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ABSTRACT
To study the Mediterranean general circulation, there is a constant need for reliable interpretations of available 

hydrological observations. Optimal data analyses (in the probabilistic point of view of objective analysis) are 
fulfilled using an original finite-element technique to minimize the variational principle of the spline procedure. 
Anyway, a prior statistical knowledge of the problem is required to adapt the optimization criterion to the 
purpose of this study and to the particular features of the system. The main goal of this paper is to show how 
the cross-validation methodology can be used to deduce statistical estimators of this information only from the 
dataset. The authors aiso give theoretical and/or numerical evidence that modified estimators—using generalized 
cross-validation or sampling algorithms—are interesting in the analysis optimization process. Finally, results 
obtained by the application of these methods to a Mediterranean historical database and their comparison with 
those provided by other techniques show the usefulness and the reliability of the method.

1. Introduction
A direct observation of the sea is an essential source 

of information and knowledge of the marine systems. 
The difficulty in interpreting this type of information 
lies in its two most important features. The measures 
are very sparse in space and time due to the cost of 
oceanographic cruises. Furthermore, not only are they 
representative of the subject of the study, they are aiso 
affected by ali processes taking place in the ocean. How 
is it possible to extract the relevant information from 
a dataset? The solution is closely linked to the possi
bility of estimating the quality of information, that is, 
error evaluation. Statistical methods have basically 
been developed to provide an error estimation. Objec
tive analysis (Gandin 1963; Bretherton et al. 1976) has 
become very popular in oceanography because error 
maps and analysis may be derived simultaneously. On 
the contrary, a priori, the spline analysis method has 
no relation with the minimization of an error. It is 
defined by a variational principle weighing two terms: 
a measure of the “difference between the solution and 
the data” and a measure of the “smoothness of the 
solution” ( Wahba and Wendelberger 1980; McIntosh 
1990).

However, these two methods are very similar and a 
great benefit can be derived from an equivalence theo
rem (McIntosh 1990; Brasseur 1994). As a conse-
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quence, the spline method actually receives a reliable 
statistical interpretation. The benefit mainly lies in the 
numerical efficiency of the spline analysis method— 
especially if we use an efficient finite-element technique 
to solve the variational problem ( Brasseur et al. 1991). 
Nevertheless, whether the spline analysis or the objec
tive analysis is used, the selection criterion (i.e., min
imization of the global error) must be based on some 
prior statistical information about both the field to be 
reconstructed and the noise affecting the data. Yet, the 
database is the only available information source. The 
main purpose of this paper is precisely to build an ef
ficient procedure in order to extract this statistical in
formation from the database.

Up to now, oceanographers have faced great diffi
culties in selecting the optimization criterion of the 
objective analysis method. Indeed, the computation of 
the statistical properties (correlation function and sig- 
nal-to-noise ratio) necessary to give sense to the error 
minimization has been rendered very difficult for lack 
of observations sets dense enough to generate reliable 
estimations by classic averaging procedures (such as 
in meteorology). Consequently, this problem has often 
been circumvented by making quite arbitrary assump
tions about the statistical features. Yet, it has been 
demonstrated that the correlation length and especially 
the signal-to-noise ratio govern the main features of 
the analysis (by selecting the optimal degree of repre
sentation of the structures contained in the data). We 
will give some examples of the critical importance of 
these parameters. Moreover, the noise variance esti
mation directly influences the computed error ampli
tude and, accordingly, must be very cautiously com-
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puted to give a meaning to the error maps produced 
by any analysis scheme.

Today, with an increase of experimental work, the 
quality of this prior statistical information can be im
proved, especially in the context of climatological 
analyses of a basin as well covered as the Mediterra
nean. The purpose of the Mediterranean Oceanic Data 
Base project (MODB, part of the MAST Mediterranean 
Targeted Project supported by the European Com
mission ) is precisely to gather most of the hydrological 
(in situ) observations collected in the Mediterranean 
since the beginning of the century, to bank and check 
the dataset, and finally, to propose analysis methods 
and results at the climatological timescale. The different 
techniques described in this paper will be applied in 
this particular context.

2. Statistical basis of data analysis

a. Data analysis target

To perform data analysis of some features of the 
ocean, the first step is to define the purpose of the study, 
which lies in the relation between the real evolutive 
field and the target of the analysis. Whatever the target 
field—noted 0,—(synoptic, climatological at the 
monthly or seasonal timescale, climatic, etc.), it can 
be considered as a known function (including averaging 
over a time period, filtering of small spatial scales, etc.) 
of reality. As will be seen later, the characteristics of 
data analysis are closely related to the definition of the 
target field, as, for example, the properties of the da
taset. A dataset from only one cruise could be conve
nient for a synoptic target field, but climatological 
analyses need a large historical database.

Moreover, we will cali the “reconstructed field” 
(noted 0) the result of the analysis (for example, ob
jective or spline analysis that we will briefly describe 
later) of an appropriate dataset. Considering the fun
damental underdetermination of this problem, each 
method needs an optimization criterion to select the 
solution. Thus, the analysis method (i.e., the criterion ) 
must be adapted to both the purpose of the study and 
the particular features of the system.

The challenge of data analysis is to minimize the 
difference between these two fields (target and recon
structed fields: e = 0 — 0, ), given the information con
tained in the dataset, and to provide an estimation of 
this difference. Of course that objective may only be 
achieved if some prior information on the target field 
has been extracted from the dataset and if the analysis 
method is flexible enough to take this information into 
account. An interesting way of investigating is to con
sider this problem from a probabilistic point of view. 
The use of probability to quantify the extent of our 
knowledge and the application of simplifying hypoth
esis to compute them in practice are the key features 
of this approach.

b. Statistics and hydrological fields

First, we will cali the background field (noted fb) 
the best prior estimate of the target field: the first prior 
information essential to the solution of the problem. 
For lack of a better key, it may, for example, be com
puted as the mean or the linear regression of the data. 
For data analysis, differences with respect to this back
ground alone will be considered because hypothesis 
( H2 and H3 ) on the statistical structure of the field ( or 
probability distributions) are made much more real
istic.

We suppose thai the prior knowledge on the target 
field (difference with respect to the background) that 
we are looking for is expressed in terms of probability. 
Let NJf) be the probability distribution characterizing 
our knowledge of the target field at the point x, and 
F*,y(<t>x, <t>y) he the conditional probability distribution 
for the points x and y (the probability that the field at 
y lies between <j>y and 4>y + 50,,, given that the field at 
x lies between 0* and 0* + 50*). Ali the statistical 
properties of the target fields could be derived from 
this information. For example, its covariance func tion 
is

C(x, y) if j* 0j)(0\)^0.\d(f)y.

(2.1)

This technique should be considered as a reliable 
and powerful way of expressing our prior knowledge 
of the target field. Nevertheless, considering we have 
to gain access to this knowledge only through the da
taset, some simplifications or hypothesis are obviously 
needed to make the method applicable. The four most 
classic ones used in the literature are the folio váng 
(Gandin 1963; Bretherton et al. 1976):

Hl—Ali the probability distributions are supposed 
to be Gaussian. ( It should be noted thai this hypothesis 
is not absolutely required for most of the analysis 
methods but makes their explicit probabilistic inter
pretation much easier.)

H2—The mean of Ax(0) is zero. The background 
field is supposed to have been chosen to get this im
portant property.

The distribution /Vx(0) is then entirely determined 
by only one parameter, the first-order moment, the 
background error variance e2, and may be written as

Ajr(0) = (27re2) >/2 exp(_ 2 ^) ’ (2‘2)

H3—Homogeneity and/or isotropy of the charac
teristics of the field.

The background error variance is then independent 
from the position, and the conditional probability dis
tribution only depends on the distance r = |x — y|
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between the two points. Given Hl, H2, and H3, (if we 
introduce the correlation function y ) the conditional 
probability distribution becomes

H7—Homogeneity of the characteristics of the noise. 
H8—The probability distributions are supposed to 

be uncorrelated from one point to another.

Fr(<t>x, 4>y) -
1

[27ra2(r)]1/2 

X exp 1 iy(r)<j>x - <py]2 (2.3)
2 a2(r)

These expressions lead to the covariance function

c(r) = e2y (r). (2.4)

The application of Bayes theorem gives the expression 
of the resulting variance

a\r) = t2[l - y2(r)]. (2.5)

H4—When the dataset is very small, it is often nec
essary to use supplementary hypotheses for the shape 
of the correlation function, that is, to impose the shape 
of the function y(r).

c. Statistics and hydrological data

The database is a set of measures of the real field ( d¡ 
at the points x,-, i = 1, • • • , N). The measures are 
affected by instrumental errors as are ali measures. 
Moreover, the noise is defined as the difference between 
the data and the objective of the analysis (i.e., the target 
field), which is different from the real field:

5,- = d¡ — <j>i(xj). (2.6)

Thus, the resulting noise affecting the data depends on 
the relation existing between these two fields. It may 
include the small-scale variability variance if this re
lation contains filtering or interannual variability for 
climatological study of historical dataset.

To optimize the analysis method, the characteristics 
of this noise should be known. Here we do not have 
any choice; using a statistical methodology is the only 
way of representing the characteristics of the noise. (We 
use statistics basically because it is necessary to take 
the characteristics of the noise into account.) Let 
Mx¡(5) be the probability distribution of the noise at 
the point x, (i.e., the probability distribution for the 
observation given the target field). Once more, hy
potheses are necessary to make this information com
putable:

H5—The probability distributions are supposed to 
be Gaussian.

H6—The mean of AfXj.(ô) is supposed to be zero.

The distribution Mx.(5) is then entirely determined 
by only one parameter, the first-order moment, the 
noise variance a2, and may be written as

= (2to-2)1/2 exp(— 2 ' (2'7)

Nevertheless the data are the only source of infor
mation available. Despite the noise, a method must be 
found to extract the characteristics of the noise and ali 
the statistical information required on the target field 
from the data. This is the challenge addressed in this 
paper, because after the computation of this statistical 
(or probabilistic) knowledge of the field, it becomes 
possible to adapt the optimization criterion so that it 
gives the best statistical approximation of the ideal cri
terion [i.e., to bring the reconstructed field as close as 
possible to the (unknown) target field].

d. Data analysis methods

The two previous sections have described the prior 
probability distributions characterizing our knowledge 
of the target field with respect to the background and 
the data with respect to the target field. Using Bayes’s 
theorem, we can deduce the posterior probability dis
tribution characterizing our knowledge of the target 
field everywhere, knowing that we obtained data 
somewhere. In this view, analysis methods may be in
terpreted as an (even indirect) application of proba
bilistic criteria to solve the inversion problem.

The approximation of the ideal criterion by any 
analysis method is closely related to the knowledge of 
the probability features of both the field and the noise. 
But before attempting to compute it, let us examine 
how the analysis methods operate to take into account 
this prior information and what the relations between 
this and the hypothesis on the statistical structure of 
the field are. On this aspect, we will aiso briefly compare 
the two analysis methods in order to eventually be able 
to choose the most appropriate to our study.

1) Objective analysis

This method is probably the oldest and the most 
widespread data analysis procedure in oceanography. 
Originally, the foundation of this method was the min
imization of an error estimation, assuming some prior 
statistical knowledge of the unknown (target) field and 
the noise. In fact, this knowledge may be directly de
duced from the probabilistic distributions, and it has 
been proven that the method is consistent with the 
probabilistic point of view presented above (Lorenc 
1986). But the procedure only requires the knowledge 
of the correlation function of the target field and the 
noise variance. The reduction of the prerequisite in
formation in these two elements is the consequence of 
the use of the hypotheses: H2, H6, H7, and H8. Thus, 
the method theoretically enables one to take very pre
cise and particular features of the target field into ac
count. Nevertheless, in practice, the lack of a priori
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information generally leads one aiso to admit the hy
potheses H3 and H4.

The covariance matrix of the data A is defined as

Aij = e2y(Xj, Xj) + o%. (2.8)

The objectively reconstructed field may be written as 
(Gandin 1963; Bretherton et al. 1976)

N N
<A(x) = 2 2 Aijlc(Xi, x)dj. (2.9)

j=i <=i
This solution can be interpreted as the mean of the 
posterior probability distribution of the target field that 
has (indirectly) been deduced from its supposed prior 
probability distribution (background information) 
combined with the information contained in the da
taset (with regard to the noise variance). The standard 
deviation of this probability distribution is aiso com
puted by objective analysis in order to produce error 
maps:

N N .
e(x) = e2 - 2 2 ^lc(Xi, x)c(xj, x). (2.10)

j=i í=i

2) Spline analysis

The point of view developed in the spline analysis 
method is quite different. The criterion is defined as 
the minimum of a variational principle (Wahba and 
Wendelberger 1980; McIntosh 1990):

/[«Aix)] = f S[4(x)}dx + n 2 I#**) - dk]2,
k= 1

(2.11)
where 5[ ] is a positive definite smoothing operator. 
In this case, the most general expression of St ] is

m
S[0] = 2 ociLi[<t>],

i=0

where

//[</>]= 2
«l+o>2+* • * +üj„=/

d‘<j>
dxt'dx?- • •dx'ír

(2.12)

Moreover, S) is the domain where the analysis is per
formed, and ¡i the parameter that controls the weighing 
between the smoothing of the solution and its com
patibility with the data.

In spite of the completely different features of the 
procedure, it has been demonstrated that, under certain 
conditions, this method (norm spline: a0 # 0) is exactly 
equivalent to an objective analysis reconstruction. In
deed, if the domain D used in the spline method is 
supposed to be infinite, the solution of the variational

principle minimization may be written similarly to that 
of objective analysis (Wahba and Wendelberger 1980; 
McIntosh 1990; Brasseur 1994), if we choose the cor
relation function as

c(x, y) = fi<T2K(x, y), (2.13)

where K(x, y) is the reproducing kernel of the Hilbert 
space, whose norm is defined by

J S[<Kx)]dx. (2.14)

As this kernel is the solution of the following Green 
equation (McIntosh 1990)

m
2 (-1 YaiMilKix, y)] = i(x - y), (2.15)
i=0

where

Md ]= 2 ßU, oj)
<i)\+o}2+• * *+wn=/

X _______ _________
dxiaidx22U2 • • • dx2nu" (2.16)

it is possible to find the Fourier transform of the so
lution easily when the operator is isotropic:

ß(i, Wj) =
i!

toi !to2! • • • to„!
(2.17)

The solution is

K(k) = -ir-5---- , (2.18)

2 ctjk2‘
i=0

where k is the norm of the wavenumber and K the 
Fourier transform of K(r), r = |x — y |.

Analytically, it is possible to find several shapes of 
correlation functions consistent with this equation. In 
other words, in this case, even if this method is com
pletely equivalent to the former, the choice of the cor
relation function is not completely free any more, it is 
parametric. Consequently, the application of this 
method (such as it is presented here) absolutely requires 
the hypotheses H3 and H4. (Note that although these 
hypotheses are not necessary in objective analysis they 
are, nevertheless, generally used.)

In short, from this theoretical comparison, we may 
say thai the equivalence has been established for some 
parametric forms of the statistical structure in objective 
analysis and, without taking the boundaries into ac
count, in the spline method. But the advantages of the 
spline method mainly lie in the use of an efficient finite- 
element numerical technique to solve the variational 
problem (see Brasseur et al. 1996). This original im
plementation of the method is entirely different from 
the numerical technique used by Wahba and Wendel
berger ( 1980), but it has only been built for two-di-
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Fig. 3. Horizontal distribution of the casts of the MED2 database 

for the western Mediterranean Sea.
Fig. 1. Finite-element mesh computed to solve the variational 
problem (spline analysis) on the western Mediterranean Sea.

mensional problems and maximum second-order de
rivatives thai are allowed in the variational principle 
(m = 2).

For example, to cover the western Mediterranean, 
the finite-element mesh of Fig. 1 has been generated. 
The grid is composed of 461 triangular finite elements 
and 1044 (vertex and interface) nodes for 1624 degrees 
of freedom. On each triangle, the unknown function 
<t>e is decomposed as

12
V{x,y)= 2 qen,Wm(x, y), (2.19)

771=1
where x, y is a local coordinate system; wm are the 
shape functions (third-order polynomials) used to ap
proximate the solution on the triangle; and qem are the

January
2500 x FebruaryDecember

November March

October \-

September

August

' 10 m —— 100m 1000 m• 50 m — 400 m

Fig. 2. Size of the database: number of observations available on 
the western part of the Mediterranean Sea with respect to the depth 
and the time period (monthly).

connectors. These connectors are the new unknowns 
of the minimization problem and they entirely deter
mine the solution. By identifying the connectors be
tween adjacent elements, a predetermined level of 
continuity (first order) is guaranteed over the whole 
domain; they constitute the degrees of freedom of the 
problem.

By introducing the shape (2.19) of the solution in 
(2.14),usingthe knowledge of the shape functions, we 
obtain a quadratic expression for the variational prin
ciple in terms of the connectors (where the connectivity 
of the mesh has been taken into account):

Noise standard deviation

January

FebruaryDecember

MarchNovember

H AprilOctober r

September

August

Fig. 4. Month-to-month variability of the noise standard deviation 
(°C) of the temperature field (for monthly climatological analysis) 
in the western Mediterranean Sea computed by the classic statistical 
method.
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Correlation length (km)
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MarchNovember
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Fig. 5. Month-to-month variability of the correlation length (km) 
of the temperature field (for monthly climatological analysis) in 
the western Mediterranean Sea computed by the classic statistical 
method.

/(q) = qTKq - 2qTg + fi eli, (2.20)
k= 1

which leads to a linear algebraic system

Kq = g, (2.21)

where g depends on the data (dk). If the elements are 
correctly sorted, the resulting matrix K is very sparse 
and leads to a computation time (for the resolution of 
the linear system) roughly proportional to the power 
5/2 of the number of degrees of freedom. Consequently, 
the main part of computation time does not depend 
on the size of the dataset. As for objective analysis, it 
is proportional to the cube of the number of data, which 
makes the finite-element method especially efficient for 
large datasets.

Moreover, the result of the finite-element technique 
is a de facto continuous field. Consequently, there is 
no need to introduce an additional interpolation op
erator to deduce the value of the reconstructed field 
on any location. Finally, the mesh is limited by the 
boundaries of the real marine domain. In the coastal 
zones (where the equivalence with objective analysis 
is no more guaranteed), the method is not rigorously 
isotropic and homogeneous any more; however, this 
feature is beneficial to prevent data information from 
crossing over land barriers (islands, peninsulas, etc.) 
and makes the solution more realistic. Consequently, 
this method will be used for the next steps of our work, 
by taking advantage from its statistical interpretation.

3. Cross-validation as optimization criterion: A tool
for computing statistical properties from the data

This section aims at providing a reliable method for 
computing the prior statistical properties of both the 
field and the noise to optimize the analysis criterion 
with respect to the particular features of both the system 
and the objectives of the study. But before dealing with 
this problem, let us consider a completely different way 
of approaching the ideal analysis criterion, a procedure 
(introduced by Wahba 1980) based only on the da
taset—cross-validation. The first subsection will de
scribe the interest of this method and its usefulne ss in 
the scope of our study. It will be fully justified only in 
the scope of a statistical interpretation of the procedure 
in the second subsection.

a. Foundations of the method

Originally, this method has been developed to op
timize one (or a few) important parameter(s) char
acterizing a given data analysis scheme. The procedure 
consists in successively eliminating one measure from 
the full database and performing reconstructions with 
the incomplete datasets thus constituted. The variance

-5.0 -4.0 -3.0 -2.0 -1.0 i
Spline Weighting Parameter (log)

Fig. 6. Various estimations of 8 (cross-validation estimator, in 
degrees Celsius) with respect to ß (spline analysis parameter). The 
dotted curves show the generalized cross-validation estimate 8e for 
five dilferent random vector z. Both other curves represent 8s. The 
dashed one for samples of 100 observations, and the continuous one 
for samples of 50 observations. (Summer temperature field at 10-m 
depth.)
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Sensibility of the analysis with respect to the correlation
length

l.OOE+OI

O.OOE+OI

¡Depth (r Correlation length (km

Fig. 7. This figure relates the variation of the optimum presented on Fig. 6 (and for the same test experiment)
to the correlation length for some depths.

of the misfits between these reconstructed fields and 
the corresponding eliminated data can be considered 
as a statistical indicator of the quality of the analysis. 
The optimization can then be iteratively achieved by 
minimizing this indicator with respect to the selected 
parameter(s) (Wahba 1980). (For example, in the 
fourth section, this procedure will be used to determine 
the best background field.)

Moreover, we will show thai this optimization tech
nique enables one to compute estimators of the two 
main statistical features: the background error variance 
e2 and the noise variance a2. It will be fairly true if the 
optimized parameter(s) is (are) much more important 
than the others with respect to the quality of the re
construction, so thai the quite arbitrary assumptions 
(H3 and H4) are not of critical importance in these 
calculations.

At this point, two questions immediately come to 
mine. 1) Is it not possible to use the classic direct 
method to compute these statistical properties? 2) Is it 
still relevant to compute these statistical features if we 
can directly optimize the analysis method by cross
validation?

The first answer mainly comes from a practical point 
of view. Indeed, the classic direct method has an im
portant limit. It is only possible to obtain reliable results 
with a huge dataset thai is supposed to be characterized 
by the same statistical properties. [See, e.g., for mete
orological observations, Julian and Thiebaux ( 1975).] 
In practice with our database (see section 4), these

conditions are only approximately realized near the 
sea surface. We will nevertheless perform this method 
to describe its limitations better and to compare the 
results with those provided by cross-validation esti
mators.

Second, we claim, as an answer to the second ques
tion, thai the knowledge of the statistical features of 
the field and the noise remains interesting in itself. It 
is then possible to clearly distinguish the statistical study 
[including quality control, which will be the subject of 
further studies in the frame of the procedure developed 
by Lorenc and Hammon (1988)] and the analysis. The 
reason for this separation is the need for a possibility 
to extend the use of the statistical parameter thus com
puted and the database thus controlled to situations 
for which these tasks are impossible to perform (be
cause of the cost of the procedure or the lack of data). 
Moreover once cross-validation has been performed, 
it requires only a very weak supplementary cost. 
Working out a reliable confirmation of a result always 
improves it.

b. Statistical interpretation of the method

Let f{k) be the field reconstructed when the measure 
dk has been withdrawn from the dataset. For each value 
of the parameter and for each measure k, we compute 
the differences

0k = dk - 0<fc)(xjfc). (3.1)
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Fig. 8. Summer temperature field (°C) at 10-m depth reconstructed by the spline analysis method. The 

only difference between these three analyses is the value of the signal-to-noise ratio: (a) 0.1, (b) 1.0, (c) IO.
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LEGEND 
a = winter 
o = spring 
a = summer 
o = autumn

«0

•a eoe d-

350.0 400.0150.0 200.0 250.0 300.0100.0
Depth (m)

Fig. 9. Noise standard deviation (°C) of the temperature field for seasonal climatological analysis 
in the western Mediterranean Sea computed by the generalized cross-validation procedure on the 
basis of the MED2 database.

Craven and Wahba ( 1979) have shown thai the value 
of the parameter minimizing

02 = <0¿> = ¿2 0£ (3.2)
ly k= 1

is “an amazingly good estimate” of the optimal pa
rameter (minimizing the true error e). The cross-val
idation optimization criterion (minimization of 0) is 
thus a good approximation of the ideal criterion with 
respect to the selected parameter.

As soon as the optimal parameter is computed, we 
can provide some other estimators useful to compute 
the error standard deviation. First, let us define

h = dk - 0*(xfc), (3.3)

where <¡>* denotes the optimal reconstruction (using 
the whole dataset). To interpret this new estimator, 
which can be easily computed, the objective analysis 
theory (Gandin 1963; Bretherton 1976) gives an in
teresting expression of the difference between the data 
and the optimal solution (where A is still the covariance 
matrix of the data):

êl=<r*AU. (3.4)

It should be noted that this is exact whether the hy
potheses on the statistical structure of the field are cor
rect or not. It is interesting to use it to link this estimator 
to the statistical properties that we try to evaluate:

Î2 = <H) = },XSi
fc-1

TrA~‘
N

(3.5)

From these two estimators and their interpretation 
a range for the value of the noise variance can already 
be given:

az + C
< 02 < <r2 < 02 < a2 + t2 = eo2, (3.6)

where eo2 is the whole data variance with respect to the 
background. This variance can always be computed 
easily. (The problem comes from the difficulty of split
ting this whole data variance into the noise variance 
and the background error variance.)

Moreover, it is possible to find an exact relation be
tween these two estimators whether the hypotheses 
needed to perform the reconstruction are correct or 
not (Craven and Wahba 1979):

h =
Ok

1 — Rkk ’
(3.7)

where R is the influenced matrix of the optimal anal
ysis:

<t>*( Xfc) = 2 Rkjdj. (3.8)
j=i

Then rewriting (2.9) at the data points xk (following 
Bretherton et al. 1976):
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) = 22 (Aik - <J%k)AijXdj. (3.9)
J=i <=i

By identifying ( 3.8 ) and ( 3.9 ), we obtain the influence 
matrix of objective analysis:

Rkj = Skj — a2Akj . (3.10)

Equation (3.7) consequently becomes

h0* = -rh. (3.11)
a Aki

the result (rjx) may be estimated from the variance of 
this random variable

* <(X*-X)2>
Vx - ---------------- (3.14)

Once more, computing c2 and a2 from these estimators 
is an inverse problem. It is possible to show thai the 
resulting probability distribution for the solution is 
(Tarantela 1987)

P(e2, c2) = exp[-/(e2, a2)], (3.15)
where

By eliminating Akk between (3.4) and (3.11 ), we di
rectly deduce

<j2 = eA- (3.12)

If the optimum is known (by minimization of 92, if 
the basic hypotheses are quite correct), we may suppose 
that this always gives the true value of the noise stan
dard deviation [always coherent with (3.6)]. However 
in practice we observe some variations with respect to 
k. Thus, it is preferable to average this estimator over 
the dataset and write

J(e2, a2) = \(a2 - f)2 + \ (e2 + a2 - eo2)2
Vi Veo

-2(ct2-62)2, o2<02
Vi
0, 62 < a2 62

-2(<t2 - 82)2, 62 ><t2
Vo

+ (3.16)

from which the solution (mean and standard deviation) 
may be easily computed.

<r2~f=<0Â>. (3-13)

_ Each of these estimators is computed as the mean 
X of a given number n of realizations of a random 
variable Xk. In this case the variance of the error on

c. Derived estimates: Sampling and generalized 
cross-validation
Performing cross-validation using (3.1) and (3.2) 

poses an important difficulty—the numerical cost. In-

LEGEND 
□ = winter 
O = spring 
a = summer 
o = autumn

250.0 300.0 350.0200.0 400.0
Depth (m)

Fig. IO. Noise standard deviation (psu) of the salinity field for seasonal climatological analysis 
in the western Mediterranean Sea computed by the generalized cross-validation procedure on the 
basis of the MED2 database.
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LEGEND 
a = March 
o = April 
A = May 
v = June 
X = July 
o = August

V =i-

100.0 150.0 200.0 250.0 300.0 400.0350.0
Depth (m)

LEGEND 
a = September 
o = October 
a = November 
V = December 
X = January 
o = February

£ o-

Depth (m)
Fig. 11. Noise standard deviation (°C) of the temperature field for monthly climatological analysis 

in the western Mediterranean Sea computed by the generalized cross-validation procedure on the 
basis of the MED2 database, (a) Increase from March to August, (b) Decrease from September to 
February.

deed this method requires as many reconstructions as 
there are measures in the dataset, for each parameter. 
So, it is inapplicable on a large scale in this original 
shape.

This problem can be solved in two ways. First, by 
using the generalized cross-validation estimate (Craven

and Wahba 1979; Golub et al. 1979). It has been shown 
thai

eG = 6
N~1 Tr(l - R)

(3.17)

may be considered as a worthwhile alternative to 6.
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Z

2 14’W ' 2 26’E 7 7’E 11 47’E 16 28’E6 54’W
Fig. 12. Map of the noise standard deviation (°C) of summer temperature at 10-m depth.

Even if the influence matrix R is accessible only with 
high numerical cost, the trace of the matrix may be 
efficiently computed by the randomized trace estima
tion method (Wahba 1990):

r- 6eG~--------------------, (3.18)
— (zTz — zTRz)

where z is a Gaussian random vector (whose mean is 
zero and standard deviation is one) thai may easily be 
supplied by an automatic random number generator. 
Equation (3.18) requires only one supplementary re
construction to compute 9G from 6. Indeed, we use the 
analysis procedure to compute Rz from z. In practice, 
we will observe thai this efficient procedure definitely 
provides a very reliable estimator thai can advanta
geously replace 6.

Nevertheless, we will examine a second way of re
ducing the cost of (3.1) and (3.2). Instead of only 
eliminating one measure from the database for each 
reconstruction, we may eliminate a sample of data. 
We define 0(Sp> as the reconstructed field when the 
measures dk included in the sample Sp (p = 1, 
• • • , Ns\ Ns < N) have been withdrawn from the 
dataset:

dsk = dk-<j>(s’\xk), dk G Sp (3.19) 

and following

6s" = <öf >■ (3.20)

If the data in each sample are scattered and few enough 
within the whole dataset, we may neglect the difference 
between 0<k)(xk) and <t>(Sp)(xk). Consequently, it will

aiso be valid to replace 6k and 0 by their estimation 
using sampling 6k and 6s.

The quality of this approximation aiso depends of 
the parameter of the analysis method. Indeed the 
shorter the characteristic length of the reconstructed 
field becomes (when ß is increasing, for example), the 
less the sampling approximation fits the true value of 
B. Consequently, the objective of the sampling guide
lines is to ensure the quality of the approximation at 
least for the parameters inferior or equal to the optimal 
value.

On the other hand, the cost of the procedure is; di
rectly related to the number of subsets. (The number 
of reconstructions required is equal to the number of 
samples used.) The problem of determining the smallest 
number of samples ensuring the quality of the approx
imation may be solved in the following way. The whole 
dataset is divided into subsets by progressively splitting 
the whole physical domain into rectangular boxes. The 
subsets are then generated by selecting one observation 
per box. The procedure enables one to take several 
types of condition into account. For example, we may 
fix the number and the size of the samples or introduce 
a minimum length separating two measures included 
in the same sample and a maximal size ratio for any 
sample with respect to the dataset.

In the latter case, ali the data cannot always be in
cluded in the subsets without getting too many little 
samples. (In some situations, a great amount of data 
is concentrated in a small area.) But this is not abso
lutely necessary to perform the cross-validation. The 
objective is to provide a statistical set large and rep
resentative enough to give sense to the estimators. For 
thai matter, in order to test the reliability of these es
timators, the method enables us to compute statistical 
confidences for each of them. In short, a few samples
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of correctly scattered data could form a statistical set 
sufficient to perform a reliable and much cheaper cross
validation.

At this point, there is still no reason to prefer the 
sampling procedure over the generalized cross-vali
dation. The latter provides an equivalent, if not better, 
estimate at lower cost. The only drawback of the gen
eralized cross-validation procedure is thai it provides 
only a global estimate. It does not matter as far as we 
do not intend to give up the hypothesis of homogeneity 
of the statistical structure. But, in the context of the 
analysis of oceanic hydrological fields, it may become 
interesting to relax this hypothesis, replace the means 
in (3.2), (3.5 ), or (3.13) by a smoothing reconstruction 
using the spline method, and detect by the way some 
inhomogeneous characteristics of the statistical struc
ture. Once more, an objective way of evaluating the 
correct degree of smoothness to give to the solution is 
cross-validation. It will prevent us from exaggerating 
the quantity of information thai can be extracted by 
this procedure and allow us to infer ali significative 
patterns.

4. Application to a historical database of the western
Mediterranean Sea

In this section, the general ideas above developed 
are applied to solve a practical problem. In the frame 
of the study of the general circulation in the Mediter
ranean Sea (Brasseur and Haus 1991), reliable cli
matological analyses of the hydrological data are con
stantly needed. (Whether for model initialization and 
validation or for data assimilation purpose, such fields 
have to be based on reliably computed information.) 
The target fields of our study have been defined to con
tain the general circulation pattern of the sea only. (In 
fact, only horizontal sections will be reconstructed and 
then superposed to obtain the 3D field.) It is thus sup
posed thai ali small-scale phenomena have to be filtered 
off. Moreover, they are supposed to characterize the 
climatology of a given period of the year (month or 
season). Thus, its relation with the real evolutive field 
includes averaging over this period from year to year. 
As a consequence, we must expect thai the noise af
fecting the data will include, in addition to the obser
vational error variance, small-scale phenomena and 
interannual variability. (The latter term may be con
sidered as the largest part of the noise variance.)

a. Description of the database

To perform such climatological analysis, a large his
torical database is needed for the western Mediterra
nean Sea. But, up to now, no exhaustive historical 
database has been compiled with ali the in situ data 
collected. Nevertheless, two major files containing a 
substantial part of the experimental work are available 
for the purpose of this study: the French Bureau Na

tional des Données Océaniques (Brest, France) file thai 
exclusively contains hydrographic casts for the Medi
terranean region, and the National Oceanographic 
Data Center (Washington, D.C.) file, which is a subset 
of a larger World Ocean data bank. The MED2 data
base (used in this work) has been obtained by merging 
of these two original datasets (Brasseur and Haus 
1991). However, in the future, the quality of the data 
bank (and consequently the results of the analyses) 
will greatly benefit from the MODB project (briefly 
described in the introduction).

Whatever the data analysis procedure is, the quality 
of the reconstruction and the reliability of the statistical 
study strongly depend on the data density. Figure 2 
shows the total number of data available on the western 
part of the sea with respect to depth and time period. 
On the other hand, Fig. 3 gives a typical example of 
the horizontal distribution of the data.

b. Choosing the background field
As we have said in the second section, the back

ground field is the best prior estimate of the target field. 
The whole analysis procedure will be performed on the 
data anomalies with respect to the background field. 
The choice of this field is thus preliminary to any anal
ysis treatment of the data.

For lack of better keys, it could be chosen as the 
mean or the linear regression of the data, but in a do
main as large as the Mediterranean, where the (target) 
field may show important variations from one region 
to another, these simple solutions would lead to sys
tematic errors in the solution.

An interesting alternative could be to compute the 
background field using the seminorm spline recon
struction procedure [i.e., using(2.14) and (2.15) with
out an underived term in the smoothing operator: a0 
= 0], There is an important restriction in the use of 
this method: the background field must be smoothed 
enough so as not to be influenced by the noise affecting 
the data.

The cross-validation procedure enables us to test the 
relative quality of different analysis procedures. So it 
will aiso be possible to study the influence of the back
ground field on the best analysis thai can be computed 
from it. Such an experience shows that the quality of 
the final result can be significantly improved if the 
background field has been carefully chosen, and the 
first tests tend to prove thai the very best analysis is 
obtained by choosing the optimal norm-spline recon
struction (in the sense of the cross-validation criterion) 
as a background field. Thus, as far as the background 
field is smooth enough, it will not significantly influence 
the computation of the noise standard deviation.

c. Overview of the classic method—Results
Classically, estimations of the statistical features of 

the target field and the noise are directly computed by
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averages over the whole dataset (or over area where 
these properties may be considered as homogeneous). 
For this purpose, we consider ali pairs of data that can 
be formed in the dataset. Each of these pairs enables 
the computing of an element of the statistical set whose 
mean would be the value of the correlation function 
for the distance separating the data of the pair. With 
the pairs for which the correlation may be a priori con
sidered to be maximal (because of the short spatial 
distance separating the data), it is possible to give an 
estimation of the noise variance.

Despite the various refinements in the computation 
of the statistical structure from these multiple inter
dependent statistical sets, this method will only produce 
reliable results if these sets are very large, especially for 
very densely distributed data. In the frame of our da
taset in the scope of the western Mediterranean Sea 
study, this condition is only sufficiently guaranteed at 
low depth (<50 m). Moreover, even in this case, the 
procedure cannot be automatic; the results have to be 
continuously checked.

For further comparison with cross-validation, on 
Figs. 4 and 5, we have given results obtained at 
10-m depth for monthly historical datasets using the 
classic procedure. Figure 4 shows the month-to- 
month variability of the noise variance. Concerning 
the correlation function, we compute only a main 
feature: the correlation length. [Here, it has been 
defined as the length / for which the function 
exp( — r2//2) best suits the computed shape for short 
distances r.\

d. Cross-validation of an analysis method

As we have observed in the previous section, the 
cross-validation procedure mainly consists of finding 
the method parameters leading to the minimization of 
the 8 estimator. Fortunately, one parameter is much 
more important than the others: the parameter p of 
the variational problem, which is directly related to the 
noise-to-signal ratio of the objective analysis procedure 
[Eq. (2.16)]. Figure 6 shows some estimations of the 
8 estimator with respect to the parameter p for a test 
experiment (summer temperature field at 10-m depth); 
a minimum can be easily computed. The dotted curves 
show the generalized cross-validation estimate 8G for 
several (five) different random vectors z. The two other 
curves are two cross-validation estimates using the 
sampling approximation 8s. The continuous one with 
samples of 50 observations is the most precise; the 
dashed one has been computed with samples of 100 
observations. As explained in section 3, there is a dis
crepancy between the different curves for large values 
of p: the larger the spline weighting parameter, the 
shorter the characteristic length of the reconstructed 
field, and the poorer the quality of the sampling ap
proximation. Anyway, it does not matter, as far as the 
optimum is well represented.

To examine the influence of other parameters, Fig. 
7 shows the evolution of this optimum with respect to 
the correlation length for some depths. The weak de
pendence (except for very short correlation lengths) 
with respect to this parameter has led us to fix it to a 
constant and quite arbitrary value (80 km: according 
to the direct analysis) for the following applications. 
This intriguing weak dependence with respect to the 
correlation length mainly comes from the high density 
of the dataset. As a consequence, the climatological 
main structures are well represented by the observations 
themselves and a horizontal characteristic length of the 
analysis does not influence the solution any more.

On the contrary, the crucial importance of the signal- 
to-noise ratio should not be denied (see aiso Provost 
1987). To illustrate this feature on the shape ol'the 
solution, Fig. 8 displays three analyses of the same data 
subset (corresponding to summer situation ) for differ
ent parameters p of the spline method (which is directly 
related to the signal-to-noise ratio). The medium value 
corresponds to the optimum deduced from cross-val
idation: Fig. 6. The variation in the shape of the: so
lution can be linked to the spectral interpretation of 
the method: the higher the signal-to-noise ratio is sup
posed to be, the less the solution has to be smoothed.

e. Cross-validation to compute statistics .

Finally, to achieve the goal of this paper, the cross
validation procedure should be used to compute the 
statistical structure in the particular situation presented 
above. By a rigorous application of the method, we 
obtain the following results.

First, let us consider the case of the reconstruction 
of seasonal climatological fields. Figures 9 and IO show 
the variation with depth of the noise standard deviation 
for temperature and salinity, respectively. This has been 
computed using the generalized cross-validation esti
mator from the dataset covering the whole basin. Then, 
for monthly climatological analysis Figs. 1 la and lib 
show the noise standard deviation as a function of 
depth.

Some general features of the noise variability may 
be deduced from these figures. First, in depth (below 
200-m depth), the noise standard deviation is quite 
constant throughout the year. (The results obtained 
for October should be considered as doubtful in depth 
because of the lack of data.) Near the surface it is more 
important during summer than during winter. This 
feature is linked either to more important small-scale 
phenomena during summer or to a larger interannual 
variability. Figure 1 la shows the increase in the stan
dard deviation from March to August, whereas Fig. 
1 lb depicts its decrease from August to March (above 
200 m).

It should aiso be noted that the confidence range has 
been computed from the probability distribution of 
the solution with a confidence of 95%. However, this



April 1996 BRANKART AND BRASSEUR 491

estimation does not take the bias introduced by the 
lack of representativeness of the dataset itself into ac
count. (This would have been impossible.) So these 
confidence ranges are only exact if the database is an 
unbiased sample of reality, which is never the case. So, 
they have to be considered with care.

Finally, Fig. 12 gives an example of the use of the 
sampling procedure (followed by a spline reconstruc
tion in place of only averaging) to explore the inhomo
geneities in the noise standard deviation across the 
Mediterranean Sea. Once more, we give the example 
of the summer temperature field at 10-m depth. The 
reconstruction of this field from local information has 
been optimized using the generalized cross-validation 
procedure.

5. Conclusions

As a conclusion, the application of the cross-vali
dation procedure on the MED2 database to compute 
the main statistical features of both the target field and 
the noise clearly shows thai the method is efficient to 
select the criterion defining any analysis method. In 
fact, there is a second “cross-validation”: a direct ap
plication of the cross-validation method allowed to de
termine the optimum that may now be validated and 
extended to other situations by using its statistical in
terpretation. (It should be remembered that this pro
cedure is greatly simplified by the predominant im
portance of only one parameter.)

From the numerical experiments we can aiso reper- 
toriate some specific features of the method. The first 
one is the reliability of the results compared to those 
of the direct method. Afterward, at first sight, the nu
merical cost of cross-validation is very high. But we 
have showed that some developments of the procedure 
enable a substantial reduction of the cost and give this 
method a great flexibility. The trouble caused by the 
numerical cost of cross-validation is aiso strongly 
reduced by using the numerically efficient spline 
method (which consists of minimizing a variational 
principle with a finite-element technique) to fulfill the 
analysis.

This benefit would have been lost without a statistical 
interpretation of the spline method emerging from an 
equivalence theorem with objective analysis. Indeed, 
we have to compute some statistical properties of the 
particular situation that can be linked to the parameters 
of the analysis method. For thai purpose it has been 
demonstrated that the probabilistic point of view was 
convenient and coherent with the objective analysis

requirements and, as a consequence, with the spline 
analysis method. A complete link between the way of 
expressing these properties (probabilities) and their re
liable computation (cross-validation) has consequently 
been set up thanks to the mathematical structure (and 
numerical features) of the two most widespread anal
ysis methods: objective analysis and spline analysis.
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