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ABSTRACT 
This paper describes a new method for the analysis of groundfish survey data by explicitly 
incorporating zero and nonzero values into a single model. This is done by using a model which 
modifies the delta-distribution approach to fit into the GLM framework and uses maximum likelihood 
to estimate parameters. No assumptions of homogeneity are used for the structure of the zero or 
nonzero values. The method is primarily applicable to fixed-station designs, although extensions to 
other designs are possible. The maximum likelihood estimation reduces to fitting a GLM to 0/1 values 
and another GLM to the positive abundance values. The new model is tested on the Icelandic 
groundfish survey data and results from different models are compared on the basis of tuned VPA 
runs. 
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1. Introduction 

Several entirely different approaches have existed for the analysis of groundfish survey data. These can 
be classified according to assumptions on spatial distribution of the species and according to 
assumptions on the probability distribution of the measurements. 

Most methods assume a homogeneous population, at least within some strata. Thus, within each 
stratum the assumption is that all the measurements are of the same average population. When 
stations are randomized every year, this assumption is true to some extent, although it usually wastes 
information and does in no way acknowledge the fact that there is always an underlying spatial pattern 
to the fish density, often with some year-to-year consistency. 

The analysis then boils down to evaluating an average within each stratum and integrating these 
averages to obtain a stock index for the whole region. 

Probably the most common single method for the analysis is the stratified analysis of Cochran (1977). 
Alternatives include the so-called delta-distribution (Aitchison, 1955, Pennington, 1983), where the 
zero values arc treated separately and the positive values arc assumed to follow a lognormal 
distribution. As before, no spatial pattern is allowed within the strata. This delta-distribution would be 
better named the delta-lognormal distribution, as it is perfectly feasible to use a similar delta-gamma 
distribution (Steinarsson and Stefansson, 1986). 

Entirely different approaches have also been tried, including the use of log-linear models and kriging. 
In both cases, the underlying spatial distribution is explicitly modelled. However, both of these methods 
have some problems with zero values. In particular, when the data from each tow is split into age 
groups, a large number of zero values occur. Many of these may exist simply because the tows occur far 
away from the potential location of this particular age group. Other zero values may be important 
indicators of a small stock size. Thus, one should consider models where these two types of zero values 
automatically influence the biomass indices in the right ways. It is usually not possible to limit exactly 
the area of interest and this may have severe effects on the stock estimates for some procedures of 
analysis. The fact that the data are best analyzed in an age-disaggregated fashion compounds problems 
inherent in log-transforms (Myers and Pepin, 1987), since disaggregation will likely lead to many low 
abundance values, if there are several age groups in the stock of interest. 

The current approach is to use maximum likelihood where an explicit formula is written down for the 
probability distribution of catch at each station. This distribution can incorporate all the considerations 
mentioned above. 

Data on cod from the annual Icelandic groundfish survey will be used as an example throughout this 
paper. 

2. The distribution 

Typical histograms of age-disaggregated catches per towing mile from a trawl survey are given in figs. 
1-3. There is a large number of zero values, and a heavy tail, so for clarity numbers per tow are 
presented on a log-scale. In fig. 2, the zero values seem to be an extension of the distribution. For 
some stocks and transforms the zero values may stand out as a separate peak (fig. 3). For this example, 
most of the zero values occur in a part of the ocean where this age group has almost never been seen. 

When zero values are eliminated, the data are close to lognormal (fig 1), indicating that something like 
a lognormal or gamma density may be appropriate for the positive values (or possibly a negative 
binomial for the entire data set). It should be noted that the distribution of positive values is almost 
always found to be heavy-tailed - it is in no way a unique feature of this particular plot. The fact that 
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the values per tow can also be very small is due solely to the use of age-length keys, since otherwise the 
smallest number is one fish per tow, which for this survey reduces to about 0.25 fish per towing mile. 
Plots for age groups 2 and 3 show a very similar behaviour and are therefore omitted. 

When a small yearclass appears, its distribution may change from the average in a number of ways. The 
density may stay constant at many points, but the extent of the spatial distribution may diminish . This 
density change would result in the positive part of the histogram having the same mean, but the 
number of zero values would increase. In the exact opposite case the spatial distribution stays the same 
but the density goes down at each point, though never to zero. These different types of changes have 
been investigated e.g. by Myers and Stokes (1989). 

To model this, the number of fish caught at a station may be taken to follow a distribution with a 
discrete probability of zero and some density for positive values. Thus the c.d.f. becomes: 

(1) P [Y,.,9-<JJ = (1Ps1) + Ps1Fs1(w) 

where Fs1 is a continuous c.d.f., typically describing the distribution of positive values. 

When Pst is taken to be a constant within a stratum and Fs1 is a constant lognormal distribution within 
the stratum, this is the usual delta-lognormal method. If Psr is taken as the constant one, the data are 
discrete and Fs1 is the negative binomial, we obtain another well known approach. If zero values are 
thrown out, Pst is set to 1 and Fs1 is taken to be a gamma density with a parametrized mean, this 
reduces to a generalized linear model. 

From now on a gamma density will be assumed for the positive values. The usual formula, 

ya eYIP 

<
2

) p r(a) 

for the gamma density will be re parametrized by a and the mean, µ = a(J. 

The likelihood corresponding to the above c.d.f. is given by: 

ya eyafµ 

(3) L ~ ,,,,!!_, <1-P·> .,,,!!,,P· [ :rr<·> 

By denoting by ns1 the number of repetitions of stations in year t and rs1 the number of positive values 
at this station, the above likelihood can be written as: 

(4) L =II (lPs1rt-Ta p~~ IT 
s,t s,t :ya>O 

Y~ ey.,,a/ 11a 

[~Ir f(a) 

Note that in almost all surveys, ns1 =1 and r51 is either 1 or 0. When repeated tows are performed at 
each station, the above formula must be understood to incorporate each station only once in the left 
part, but every positive number occurs once in the second product. 
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In the above formula there are two distinct components, the probability of a nonzero value and the 
distribution of the nonzero values. These can therefore be modelled and fitted separately: 

The fitted (unconditional) mean value at each station is given by 

(5) Pst /J.s1 

It should be noted that a model very similar to this one has been used for meteorological applications 
(Coe and Stern, 1982) and for cod stomach content data (Waiwood et al, 1991). 

3. Models for the mean of positive values 

A natural model for the positive values is a gamma density where the mean at each station is modelled 
to include various effects such as an indicator for the general area, the wind speed, depth, time of day, 
etc. The effects will be taken as multiplicative, as that would seem to be the most natural model for this 
data. 

It has been found, however, that it is often necessary to include quite fine details of the area. Thus 
when fitting a model with large regions it is found that a further subdivision is needed, sometimes all 
the way down to the station level. This detail is of course not possible when stations are randomized 
every year, but it is quite natural when fixed stations have been used for a number of years (it is also 
possible with partial replacement). 

Thus a reasonable model incorporating fine spatial details and the annual abundance becomes: 

(6) µst =e 'Tt.+'1. 

Using this model alone (for all the data points) causes several problems. Firstly, it is impossible to fit 
the gamma density using zero values, as the likelihood becomes zero. Secondly, if zero values are 
omitted, there is a total lack of information of whether the distribution shrinks when a small yearclass 
is observed. Finally, if a log-transform such as log(y +c) or a negative binomial is used, it is quite hard 
to determine which zeroes should be included and which should not. Incorrect inclusion may affect 
results considerably. Incorrect choice of c may also create havoc, which will he noticed in strange 
residual plots. 

It follows from the above comments that explicit models for zero values is at least of potentially great 
benefit. It must be noted that for stations that are always zero, there is no information to estimate "ts 
when this model is used. This will cause no problems in practice, since the estimated effect at that 
station will be zero as the value of Pst must become zero. 
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4. Models for the probabilities 

The usual model for a probability is the logit-link model, and following the arguments in the preceding 
section, a basic model can be written as: 

1 
(7) Pst = l+e-((\+e.) 

There may be stations with no fish in any year and stations where fish appear in all years. In this 
instance the usual maximum likelihood procedure (which needs the constraint 0<Psr<1) must be 
replaced by defining the MLE, ~s. as the value giving 

(8) lim ln L (e , ~ ) = sup ln La , ~). 
e.~. e. 

where e = (ei.ez .... ) and~ = (~1.~2 •... ). 

It is obvious that the limit is not attained but it does correspond to es -> -00 for all-zero stations and 
es-> 00 for all-positive stations. This causes no problems as it simply means that Pst-> 0 or 1 for these 
stations, and this is numerically implemented by setting es to a very small or large value. 

Hence for a station that is always zero, the fitted value at the station will become E [Ys1] =ps,JJ.sr =0. 

In the actual estimation procedure, groups of stations corresponding to factor levels which give zeroes 
(or ones) for all years are omitted from the fitting procedure. After fitting is completed, computations 
are performed by setting the correspondingps1 to 0 or 1 for all years. This is intuitively reasonable and 
is justified by the above redefinition. 

5. Analysis using the full model 

The full model is most naturally fitted in two phases using GLIM, as this program will fit each 
distribution easily. Computer time is the only limitation, and this is of course a trivial cost compared to 
the cost of the survey. For testing this model, cod data in the Icelandic groundfish survey is used. This 
survey covers over 500 stations each year and has been in operation since 1985. Using only the station 
and year effects, the models therefore include over 500 parameters and some thousands of 
observations. 

The basic survey data is age-disaggregated along the lines described in Palsson and Stefansson (1991), 
yielding the numbers per age group per station per year, along with various items recorded at each 
station. 

The actual model fitted included the above-mentioned station- and year effect, as well as factors 
describing the diurnal variation, the wind direction, wind speed and depth (which may vary in spite of 
the fixed station design, due to minor deviations in location). 

The estimate of the "surface", PsrJJ.sr is quite reasonable, regardless of which collections of zero values 
are included in the data. Thus, even if large regions of zero values are included, these simply enforce 
Psr = 0 over that region and have no effect at all outside it if a station effect is used. 

Variance estimates are affected by an incorrect choice of region, however, since with an irrelevant 
region of zero values, there will seem to be too many degrees of freedom in the data, with all the excess 
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data giving a perfect fit. 

Having obtained the full surface, it remains to compute annual indices of abundance. For this both the 
zero and nonzero values have to be used, since each set of data contains its own piece of information. 
The response at each station is estimated with 

e'l;+..,, 
(9) Ps1µs1 = 

1 
-fo+e,) 

+e 

and the ratios of these values between two years will vary from one station to the next. This introduces 
a new twist to the usual GLM models of abundance, since usually it is sufficient to simply read off the 
year effects or at most compute the predicted value at a single station. The exception is when there is 
an interaction with year, in which case integration over the regions has to be used. In the present 
setting it is also the case that some form of integration over the whole region has to be used. 

Integration here is simply performed by computing an average based on weighting the fitted value at 
each station with the inverse number of stations in the statistical square. 

6. Comparison of alternative indices 

Several indices have been computed for the Icelandic groundfish survey in previous years. These 
include a stratified mean, SM, as described in Palsson et al (1989), a geometric mean (Palsson, 1984) 
and indices based on multiplicative models (MI), based on log-transforming before fitting an 
ANCOVA model, as in Myers and Pepin, 1986 and Stefansson, 1988. The current model yields several 
indices, namely the year effects r1 and e, along with the integrated index. The index used by Palsson 
(GMR) is based only on a subarea (the juvenile ground. Finally, there are two further trivial indices to 
be considered, the geometric mean of all observations and the simple arithmetic mean over all stations. 

The basic indices are given in in tables 1-7 for age groups 1-7. The reduced-data geometric mean index 
(GMR) was only available for ages 1-4, as this index has only been used earlier for recruitment 
estimation. The BI and GI indices (year effects in binomial and gamma-based models, respectively) are 
presented only for comparative purposes, since they should not be used unless combined through 
integration. The integrated index from the gamma-binomial model will be denoted GB. 

It should be noted that the age-length keys used differ somewhat between the different methods. Since 
the GMR and SM indices have been in use for some time, they are based on different, fixed areas used 
for computing age-length keys. The other indices considered (GB, AM, GM and MI) are all based on 
the same areas. The same linear terms are used in the models for GI, BI (components of GB) and MI. 

A basic comparison between the indices consists of simply computing their correlations, for each age 
group. The correlation matrices between indices are given in tables 8-14. It is obvious that for the most 
part, the indices are all measuring the same effects - the correlations tend to be quite high. This is to be 
expected, due to the large number of stations in the survey. 

The data series available consists of the years 1985-1991, and since the VP A for this period has not 
converged, a comparison based on one tuned VPA cannot be used to compare the indices. The 
approach chosen is to give each index the "benefit of doubt", by fitting the best (logged) VPA to each 
log-index separately and computing an R 2 value between the logged stock estimate and log-index, 
based on that fit. 

The VPA fitting procedure used is roughly as described in Stefansson 1988, since that method produces 
the VPA for each index series which gives the minimum sum of squares, thus potentially giving the 
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highest value of R 2 • Indices for ages 1 and 2 are used as measures of the abundance of age group 3, 
since only ages 3 + appear in the catches. 

More specifically, the selection pattern in the terminal year is fixed (iteratively) to be equal to the 
average of the 3 preceding years and the fishing mortality on the oldest fish (age 14) is fixed to be 
equal to the average of the fishing mortality for ages 10-12. This setting reduces the minimization to 
only one variable, the terminal fishing mortality multiplier. This overall mortality is estimated as the 
value which gives the minimal overall residual sum of squares from the regression lines for each age 
group of the log-index on logged VPA stock numbers. 

A slight complication appears in that a migration of the 1984 yearclass is known to have occurred in 
1990 (and probably also in 1991), from Greenland waters into the Icelandic area. This migration is 
simply assumed to be 28 millions each year and is subtracted in the VPA computations (this number is 
based on VPA-based least-squares estimates of the migrations and the tagging data available, but its 
computation is outside the scope of this paper). 

The correlations with VPA are given in table 15, based on using age groups 1-4 for fitting, with each of 
the main indices separately. Table 16 gives the results based on fitting to age groups 1-7. 

It is immediately seen that the correlations with VPA are generally quite good and it is not at all trivial 
to distinguish between the various types of indices. Formal statistical tests are not appropriate since the 
different R 2-values are correlated. 

7. Discussion and conclusions 

The approach considered is based on an intuitively appealing model. Results obtained are close to 
those obtained by other methods, but the ad-hoc nature of most other methods of analysis is eliminated 
by using an explicit model for zero and non-zero values. The model yields indices which are free of 
problems usually associated with zero values, such as those involving the definition of an appropriate 
area for the analysis and those related to log-transforming values which can be arbitrarily close to zero. 

Variance estimates for the resulting parameters are available, but should be viewed with caution, since 
the real variances of interest are those related to prediction capabilities and the degrees of freedom 
vary depending on the inclusion of zero-catch tows. The actual variances of interest are probably better 
obtained by tuning VPAs with the indices, as in Anon. (1990). 

This model has considerable potential for the analysis of groundfish survey data, since it can 
incorporate several relevant properties of fish distributions, including changes in density and range. 
The usual qualities of GLMs, specifically the potential for incorporating effects such as diurnal 
variations, are also available. 

It must be noted, however, that here, as in Anon. (1990), the actual type of analysis considered does not 
seem to be of great consequence to the predictive power of the numbers obtained, since even simple 
methods of analysis yield results fairly consistent with VPA results for the data set considered. This 
conclusion is, however, likely to be dependent on the number of stations in the survey. 
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Table 1. Indices for 1-group cod. 

Year AM GM Ml GI Bl GB SM GMR 
........ -- -- -- -- -- -- -
85 3.3119 1.3335 1 0.1919 0.1647 451.8 19.5 1.8 
86 3.8045 1.6639 1.1873 0.2429 0.2399 635.3 17.2 1.6 
87 1.1470 0.5873 0.6206 0.0537 0. 0761 96.2 3.92 .5 
88 0.9828 0.4258 0.6046 0.0545 0.0505 83.0 3.5 .4 
89 1.3984 0.7202 0.6839 0.0585 0.1387 130.2 4.8 .7 
90 1.8112 0.8038 o. 7877 0.0997 0. 1355 219.4 7.0 .9 
91 0.6859 0.3781 0.5991 0.0848 0.0255 89.9 4.9 .6 

AM=Aritmetic mean of all observations 
GM=Geometric mean of all observations 
Ml=Multiplicative model index 
Gl=Garrma model year effect 
Bl=Bernoulli model year effect 
GB=Garrma+Bernoulli model integrated index 
SM=Stratified mean 
GMR=Geometric mean of reduced set of observations 

Table 2. Indices for 2-group cod. 

Year AM GM Ml GI Bl GB SM GMR 
-- -- -- -- -- -- -- --...... -
85 22.423 3.2531 1 0.3403 0.0351 396.6 111. 7 4.6 
86 12.687 3.7730 1.1535 0.5138 0.1582 822.8 62.7 5.3 
87 6.664 2.5497 0.7740 0.2212 0.0501 273.0 30.5 3.1 
88 1.769 0.8888 0.4010 0.0732 0.0017 37.1 7.7 1.1 
89 4.911 1. 7930 0.6642 0.2181 0.0051 165.0 19.7 2.7 
90 3.131 1.1974 0.5583 0.1317 0.0039 91.4 15.9 1.7 
91 4.771 1.9388 0.7207 0.2341 0.0132 221.6 22.4 2.3 

AM=Aritmetic mean of all observations 
GM=Geometric mean of all observations 
Ml=Multiplicative model index 
Gl=Garrma model year effect 
Bl=Bernoulli model year effect 
GB=Garrma+Bernoulli model integrated index 
SM=Stratified mean 
GMR=Geometric mean of reduced set of observations 

Table 3. Indices for 3-group cod. 

Year AM GM Ml GI BI GB SM GMR 
---- -- -- -- -- -- ---- ----
85 7.887 2.429 1 0.7085 0. 1049 255.2 43.2 3.8 
86 23.594 5. 748 1.9804 2. 1997 0.8643 3522.2 114. 7 9.6 
87 22.781 6.744 2.1278 2.5888 0.8854 4241.4 118 11. 1 
88 20.430 6.080 1. 7552 1.5989 0.6897 2240.3 93.2 8.2 
89 5.048 1.494 0.7591 0.4677 0.0623 116.3 25.4 2.7 
90 5.118 1.504 0.8446 0.7597 0.0769 220.8 29.6 2.6 
91 5.119 1.747 0.9034 0.5259 0.3037 396.8 29.1 3. 

AM=Aritmetic mean of all observations 
GM=Geometric mean of all observations 
Ml=Multiplicative model index 
Gl=Garrma model year effect 
Bl=Bernoulli model year effect 
GB=Garrma+Bernoulli model integrated index 
SM=Stratif ied mean 
GMR=Geometric mean of reduced set of observations 



Table 4. Indices for 4-group cod. 

Year AM GM Ml · GI Bl GB SM GMR 
-- ..... -- -- -- -- -- ......... --
85 12.179 3.6080 1 0.0719 0.9895 2006.0 70.9 5.0 
86 5.501 1.9609 0.6290 0.0340 0.9922 949.8 27.7 2.9 
87 20.910 5.2070 1.3600 0.1147 0.9982 3251.1 100.7 7.9 
88 30.810 8.1416 1.7419 0.1517 0.9979 4305.0 134.5 9.5 
89 15.316 3.1714 0.9407 o.on2 0.9880 2149.2 90.5 5.5 
90 2.891 0.9912 0.5037 0.0230 0.9302 596.5 14.4 1.6 
91 6.390 2.1227 0. 7856 0.0499 0.9833 1387.2 35.9 3.4 

AM=Aritmetic mean of all observations 
GM=Geometric mean of all observations 
Ml=Multiplicative model index 
Gl=Ganma model year effect 
Bl=Bernoulli model year effect 
GB=Ganma+Bernoulli model integrated index 
SM=Stratified mean 
GMR=Geometric mean of reduced set of observations 

Table 5. Indices for 5-group cod. 

Year AM GM Ml GI BI GB SM 
.... -- -- -- -- -- -- ---- --
85 17 .983 4.703 1 0. 7087 1.0000 2282.7 93.6 
86 4.968 2.027 0.5139 0.2524 1.0000 810.5 25.6 
87 5.200 1. 717 0.4889 0.2050 1.0000 659.9 24.2 
88 25.006 6.091 1.1435 0.8606 1.0000 2771.2 98.8 
89 14.895 3.476 0.7929 0.6520 1.0000 2098.6 81.3 
90 5.337 2.049 0.6004 0.4481 1.0000 1442.9 28.1 
91 3.169 1.347 0.4563 0.1989 1.0000 640.4 16.4 

AM=Aritmetic mean of all observations 
GM=Geometric mean of all observations 
Ml=Multiplicative model index 
Gl=Ganma model year effect 
BI=Bernoulli model year effect 
GB=Ganma+Bernoulli model integrated index 
SM=Stratified mean 
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Table 6. Indices for 6-group cod. 

Year AM GM Ml GI Bl GB SM 
--- -- -- -- -- -- -.. -.. .. ........ 

85 5.497 2.009 1 0.5425 1.0000 581.2 30.1 
86 7.240 2.8n 1.2251 0.7387 1.0000 793.3 34.2 
87 2.754 1.283 0.7589 0.3054 1.0000 328.1 14 
88 2.070 1.048 0.6647 0.2300 1.0000 247.0 10.4 
89 7.614 2.250 1.1190 0.7063 1.0000 759.3 43.2 
90 6.390 2.623 1.3036 1.0598 1.0000 1140.0 35.2 
91 3.649 1.665 0.9578 0.5102 1.0000 550.0 20.4 

AM=Aritmetic mean of all observations 
GM=Geometric mean of all observations 
Ml=Multiplicative model index 
Gl=Ga1T111a model year effect 
BI=Bernoulli model year effect 
GB=GalTllla+Bernoulli model integrated index 
SM=Stratif ied mean 

Table 7. Indices for 7-group cod. 

Year AM GM MI GI Bl GB SM -........ -- -- -- -- -- --
85 3.6515 1.3491 1 0.5548 1.0000 471.7 21.9 
86 1.5645 0.8970 0.7769 0.3153 1.0000 268.7 8.8 
87 2.7088 1.3528 0.9936 0.5345 1.0000 455.3 15.2 
88 1.8700 0.9513 0.8310 0.3406 1.0000 290.4 9.1 
89 0.8282 0.4539 0.6348 0.1603 1.0000 136.7 5.3 
90 3.0302 1.4137 1.0760 0.7030 1.0000 600.2 16.7 
91 3.7801 1. 7746 1.2062 0.9115 1.0000 785.6 24.1 

AM=Aritmetic mean of all observations 
GM=Geometric mean of all observations 
MI=Multiplicative model index 
GI=Gamma model year effect 
BI=Bernoulli model year effect 
GB=Gamma+Bernoulli model integrated index 
SM=Stratified mean 



Table 8. Correlations between indices for age group 1. 

AM 1.0000 
GM 0.9931 1.0000 
Ml 0.9883 0.9902 1.0000 
GI 0.9527 0.9455 0.9729 1.0000 
Bl 0.9202 0.9477 0.9240 0.8169 1.0000 
GB 0.9835 0.9841 0.9968 0.9847 0.8967 1.0000 
SM 0.9544 0.9269 0.9299 o.9506 0.7839 0.9368 1.0000 
GMR 0.9562 0.9347 0.9345 0.9390 0.8229 0.9321 0.9908 1.0000 
Variable AM GM Ml GI Bl GB SM GMR 

Table 9. Correlations between indices for age group 2. 

AM 1.0000 
GM 0.8139 1.0000 
Ml 0.8041 0.9884 1.0000 
GI 0.7028 0.9503 0.9747 1.0000 
Bl 0.4442 0.8251 0.8247 0.8872 1.0000 
GB 0.6281 0.9237 0.9376 0.9779 0.9613 1.0000 
SM 0.9990 0.8070 0.7996 0.6985 0.4470 0.6283 1.0000 
GMR 0.8385 0.9865 0.9860 0.9601 0.8144 0.9243 0.8310 1. 0000 
Variable AM GM Ml GI Bl GB SM GMR 

Table 10. Correlations between indices for age group 3. 

AM 1.0000 
GM 0.9854 1.0000 
Ml 0.9905 0.9868 1.0000 
GI 0.9588 0.9488 0.9812 1.0000 
Bl 0.9641 0.9556 0.9769 0.9460 1.0000 
GB 0.9597 0.9496 0.9830 0.9925 0.9692 1.0000 
SM 0.9950 0.9818 0.9972 0.9795 0.9665 0.9782 1.0000 
GMR 0.9844 0.9845 0.9969 0.9844 0.9687 0.9878 0.9941 1.0000 
Variable AM GM Ml GI Bl GB SM GMR 

Table 11. Correlations between indices for age group 4. 

AM 1.0000 
GM 0.9829 1.0000 
Ml 0.9890 0.9924 1.0000 
GI 0.9958 0.9834 0.9963 1.0000 
Bl 0.6420 0.6418 0.6510 0.6508 1.0000 
GB 0.9955 0.9841 0.9967 0.9999 0.6558 1.0000 
SM 0.9780 0.9366 0.9579 0.9752 0.6902 0.9739 1.0000 
GMR 0.9876 0.9685 0.9881 0.9947 0. 7115 0.9951 0.9790 1.0000 
Variable AM GM Ml GI Bl GB SM GMR 

Table 12. Correlations between indices for age group 5. 

AM 1.0000 
GM 0.9919 1.0000 
Ml 0.9857 0.9927 1.0000 
GI 0.9548 0.9497 0.9719 1.0000 
Bl 0.0000 0.0000 0.0000 0.0000 1.0000 
GB 0.9548 0.9497 0.9720 1.0000 0.0000 1.0000 
SM 0.9700 0.9523 0.9653 0.9590 0.0000 0.9589 1.0000 
Variable AM GM Ml GI Bl GB SM 



Table 13. Correlations between indices for age group 6. 

AM 1.0000 
GM 0.9282 1.0000 
Ml 0.9044 0.9717 1.0000 
GI 0.8200 0.8966 0.9676 1.0000 
Bl 0.0000 0.0000 0.0000 0.0000 1.0000 
GB 0.8188 0.8956 0.9672 1.0000 0.0000 
SM 0.9829 0 .8712 0.8832 0.8246 0.0000 
Variable AM GM Ml GI Bl 

Table 14. Correlations between indices for age group 7. 

AM 1.0000 
GM 0.9515 1.0000 
Ml 0.9474 0.9924 1.0000 
GI 0.9133 0.9709 0.9876 1.0000 
Bl 0.0000 0.0000 0.0000 0.0000 1.0000 
GB 0.9103 0.9693 0.9862 0.9999 0.0000 
SM 0.9867 0.9339 0.9306 0.9149 0.0000 
Variable AM GM Ml GI Bl 

Table 15. Squared correlations between tuned VPA results and indices. 
Age groups 1·4 used for tuning. 

Age AM GM 
.. .. .. 

1 .64 .51 
2 .96 .86 
3 .82 .77 
4 .78 .77 
5 .94 .91 
6 .77 .78 
7 .49 .61 

Ave 1 ·4 .80 .73 
Ave 1·7 .77 .74 

Ml GB 

.61 .66 

.83 .79 

.84 .89 

.77 .78 

.90 .91 

.82 .86 

.66 .71 

.76 .78 

.78 .80 

SM 

.75 

.96 

.86 

.70 

.93 

.77 

.57 

.82 

. 79 

GMR 

.68 

. 85 

.82 

.81 

.79 

Table 16. Squared correlations between tuned VPA results and indices. 
Age groups 1·7 used for tuning. 

Age AM GM Ml GB SM 
... .. -. 
1 .65 .51 .61 .64 .80 
2 .95 .86 .83 .80 .95 
3 .83 .n .84 .89 .87 
4 .78 .n .77 .78 .70 
5 .95 .91 .90 .91 .93 
6 .78 .78 .82 .86 .78 
7 .49 .61 .66 .71 .58 

Ave 1·4 .80 .73 .76 .78 .83 
Ave 1-7 .78 .74 .78 . 80 .80 

1.0000 
0.8236 1.0000 

GB SM 

1.0000 
0.9131 1.0000 

GB SM 
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