
Jellyfish as Prey: Frequency of Predation and Selective
Foraging of Boops boops (Vertebrata, Actinopterygii) on
the Mauve Stinger Pelagia noctiluca (Cnidaria,
Scyphozoa)
Giacomo Milisenda1,2*., Sara Rosa3., Veronica L. Fuentes4, Ferdinando Boero1,2,5, Letterio Guglielmo3,

Jennifer E. Purcell2,6, Stefano Piraino1,2*

1 Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), University of Salento, Lecce, Italy, 2 Consorzio Nazionale Interuniversitario per le Scienze del

Mare (CoNISMa), Rome, Italy, 3 Department of Animal Biology and Marine Ecology, University of Messina, Messina, Italy, 4 Institut de Ciencies del Mar-CSIC, Barcelona,

Spain, 5 Institute of Marine Sciences, National Research Council (ISMAR-CNR), Genoa, Italy, 6 Shannon Point Marine Center, Western Washington University, Anacortes,

Washington, United States of America

Abstract

In recent years, jellyfish blooms have attracted considerable scientific interest for their potential impacts on human activities
and ecosystem functioning, with much attention paid to jellyfish as predators and to gelatinous biomass as a carbon sink.
Other than qualitative data and observations, few studies have quantified direct predation of fish on jellyfish to clarify
whether they may represent a seasonally abundant food source. Here we estimate predation frequency by the commercially
valuable Mediterranean bogue, Boops boops on the mauve stinger jellyfish, Pelagia noctiluca, in the Strait of Messina (NE
Sicily). A total of 1054 jellyfish were sampled throughout one year to quantify predation by B. boops from bite marks on
partially eaten jellyfish and energy density of the jellyfish. Predation by B. boops in summer was almost twice that in winter,
and they selectively fed according to medusa gender and body part. Calorimetric analysis and biochemical composition
showed that female jellyfish gonads had significantly higher energy content than male gonads due to more lipids and that
gonads had six-fold higher energy content than the somatic tissues due to higher lipid and protein concentrations.
Energetically, jellyfish gonads represent a highly rewarding food source, largely available to B. boops throughout spring and
summer. During the remainder of the year, when gonads were not very evident, fish predation switched towards less-
selective foraging on the somatic gelatinous biomass. P. noctiluca, the most abundant jellyfish species in the Mediterranean
Sea and a key planktonic predator, may represent not only a nuisance for human leisure activities and a source of mortality
for fish eggs and larvae, but also an important resource for fish species of commercial value, such as B. boops.
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Introduction

In recent years, jellyfish have achieved a prominent position in

studies of marine ecology, reflecting their key roles in the pelagic

domain; however, their roles in marine food webs may vary

according to species, life stages, potential predators, and available

resources. Many studies have shown that jellyfish act as predators

on both invertebrate (e.g. cnidarians, crustaceans, tunicates) and

vertebrate (fish eggs and larvae) zooplankton [1–4]. In addition,

gelatinous predators may impact trophic webs by impairing the

phytoplankton-crustacean-fish pathway [5–10].

Due to their high water content, jellyfish are often presumed to

be a poor food source and a trophic dead end [11]. Jellyfish were

also assumed to be a low-value biomass not readily consumed by

higher trophic levels, representing a respiratory sink of carbon,

directly leading toward bacterial CO2 production [12]; however,

in addition to the vertebrate predators that extensively consume

gelatinous species, a variety are known to opportunistically/

periodically prey on jellyfish [13]. Indeed, the dilute nutritive value

of gelatinous organisms could be compensated due to the

possibility of rapid digestion and assimilation [14]. Experimentally

fed chum salmon, Oncorhynchus keta, digested Pleurobrachia bachei

ctenophores more than 20 times faster than the same wet weight of

shrimp and the ctenophores provided adequate nutrition when in

sufficient supply to process at this high rate [14]. More recently,

Aurelia aurita jellyfish proved to be a good additional food when

other prey was scarce for the thread-sail filefish, Stephanolepis cirrhifer

[15].
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Because of the rapid digestion, poor preservation, and difficult

recognition of gelatinous organisms inside fish digestive systems,

fish predation on them has been poorly investigated and probably

underestimated [13]. Evidence that jellyfish biomass does not

represent a trophic dead end came also from observations of dead

biomass of the giant jellyfish Nemopilema nomurai sinking to the

bottom, where it is consumed by macrobenthic scavengers more

rapidly than decomposed by bacteria [16]. Predation on gelatinous

plankton can transfer supposed dead-end resources back into the

muscle food chain, indirectly favouring an increase in abundance

of several piscivorous top predators and affecting the trophic web

structure [17]. Recent techniques based on molecular markers

(analysis of stable isotopes and fatty acid composition) are rapidly

providing information on specialist or opportunistic interactions

among gelatinous taxa and their predators [18,19].

Unfortunately, in situ observations on predation on jellyfish are

rare [19–22]: out of 124 fish species and 34 species of other

vertebrates known to use jellyfish as food, most do it occasionally,

and just a few are considered as being mainly gelativorous [23],

such as leatherback sea turtles, which consume up to 261 jellyfish

d21 (330 kg jellyfish wet mass d21) [24]. Some gelatinous plankters

also specifically prey on other gelatinous taxa, such as the

ctenophore Beroe ovata on the sea walnut Mnemiopsis leidyi [25].

Intra-guild predation [26] may severely impact jellyfish dynamics,

with more than a hundred known predatory interactions among

jellyfish taxa [3,13,27–29]. Jellyfish tissues have lower percentages

of carbon than most other zooplankton prey [30,31], but they may

represent a qualitatively important food source for physiological

(i.e. growth, reproduction, development) processes [3,32]. Overall,

the small number of predators of jellyfish in any ecosystem has

been interpreted that they have a minor impact on jellyfish

populations, which instead may be controlled by direct and

indirect bottom–up interactions (e.g. crustacean prey availability,

primary production) [23]. This view, however, is based on limited

information on fish-jellyfish interactions. Field observations of fish

predation activity and analysis of species pair interactions can

provide new insights on the importance of jellyfish as a trophic

resource for fish [33,34].

In the Mediterranean, Pelagia noctiluca (Forsskål, 1775), the

mauve stinger, is the most common and conspicuous jellyfish

species [35] and at least nine gelativorous fish species have been

observed feeding on it (Table 1). Some species of marine turtles,

namely Caretta caretta and Dermochelys coriacea, are also known to

include P. noctiluca and other jellyfish species in their diets [36,37]

(Table 1). The bogue Boops boops (Linnaeus, 1758) is as a gregarious

semipelagic fish distributed throughout the Mediterranean Sea

and the Black Sea [38]. It lives mainly at depths #150 m [38,39],

both near the bottom (especially on rocky and sandy bottoms) and

near the surface [40]. It is omnivorous, feeding on both benthic

(crustaceans, molluscs, annelids, sipunculids, and plants) and

pelagic (siphonophores, eggs, crustaceans, bivalve larvae) prey

[41,42]. Also, B. boops has been observed to feed on jellyfish,

especially on P. noctiluca, but this relationship has never been

quantified [28,43,44]. Such predatory behaviour of B. boops is

frequently observed in the Strait of Messina (Sicily), where P.

noctiluca was first recorded in 1785 [45] and now occurs with

regular outbreaks since 1981, with important effects on the

planktonic community of the Strait of Messina and the Southern

Tyrrhenian and Ionian seas [46].

In this study we investigated for the first time the predation of B.

boops on P. noctiluca in the Strait of Messina (between Italy and

Sicily) throughout a year to test whether a) Boops boops selectively

foraged on its jellyfish prey, and b) selection occurred depending

on medusa gender and medusa body part. Qualitative and

quantitative characterization of the jellyfish somatic body parts

(oral arms, umbrella) and gonads were carried out to elucidate

whether the energy content and biochemical composition of

jellyfish tissues were related to changes of the observed fish

predatory behaviour throughout the year.

Materials and Methods

Ethics statement
No specific permits were required for the described field studies

in the Strait of Messina. The species collected is the most common

native jellyfish in the Mediterranean Sea and is not protected

throughout its range. Sampling points (station A: 38u 12’ 00 N, 15u
33’ 36’’ E; station B: 38u 11’43’’ N, 15u 35’ 58’’ E) did not include

any protected or private lands.

Study area
The study was carried out in the Strait of Messina, which is

geographically located between the Italian peninsula and Sicily,

near the Messina Harbour, mainly inshore (Station A in Figure 1).

This site is influenced by the peculiar hydrodynamic regime of the

Strait, characterized by a six-hour alternation of northward (from

the Ionian to Tyrrhenian seas) to southward tidal currents, with

upwelling and down-welling water masses reaching up to 200 cm

s21 speed [46], which strongly affect the biotic structure and

organization of Strait ecosystem. In fact, upwelling systems are one

of the most productive marine environments that are character-

ized by biological richness in all levels of the trophic chain [47].

The hydrodynamic complexity of the Strait ecosystem has a major

influence on the horizontal and vertical distribution of the

organisms, especially on zooplankton communities. The regular

alternation of northern and southern tides, combined with

upwelling and downwelling water masses, prevents stratification

of the water column. Therefore, the Strait has been compared to

an ‘‘intermittent pump’’, with high inputs of nutrients throughout

the autumn and winter seasons, seeding the spring phytoplankton

bloom both locally and in adjacent zones [48–51].

Due to the peculiar flow of currents and counter-currents,

plankton is transported in fronts propagating along the Strait

shorelines where, at each current change, P. noctiluca jellyfish can

reach high surface abundances (up to 8.3 individuals m22; [46]).

Table 1. Animals reported to feed on Pelagia noctiluca in the
Mediterranean Sea.

Predator (*Parasite) Reference

Turtles Caretta caretta Bjorndahl, 1997

Dermochelys Coriacea Bjorndahl, 1997

Fishes Boops boops Malej & Vukovic, 1984

Schedophilus
medusophagus

Macpherson & Roel, 1987; Costa,
1991

Luvarus imperialis Fitch & Lavenberg, 1968; Costa 1991

Mola mola Hart, 1973

Stromateus fiatola Haedrich, 1986

Tetragonurus atlanticus Haedrich, 1986

Scomber colias Relini et al, 2010

Oblada melanura Relini et al., 2010

Tetragonurus cuvieri Hart, 1973

Crustacea Hyperiid amphipods (*) Reviewed in Laval, 1980

doi:10.1371/journal.pone.0094600.t001
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Predation by Boops boops on Pelagia noctiluca
Underwater videos (Movie S1, Movie S2, Movie S3) to

document the predation behaviour of B. boops on P. noctiluca were

recorded at the station A (Figure 1), using a CANON G7 camera

within a CANON waterproof case WP DC11 attached to a stick

and hand-operated from the surface. Five short videos (5 minutes

each) were also recorded in a single day. Each time, the camera

was randomly deployed with a fixed frame. All fish-jellyfish

interactions recorded in each video were counted by the use of the

software VLC media player (http://www.videolan.org/vlc/). The

interactions were grouped into four classes based on the number of

fish feeding at the same time on an individual jellyfish: 1 - single

fish, 2 - low (2–4 fish), 3 - medium (5–10 fish), 4 - high (11–14 fish).

The body part eaten (bell, oral arms, and gonads) during each

interaction also was reported.

After we observed fish attacks, we conducted a preliminary

survey on 20 jellyfish collected inshore to identify specific marks or

scars due to B.boops predation. These specimens were compared to

20 jellyfish sampled offshore, where no visible B.boops schools were

preying on jellyfish. The jellyfish collected inshore following fish

attacks had bite scars, especially a central hole in the aboral

(exumbrellar) or oral (subumbrellar) side of the jellyfish bell that

indicated the partial or complete predation of gonads. Fish attacks

were also directed towards jellyfish oral arms, which were often

partly or sometimes completely eaten in the inshore jellyfish.

During our subsequent samplings throughout the year, B.boops was

the only fish species observed preying on P. noctiluca, in spite of the

occurrence of several common coastal fish species.

An assessment of the predatory impact of B. boops on P. noctiluca

jellyfish population was made through the analysis of partly

devoured jellyfish by observation of missing or damaged body

parts (somatic tissue, i.e. bell and oral arms, and gonads; see Movie

S1, Movie S2, Movie S3) from jellyfish sampled monthly in the

Strait of Messina throughout one year.

Four seasons were identified based on sea surface temperatures

(Figure 2) recorded by the Italian National Tide gauge Network

(ISPRA http://www.mareografico.it) through an annual cycle:

winter (January–March, 13.6–15.5uC), spring (April–June, 15.4–

21.2uC), summer (July–September, 21.2–24.6uC), and autumn

(October–December) 20.8–15.4uC). Live P. noctiluca specimens

were collected from January to December 2010 with a 1-cm mesh

size hand net from a boat at the inshore station (station A,

Figure 1). To compare the predation frequency between inshore

and offshore fish shoals, jellyfish were sampled at an additional

location (B) in the Strait of Messina in June 2010 (Figure 1).

Jellyfish were sampled randomly, in the absence or presence of

B. boops. On board, jellyfish diameters were measured exumbrellar

side up to the nearest millimetre with a calliper and medusa parts

consumed by fish were recorded. The gender of all sampled

jellyfish was determined by visual analysis of different morpho-

logical characteristics of the gonads. Specifically, the male gonad

has a dark purple colour and is composed of a series of small

cylindrical follicles, stacked together (Figure 3A). The female

gonad is pink to red with eggs that can be easily distinguished

individually (Figure 3B). For medusae whose gender determination

was uncertain visually, a small piece (1 cm) of gonad was removed

Figure 1. Study area (Strait of Messina). A marks the inshore site and B marks the offshore site.
doi:10.1371/journal.pone.0094600.g001
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and stored in 10% formalin for later microscopic analysis. To

enable comparisons of unequal jellyfish abundances among

different months, the duration of each sampling remained

unchanged throughout the year. Absolute data were converted

into frequencies of fish predation on different jellyfish genders by

season. Data were expressed as mean 6 standard errors (SE).

Various jellyfish body parts and tissues were eaten (jellyfish

missing oral arms or with damaged umbrella vs. jellyfish with

missing gonads). By the observed damage on jellyfish, the

Predation Frequency (PF) was calculated either as:

PF(m) = the numbers of male jellyfish damaged (nm) relative to

the number of sampled males (Nm);

PF mð Þ~
nm

Nm

PF( f ) = the numbers of female jellyfish damaged (nf) relative to

total number of sampled females (Nf);

PF(f )~
nf

Nf

PFg = the numbers of jellyfish with damaged gonads relative to

total number of sampled jellyfish;

PFg~
ng

N

PFst = the numbers of jellyfish with damaged somatic tissue

relative to total number of sampled jellyfish;

PRst~
nst

N

Differences in fish predation were assessed by statistical analysis

between jellyfish genders and among different seasons, considering

three factors: Season fixed with four levels (Autumn, Spring,

Summer, and Winter), Time (triplicate samplings, random and

nested in Season, with three levels: t1, t2, and t3), and Gender, fixed

and orthogonal to factors Season and Time, with two levels (Male

and Female). Homogeneity of variances was tested by Cochran’s C

test. Data were analysed using 3-way permutational multivariate

analysis of variance (PERMANOVA) [52].

Second, we tested for differences in predation among different

body parts of the jellyfish, among the genders and seasons,

considering an additional fourth factor, Body Part, fixed and

orthogonal to factors Season, Time, and Gender, with two levels

(Somatic Tissue and Gonads). Data were analysed using 4-way

PERMANOVA [52], after ensuring homogeneity of variances by

means of Cochran’s C tests.

During the Spring period, we compared the fish predation on

medusae inside and outside the Messina Harbour (Figure 1). The

test considered two factors: Location, fixed with two levels (inside

and outside the harbour), and Site, random and nested in

Location, with three different levels (S1, S2, and S3). Thirty jellyfish

were analysed for each site, totalling 180 P. noctiluca medusae. Data

were analysed using 2-way PERMANOVA [52], after ensuring

homogeneity of variances by means of Cochran’s C tests. A chi-

square test was used to test whether the sex ratios were

significantly different from the expected ratio of 1:1.

Energy content of medusa tissues
Each jellyfish was dissected to isolate gonads and oral arms,

which were immediately rinsed in distilled water to remove salt,

Figure 2. Annual variation of sea surface temperature in the Strait of Messina during 2010. Sea surface temperatures were recorded by
the Italian National Tide gauge Network (ISPRA http://www.mareografico.it).
doi:10.1371/journal.pone.0094600.g002

Figure 3. Gonads of Pelagia noctiluca. (A) male with evident follicles
(Fo), (B) female with eggs (Eg).
doi:10.1371/journal.pone.0094600.g003
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wiped with blotting paper, and weighed with an electronic 1 mg

precision balance. The swimming bells were not included in the

energy content analysis, because the majority of predation events

occurred on gonads and oral arms only. These body parts were

shown to possess the highest energy density in other jellyfish [53],

more than five times higher in the gonads than in the bells.

Samples were dried in an oven at 60uC to constant weight [54]

and the energy density of dry mass (DM) was determined for each

body part using a Phillipson micro bomb calorimeter and

expressed as J mg DW21. Calorimetric values for each part

(gonads and oral arms) were calculated as in Doyle et al. (2007)

[53]. The statistical design considered two factors: Gender, fixed

with two levels (Male and Female); and Body Part, fixed and

orthogonal in Gender, with two levels (Oral arms and Gonad).

Homogeneity of variances was tested by Cochran’s C test. Data

were analysed using 2-way PERMANOVA and visualized by a

non-Parametric Multi-Dimensional Scaling (nMDS) ordination

model [52]. In this case, 60 jellyfish were analysed for each gender,

totalling 120 specimens of P. noctiluca.

Biochemical analyses
Biochemical analyses to determine the organic matter (OM)

composition in carbohydrates, proteins, and lipids were carried out

using 20 medusae. Gonadal and somatic tissues were frozen in

liquid nitrogen, temporarily stored at 220uC, and transferred at

280uC one hour before lyophilisation to facilitate the freeze-

drying process (48 h). Quantification of carbohydrates, proteins

and lipids was carried out by colorimetric determination at

480 nm, 750 nm, and 520 nm, respectively. For carbohydrates

determination, approximately 7 mg (60.1 mg) of each lyophilized

tissue sample was homogenized in 3 ml of double distilled water

[55], with glucose as a standard. For proteins, approximately 7 mg

(60.1 mg) of each lyophilized tissue sample was homogenized in

2 ml of 1N NaOH [56], with albumin as a standard. Finally,

approximately 10 mg (60.1 mg) of each lyophilized tissue sample

was homogenized in 3 ml of chloroform-methanol (2:1) for total

lipid determination [57], with cholesterol as a standard. Quantities

were expressed as mg mg21 of OM.

To detect differences in biochemical composition and in the

content of organic and inorganic matter between gonads and

somatic tissue, data were analysed using one-way PERMANOVA,

after ensuring homogeneity of variances by means of Cochran’s C

tests. Differences were further investigated by means of the

SIMPER method to highlight the biochemical component(s)

contributing most to such differences [52].

Results

Predation behaviour of Boops boops
Video recordings showed moderate to intense fish-jellyfish

interactions, up to dense fish aggregations feeding on the same

jellyfish (Table 2; Movie S1, Movie S2, Movie S3). As a result,

jellyfish were entirely or partly devoured. Conversely, other

abundant near-shore fish species, such as Chromis chromis, were not

observed to feed on jellyfish (Movie S1).

During 25 minutes of video recordings, 37 distinct predation

events were quantified in situ. In term of duration of predatory

events, the contact between B. boops and P. noctiluca represented

56% of the total recorded videos, equal to 14 minutes. The

contacts of the longest duration occurred when several fish were

feeding simultaneously on the same jellyfish prey, while predatory

events on single fish lasted only a few seconds. We distinguished

three patterns of fish aggregations, depending on the number of

fish and the body part of the jellyfish eaten (Table 2). Single fish

were always consuming jellyfish oral arms and such individual

feeding did not result in additional fish arriving. Conversely,

groups of 6–10 fish were associated with ingestion of both jellyfish

oral arms and gonads (Movie S1, Movie S2, Movie S3), whereas

groups of 13–14 fish were observed feeding only on gonads from a

single jellyfish. Usually, many fish aggregated when jellyfish

gonads were exposed as a result of repeated bites by single fish

attacks.

Predation by Boops boops on Pelagia noctiluca
From January to December 2010 a total of 1054 jellyfish were

sampled, 583 males and 471 females. Overall fish predation

(Figure 4) differed among seasons at the 0.1 level (F0.05, 3, 8 = 3.41;

P = 0.08) and pairwise differences were significant at the 0.05 level

between winter (0.4560.13) and summer (0.8860.06) (P = 0.033,

df = 1). Fish predation did not differ between male and female

jellyfish either seasonally (Figure 4) or throughout the year

(Female: 0.6760.09; Male: 0.7160.11); however, the PERMA-

NOVA analysis showed significant interactions in Gender x

Season (F0.05, 3, 8 = 6.16; P = 0.018) and the pair-wise tests showed

significant interactions only for females between seasons: Winter

vs. Summer (0.3460.16 vs. 0.9160.1; P = 0.007) and Winter vs.

Autumn (0.3460.16 vs. 0.8660.12; P = 0.012, df = 1). The

numbers of male P. noctiluca generally were higher than females

and the differences were statistically significant in September and

over the year (Table 3).

Predation differed between body parts (somatic tissue vs.

gonads), by jellyfish gender, and season (Figure 4). PERMANOVA

analysis showed significant differences in the interactions Season x

Body Part (F0.05, 3, 8 = 7.44; P = 0.01) and Gender x Body Part

(F0.05, 3, 8 = 14.08; P = 0.0001, df = 1). Predation differed signifi-

cantly between gonads and somatic tissue for both sexes only in

Spring (P = 0.002, df = 1) and Autumn (P = 0.002, df = 1).

Finally, fish predation differed significantly between the two

locations (F0.05, 1, 98 = 46.27; P = 0.0001, df = 1), with higher

predation in the littoral harbour area (0.8360.06) than offshore in

the central channel of the Messina Strait (0.3060.04). Predation at

the inshore sampling stations was 2.7 times higher than at the

offshore sampling station.

Energy quantification and biochemical analysis
The energy content of jellyfish differed significantly between the

gonads (11.51 J mg DW21) and somatic tissue (2.19 J mg DW21)

(F0.05, 1, 23 = 12.85; P = 0.003), emphasizing the high energetic

value of the gonadal tissue (Figure 5A). Female gonads (12.85 J mg

DW21) were significantly (F0.05, 1, 45 = 10.12; P = 0.003) enriched

energetically compared to male gonads (10.18 J mg DW21)

(Figure 5B), whereas no differences were detected between male

and female somatic tissues. Furthermore, the energetic content of

the female gonads was positively correlated with jellyfish size

Table 2. Predatory behaviour of Boops boops feeding on
Pelagia noctiluca from in situ video analysis.

Fish aggregation level Number of events Parts predated

Single fish 16 Oral arms

Low (2–3 fish) 7 Oral arms

Medium (5–10 fish) 10 Oral arms/Gonads

High (11–14 fish) 4 Gonads

doi:10.1371/journal.pone.0094600.t002
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(P = 0.012), reflecting increasing gonad maturation in larger

individuals (Figure 6).

The biochemical composition differed markedly between the

somatic and gonadal tissues of P. noctiluca (F0.05, 1, 14 = 97.85;

P = 0.001) and also between genders (F0.05, 1, 14 = 3.05; P = 0.02),

as detected by the PERMANOVA analysis. The nMDS ordina-

tion showed a clear separation between somatic tissue and gonadal

tissue in both genders. Furthermore, the model highlights the

higher homogeneity of biochemical composition of the somatic

tissues between genders respect to the gonadic tissues (Figure 7).

Person’s correlation of biochemical compounds along the two axis

(MDS1 and MDS2) are plotted as vectors, whose lengths and

orientations show that lipids and proteins contributed most to the

heterogeneity of samples. The pair-wise tests showed significant

differences in the interaction between gender only for gonadal

tissue (P = 0.036, df = 1). The SIMPER analysis indicated that

most of the difference between the gonadal and somatic tissues was

due to the total lipid (41%) and protein contents (38%). Proteins,

lipids, and carbohydrates were differently distributed between

gonads and somatic tissues (F0.05, 1, 16 = 43.60, Pproteins = 0.0001;

F0.05, 1, 16 = 43.12, Plipids = 0.0004; F0.05, 1, 16 = 26.15, Pcarbohy-

drates = 0.001), both in males and females (Figure 8), with higher

concentrations in the gonads, but gender differences were

significant only for lipid contents of gonadal tissue (P = 0.036,

df = 1).

The amount of OM differed (F0.05, 1, 14 = 38.89; P = 0.001)

between the two tissues (Figure 9), with the gonads containing a

higher percentage of OM than the somatic tissue. Male and female

jellyfish showed no significant differences composition of organic

and inorganic matter in both the gonadal and somatic tissues.

Discussion

To our knowledge, this is the first assessment of the trophic

interaction between a fish and its jellyfish prey throughout an

annual cycle. Our analysis documented that B. boops foraged on

Figure 4. Seasonal Predation Frequency (mean ± SE) of Boops boops according to gender and body part of Pelagia noctiluca. Asterisks
(*) mark significant differences at p#0.05.
doi:10.1371/journal.pone.0094600.g004

Table 3. Chi-square analyses to test for significant differences
in gender distribution of Pelagia noctiluca.

Male Female Sum Expected Values X2

January 76 72 148 74 0.05

February 38 25 63 31.5 1.34

March 18 5 23 11.5 3.67

April 55 38 93 46.5 1.55

May 34 22 56 28 1.29

June 28 11 39 19.5 3.71

July 31 30 61 30.5 0.01

August 40 36 76 38 0.11

September 56 20 76 38 * 8.52

October 61 61 122 61 0.00

November 75 84 159 79.5 0.25

December 71 67 138 69 0.06

Annual 583 471 1054 527 * 5.95

(X2
(0.05) = 3.84). Asterisk (*) marks significant difference.

doi:10.1371/journal.pone.0094600.t003

Figure 5. (A) Energy content of the oral arms and gonads of Pelagia
noctiluca. (B) Energy content of the female and male gonadal tissue of
Pelagia noctiluca.
doi:10.1371/journal.pone.0094600.g005
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jellyfish all year long, increasing from winter to summer months

and following the sinusoidal pattern of the sea surface temperature

(Figure 2). This pattern may be explained by the observed spring

recruitment of new cohorts of B. boops in the Mediterranean Sea

[58,59]. By contrast, P. noctiluca abundance in the Strait of Messina

peaks in spring and declines in summer months [46]. The

occurrence of alternative zooplankton prey (200–500 mm) was

highest in early spring (May, 0.85 mg DM m23) and late summer

(August, 1.5 mg DM m23) (Milisenda, unpublished data), maxi-

mizing food availability for omnivorous bentho-pelagic predators

like bogues. Therefore, the increasing B. boops predation on

jellyfish in spring and summer cannot be explained by the lack of

alternative food sources.

The analysis of fish foraging behaviour on jellyfish revealed that

inter-seasonal differences in predation were due to a significant

variation of predation on female jellyfish only (Figure 4). This can

be related to the seasonal development of oocytes and the bimodal

onset of the vitellogenic processes in P. noctiluca [60]. This coincides

with the increase of B. boops predation on female P. noctiluca

specimens, as well as with the summer maximal abundance of

mature oocytes, bearing increasing proportions of energy-rich,

lipoprotein-containing vesicles in the egg yolk [60]. The highest

energy content of gonadal to somatic tissue as well as the jellyfish

size-dependent energy content of gonads is clearly demonstrated

by our calorimetric analysis, which quantified a six-fold energetic

difference between the gonads and the oral arms of P. noctiluca and

significantly higher energy content of female gonads (Figures 5 and

6). Conversely, the lowest frequency of predation was observed in

wintertime (Figure 4), coincident with reduced proportions of

mature oocytes in P. noctiluca [60]. In this period P. noctiluca

abundance is still high [46] but the frequency of predation is lower

than in warmer months. This suggests that the exploitation of

jellyfish as prey is not mainly governed by its availability.

The production of water-soluble molecules related to gonad

maturation might act as a cue for B. boops predation. Gameto-

genesis, in fact, is controlled by an endogenous neuro-hormonal

induction of maturation and shedding and by environmental (i.e.

biological, chemical, and physical) controls modulating reproduc-

tion [61]. When jellyfish were attacked for gonads, which become

exposed to predators through holes in the upper exumbrellar

surface, B. boops exhibited mob foraging (Movie S1, Movie S2,

Movie S3) by large groups. Specific experiments are needed to

identify sensory mechanisms (olfactory, gustatory, visual) driving

fish aggregation on jellyfish [62].

Predation frequency was much higher inshore than offshore,

due to the strong preference of B. boops to shoal along inshore

waters on sand, rocks, Posidonia oceanica (phanerogamous seagrass)

meadows [40], and also near artificial seawalls [63]. Furthermore,

the inshore location (station A) is subjected daily to higher

concentrations of jellyfish than in deeper waters, due to the

alternation of tidal currents flowing across the Strait of Messina.

These currents are known to produce gyres along the coastal

areas, leading to the patchy accumulation of planktonic organisms

[46]. Nevertheless, our analyses were limited to surface collections

and predation activity in deeper waters is unknown.

In addition to prey availability, selective foraging behaviour of

predators is crucial to understand species pair (predator – prey)

interaction strength in food webs. Indeed, optimisation of foraging

activities would result in maximizing growth, reproductive

Figure 7. Biochemical composition of Pelagia noctiluca (protein, carbohydrate and lipid concentrations): non-Parametric Multi-
Dimensional Scaling ordination model for the combined factors Gender x Body Part. Pearson’s correlation for each macromolecular
group along MDS1 and MDS2 axes is plotted as vectors. (soma) somatic tissue, (gona) gonadal tissue.
doi:10.1371/journal.pone.0094600.g007

Figure 6. Linear regression between umbrella diameter and
gonadal energy content of female Pelagia noctiluca.
doi:10.1371/journal.pone.0094600.g006
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potential, and eventually fitness of the predator species [64].

Previous examples exist for selective feeding of both vertebrate and

invertebrate predators on gonads [65,66]. The energy content of

the gonads of Chrysaora hysoscella, Rhizostoma octopus, Cyanea capillata

were much higher than other tissues, suggesting that these

differences may influence foraging decisions of turtles feeding on

jellyfish [53]. A preferential use of prey regions is probably

widespread. Brown bears (Ursus arctos), for example, prey on

salmon (Oncorhynchus nerka) in a seasonal pattern, displaying partial

and selective consumption depending on the relative availability

and attributes of the fish [67]. When salmon availability is high,

bears target mainly energy-rich body parts (i.e. gonads and brain).

During periods of low salmon abundance, bears switch to a less-

selective consumption of their prey. Comparably, resident killer

whales (Orcinus orca) in British Columbia for most of the year feed

selectively on the largest salmon (Oncorhynchus tshawytscha) species

with the highest lipid content at rates far exceeding their relative

seasonal availability compared to alternative prey [68]. The

selective foraging behaviour of B. boops during spring months

(Figure 4) may be due to the higher availability of large specimens

of P. noctiluca (15–20 cm) [46], when the jellyfish produced gonads

with more OM, energetic value, and lipids than somatic tissues.

Female gonads, because of the oocyte maturation and yolk

storage, were the most valuable food item throughout spring and

summer. Consequently, the observed P. noctiluca sex ratio might be

influenced by the slight preference observed in the foraging

behaviour of B. boops for the female jellyfish gonads.

Enclosure experiments showed that roach (Rutilus rutilus)

predation on the copepod Eudiaptomus gracilis may significantly

reduce the numbers of the reproductive female copepods [69] due

to their high visibility. Similarly, the presence of gonads in P.

noctiluca may increase their visibility to foraging fish, eliciting

higher predatory pressure on their purple-red pigmented gonads

(Figure 3) than on their translucent somatic tissue. Spawning and

fish predation on jellyfish gonads would progressively reduce this

resource, causing B. boops to switch towards a less-selective foraging

behaviour and exploit the abundant gelatinous somatic biomass of

P. noctiluca.

Jellyfish gonad ripeness is positively correlated with the

occurrence of parasitoid hyperiid amphipods [70] and a number

of species are reported to be associated with P. noctiluca [71].

Several fish are known to feed on those amphipods [13,72],

however, among the 1054 sampled P. noctiluca, we never observed

any associated hyperiid amphipods. Therefore, the foraging

behaviour of B. boops did not appear to be related to the presence

of associated animals.

Our results demonstrate that P. noctiluca can represent an

important food source for gelativorous predators both by its

increased energy content during the period of gonad maturation

[54] and by the high available biomass during spring and summer

outbreaks [46]. Fish predation may also affect P. noctiluca

populations and their dynamics through reduced reproduction

due to predation on the gonads and reduced feeding and growth

due to predation on the oral arms and gastric pouches with the

gonads. Quantification of such predation could lead to a better

understanding the mechanisms and dynamics of jellyfish blooms.

Also, fish-jellyfish species pair interactions provide new informa-

tion for fishery management in coastal waters, which could take

advantage of recurrent jellyfish blooms to maximize seasonal yields

of jellyfish-eating fish species, or conversely, by protection or

enhancement of effective jellyfish predators as countermeasures

against problematic jellyfish.

Supporting Information

Movie S1 Boops boops fish aggregation feeding on
Pelagia noctiluca.

(WMV)

Movie S2 Boops boops feeding on oral arms of Pelagia
noctiluca.

(WMV)

Movie S3 Movie on Boops boops feeding on gonads of
Pelagia noctiluca.

(WMV)

Figure 8. Amount of biochemical components according to different body parts and gender of Pelagia noctiluca. OM = organic matter.
Asterisk (*) marks significant difference at p#0.05
doi:10.1371/journal.pone.0094600.g008

Figure 9. Percentage of organic matter according to different
body parts and gender of Pelagia noctiluca.
doi:10.1371/journal.pone.0094600.g009
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