Orkney (Fig. 3). 1,103 observations were made in the area
during the six surveys. Visual examinations suggested that sampling coverage was
adequate along both time of day and bottom depth trajectories (see Table 4c¢). Maximum
average counts of herring schools per EDSU were seen in the morning at ca 0800 GMT,

while the counts increased steadily with bottom depth (see Figs 6 and 7). Average school S,
in Sub-region 5 was also modelled successfully using time of day and bottom depth
predictors (Table 6, Figs 8 and 9). According to the data, herring schools had minimum
mean S, at ca 1000 GMT, at bottom depths of ca 125 m (Figs 8 and 9).

Sub-Region 6

This region is situated in the Fair Isle current, east of Orkney. Mean herring school count
increased as the day progressed and fell as it ended, (Fig. 6) but there was no obvious peak.
Numbers of herring schools increased gradually with depth to peak at ca 115 m (Fig. 7) after
which they again decreased. Average herring school S; was lowest at ca 125 m (Fig. 9) and
highest in the evening (Fig. 8).

Sub-Region 7

Sub-region 7 is located on the south-eastern periphery of the study region and was relatively
well sampled, although herring schools themselves were rare in the area. Average bottom
depths ranged from 97 m to 157 m. Sea surface temperatures and salinities, during the six
July surveys, spanned the range 11.5-15.3°C and 33.1-35.2%c (Table 4e) respectively.
Mean counts of herring schools had a unimodal shape over the course of an average day,
the peak occurring at 1200 GMT (Fig. 4). School counts declined linearly (on the scale of
the predictor) with increasing depths (Fig. 5). Average school S, was highest in the evening
and lowest at a depth of ca 130 m (Figs 7 and 8).

Sub-Region 10

Sampling effort was particularly high in Sub-region 10, situated west of Shetland, (Fig. 5)
where 2,577 observations were made altogether during the six surveys. The dependence of
herring school counts on time of day was bimodal in shape (Table 5). The first peak of the
day occurred in the morning at Ca 0800 GMT while the second, smaller peak appeared later
in the day at ca 1800 GMT (Fig. 6). A unimodal function with a maximum at ca 130 m
described the relationship between herring school count and bottom depth (3 df. Table 5).
Individual mean school energies were highest in the morning and mid afternoon (Fig. 6) and
lowest at ca 130 m.

Sub-Region 11

This region is located west of Shetland. High counts of herring schools were recorded in the
area during the 1991, 1996 and 1997 surveys (Fig. 2). During the day there were two peaks



of herring school count (Fig: 6), the first smaller peak was recorded at ca 0800 GMT, and the
second larger peak at ca 1600 GMT. Mean school count increased steadily with rising
depth, peaking at ca 140 m (Fig. 7).

Sub-Region 12

Four hundred and eighty seven observations were made in Sub-region 12 during the six
surveys. 1991 and 1994 data were discarded because of inadequate sampling coverage
(Table 4h). Dependence of school count on time of day was weakly bimodal in shape with a
maximum occurring particularly early in the morning at ca 0630 GMT followed by a much
smaller evening peak at ca 2000 GMT. Numbers recorded decreased steadily between
depths of 90-160 m. Herring school S, peaked at noon while the shape of the depth
dependence was similar to that described in the other sub-regions with minimum S, schools
recorded at depths of ca 125 m.

Sub-Region 14

This area is directly north of Shetland and is ¢characterised by steep depth gradients,
relatively deep, warm, salty Atlantic water (Table 4g) and high numbers of herring.
Extensive sampling was done during ail surveys (Table 4g), although there were no data
collected after 2015 GMT in 1994, and none deeper than 209 m in 1997. Numbers of
herring schools exhibited a strongly bimodal dependency against time of day with sharp
maxima at ca 0830 GMT and ca 1800 GMT (Fig. 6; Table 5). The second peak in the day
was only slightly larger than the first. As far as bottom depth is concerned, herring school
count increased steadily moving into deeper water and peaked at cal40 m, (Fig. 7). School
S, was high at mid-day and early evening (Fig. 8) and declined steadily with bottom depth

(Fig. 9).
Sub-Region 15

Sub-region 15 is west of Shetland and has the highest average depth (Fig. 5; Table 4h) in
the study region. Over the daily cycle, average herring school count was weakly bimodal in
shape with maxima at ca 0830 GMT and ca 1430 GMT (Fig. 6). The second peak in the day
was larger than the first and was similar to the patterns observed in Sub-regions 11 and 12.

School counts increased with depth, the shape of the function being similar to those of Sub-
regions 10, 11, and 14. The final model selected for the count data had 5 df for time of day
and 3 df for bottom depth (Table 5). Average school S, was lowest in the morning and

evening, peaked at ca 1400 GMT, and decreased steadily with increasing bottom depth
(Figs 8 and 9).

GLM-Derived Partial Regressions

The residuals from the GLMs (Quasi) for counts are plotted against the residuals from the
GLMs (Gamma) for the school S, for each Sub-region in Figure 10. In Sub-regions 2, 3, 6,

7, 12, 14, and 15 there is no statistically significant slope of either sign and therefore no

dependency between the S, of each school and the local count that cannot be explained by
dividing the data into spatial subsets and modelling the variation left in the data as a function
of time of day and bottom depth. Significant negative slopes, however, were found in the
south-western portion of the study region, in Sub-regions 5, 10 and 11.



DISCUSSION

The two complimentary partial regression approaches described may seem unnecessarily
laborious. It must, however, be remembered that we are aiming to extract an extremely
subtle signal from data exhibiting complex non-linear and multivariate dependencies. Only
by attempting the very difficult removal of signals due to the local environment (eg bottom
depth and time of day), can we have confidence that residual variability left unexplained is
due to any specific factor, eg the number of local herring schools.

It is well known (Figs 2, 3, 6, 7, 8 and 9) that numbers of fish schools counted on acoustic
surveys tend to increase as the day progresses, and that the energy (S,) of each school
simultaneously decreases (Edwards and Armstrong, 1983; MacLennan, 1990; Petitgas and
Levenez, 1996; Swartzman, 1997). This reduction in school S,, though, may not necessarily
be caused by high counts of schools nearby. Average school count increases and their
respective S, falls due to the diurnal behaviour of the fish which is connected with feeding
and predator avoidance (Olsen, 1990). Similarly more, smaller herring schools are seen at
bottom depths between 115 m and 140 m but they or may not actually be smaller or have
lower energies because they have more neighbours.

Our partial regression approach allows us to assign variability in herring school S,

specifically to the number of schools recorded locally and the results described in this study
suggest that herring school S, is most often independent of local school count. This means

that herring school S, at a specific point in space and time conveys little information about
how many schools are nearby and similarly, local school count per EDSU provides little

information as to the size of herring school to be expected.

In some instances, however, negative density-dependence was indeed detected in the
herring data. The energy (S,) of some herring schools does seem to be influenced by local

school count after making allowances for the spatial and temporal effects. It follows that
some herring schools have higher/lower average energies (Sa) than would be expected from
a simple consideration of location, time of day and bottom depth, and that some of the extra
variation in school S, data may be explained by reference to local school count.

Two different modelling approaches were adopted in this paper to address the same
problem. In the first, GAMs were used to model the dependence of the school counts and
energies on three predictor variables (longitude, latitude and time of day) for each year
separately (see Figs 2 and 3) while in the second, GLMs were used to model the
dependence of the school counts and energies on time of day, depth and year within
separate spatial compartments.

The GAM-based approach suggests weak density-dependence of herring school S,
occurred during the 1995 and 1997 surveys, while the GLM-based approach suggests weak
density-dependence within Sub-regions 5, 10 and 11. It is certainly possible that the
negative density dependencies that we identified are artefacts of inadequate trend removal.

If, however, we consider them to be genuine effects it implies that school energy falls as
school count increases, faster than would be expected for that particular location depth and
time of day. Negative density dependence was detected by the GAM-based apgroach in the
1995 and 1997 survey data when the majority of herring biomass was situated west of the
Orkney-Shetland Ridge in relatively warm, saline Atlantic water; and by the GLM-based
approach in three sub-regions also to the west of the Orkney-Shetland Plateau 't 's likely
that some aspect of the behaviour of herring in two areas west and east ¢f t~e Orkney-
Shetland Plateau is different.
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Returning to our original Null Hypothesis it appears that the herring schools west of the
Orkney-Shetland Plateau are smaller (have lower energies) when there are high counts of
nearby schools. It means that some of the fish detected acoustically in the larger schools
are not detected in the smaller, more numerous schools, causing lower school energies to
be measured than would be expected at that point in space and time. These ‘lost’ fish might
be swimming singly; or be in much smaller groups, not identified as schools by the rather
arbitrary criterion of an ‘acoustic school’ that we used (see Kieser et al., 1993 and Reid et
al., 2000). In summary there do appear to be regional differences in the aggregative
behaviour of herring which may be due to regional differences in migration activity, spawning
or age structure. Clearly these aspects require further investigation.
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TABLE 1

Timing of July acoustic surveys between 1991 and 1997

Survey Start date (July) End date (July)
1991 13 31
1993 11 29
1994 | 7 25
1995 | 9 26
1996 14 | 30
1997 9 27




TABLE 2A

Numbers of observations made during each acoustic survey

Survey 1991 1993 1994 1995 1996 1997
N 2,221 2,234 2,364 2,052 2,140 2,239
TABLE 2B
Numbers of herring schools observed during each acoustic survey
Survey 1991 1993 1994 1995 1996 1997
Schools 1,672 1,423 1,388 816 _ 1,792 1,863
Schools/n 0.7528 0.6370 0.5871 0.3977 0.8374 0.8321




TABLE 3A

Results of Generalised Additive Model fits to herring count data for 1991. (NB smoothing

span = 0.06)

Terms R%Sfid ‘ RS;Ld Test Df Dev ‘ Pr (F) |
1. Lo (Lon) + lo (Lat) | 2,149 | 3,940 |
| 2. Lo (Lon) +lo (Lat) + lo (Time) | 2,119 | 3,102 | +lo (Time) | 30.7 | 838 | <0.01
| 3. Lo (Lon, Lat) + lo (Time) | 2,130 2,611 2vs 3 -11 490 | <0.01
4. Lo (Lon, Lat, Time) | 2147 | 3276 | 3vs4 17 | 864 | <0.01 |

TABLE 3B
Results of Generalised Additive Model fits to herring count data for 1993. (NB smoothing
span = 0.06)
. Resid Pr
Terms Resid Df Dev Test Df Dev (Chi)
1. Lo (Lon) + lo (Lat) 2,159 3,584
2. Lo (Lon) + lo (Lat) + lo (Time) 2,128 3,164 | +lo (Time) 31 ‘1 420 <0.01
l
3. Lo (Lon, Lat) + lo (Time) 2,147 2,874 2vs 3 -19 i 290 <0.01
4. Lo (Lon, Lat, Time) 2,163 3,389 3vs4 -16 I -515 | <0.15




TABLE 4A

Data ranges in Sub-region 2

n Time (GMT) SST (°C) SSS (%o) Depth (m)
1991 121 2.2-16.9 ‘NA NA 44.6-116.6
1993 | 45 5.7-11.8 NA NA 36.9-93.3
1994 145 2.1-22.0 10.6-12.9 34.3-34.6 42.4-126.7
1995 20 2.6-4.5 10.6-11.7 34.6-34.8 64.1-79.5
1996 71 6.6-19.6 10.8-11.5 34.6-34.9 60.2-117.6
1997 20 5.5-11.4 12.1-13.2 34.9-35.1 63.0-78.1
TABLE 4B
Ranges of covariables in Sub-region 3
n Time (GMT) SST (°C) SSS (%o) Depth (m)
1991 171 2.1-22.0 NA NA 88.8-151.6
1993 29 14.4-18.7 NA NA , 110.5-146.3
1994 199 2.1-21.8 12.2-15.1 34.4-349 82.1-153.6
1995 27 8.4-11.1 11.9-12.8 35.0-35.1 106.1-149.6
1996 104 2.4-22 11.5-12.6 34.8-35.1 91.7-164.2
1997 73 4.8-21.9 12.7-13.8 35.1-35.2 103.8-153.4
TABLE 4C
Ranges of covariables in Sub-region 5
n Time (GMT) { SST (°C) SSS (%) Depth (m)
1991 179 2.2-21.5 NA NA 40.6-156.9
1993 181 2.1-22.0 NA NA 37.4-192.4
1994 183 2.1-20.5 11.2-13.5 34.0-35.1 354-154.9
1995 170 2.0-21.9 11.2-13.8 33.2-35.0 40.1-183.9
1996 181 3.8-20.7 11.2-12.9 34.5-35.2 519-175.6
,{ 1997 | 212 | 20219 11.0-14.5 34.9-35.2 48 8-199.8




TABLE 4D

Ranges of covariables in Sub-region 6

n Time (GMT) SST (°C) SSS (%o) Depth (m)
1991 284 2.2-22 NA NA 36.9-149.9
1993 358 2.1-22 NA NA 38.6-157.6
1994 319 2.1-22 10.8-13.2 34.1-35.1 45.2-147.2
1995 322 2.0-22 10.4-13.3 34.5-35.2 36.4-159.8
1996 331 1.9-22 10.7-12.5 34.6-35.2 32.8-157.3
1997 321 2.1-22 10.5-13.3 35.1-35.3 34.5-157.2
TABLE 4E
Ranges of covariables in Sub-region 7
N July Date | Time (GMT) SST SSs Depth (m)
1991 | 126 15 18 6.5 | 220 | NA NA NA NA 1131 | 1544
1993 | 323 11 16 21 | 21.7 | NA NA NA NA 974 | 1494
1994 | 198 9 12 22 | 202 | 120 | 144 | 342 | 351 | 1074 | 152.2
1995 | 285 9 13 21 | 220 | 128 | 1563 | 33.1 | 352 | 100.5 | 154.0
1996 | 188 14 18 21 | 220 | 115 | 126 | 348 | 351 | 1011 | 156.6
1997 | 187 10 14 20 | 219 | 129 | 146 | 347 | 3562 | 1027 | 152.8
TABLE 4F
Ranges of covariables in Sub-region 10
N | Time(GMT) |  SST(°C) SSS (%o) Depth (m)
1991 360 2.0-21.9 | NA NA 52.4-247 .9
1993 364 2.1-22.0 ; NA NA 515-2447
1994 424 2.1-22.0 ‘ 10.7-13.5 34.3-35.1 52 0-243.6
1995 336 2.0-21.9 10.9-12.7 35.1-35.3 52 2-240.4
1996 | 471 2.0-21.9 10.7-12.7 34.5-35.3 51 8-2456
1997 ‘ 425 2.0-21.9 11.1-14.3 35.1-35.4 52 5-214.9




TABLE 4G

Ranges of covariables in Sub-region 11

n Time (GMT) SST (°C) SSS (%o) Depth (m)
1991 326 2.1-22 ‘NA 62.7-163.1
1993 | 296 2.1-22 NA 63.3-166.1
1994 352 2.0-22 11.6-13.8 35.0-35.2 59.9-170.2
1995 401 2.1-22 10.3-14.5 34.6-35.3 58.0-166.4
1996 366 2.3-22 10.8-12.8 34.3-35.3 62.3-163.3
1997 438 2.1-22 11.3-14.0 34.8-35.3 59.1-166.0
TABLE 4H
Ranges of covariables in Sub-region 12
n Time (GMT) SST (°C) SSS (%) Depth (m)
1991 30 18.2-19.7 NA 124.5-150.7
1993 165 2.0-22.4 NA 92.5-160.4
1994 26 12.9-18.0 12.7-13.2 35.1-35.1 120.9-153.6
1995 125 7.0-18.6 13.4-14.8 33.2-35.1 94.0-159.0
1996 28 2.1-220 | 11.9-12.0 34.7-35.2 122.8-151.1
1997 113 2.0-22.0 [ 13.6-14.9 33.5-35.2 111.1-153.7
TABLE 4G
Ranges of covariables in Sub-region 14
N Time (GMT) SST (°C) SSS (%o) Depth (m)
1991 130 2.1-21.9 | NA NA NA 95.0- 239.2
1993 108 2.0-21.9 ‘ NA NA NA 91.1- 241.4
1994 196 2.6-20.3 | 11.4-13.4 | 349- | 352 89.5- 247.6
1995 182 2.0-219 | 11.4-13.0 35.1- | 35.3 86.0- 248.9
1996 174 2.0-21.9 11.6-12.6 345- | 353 87.0- 247.5
| 1997 153 2.0-21.9 12.0-14.0 | 35.3- | 35.4 93 .2- 209.3




TABLE 4H

Ranges of covariables in Sub-region 15

N Day Time SST SSS Depth nschools
1991 | 204 | 20 25 35 | 203 | NA | NA | NA | NA |1234|2485| 0 | 12
1993 | 191 20 22 3.0 | 215 | NA | NA | NA NA 121212477 | 0 4
1994 | 198 | 15 19 | 20 | 220 | 129 | 136|350 | 352 |116.2|2422| 0 | 9
1995 | 141 16 20 20 | 220 | 121 (132|351 | 352 [ 1185|211.5| 0 2
1996 | 131 21 23 | 20 | 219 | 119 [ 123|351 | 3563 |117.2 (1852 | O 8
1997 | 246 17 21 20 | 219 | 129 | 148 | 340 | 353 | 1150|2071 | O 10




TABLE 5

Summary of best GLM (Quasi) fitted to the herring school count data. DF refers to the
number of degrees of freedom selected in the natural spline smoothing function

Sub-region Time : Depth Year
2 4 df 4 df Factor
3 5 df 3 df Factor
5 4 df 2df Factor
6 5df ; 5 df Factor
7 6 df Linear Factor
10 6 df 3 df Factor
11 5 df 2 df Factor
12 6 df 2 df Factor
14 4 df 3 df Factor
15 5 df 3 df Factor




TABLE 6

Summary of best GLMs (Gamma) fitted to the herring school energy data. DF refers to the
number of degrees of freedom selected in the natural spline smoothing function

Sub-region Time : Depth Year
2 4 df Non sig Factor
3 5 df Linear Factor
5 3 df 2 df Factor
6 4 df 2 df Factor
7 4 df 2 df Factor
10 3 df : 2 df Factor
11 4 df 2 df Factor
12 4 df 2 df Factor
14 5 df 3 df Factor
15 6 df 2 df Factor




FIGURE LEGENDS

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 5.

Figure 6.

Figure 7

Figure 8.

Figure 9.

Acoustic surveys between 1991 and 1997. Circles represent numbers of herring
schools recorded.

Spatial and diel pattern in herring school numbers recorded in the survey area
in July 1991, 1993-1997.

Diel pattern in mean herring school S, in the survey area in July 1991, 1993-
1997.

Density dependence in the Herring Schools. 1995 and 1997 surveys have
statistically significant (negative) slopes.

Location of hexagonal bins. Numbers of observations (1991, 1993-1997) are in
parentheses.

Diel dependence of average herring school count at 10 different bottom depths
(for location of sub-regions see Fig. 5) during the 1994 survey.

Depth dependence of herring school counts at 10 different times of day during
the 1994 survey.

Diel dependence of mean herring school S, on Time of day during the 1994
survey at 10 different Bottom depths.

Dependence of Herring school energy on Bottom depth during the 1994 survey
at 10 different Times of Day.

Density dependence among the 10 Bins.
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Figure 4

Partial Regressions for 6 Models from Aberdeen (1991, 1993-97) Acoustic Survey Data
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Figure 6

Diel dependence at Different Depths : 1994 Survey

Sub-region 14 Sub-region 15
=)
o
v
o |
v
[=]
5 100 15 20 s 10 15 2
Sub-region 10 Sub-region 11 Sub-region 12
(=
3
o
v
S
(=]
=
<
-
e
Q T
e
510 15 20
Sub-region 7
o
=
2
<
[Va)
=]
[~
Sub-region 2
\ 90 m
a \ /\ - <<+ 98 m
- - 106m
=2 \_/ I13m
\ - 121m
\ -~ e 129 m
NN 137m
© A 144 m
\ N
T 3 152m
\;,/‘\ - 160m
\\\.;%:4\:: =
(=]
5 10 15 2 5

Time of Day



Average Number of Herring Schools

15

1.0

0.5

0.0

Figure 7

Depth Dependence at Different Times of Day: 1994 Survey
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Figure 8
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Figure 10

Results of Partial Regressions per Sub-Region
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