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Maximizing oyster-reef growth 
supports green infrastructure with 
accelerating sea-level rise
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Within intertidal communities, aerial exposure (emergence during the tidal cycle) generates 
strong vertical zonation patterns with distinct growth boundaries regulated by physiological and 
external stressors. Forecasted accelerations in sea-level rise (SLR) will shift the position of these 
critical boundaries in ways we cannot yet fully predict, but landward migration will be impaired by 
coastal development, amplifying the importance of foundation species’ ability to maintain their 
position relative to rising sea levels via vertical growth. Here we show the effects of emergence on 
vertical oyster-reef growth by determining the conditions at which intertidal reefs thrive and the 
sharp boundaries where reefs fail, which shift with changes in sea level. We found that oyster reef 
growth is unimodal relative to emergence, with greatest growth rates occurring between 20–40% 
exposure, and zero-growth boundaries at 10% and 55% exposures. Notably, along the lower growth 
boundary (10%), increased rates of SLR would outpace reef accretion, thereby reducing the depth 
range of substrate suitable for reef maintenance and formation, and exacerbating habitat loss along 
developed shorelines. Our results identify where, within intertidal areas, constructed or natural 
oyster reefs will persist and function best as green infrastructure to enhance coastal resiliency under 
conditions of accelerating SLR.

Species distributions result from distinct regions of optimal fitness conditions, defined by critical bound-
aries regulated by physiological and external stressors1,2. As such, biological zonation is expressed both 
globally (e.g., latitudinal range limits) and locally, as in the intertidal zone for foundation species such 
as saltmarsh, mangrove and reef-forming bivalves. The forecasted acceleration in SLR3 will shift the 
position of critical boundaries in littoral systems. Thus, the resilience of sessile species confined to a 
narrow intertidal zone and their associated shorelines (both natural and developed) will be defined by 
the species’ ability to respond to moving boundary conditions. However, migration of coastal foundation 
species (e.g., oyster reefs and saltmarsh) will be hindered by shoreline development as part of the coastal 
squeeze4, resulting in reduced area suitable for colonization. Therefore, this anthropogenically-induced 
phenomenon accentuates the importance of self-maintaining accretional habitats that can match SLR5. 
Failure to maintain their position within the tidal range or migrate landward will result in replacement 
of biogenic reefs or marshes by unstructured habitats like sandflats5,6.

Intertidal habitats can provide disproportionately high levels of ecosystem services, such that coastal 
and estuarine ecosystems are among the most valuable on earth7–12. Unfortunately, continued popula-
tion growth in coastal areas globally has led to the degradation of these ecosystems and reduced ser-
vice delivery11,13,14, stimulating efforts to explore how these systems will respond to current and future 
anthropogenic stressors, such as accelerated SLR. As one of the only natural hard substrates along the 
Mid and South Atlantic Coast (USA), oyster reef habitat has been recognized as green infrastructure 
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for shoreline protection6,15 and conservation of natural capital in the face of damaging storms and 
wave erosion16–19, even though they now occupy a small fraction of their distribution prior to mas-
sive harvesting during the last three centuries20–22. The effectiveness of using oyster reefs to enhance 
shoreline resiliency and reduce storm hazards along estuarine shorelines depends on understanding the 
biologically- and environmentally-driven thresholds separating oyster-reef production and growth from 
imminent degradation.

At whole-estuary scales, oyster growth responds to two overarching factors: salinity and aerial expo-
sure, the amount of time intertidal oysters are exposed (or emerge) during a tidal cycle. Free-swimming 
oyster larvae require hard substrate to settle onto and typically grow on other oysters, which will form 
patches of unconsolidated oyster clusters that can eventually develop into large cohesive reef mounds 
(> 1 km2) with densities exceeding 1000 individuals m−2 (refs  23,24). Historical observations23,25,26 of 
oyster abundances along estuarine gradients provide a foundational understanding of oyster response to 
varying salinity and aerial exposure. The euhaline (high salinity, between 30–35 psu) waters commonly 
found near coastal inlets are not conducive to subtidal oyster reef formation due to high levels of biotic 
stress on individual oysters from marine predators, competitors, bioeroders and pathogens27–30. However, 
mesohaline and polyhaline waters (moderate salinities, 5–18 and 18–30 psu respectively) offer oysters 
refuge from these marine stressors that are not tolerant of lower salinities, thereby allowing oyster reefs 
to persist subtidally unless they are exposed to hypoxic/anoxic (low oxygen) events31,32 or overharvest-
ing33–35. The decimation to oyster populations as well as anthropogenic and SLR-driven changes to water 
quality have made restoration and sustainability difficult36–38, but there have been promising efforts16,39–41 
that indicate restoration, recovery and sustainability are possible. Rates of oyster-reef growth appear 
comparable to rates of SLR42, and while intertidal oyster reefs have also exhibited the capacity for even 
greater growth41, it remains unclear as to which environmental conditions will provide the greatest return 
on investment from restoration efforts and ensure persistence with accelerations in SLR. Optimizing 
conservation and restoration efforts of oyster populations along our coasts requires a more precise under-
standing of how intertidal reefs grow in response to exposure-flooding cycles and forecasted SLR.

We investigated whole- and across-reef vertical growth, along with oyster density, on natural and 
constructed Crassostrea virginica (eastern oyster) reefs within the Rachel Carson National Estuarine 
Research Reserve, Back Sound, North Carolina (tidal range 0.92 m, salinity 30–35 psu). In total, 43 reefs 
provided spectrums of sizes (15–850 m2), ages (< 1 − > 100 years old), and tidal elevations (intertidal to 
subtidal) for our investigations. Constructed intertidal oyster reefs were created by forming dead oyster 
shells into 3 ×  5 ×  0.15 m piles in 1997, 2000, and 2011 that developed via natural oyster recruitment, 
growth and survivorship patterns29,43. We used a terrestrial laser scanner to measure variation in vertical 
growth across entire reefs constructed in 1997 and 2000, over a two-year time step (measured between 
2010 and 2012, Fig. 1). Water-level data were collected within the study area in order to transform the 
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Figure 1. Measuring fine-scale growth on oyster reefs. (a) Photo and (b), oblique point cloud of oyster 
reef MF3-1997, both obtained in 2010 using a terrestrial laser scanner. (c), Digital elevation model 
subtraction maps of reefs constructed in 1997 and 2000. Reef scans were conducted in 2010 and 2012. 
Contour lines represent the 20% and 40% aerial exposure elevations in 2010.
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reef elevations into the amount of time each portion of the reef spent emerged from the water (percent 
aerial exposure) during a tidal cycle (water level referenced to elevations using the North American 
Vertical Datum of 1988 [NAVD88]). We examined the relationship between reef growth and associated 
elevation to determine growth thresholds relative to an oyster reef ’s position in the intertidal zone. 
Subsequently, we used those empirical data to develop a model that illustrates impacts of accelerating 
SLR on existing reefs and future reef construction as large-scale green infrastructure.

Results and Discussion
Decade-old oyster reefs exhibited a unimodal relationship between average vertical-accretion rate and 
aerial exposure (Fig.  2a). Areas of highest mean growth were exposed 20–40% of the time, and this 
range represents an optimal-growth zone (OGZ). These reefs, along with natural oyster reefs, consist-
ently exhibit a plateau morphology at 0.03 m NAVD88 (± 0.05 m) (Supplementary Fig. 1), indicating that 
55% (± 1.5%) exposure is the upper zero-growth boundary (growth ceiling) for reefs in this region. The 
10% exposure, occurring at − 0.43 m NAVD88 in the Reserve, coincides with mean low water (MLW) 
and represents the lower zero-growth boundary for oyster reefs where accretional and erosional forces 
are balanced. Below 10% inundation, increases in accretion resulted from deposition of sediment and 
dead oyster shell at the reef edge. As an oyster reef is physically and biologically weathered29,30, material 
is transported from higher reef elevations downslope, mainly during periods of high wave and current 
energy, promoting lateral expansion. The lower portions of an oyster reef may experience increased ver-
tical growth as the physical processes of sedimentation build those areas in to the OGZ. For example, a 
majority of reef MF3-1997 had just reached the center of the OGZ at the beginning of the study period 
and experienced the most vertical growth of all the decade-old oyster reefs (Figs 1 and 2a).

To verify these exposure boundaries, in 2011 we constructed oyster reefs along a gradient of sand-
flat exposures ranging from 0.01 to 18.0% (Supplementary Fig. 2 and Table 1) and average vertical reef 
growth was measured in 2014 using a Trimble 5800 GPS receiver (± 1.5 cm vertical). The initial reef-top 
exposures ranged from 0.30 to 32.4%, which were comparable to the lower edge to mid-slope of natural, 
mature oyster-reef mounds located in the area. Those 3-year old reefs followed the same growth pattern 
as the decade-old reefs, with increasing aerial exposures resulting in greater reef growth rates, and little 
to no growth when those older reef were located below 10% exposure (Fig. 2b). Although the shallower 
reefs exhibited rapid vertical growth (4–8 cm yr−1), with the shallowest reef reaching 45% exposure at the 
end of the study period, our observation period was too short for these reefs to reach the growth ceiling 
and become confined by the stress of limited inundation. Reefs below MLW did not sustain growth, 
and anomalously-high accretion rates measured on some reefs were caused by migrating sand ripples 
converting the deep shell piles into sand mounds (Fig. 2b), as has been observed in other sandy environ-
ments44. While this overall growth pattern reinforces our results from decade-old reefs, it also indicates 
that newly-constructed oyster reefs have the potential to grow twice as fast as mature reefs. Thus, there 
likely is a progression of diminishing vertical growth from substrate colonization to reef maturation as 
the oyster reef approaches the growth ceiling and the area of the OGZ narrows to the reef flanks (Fig. 1c).

Figure 2. Analysis of oyster-reef growth and density over an aerial exposure gradient. (a) Mean vertical 
accretion rates by aerial exposure for decade-old constructed oyster reefs in Back Sound, North Carolina. 
Thick black line represents the mean vertical accretion rate from 2010 to 2012 for five of the decade-old 
reefs, excluding reef MF4-2000, which was heavily fished during the study period. (b) Bars represent the 
growth of newly constructed oyster reefs from 2011 (date of origin) to 2014 (mean ±  standard error). Red 
and blue bars indicate loss and accretion respectively. Thick black line is the mean vertical accretion rate 
from the decade-old constructed reefs (from (a)). (c) Average adult oyster densities for natural (black) and 
constructed (white) reefs divided into four intertidal zones (mean ±  standard error). The four zones include: 
below mean low water (< MLW), from MLW to 20% aerial exposure (MLW), the optimal-growth zone 
(OGZ, encompassing 20–40% aerial exposure), and above the OGZ (from 40% to approximately 60% aerial 
exposure). Tiered horizontal bars represent statistical similarity (α  =  0.05).
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Oyster recruitment, growth and survival collectively mediate oyster reef accretion rates, and therefore, 
oyster density should generally be correlated with reef accretion. Adult oyster density in both natural 
and restored reefs also matched the observed reef growth pattern, except at the highest elevations of the 
reef (> OGZ), where density continues to increase as oysters recruit and fill the interstitial space (Fig. 2c) 
but are still limited in overall growth by desiccation stress (growth ceiling). Adult oyster densities were 
greater on natural reefs than restored reefs in all but the topmost region of the reefs (Fig. 2c). Very low 
adult oyster density below 10% exposure further supports our observation that reef accretion at the base 
(Fig. 2a) is from accumulation of sediment and shell material, not oyster growth.

While rising sea level will shift the growth boundaries landward and to higher elevations, acceler-
ations in SLR will exacerbate the loss of substrate elevations suitable for oyster reef growth. Similar to 
models of productivity in saltmarsh habitats45, our oyster-reef growth model reveals the rates of SLR for a 
given oyster reef to remain in equilibrium with rising water levels (Fig. 3a). At current rates of local SLR 
(~0.3 cm yr−1, ref.  46), the 12% exposure depth represents a critical-exposure boundary (CEB) where 
rates of reef growth and SLR are equal. At substrate depths above the CEB, oyster reefs will form and 
persist as a consequence of reduced stressors such as disease, predation, and sedimentation. However, 
an increase in the rate of SLR to 0.5 cm yr−1 (well within most predictions of SLR by 2100, ref. 47) may 
render substrates below 15% exposure unsuitable for intertidal oyster-reef habitat because below that 
level, oyster-reef accretion cannot keep pace with this SLR scenario (Fig.  3b). In contrast, the growth 
ceiling, while adjusting in elevation with SLR, will remain at the 55% exposure. Therefore, and most 
notably, this strong link between oyster growth and aerial exposure means accelerating SLR will reduce 
the estuarine area suitable for oyster reef occupation (Fig. 3c,d) between the shifting CEB (e.g., 12% to 
15% exposure) and the constant growth ceiling (55%). The amount of oyster-reef habitat area lost locally 
further depends on nearshore sedimentation rates and changing bathymetry as the shoreface responds to 
SLR and fluctuations in sediment supply. Considering the model is crucial for newly forming oyster reefs 
(both natural and constructed), as we have witnessed failed reef growth below the CEB within the first 
year of construction29, making this boundary an immediate consideration for restoration efforts. Because 
our results suggest that oyster-reef growth in the intertidal zone is dependent upon percent aerial expo-
sure, the range of suitable substrate depths (above the CEB) and the OGZ boundaries will likely expand 
in other estuaries of the U.S. with increasing tidal range as the intertidal zone is stretched across a greater 
depth spectrum (Supplementary Fig. 3). It also bears noting that the growth ceiling, depending upon 
oyster tolerance to desiccation and other stresses of exposure, may differ in warmer and colder latitudes, 
as more extreme temperatures could diminish the upper growth limit.

Older established oyster reefs that reached the growth ceiling are resilient to accelerating SLR because 
growth rates will increase on top of the reef as oysters exploit increased inundation time and subaqueous 
space. That increased productivity at the reef top could in turn lead to an increase in biogenic sediment 
flux to the reef base and enhance lateral and vertical accretion rates around the CEB. This resiliency is 
contingent upon limited disturbance; harvesting that lowers an oyster reef below the CEB will ultimately 
result in the loss of the habitat. Conservation efforts should limit harvesting practices from reducing 
oyster reef elevation below the OGZ to maximize the potential for rebound and to maintain optimal reef 
growth levels that would ensure the highest productivity of the fishery.

As development along low-elevation sheltered coastlines and rates of SLR continue to increase, so 
does our need for new decision-support tools that both reduce the risk of human societies to coastal haz-
ards and maintain the vast natural capital that coastal habitats provide. In high salinity portions of estu-
aries, oyster-reef restoration in front of either saltmarsh shorelines or stabilization structures like riprap 
revetments will increase and help sustain ecosystem services, but only if restoration efforts consider 
the CEB and OGZ during project design, implementation, and future harvesting practices. Notably, the 
range of suitable substrate elevations for colonization, restoration, and maintenance of oysters and likely 
other intertidal foundation species is a moving and narrowing target with accelerating sea-level rise.

Methods
We constructed reefs from 60 bushels of shucked oyster shell (cultch) formed into 3 ×  5 ×  0.15 m boxes 
in 1997, 2000, and 2011 on sandflats or adjacent to saltmarsh (Spartina alterniflora dominated; see 
Supplementary Fig. 1 and Table 1; refs 29,43). Constructed reefs are located within the Rachel Carson 
National Estuarine Research Reserve and are protected from harvesting. The natural reefs are located 
within the Rachel Carson National Estuarine Research Reserve and adjacent to Cape Lookout National 
Seashore and are not protected.

Ten-minute water-level data were obtained over the course of 6 months (June – December 2010) 
using HOBO®  U20 Water Level Loggers (Onset Computer Corporation; ± 0.3 cm accuracy) located in 
three areas of Middle Marsh. Loggers were placed in a stilling well (slotted PVC pipe) attached to rebar 
that was driven into the substrate to refusal (~3 m deep). Elevations were surveyed at both deployment 
and data collection, which occurred every month, with a Trimble® RTK GPS. Pressure data were cor-
rected for local fluctuations in barometric pressure using a fourth pressure sensor deployed on land, and 
water-levels were verified with independent field measurements obtained with a level measuring staff at 
time of deployment and readout. Survey data were used to transform the water-level data in to the North 
American Vertical Datum established in 1988 (NAVD88) with average vertical precisions of 1.5 cm. We 



www.nature.com/scientificreports/

5Scientific RepoRts | 5:14785 | DOi: 10.1038/srep14785

Mean Sea Level

Mean Low Water

W
at

er
 D

ep
th

CEB

CEB

A A’

Future
SLR: 0.5 cm yr-1

MSL

MLW

CEB=15%

Range
Narrows

and
Shifts

Range
Narrows

Future
SLR: 0.3 cm yr-1

MSL

MLW CEB=12%

Range
Narrows

Range
Shifts

Landward

c d

Present
SLR: 0.3 cm yr-1

A’
MLW

CEB=12%

Developed

MSL

Natural
A

Suitable 
Substrate 

b

Suitable 
Substrate 

Critical 
Exposure

Boundaries
(CEB)

0

0 20 40
Aerial Exposure (%)

G
ro

w
th

 C
ei

lin
g

Rapid growth
compressed

by ceiling

60

OGZ

a

1

2

3

O
ys

te
r-

R
ee

f G
ro

w
th

 R
at

e 
(c

m
 y

r-1
)

SLR 0.5 

SLR 0.3 

M
ea

n 
S

ea
 L

ev
el

10 30 50
M

ea
n 

Lo
w

 W
at

er

Accelerated SLR 

Suitable
substrate

depths

Current SLR rate

Figure 3. Modeling oyster-reef growth with aerial exposure and considering accelerations in SLR 
through time. (a) Greatest oyster-reef growth occurs at exposures between 20–40% (optimal-growth zone, 
OGZ) and returns to zero at 55% (growth ceiling) and 10% (mean low water). Critical-exposure boundaries 
(CEBs) represent reef growths in equilibrium with rates of local sea-level rise (0.3 cm yr−1 or 0.5 cm yr−1). 
(b) Suitable substrate (light shading), or range of viable habitat, for oyster reef development on developed 
and natural (retreating marsh) shorelines at initial time (Present) with a conceptual model of changing 
suitable substrate depths with reference to how differing rates of SLR will immediately change the CEB (SLR: 
0.3 cm yr−1, SLR: 0.5 cm yr−1) along transect A-A′ . For example, an oyster reef developing at 13% exposure 
can grow and persist at current rates of SLR, whereas an acceleration in SLR (0.5 cm yr−1) will result in the 
reef growth rate falling farther beneath the CEB (a) as sea levels rise at a faster rate than reef growth, leading 
to the reef ’s eventual failure. (c,d) Future changes in suitable substrate (light shading) with CEBs considering 
SLR rates of 0.3 cm yr−1 (no change; (c)) and 0.5 cm yr−1 (accelerated; (d)). Future projections assume 
that nearshore sedimentation is not keeping pace with SLR. The range of suitable substrate depths will 
narrow against a developed shoreline, whereas natural shorelines will allow oyster reefs to shift shoreward 
(c). However, accelerations in SLR will raise the CEB, overall narrowing the range of suitable substrate 
depth regardless of the shoreface configuration (d). Incorporated symbols courtesy of the Integration and 
Application Network, University of Maryland Center for Environmental Science (ian.umces.edu/symbols/).
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divided the tidal data into 1-cm bins to ascertain mean percent aerial exposure at each elevation, which 
we used to convert all elevation measurements obtained from the oyster reefs to percent exposure.

Following previously established methods41, we measured cm-scale vertical growth rates across the 
entire surface of six sandflat reefs over a 2-year period. These reefs were chosen because they incorpo-
rated a wide range of intertidal elevations and were fully exposed during the most extreme spring low 
tides, which is necessary for our methods of measuring reef growth. Reefs were scanned using a Riegl 
three-dimensional LMSZ210ii terrestrial laser scanner in 2010 and 2012 and point clouds were processed 
to isolate ground returns using RiSCAN Pro software. We utilized Surfer 10 (Golden Software) to gen-
erate digital elevation models (1-cm cell size) of the six sandflat reefs from 600,000 to 1,000,000 laser 
returns (number depends on reef size) spaced < 1 cm apart. Elevation changes >1.4 cm are resolvable 
with this method. The 2010 reef grid-cell elevations were subtracted from 2012 counterparts (>500,000 
observations per reef) to obtain elevation changes between measurements. This allowed us to create a 
table of XYZ and elevation change (2010 value for Z), which we sorted by descending 2010 elevation 
values. Those data were separated into 2-cm elevation bins (2010 elevations) and mean elevation change 
between 2010 and 2012 for each bin were calculated (i.e., mean vertical accretion rate for every 2-cm 
change in reef elevation across the entire reef surface). An overall mean vertical accretion rate among 
reefs was then calculated for each 2-cm elevation bin. Reef MF4-2000 was excluded from the overall 
mean because it showed signs of significant harvesting between our 2-yr time step (even though the reef 
was protected), and this was supported by laser-scan data and field observations.

Recently constructed reefs (2011) were placed on sandflats at approximate substrate elevations of 
− 0.9 m, − 0.75 m, − 0.6 m, and − 0.5 m NAVD88 (exposure range: 0.01–18%, see refs 24,30). To assess the 
growth of recently-constructed (2011) reefs over their lifetimes, we surveyed a grid across each reef using 
the RTK-GPS at 0.25-m horizontal intervals. Reefs were surveyed in the fall and winter of 2011, spring 
of 2013, and spring of 2014. The highest 10% of points within each grid were averaged and designated 
as the elevation of the reef top. For each reef, we subtracted top elevations between the longest available 
time step and then normalized by the time interval. For comparison, reef accretions were averaged after 
binning by original cultch surface exposures: 0–15%, 15–30%, and > 30%.

To ascertain size-abundance patterns at different aerial exposures we measured oyster density and 
oyster-shell height across intertidal elevations. We randomly placed 0.25-m2 quadrats at varying eleva-
tions (surveyed using the Trimble® GPS) on decade-old reefs to obtain 2–3 quadrat samples per reef 
(N =  22) for density and SH. To sample natural reefs (N =  7), parallel transects, from reef crest to base, 
were placed 1 meter apart, and one randomly-placed quadrat was sampled along each transect. Samples 
within reefs were not pooled because they were collected from areas with different exposure conditions, 
and our primary interest was to determine if exposure regulates reef dynamics. Oyster-reef material was 
sampled to a depth of approximately 15 cm (or to the depth where sediment was anoxic) and the number 
and shell height of live oysters was quantified in the field. Samples were broken into 4 different aerial 
exposure bins: less than mean low water (< MLW), from MLW to 20% aerial exposure (MLW), from 
20% to 40% aerial exposure or the optimal-growth zone (OGZ), and greater than 40% aerial exposure 
(> OGZ). Adult-oyster densities (oysters > 2.5 cm long) were then analyzed among aerial exposure bins 
and between natural and constructed reefs using a two-way analysis of variance (ANOVA). We used 
a post-hoc Tukey Honest Significant Difference (HSD) test (α  =  0.05) to determine density differences 
among exposure zones and between reef types.

The tidal-growth model (Fig.  3a) was developed using water-level data and the oyster-reef-growth 
curve (Fig. 2a). Critical boundaries were defined as the elevation where reef growth equaled the current 
or forecasted rate of sea-level rise. NOAA tide data from Fort Pulaski, Georgia (Station ID: 8670870) 
were used to extrapolate the model into a larger tidal range (2.25 m)(Supplementary Fig. 3). Tidal ele-
vations were transformed to aerial exposure and indexed to corresponding reef-growth rates using the 
North Carolina growth curve.
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