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International Bottom Trawl survey (IBTS) data for herring between 1983-1997 are analysed using generalized
additive models (GAMs;  Hastie  and Tibshirani, 1990) to assess the changes in spatial distribution of North Sea
herring over age and time. The descriptive powers of covariates such as latitude, longitude, depth, bottom
temperature, bottom salinity and median sediment grain size are explored. Model selection and the effect of
smoothing on the abundance estimates is considered. A method of correcting the catches for light level and
vessel effects is discussed. The resulting abundance estimates are compared to the current estimation method and
ICA predictions for North Sea herring.

Introduction

International bottom trawl surveys (IBTS) are research surveys that have been conducted by several countries in
the first quarter of the year (January-March) for many years. An even coverage is attempted, with two vessels
surveying each ICES rectangle where possible. Figure 1  shows an example of the coverage of each vessel in one
survey. Since 1983, efforts have been made to standardise survey protocol so that the trawls for different vessels
are cornparable  and each trawl is a measurement of catch per unit effort (CPUE). Thus IBTS data can be used for
calculating abundance indices over the North Sea. Further details of the IBTS survey can be found in Heessen et
al. (1997). The methodology currently used by ICES to calculate the abundance indices averages catch for each
ICES rectangle then sums over the rectangles in the area of interest. This corrects for oversampling within
rectangles.

Exploratory data analysis indicated that the size of the catch depends on the time of day at which the trawl took
place, with trawls taken at night generally having lower catches than those during the day. This effect appeared
to vary smoothly throughout the day, rather than as a discontinuous jump representing night and day. The
biological explanation for this is that the fish  move up and down the water column according to the amount of
light available. If the catches are not corrected for this effect, the night hauls performed in a survey could
negatively bias the resulting abundance estimate. This in turn will affect the time series of abundance indices if
the proportion of night hauls changes through time. In fact, night hauls are more prevalent in the north than the
south and in the 1990s than the 198Os,  so this is a potential problem. Although the IBTS protocol is standardised
as much as possible over the vessels, it is thought that the different vessels may still catch at significantly
different rates, once the variation due to other factors has been accounted for. If this is the case. then the. catches
should be corrected for the vessel effect. One way of correcting for either of these effects is to apply a correction
factor to the observed trawls before analysing the data. However, generalized additive models allow the
correction factor to be calculated during the modelling process, leaving the original data unaltered, but allowing
the predicted catches to be calculated as if they had been caught by one vessel or at a particular light-level. This
approach requires considerable overlap between the coverage of the correcting covariate and the other
covariates, e.g. if one vessel operates in an area where other vessels do not survey, we cannot separate the vessel
effect from the spatial effects.

Generalized additive models are very useful for describing relationships between variables when the parametric
form of the relationship is not known. They essentially consist of a sum of smooth functions of different
covariates, the shape of each of these functions being estimated from  the data. Inference using such model-based
methods is more robust to non-representative sampling than sample-based methods, such as those used by ICES.
which require a random survey design. GAMs  have three major uses for fisheries data, all of which are
interlinked. The first is that they can be used to describe the relationships between abundance and spatial and
environmental factors. Model selection can be used to determine whether these relationships are significant. The
second is that they can interpolate over areas that have not been surveyed to provide a map of the distribution of
the species of interest, which may be useful in its management. Finally, abundance indices can be crcntcd  for ~hc
area of interest by integrating under the predicted distribution surface. Generalized additive models  WI’C’  first
used in to estimate abundance in a marine context by Swartzman cf al.  (1992). Swartzman e/ (I/. (1994.  1095  C!
1997) use GAMs  to explain the distribution of fish  in relation to environmental factors. Borchers  c/ (11  (1997)
and (Augustin cl  al. 1998) used GAM estimation methods in place of stratified samplin, 11  to estimate  fish c”*a23
abundance from pelagic samples and obtained dramatic improvements in precision.
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The data for each age-class were analysed separately. It was assumed that the distribution of the fish  did not
change significantly over a survey, i.e. temporal changes within a quarter were ignored. The data are very skew
(Figure 2),  containing a large proportion of zeroes and some extremely large values, with several over one
hundred thousand. The GAMs  were fitted using the statistical package S-PLUS (Mathsoft Inc.). The error
distributions available in S-PLUS were not suitable to model these data directly and thus the modelling was
performed in two stages. We first modelled  the probability of catching any herring of a particular age-class using
a GAM with a Binomial error distribution and the logit  link. Here the response variable was 0 if no herring of
that age-class were caught and I if some herring of that age-class were caught (i.e. a positive catch). We then
reduced the data to positive catches only. The positive catch was log-transformed and modelled  with a Gaussian
error distribution and the identity link (a simple additive model).

In each stage of the modelling, the response variable was allowed to depend on a smooth function of each of the
following covariates: latitude, longitude, bottom depth (btm.dpt), median sediment grain size (sediment), bottom
temperature (btm.temp), bottom salinity (btm.sal), light level and vessel. The first six covariates are spatial and
environmental covariates to describe the distribution of herring across the North Sea, whereas the latter two are
essentially correction factors for the response. Light level had not been measured directly on the surveys and so
three proxies were tested. These were time of day, sun elevation (sunel) and a day/night switch to indicate
whether the trawl occurred during the day (sunrise to sunset) or at night (sunset to sunrise). Previous analysis
suggested that cos(time), where time is transformed to radians in such a way that cos(time) is largest at midday,
might be suitable because the catches increase as towards the middle of the day and then decrease again. Sun
elevation is very similar to cos(time) but also takes position’into account. Each smooth was of a single covariate.
The smooths used here are splines, and are represented here by s(x,  h),  where x represents the covariate of
interest and h represents the degrees of freedom used in the spline. Large values of h indicate a wiggly function
whereas small values represent a very smooth function. h = 1 represents a straight line. Hastie  and Tibshirani
( 1990)  suggest h = 4 as a good starting point.

The data for each age for each yearly survey were modelled  separately at first. This enables the relationships
between covariates to change for each year. The data for each age were then combined over all the  years  and a
smooth function of year was included in the model. This enables the relationships between covariates to remain
the same over years, and is particularly usefil for estimatin,0  vessel effects, the effect of the vessel remains
constant over time, as we hope it would in reality.

Model  Selection
Model selection was performed using Akaike’s information criterion (AK)  (cf. Burnham  &  Anderson. 1998) to
choose between covariates and to choose the degree of smoothing required for each covariate. AIC  is ;I measure
of the model deviance corrected for the number of parameters in the model and the model \iith  the lowest  AIC.
among competing models is chosen. Thus if two models with the same deviance but different numbers of
parameters are compared, the model with fewer parameters will be chosen. When performing mo&l  selection.
we need to treat the correction factors differently from the other covariates. This is because it’wc‘  need  lo  correct
the response for light-level and vessel, we should do so before considering the spatial covariatcs but ! cl.  in order
to decide whether we need to correct the response, we need to take into account its spatial variation. An iterative
approach was therefore taken. First a model including the six spatial and environmental covariatcs with smooths
of four degrees of freedom was fitted to the data. Then the proxy covariate for light level  was  chosen by
including each of the following possibilities in turn: cos(time),  sunel, s(sunel,  2),  s(sunel,  4) and  d+;night  as a
factor (categorical variable). This is intended to test the effect of light level havin,0  accountsd  for the spatial
variability within the data. The model with the lowest AIC value was chosen. Havin,(1 choscli  tlic 11$it  level
proxy, the effect of vessel was considered. Vessel was included as a factor within the model.  ;md  :\I(’ \\i\s  used
to determine whether it improved the model fit compared to the model without vessel.  Ila\~ng cho~c‘n  OUI
correction factors for the response, we then performed model selection on all the covari;uc>  111  111~  model.
allowing the smoothness of the latitude and longitude to vary between I, 2, 4 and 8 degrees ot’  ti-c~~lo~~~. and the
smoothness of the other covariates to vary between I, 2, and 4 degrees of freedom. while the  c~lrrcc~l~ln  factors
could be included or excluded from the model but their degrees of freedom could no1  \x! I.;ltiIde and
longitude were allowed more degrees of freedom than the other covariates because they arc CS~CIIIIJII! prosics
for other unmeasured covariates, whereas the remaining covariates were allowed fewer dc~r~~?.c~l~  l’rced~~~~ 10
obtain smoother functions that could be more easily interpreted biologically.

The above method is suitable for the data for separate years, in which there arc approximi~lcI\  ,I(111  rl.l\vls  per
year. However, combining all years leads to a data set of approsimately  7000 trawls. wli~ch  I\ 1~10  I.~rgc lb!
model selection using AIC to work appropriately - the large number of observations n~c’ml\  Fh11 III~~CIS with
many degrees of freedom are selected.  Therefore. the smooths of the covariatcs for IIW COI~II~IO~~~~IIII~~I~~I~ wcrc
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chosen subjectively, based on the smoothness of the covariates selected for individual years. For example,
longitude was often  selected with 8 degrees of freedom in the individual models for age 1 herring and so a
smooth of longitude with 8 degrees of freedom was included in the model for  the combined data.

Model Checking
Models were checked by the following graphical  methods.

A plot  of  deviance residuals  against  f i t ted values should be randomly scattered.  Trends in residuals  indicate
that a trend in the observed data has not been modelled  adequately, either because an unsuitable error
distr ibution and/or l ink function have been used or  sui table covariates have not  been chosen.  Plots  that  show
an increase or decrease in absolute values of the residuals as fitted values increase indicated that an
unsuitable error  distr ibut ion and/or  l ink funct ion have been used.
A plot of the observed response against the fitted values should be closely scattered around a straight line
through the origin. Consistently large variations around the line indicated that the model does not explain
much variability in the data. Consistent trends away from the line indicate that some trend in the observed
data has not  been adequately modelled.
Spatial  plots  of  residuals.  Residuals of  al l  s izes wil l  be evenly scattered over the range of the data.  Residuals
of a particular size clustered together indicate that  the model has not f i t ted the data very well  in that  area.
Plots of the smooth of each covariate, with rough confidence intervals, against the covariate itself should
show narrow confidence intervals around the fi t ted curve. Wide confidence intervals around a wiggly curve
indicate that  fewer degrees of freedom could be used in the smooth.

Abundance Est imat ion
Once the models had been chosen, abundance was calculated in the following manner. A grid of points was
created over the range of interest (roundfish  areas l-9 for age I herring and roundtish areas l-8 for older age
groups).  We used a grid with nodes at  a  spacing of 8 minutes longitude and 4 minutes lat i tude,  i .e .  approximately
every 4 nautical miles. Values of each of the covariates were assigned to each of the grid points. Surfaces of the
predicted probability of a positive catch and ,the  mean value of a positive catch could then be obtained over the
grid for each year. If we assume that the size of a positive catch was independent of the chance of catching
something in that trawl, these expected values can be multiplied together for each grid point, to obtain a surface
for the expected catch over the area.  Whether this assumption is valid is  open to debate.  The abundance index is
then calculated by averaging the expected values over the area of interest. This makes the  assumption that the
area of the grid squares is constant over the area of interest. This is not the case,and whilst this area could be
easily included in the calculation,  we have not done so here in order to make the estimates more comparable with
the current method. Time series of abundance estimates for different age-classes can then be created. To
calculate an abundance estimate corrected for vessel effects, abundance was predicted over the whole area for
each vessel in turn, and the mean of these estimates was then calculated. To calculate an abundance estimate
corrected for light level effects, abundance was predicted for several values of Sun elevation between 6 am and
I I pm, the range over which most of the trawls are taken. The mean of these estimates was then calculated.
Although the model selection described above included all covariates, a reliable spatial description of sediment
grain size, bottom temperature and bottom salinity for each year were not available and so model selection was
performed again excluding these three covariates, and these reduced models were used for the abundance
est imat ion .

Comparison wi th  Other  Est imates
In order to assess the performance of these estimates, we would like to compare them to the true abundance of
herring in the North Sea. Of course this is not known, and so we use instead estimates of abundance as carried
out by the ICES Herring Assessment Working Group in 2000 (ICES 2000), which uses the Integrated Catch at
Age method ([CA, Patterson & Melvin, 1996), excludin,0 the ICES IBTS  indices (referred to as the “ICA
predictions”). We also compare the GAM-based estimates to the current ICES IBTS  indices (referred to as the
“current method”).

Cohort  S trength
These estimation methods provide abundance indices rather than absolute abundances. Thus, for comparison
with other methods, we need to scale the indices to the same level.  We therefore scale each series by its mean, so
that  each value is  essential ly an est imate of  cohort  s trength.  Variabil i ty in the est imates of  cohort  s trength for  the
same cohort can be used as an indicator of the reliability of the series. For example, if age l’s are relative11
plentiful in 1983, then we would expect age 2’s to be relatively plentiful in 1984 and age 3’s in 1985. and for
them to have similar cohort strength as defined above. We therefore organise the cohort strength scrics  into
cohorts, take the standard deviation for each cohort, then take the mean of these standard deviations  for all
cohorts  as  an est imate of  the rel iabi l i ty  of  the est imation method.
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Figure 1 shows the locations of the trawls in 1993 for each vessel. The coverage of the survey area is good
overall but the coverage for each vessel is concentrated in smaller areas. However, there is overlap between at
least two vessels in most cases and so the incorporation a vessel factor into the model should be possible.

Choice of  Model  and Explanatory Covariates
Figure 2 shows histograms of the catch and log-transformed catch data for 1993 age I herring. The distribution
of the log-transformed data is approximately Gaussian. Figure 3 shows residual plots for age 1 herring in 1993
using three combinations of error distribution and link. It is clear that, of these, only the Gaussian errors and an
identity link is suitable for these data. The spatial residuals are acceptable (Figure 4) and were not improved by
the inclusion of a latitude longitude interaction in the form of a 2-dimensional “loess”  function. A plot of the
observed catches against fitted catches is difficult to interpret (Figure 5) but is fairly representative of the kind of
plot expected from  fisheries data.

A smooth of sun elevation with 4 degrees of freedom was found to be the best proxy for light level for the
presence/absence model in most years. In all years a model including a light level proxy modelled  the data better
than a model which did not correct for light level. Choice of proxy was less obvious for the model for the
positive data, and in several cases a model which did not include any light level proxy was selected. However,
including sun elevation as a linear term performed best over all models and so sun elevation was selected as the
proxy in these models.

Table I shows the covariates selected for the best model for separate years using stepwise  selection u::!:  AIC.
The spatial covariates latitude, longitude and depth are nearly always included in the model, with fairly high
degrees of freedom. Bottom temperature is also useful, and was usually selected with two degrees of freedom,
but sediment grain size bottom salinity were less useful and were rarely selected. Vessel was selected in the final
model 67% of the time for the presence model but only 4 I% of the time for the positive model, whereas with sun
elevation it was the other way around. This is interesting because in the initial stages of the model selection,
when vessel was not included, sun elevation was very often selected for the presence model. This indicates some
confounding between sun elevation and other variables, possibly vessel. Figure 6 shows the kinds of functions
fitted to these data. The confidence bands shown on this plot reflect the uncertainty due to lack of data for some
values of the covariates.

Figure 7 shows the vessel effects for age1 herring for the presence/absence and positive catches over all years.
“A RG”, “SC02” and “WAH3” stand out as having higher catches than the others. For ARG, this is due to the
fact that ARG is the only vessel that fishes in the Skagerrak (see Figure I),  where there are high catches, in other
words, there is confounding between vessel and the other covariates, For the other two vessels, this can be
interpreted as a vessel effect.

Spat ia l  Dis t r ibu t ion
Generic spatial distributions for each age group are shown in Figure 8. These were obtained from the models
using the combined data for all years. Age I herring tend to congregate in the shallower waters off the coasts of
the Netherlands, Denmark and Germany, but by the time they are age 2, they have moved over towards Northern
England and Scotland, although there are some in the middle of the North Sea. Ages 3, 4 and 5 (a plus group)
congregate together, mainly in the northern part of the North Sea, although there is a small separate group in the
Channel between England and France.

Abundance Est imat ion and Comparison wi th  Other  Est imates
The cohort strengths of the abundance estimates for separate years are compared with the current method and the
ICA predictions in Figure 9. The GAM-based method and current methods 3(rive  similar results, which are not as
smooth as the ICA predictions, which is to be expected. The cohort strengths from the combined year model are
smoother and are in closer agreement with the ICA predictions than those for the separate \‘cars  (I-isurc IO).
Time series of abundance for the combined data with and without sun elevation corrections show that sun
elevation has most effect on small herrin,,n  which are in shallower water, and that the correcrion  actuall\~  reduces
the abundance, the opposite effect to what might be expected (Figure I la). This is because the many hauls taken
at high sun elevations have now been down-wel,‘ohted  compared to the night hauls. Howeve;..  a comparison of
cohort strength shows that the effect of sun elevation has not changed the time series substantially (Figure I I b).
This could largely be because year is included in the model. Similarly, althou,(~11 correcting tbr vessel  incrcascs
the overall abundance estimated, the time series of cohort strength scarcely changes (Figures 17-a  K:  I2b). A
comparison of the overall variability of the cohort strengths sllows  that, not surprisingly. the  ICA prcdiciions
give the most reliable estimate of cohort strength (Table 2). The comtiincd  model is more  reliable  than  the
models for separate years. This is because unusual years are smoothed throu,(+. as they arc in the  ICA prcdiclion.
More surprising is the fact that the GAM-based models for separate years o[live less  reliahlc  cstimatcs  IIKIII  f!w
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current method. However, it should be borne in mind, that if we think of the current method as a model in which
a parameter (the mean) is estimated for each of the 150 ICES rectangles, the number of parameters in the GAM-
based model is much smaller than that in the current model. The inclusion of vessel or light level corrections do
not improve the reliability of the estimates.

Conclusions

Generalized additive models provide a means of describing the distribution of fish using smooth functions of
several covariates, with few parameters. The exact covariates and the degree of smoothing used in the model do
not appear to affect the abundance estimate substantially. The catches can be corrected for differences in
sampling regimes (i.e. the effects of fishing at different times of day or using different vessels) provided there is
suitable coverage of data. However, for these data, although these effects are significant factors in the model,
their  overall  affect  on abundance indices is  small .  Bootstrap confidence intervals for the abundance estimates can
be estimated for this method and work is ongoing in that direction. Finally, the model can be extended further to
include all age groups with covariates to represent different ages and cohorts. This kind of model is becoming
closer to an age-structured populat ion dynamics model  such as that  used in ICA.

Table 1 Model selection for the models for separate years using AIC. The numbers in the columns represent the
number of times each covariate was selected in the best model for each of the 15 years. The last row gives the
overall  percentage of t imes that covariates was selected over all  ages.

^_.-^---”_-_.-__ -- -.. _ -
Presence lat ion sediment btm.sal sunel vessel_,____.__,-.  __ _..-  “_. ._........_..._... ,..._..___-_  _. b tm.dpt.__. -..- .._. _ _ - . ..---.-----.. --__._I.- btmtemp.I.......,..I_” _..... ._.._... ---_ . . “..__ ..-..-..

a g e 1 15 1 3 12 4 6 10 7 8
a g e 2 15 12 11 8 13 IO  9
a g e 3 L5 1 3 14 6 7 6
age 4 I4 13 14 6 12 8 6
a g e 5 15 1 5 1 3 6 9 7 7 9

%  over all 97% 8 7 % 83% 38% 67% 55% 46% 67%

Posi t ive lat Ion btm.dpt sediment Ptm.temp btm.sal sunel vessel- ___.-
a g e I 1 5 1 5 14 3 10 6 9 IO
a g e 2 1 5 1 3 11 8- 11 8 9
a g e 3 14 14 11  4 7 7 9 8
a g e 4 14 1 3 9 1 I O 5 IO 4
a g e 5 1 3 10 II 5 IO 3 9

%  over all 95% 87% 75% 27% 64% 20% 63% 4 I %,-_-  ._ - - - - - -_-_,---- -------.^

Table 2 Mean standard deviat ion of  cohort  s trength for  the different  est imation methods.
-

Current Separate Combined Sun elevat ion Vessel I C A
- - -

Mean std dev 0.53 0.76 0.22 0 . 2 2 0.26 0.18
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Figure 9 Time series of cohort strength calculated using the current method and the best
GAM-based model for each separate year, compared with the ICA predictions.
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Figure 10 Time series of abundance estimatcs calcu\atcd using the best model for each scpal11te ycar

and the mode! for all years combined. compared with the ICA predictions.






	ICES CM 2000/K:09. Modelling Herring Distributions in Space and Time

