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ABSTRACT In the past 25 years, there has been an increase m the frequency of two major types of cancer in bivalves, disseminated 
neoplasia and germinomas, which cause debihtation and mortality m shellfish stocks Disseminated neoplasia is common in softshell 
clams, Mya arenaria, the cockle, Cerastoderma edule, and blue mussels, Mytilus trossulus; and less common in edible oysters, Ostrea 
edulis, macomas, Macoma balthica, blue mussels, Mytilus edulis, and Olympia oysters, Ostrea conchaphila Germinomas occur more 
frequently m northern quahogs, Mercenana mercenaria, and softshell clams, Mya arenaria Certain geographical locations, especially 
along the northwest Pacific and northeast Atlantic Coasts of North Amenca and the Atlantic Coast of Europe, are "hot spots" for 
neoplasia A genetic susceptibility of bivalves to tumor formation has been suggested, and the etiologies proposed include chemical 
carcinogens, viruses, and other transmissible agents However, no clear cause-and-effect relationship has yet been conclusively 
demonstrated, nor has the potential role of biotoxins as etiological agents been examined. In the past 25 years, there has also been an 
increase in the frequency with which humans have been poisoned by consuming toxic bivalves. Filter-feeding bivalves accumulate 
biotoxins produced by toxic microalgal blooms This study traces the worldwide distribution of paralytic shellfish poisoning (PSP), 
diarrheic shellfish poisoning, neurotoxic shellfish poisoning, amnesic shellfish poisoning, and venerupin shellfish poisoning and of the 
microalgae and bivalve species associated with the poisonings and then compares these distnbutions with the distribution of neoplasia 
in bivalves The incidence of disseminated neoplasia in some affected bivalve species appears to parallel, both spatially and tempo­
rally, outbreaks of PSP that are associated with the toxigenic dinoflagellates Alexandrmm tamarense, A. minutum, A fundyense. and 
A. catenella Shellfish that have accumulated potent saxitoxin and its denvatives (neosaxitoxin and gonyautoxins) produced by these 
dinoflagellates are highly toxic to humans The presence of disseminated neoplasia parallels the presence of certain toxin denvatives 
m both the bivalve and the Alexandrmm spp to which the bivalves are exposed Disseminated neoplasia is common in softshell clams, 
M arenaria, that have apparently been exposed to and have accumulated gonyautoxins, (GTX), and in particular GTXl and GTX4, 
that are produced by A tamarense or A. fundyense M mercenaria is apparently not affected by disseminated neoplasia and does not 
usually accumulate toxins associated with A tamarense or A fundyeme Bivalves that accumulate high concentrations of saxitoxin or 
neosaxitoxin, such as butter clams, Saxidomus giganteus, surf clams, Spisula wlidissima, sea scallops, Placopecten magellanicus; and 
California mussels, Mytilus californianus, are apparently not affected by disseminated neoplasia or germinomas In M arenaria, the 
incidence of germinomas appears to be related to the distribution of Alexandrmm spp blooms. In M mercenaria, however, the 
distnbution of germinomas is not related to those Alexandrmm spp that are commonly associated with PSP. The incidence of 
disseminated neoplasia and germinomas is not correlated with PSP outbreaks associated with Pyrodinium bahamense var compressum 
or Gymnodinmm calenatum Although the epizootiological evidence presented here for a correlation between dinoflagellate toxin 
profiles, the deposition of toxins in bivalve tissues, and the presence of neoplasia in such bivalves is circumstantial, it should be 
investigated in field and laboratory experiments 
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NEOPLASIA AND BIVALVES further discussed. Other types of neoplasia that have been docu-

Occurrence and Type mented, and are often confused with disseminated neoplasia, are 
gill carcinomas in Macoma balthica (L.) (Christensen et al. 1974, 

Since the late 1960b, two main types of neoplasia in bivalves Farley 1976a) and epithelioma-like conditions in Australian rock 
from marine and estuarine locations around the world have been oysters, Crassostrea commercialis (Iredale and Roughly) (Wolf 
reported with increasing frequency. The first type, disseminated 1976). 

neoplasia, affects some 15 species of bivalves (Tables la , 2a, 3a, The second most common type of bivalve neoplasia, germino-
and 4a) and can cause heavy mortalities (Elston et al. 1992). In mas or gonadal tumors, affects 10 species and one hybrid (Table 
disseminated neoplasia, tumor cells are initially found along with 5a). Tumors result from proliferation of the germinal epithelium, 
normal hemocytes in the circulating hemolymph. As the disease often completely filling the lumen of both male and female gonads 
progresses, abnormal cells proliferate throughout the blood sinuses (Hesselman et al. 1988, Peters et al. 1994). In germinomas, the 

and connective tissue of the visceral mass, muscle, and mantle affected gonadal follicles are filled with abnormal, hypertrophic 
(Peters 1988). The pathogenesis of disseminated neoplasia IS sim- cells. Metastasis to the circulatory system occurs in advanced 
ilar to that of vertebrate leukemia in the sense that the circulating stages (Elston et al. 1992). 
tumor cells rapidly divide, ultimately invade the connective tissue. Reports discussed here are based on verification of both kinds 
and in advanced stages, kill the host (Miosky et al. 1989). In of neoplasia in the Registry of Tumors in Lower Animals (RTLA, 
bivalves, neither the ontogenesis of normal hemocytes nor that of Smithsonian Institution, Washington D.C.) according to Peters 
the neoplastic (presumptively hemocytic) cells is known (Elston et (1988) and Peters et al. (1994) and not necessarily as reported in 
al. 1992). Disseminated neoplasia in bivalves was reviewed by original papers. Rare reports of neoplasia in a particular species, 
Lauckner (1983), Mix (1986a, 1986b), Peters (1988), and Elston when based on one specimen from many thousands, may need 
et al. (1992) and, except for certain pertinent facts, will not be further confirmation (Elston et al. 1992). Consequently, the report 
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TABLE la. TABLE lb. 

Distribution and prevalence of disseminated neoplasia in oysters 
with suspected etiology or conditions. 

Corresponding records of dinoflagellate blooms or shellfish 
toxicity events by nearest location and date. 

Bivalve Species 
and Locality 

C virgimca 
Harris Creek 
York and James 

River 
Chesapeake Bay 

23 sites Chesa­
peake Bay 

Apalachicola 
Bay, FL 

Pensacola Bay, 
FL 

Mobile Bay, AL 
Pascagoula Har 

bor, MS 
0 conchaphda 
Yaquina Bay, 

OR 

T chilensis 
Chiloe, Chile 

New Zealand 
0 edulis 
Mali-Ston, 

Croatia 
Galicia, Spam 
Bnttany, France 

Prevalence (%) 
(N = ) 

0 02 (5,000) 
0 01-0 075 
(51,000) 

0 1 (20,000) 

0 27 (373) 

0 04 (4,486) 

0 13 (2.336) 
0 44 (2,461) 

7 0 C ) 
0 0-2 0 (2,349) 

2 0(4) 
1 0(100) 

1 case'' 

20 0-30 0 C) 

up to 35 0 C) 
0 50 (69,476) 

Date 

1960-1967 
1964-1973 

1974-1977 

1978'' 

8/78-8/80 

1961-1970 
^1975 

2/78 

1 

1975 

1975 
1975-1981 

Etiology 

Genetic 

Pristine 
waters 

Heavy 
mortality 

C gigas 
was - v e 
(4,500) 

Reference 

Couch 1969, Farley 
1969a, Otto and Far 
ley 1976, Frierman 
1976, Frierman and 
Andrews 1976 
Harshbarger et al 
1979 

Couch and Winstead 
(1979) 

Couch(1985) 

Farley and Sparks 1970, 
Mix 1975a, Mix 
1975b, Mix et al 
1977 

Mix and Breese 1980 

Peters 1988 

Alderman et al 1977 

Balouetetal 1986 

Toxicity/ 
Blooms 

M mondatum 
P minimum 

"^A mondatum 

A mondatum 
fish kills 

PSP A ca 
teneUa 

DSPD acuta 
PSP'' 

L pohedrum 
A mtnutum 

PSP A mtnutum 
P minimum 
PSP A mtnutum 
DSPD acuta 

D acumt 
nata, D sac 
cuius 

Site/Date 

'Chesapeake 
Bay 

1970, 1971, 
1973 Chesa 
peake Bay 

1978 FL, MS 

1978 FL, MS 

1973 Yaquina 
Bay, OR 

1980, 1984, 
1991 

Reloncavi estu 
ary, Jacaf 
fiord, Chonos 
archipelago 

1980 + , 1989 

1976 Galicia 
1986 
1988 1990 
1983-1990 
Brittany 

Bivalve 

M galloprovm 
cialts 

A ater, M 
chdensis 

M edulis 
M edulis 

O edults 

Reference 

Williams and Ingle 
1972, Steidinger 
1993, Sehger et 
al 1975 

Perry et al 1979 

Perry et al 1979 

Nishitani and Chew 
1988 Taylor 
1984 

Lembeye el al 1993 

Marasovic et al 
1995 

Luthy 1979 
Berland and Grze 

byk 1991, Erard 
Le-Denn 1991, 
Belin 1993 

of a germinoma in Mytilus trossulus Gould, 1850 in British Co­
lumbia (Cosson-Mannevy et al 1984) and reports of a dissemi­
nated neoplasia in Crassostrea rhizophorae in Brazil (Nasimento 
et al 1986) and in Crassostrea gigas (Thunberg) in Japan (Farley 
1969a) have not been included. 

Neoplasia Distribution in Bivalves 

The distribution and prevalence of bivalve neoplasia by type 
and by species are shown in Tables la to 5a. Neoplasia is common 
mostly in temperate regions (Figs 1 to 3), particularly in north­
eastern and northwestern North America, the European Atlantic, 
the North Sea, and Scandinavia A few cases have been docu­
mented in the Gulf of Mexico Reports of neoplasia are rare in 
Australasia and the Mediterranean except for the Adriatic Sea near 
Croatia In South America, only one case has been documented 
(Mix and Breese 1980) In the Middle East, Central America, 
Africa, and Asia, no reports are known except for one uncon­
firmed case in Japan (Farley 1969a) 

Differences in the predisposition of bivalves to neoplasia are 
apparent in some families, genera, and species (Tables la to 5a) 

Oysters, mussels, clams, cockles, and macomas are affected, 
whereas scallops are not (or are rarely) affected Oysters are heav­
ily affected (Ostrea edulis L and Ostrea conchaphda [Carpenter, 
1857]), lightly affected (Crassostrea virginica and Tiostrea chi­
lensis), or unaffected (C gigas) by disseminated neoplasia (Table 
la) Both disseminated neoplasia (Table la) and germinomas (Ta­
ble 5a) have been found in C virginica in the Chesapeake Bay but 
were more common in the 1960s and 1970s than recently Among 
the clams, Saxidomus giganteus (Deshayes) and Spisula solidis-
sima (Say) are apparently unaffected by either disseminated neo­
plasia or germinomas The northern quahog, Mercenaria merce-
naria (L ), is unaffected by disseminated neoplasia (Table 2a) but 
IS affected by germinomas (Table 5a) Mya arenaria L is heavily 
affected by both types of neoplasia (Tables 2a and 5a) Blue mus­
sels are affected by disseminated neoplasia in some geographical 
regions but not in others Along the Pacific Coast of North Amer­
ica, M trossulus IS heavily affected and Mytilus californmnus 
(Conrad) is unaffected by disseminated neoplasia (Table 3a) 
There have been no reports of disseminated neoplasia in Mytilus 
edulis L from the northeast Atlantic Coast (North America) or in 
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TABLE 2a. TABLE 2b. 

Distribution and prevalence of disseminated neoplasia in clams 
with suspected etiology or conditions. 

Corresponding records of dinoflagellate blooms or shellfish 
toxicity events by nearest location and date. 

Bivalve Species 

and Locality 

M arenaria 

Freeport, Harp-

swell Neck, 

ME 

Jones Creek 

Annisquam 

River, MA 

Bourne, MA, 

Sears port. 

ME, Quonset, 

RI (10 sites) 

Allen Harbor, 

RI 

New Bedford 

Harbor 

(NBH), Little 

Buttermilk 

Bay (LBB), 

Buzzard Bay, 

MA 

Long Island 

Sound (3 

sites) Milford 

Point, CT 

Chesapeake 

Bay, MD (6 

sites) 

Shrewsbury 

River, NJ 

New Bruns­

wick, Nova 

Scotia (22 

sites), Canada 

Mya truncate 

Baffin Is , Can­

ada 

Ruditapes de~ 

cussatus 

Galicia, NW 

Spain 

Prevalence (%) 

(N = ) 

10 91 (440) 

12 0 (50) 

0 0 - 6 4 0 ( 1 , 3 2 5 ) 

20 0^10 0 (3,500) 

73 2 NBH (407) 

39 3 NBH (886) 

17 0 LBB (881) 

45 0 -60 0 (3,963) 

64 3 ( 2 , 1 2 1 ) 

0 0 -65 .0 (3,584) 

0 0 - 7 8 0 C) 

0 0 - 1 9 0 ( 1 , 2 0 0 ) 

3 1-31 3 (688) 

1 61 (856) 

1 3 0 6 0 ) 

Date 

1967-1977 

9/72 

1-9/76 

7/77-3/79 

1/82-5/83 

5/86-10/87 

6/83-3/84 

10/88-12/89 

12/83-5/85 

1990-1995 

9/86-8/87 

12/85-1/87 

71986 

2-12/93 

Etiology 

After oil spill in 

1971 

No obvious en­

vironmental 

relationship 

or viral etiol­

ogy 

Highest % at oil 

spill sue' ' 

Viral 

M mercenana 

and M balth-

tca - ve 

•>PCBs* 

Environmental 

factors 

Unresolved 

Was very rare 

in this loca­

tion prior to 

1984 

OlP 

Reference 

Yevich and 

Barzcsz 1976, 

Yevich and 

Barzcsz 1977 

Farley 1976a 

Brown et al 

1976, 1977 

Cooper et al 

1982a, Coo­

per et al 

1982b 

Reinisch et al 

1984, Leavitt 

é t a l 1990 

Brousseau 1987, 

Brousseau 

and Baglivo 

1991a, Brous­

seau and 

Baglivo 

1991b, 

Brousseau 

and Baglivo 

1994 

Farley et al 

1986, 

McLaughlin 

et al 1996 

Barber 1990 

Morrison et al 

1993 

N e f f e t a l 1987 

Villalba et al 

1995 

Toxicity/ 

Blooms 

PSP A lama-

rense 

A tamarense 

first repotted 

outbreak of 

PSP in the 

region at 

same time 

PSP toxin 

closed shell­

fish beds 

PSP toxin 

closed shell­

fish beds 

A tamarense 

P minimum 

PSP A tama­

rense 

P minimum 

P minimum 

A tamarense 

D S P D acumi­

nata 

PSP A fundy-

ense ( = A 

excavatum) 

DSP/» lima 

DSP Dinophysts 

spp 

A mtnutum 

G catenatum 

Site/Date 

1972 York Har­

bor, ME 

9/10 1972 An­

nisquam 

River, Essex, 

and Eastham 

MA 

4-9/76 western 

ME 

1979 Narragan-

sett Bay, RI 

1987-1988 

NBH and 7 

other stations 

1982-1983 

Long Island 

1986-1989 

Long Island 

Sound, NY 

1978 

1992 

1987 Atlantic 

City, NJ 

1980, 1983 NJ, 

NY 

1986 New 

Brunswick, 

NS 

1990 Atlantic 

NS 

1991-1993 

Galicia 

M 

M 

M 

M 

A 

M 

M 

M 

M 

M 

M 

Bivalve 

edulis 

arenaria 

arenaria 

edulis 

irradians 

edulis 

edulis 

edulis 

edulis, M 

arenaria 

edulis 

gallopro-

vinctalts 

Reference 

Twarog and Ya-

maguchi 1975 

Hartwell 1975, 

Twarog and Ya-

maguchi 1975, 

Farley 1976a, 

Anderson et al 

1982 

Hurst 1979 

Anderson et al 

1982 

Borkman et al 

1993, Pierce and 

Turner 1994 

Schrey et al 1984, 

Nuzzi and Waters 

1993, Wikfors 

and Smolowitz 

1993 

Se l ige re t a l 1979, 

Harding and 

Coats 1988, Mar­

shall 1995 

Cohn et al 1988. 

Freudenthal and 

Jijina 1988 

Martin et al 1990 

M a r r e t a l 1992 

B l a n c o e t a l 1995, 

Franco et al 

1994, Anderson 

é t a l 1989 

* PCB s, polychlonnated biphenyls. 

Mytilus galloprovincialis from the northwest Pacific Coast (North 
America), whereas there have been a few reports of this cancer in 
both species in Europe (Table 3a). Four species of macomas and 
one species of cockle have been reported with disseminated neo­

plasia (Table 4a). Scallops in the genera Patinopecten, Pla-
copecten, and Argopecten are apparently unaffected by dissemi­
nated neoplasia, and only one case of germinoma has been reported 
in bay scallops, Argopecten irradians (Lamarck) (Table 5a). 
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TABLE 3a. TABLE 3b. 

Distribution and prevalence of disseminated neoplasia in mussels 
with suspected etiology or conditions. 

Corresponding records of dinoflagellate blooms or shellfish 
toxicity events by nearest location and date. 

Bivalve Species 
and Locality 

M trossulus 
Yaquina Bay, 

OR 
Puget Sound, 

WA 
Vancouver 

Island, EC 
Departure Bay 

BC, Canada 

M edulis 
Plymouth, 

England 
Morecombe 

Bay, N 
Wales and E 
England 

Denmark* 

Fur\iskar, 
Tvarmmne, 
Fmland 

M galloprovm-
cialis 

Humboldt Bay, 
CA 

Rias de Galicia, 
NW Spam 

Prevalence (%) 
(N = ) 

7 0 12 0(100) 
0 4^9 8 (2,934) 
0 0-^0 0 (40) 
11 0 (660) 
0 0-29 2(166) 
0 0-45 0 (278) 
10 (^36 0 C) 

1 61 (994) 

0 0 ^ 3 (4,000) 

0 2-0 8 (8,720) 

0 5 (205) 

0 0 (40) 

0 6(170) 

Date 

9/68 2/69 
6/76--4/78 

11/86 
3/89-2/90 

12/80-6/81 
1988'' 

10/83-9/84 

1976-1978 

11/78-8/79 

10/83-9/84 

9/86 

1988 

1986 

Etiology 

No virus found 
Etiology re-
mams un­
known PAH 
levels not 
significant 

Potentially 
carcinogenic 
PAHs in sedi­
ments* 

Viral etiology 
and multifac­
torial hypoth­
esis 

— 

Reference 

Farley 1969b, 
Mix 1983, 
Elslon et al 
1988a, Moore 
etal 1991, 
Cosson-Man-
nevy et al 
1984, Bower 
1989. Emmett 
1984 

Lx)we and 
Moore 1978, 
Green and 
Alderman 
1983 

Rasmussen et 
al 1985, 
Rasmussen 
1986 

Sunila 1987 

Elston et al 
1988b, 

Gutierrez and 
Sarasquete 
1986 

Toxicity/ 
Blooms 

PSP A cat-
enella 

A cateneüa 

A cateneüa 

PSP A tama-
rense 

^P minimum 

PSP/l lama-
rense 

'^P minimum 
DSP Dinoph\sis 

nonegica 
A lamarense. 

D acumi­
nata, D 
acuta, P 
minimum, G 
catenatum 

A cateneüa 

PSP G catena-
turn, A mtnu-
tum 

DSP Dinophysis 
acuta, D 
acuminata, 
D sacculus 

Site/Date 

1973 Yaquina 
Bay 

1988 Puget 
Sound, WA 

1980-1982 
1985-1987 BC 

1968, 1990 
E England 

1987 

1982 

1984 

1988 

1976, 1981, 
1984-1987 

1978. 1981. 
1983, 1987. 

1991-1993 

Bivalve 

M trns\ulu\ 
M califor-

nianwi 
S giganteus 

Craswstrea 
gigas 

M edulis 

M edulti 

M gaüopro-
vmcialis 

M gaüopro-
vtncialis 

M gaüopro-
vtncialis 

Reference 

Taylor 1984, Ander­
son 1984, Chiang 
1988, Nishitam 
and Chew 1988 

Wyatt and Sab-
ondo-Rey 1993 

Moestrup and 
Hansen 1988. 
Kimor et al 1985 

Kononen et al 1993 

Price et al 1991, 
Anderson et al 
1989, 

Franco et al 1994, 
Berland and Grze-
byk 1991, Blanco 
etal 1985, 
Blanco et al 
1995 

* Elston et al 1992 list this record as occumng in M trossulus 
* PAH, polycyclic aromatic hydrocarbons 

The bivalves most commonly affected by disseminated neopla­
sia and in which prevalences of more than 20% have been con­
sistently recorded are M. arenaria in the northeastern United 
States and Canada, M. trossulus in the northwestern United States 
and Cerastoderma edule (L.) in Ireland and France (Tables 2a, 3a, 
and 4a). Mortalities associated with disseminated neopla.sia have 
been recorded in O. edulis (Alderman 1974), O. conchaphila (Far­
ley and Sparks, 1970), M. arenaria (Cooper et al. 1982a, Farley 
et al. 1986, Leavitt et al. 1990, Brousseau and Baglivo 1991b), 
and M. trossulus (Cosson-Mannevy et al. 1984). Disseminated 
neoplasia caused mortalities of up to 78% in M. arenaria in New 
England. The disease may be contributing to recent population 
declines of M. arenaria in New England (Brousseau and Baglivo 
1991b) and in the Chesapeake Bay (Brousseau and Baglivo 1991b, 
McLaughlin et al. 1996), 

Prevalences of disseminated neoplasia generally change sea­
sonally and are at their highest between October and March (Coo­
per et al. 1982a, Cosson-Mannevy et al. 1984, Farley et al. 1986, 

Rasmussen 1986, Brousseau 1987, McLaughlin et al. 1996), with 
minimum prevalences from April to August (Leavitt et al. 1990) 
Biphasic prevalences have also been noted: a second peak may 
occur from May to July (Cooper and Chang 1982, Cooper et al. 
1982a, Barber 1990, McLaughlin et al. 1996) or from January to 
March (Leavitt et al. 1990) Low water temperatures may suppress 
the progression of neoplasia (Appeldoorn and Oprandy 1980) and 
reduce mortality (Brown et al. 1977). 

In field studies, some species that were apparently unaffected 
by disseminated neoplasia have been found in the same location as 
other species that were heavily affected For example, in north­
eastern North America, M arenaria are heavily affected by dis­
seminated neoplasia, whereas M. mercenaria, M. edulis, and C. 
virginica are unaffected. 

The distribution of germinomas currently appears to be re­
stricted to the East Coast of North America, the southern coast of 
Ireland, New Zealand, and Arctic Canada (Table 5a). Mercenaria 
spp. and M. arenaria are heavily affected by germinomas. Al-
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TABLE 4a. TABLE 4b. 

Distribution and prevalence of disseminated neoplasia in macomas 
and cockles with suspected etiology or conditions. 

Corresponding records of dinoflagellate blooms or shellfish 
toxicity events by nearest location and date. 

Bivalve Species 

and Locality 

M calcarea 

Baffin Island, 

Canada 

M balthica* 

Tvanninne, Fin 

land 

Macoma inqui 

nota and M 

nasuta 

Yaquina Bay, 

OR 

C edule 

Cork Harbor 

and coast S 

Ireland (18 

sites) 

Bnttany France 

4 sites 

Prevalence (%) 

(N = ) 

0 19 (519) 

4 0 -15 0 

(1,748) 

5 0 C ) 

0 0-72 0 

(1 356) 

46 0 C) 

4 1 (752) 

Date 

•'1986 

3/82-7/89 

•11975 

2/83-2/85 

•'1983 

Etiology 

OlP 

No apparent 

correlation 

With pollution 

PAH-) 

Environmental 

faclors/infec 

tious disease 

M eduhs were 

- v e 

Reference site 

and site of 

Amoco oil 

spill both 

had neoplasia 

Reference 

Nef f e t a l 1987 

Pekkannen 1993 

Farley 1976a 

Twomey and 

Mulcahy 

1984 

Twomey and 

Mulcahy 

1988a 

Poder et al 

1983 Poder 

and Auffret 

1986 

Toxicity/ 

Blooms 

A tamarense 

D acumi 

nata P mini 

mum G ca 

tenatum 

PSP A ca 

tenella 

DSP Dinophysis 

acuminata 

D acuta D 

norvegica 

A minutum 

D S P D acuta 

D atumi 

nata D sac 

cuius 

PSP Alexan 

dnum mtnu 

tum 

P minimum 

Site/Date 

1984 

1973 Yaquina 

Bay OR 

1984 

1987 Cork Har 

hour 

1983-1990 Bnt 

tany 

1988 1990 Bnt 

tany 

1976, 1986 

Bivalve 

M caltfor 

nianus 

M eduhs 

M edulis 

M eduhs 

0 edulis 

Reference 

Kononen et al 1993 

Nishitani and Chew 

1988 

Jackson and Silke 

1995 

Gross 1988 

Belin 1993 

Belin 1993 

Berland and Grze 

byk 1991 

* This reference may not be a disseminated neoplasm but a gill carcinoma 

though M mercenaria are distributed along the Atlantic Coast of 
North Amenca, those with germinomas are more localized south 
of Rhode Island and are particularly prevalent along the southeast 
Atlantic Coast Germinomas only occur in M arenaria in Maine 
(Barber 1996) The prevalence of germinomas was highest dunng 
the warm summer months (Hessleman et al 1988, Eversole and 
Heffeman 1993) 

Germinomas are less common (Table 5a) than disseminated 
neoplasia (Tables la to 4a) In some incidences, both types of 
neoplasia were reported in the same species of bivalve at the same 
time and from the same location, for example, in M arenaria in 
northeast North Amenca, in C edule in Ireland, and on rare oc 
casions, in Macoma calcarea in northern Canada (Yevich and 
Barszcz 1976, Cosson-Mannevy et al 1984, Twomey and 
Mulcahy 1984, Neff et al 1987, Peters et al 1994) In this situ­
ation, a common causative agent nught be indicated 

Etiology 

The etiology of bivalve neoplasia has been postulated to be 
related to various causative agents, but no clear cause-and-effect 
relationship or multifactorial sequence of events has yet been es­
tablished Tentative links between sublethal exposure to vanous 
pollutants and the presence of neoplasia have been postulated but 
not conclusively demonstrated A systematic survey of shellfish 
during the NOAA Status and Trends mussel watch showed that the 
prevalence of neoplasia was not strongly correlated with chemical 
contamination (HiUman 1993) Smolowitz and Leavitt (1996) found 
no correlation between the distnbution of disseminated neoplasia in 
M arenaria and pollution in Boston Harbor and Cape Cod Bay, MA 

Hydrocarbon deposition associated with oil spills was tenta­
tively linked to disseminated neoplasia in New England (Barry and 
Yevich 1975, Yevich and Barszcz 1976, 1977, Brown et al 1977, 
1979, Gilfillanetal 1977, Harshbarger et al 1979, Walker et al 
1981), Yaquina Bay, Oregon, (Mix et al 1979, Mix 1988), Brit­
tany, France (Auffret and Poder 1986, Poder and Auffret 1986), 
and northern Canada (Neff et al 1987) The presence of neoplasia 
was demonstrated in areas where chemical contaminants were ab­
sent (Gilfallan et al 1977) or were present at low background 
levels (Brown et al 1977, Mix 1983, Cosson-Mannevy et al 
1984, Emmett 1984, Twomey and Mulcahy 1988a) Conversely, 
neoplasia was absent in areas where bivalves were exposed to 
extremely high concentrations of contaminants (Mix 1988) 

Studies attempting to link the occurrence of neoplasia with 
contaminants have suggested a correlation between the high prev­
alence of neoplasia and pesticide use (Farley et al 1991, Gardner 
et al 1991b) An increased prevalence of disseminated neoplasia 
in M arenaria was associated with and statistically correlated to 
elevated chlordane levels in the tissues (Farley et al 1991) In 
recent epizootics, germinomas were observed in M arenaria from 
Machiasport, Searsport, and Dennysville, ME (Table 5a) Herbi­
cides and other agrochemicals were widely used in the extensive 
forestry and blueberry industnes m the area Gardner et al 
(1991b) indicated that the estuaries at Dennysville had been con­
taminated by herbicides in a 1979 accidental spray overdnft dunng 
the aerial application of Tordon 101® to adjacent forests Herbicide 
contamination was the only identified common denominator at all 
three sites where M arenaria with germinomas were found (Gard­
ner et al 1991b) Other field studies could not correlate the dis-
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Figure 1. The distribution of dinoflagellates associated with PSP and the distribution of disseminated neoplasia and germinomas in bivalves. 

tnbution of carcinogenic pollutants with the development of ger 
mmomas (Yevich and Barry 1969, Barry and Yevich 1972, Hes-
selman et al 1988) 

Bivalves have been exposed to various chemical pollutants in 
laboratory exposures (Rasmussen et dl 1985, Rasmussen 1986), 
but no disseminated neoplasia or germinomas have been induced 
(Elston et al 1992) Exposure to chemicals has induced numerous 
lesions (Farley 1977, Rasmussen et al 1985) and, rarely, other 
types of neoplasia in bivalves Thirty days after C virgimca or M 
edulis were exposed to particulate suspensions or solid sediments 
from Black Rock Harbor, Bridgeport, CT, benign tumors were 
documented in the kidney, gastrointestinal tract, gonad, heart, and 
neural tissue (Gardner et al 1991a) 

Evidence for a viral etiology for disseminated neoplasia has 
only been demonstrated in M arenana (Brown 1980, Oprandy et 
al 1981, Oprandy and Chang 1983) Normal M arenana that 
were exposed to water that had passed over infected M arenana 
developed neoplasia, thus suggesting that a transmissible agent 
was involved (Brown 1980) When virus-like particles from M 
arenana with neoplasia were injected into normal M arenana, 
these clams subsequently developed neoplasia Virus-like particles 
were then reisolated from the newly induced neoplasia, conform­
ing to Koch's postulates (Oprandy et al 1981) A virus similar to 
an RNA tumor virus was isolated from M arenana with neopla­
sia, and after the injection of the purified virus into normal M 
arenana. neoplasia was induced Because the virus was not iso­
lated from any of the nonneoplastic samples, it was reasoned that 
a virus was the etiological agent of disseminated neoplasia 

(Oprandy and Chang 1983) The chemical 5-bromodeoxyuridine 
was used to induce retrovirus expression and replication as well as 
disseminated neoplasia in M arenana Oprandy and Chang (1983) 
suggested that the clam tumor-inducing retrovirus may be endog­
enous in the cells of normal M arenana A retrovirus was also 
found in the hemocytic cells of M arenana with disseminated 
neoplasia (Cooper and Chang 1982) Virus like particles have 
been demonstrated in disseminated neoplasia (Rasmussen 1986), 
and a viral agent has been suggested as the probable cause of 
neoplasia in mussels (Elston et al 1988a) However, ultrastruc­
tural examinations of tissues from C edule (Auffret and Poder 
1986), O erfM/w(CahourandBalouet 1984), M a r c a n a (Farley 
1976b, Cooper and Chang 1982, Medina et al 1993), and M 
trossulus (Mix et al 1979) with disseminated neoplasia have failed 
to reveal the presence of virus Since the earlier studies demon­
strating retrovirus in M arenana, a viral etiology has not been 
confirmed despite numerous attempts (Elston et al 1992) 

A viral etiology in the development of germinomas is also 
unconfirmed Intranuclear inclusions have been reported in ger-
minoma cells of M arenana (Harshbarger et al 1979, Hesselman 
et al 1988), but electron microscopy of the same tissue, which is 
deposited at the RTLA, did not reveal virus (Peters et al 1994) 

An infectious etiology has also been postulated Disseminated 
neoplasia appears to be transmissible if neoplastic cells are in­
jected into disease-free bivalves (Farley 1987, Elston et al 1988b, 
Twomey and Mulcahy 1988b) However, in several expenments, 
controls were also diagnosed with neoplasia (Farley 1987, Elston 
etal 1988b) Kent et al (1991) attempted to transfer disseminated 
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Figure 2. The distribution of dinoflagellates associated with DSP and the distribution of disseminated neoplasia and germinomas in bivalves. 

neoplasia by injecting blood from heavily affected M trossulus 
into M arenaria, O edulis, O conchaphila, and other M trossu­
lus After 152 days, only the injected M trossulus were showing 
signs of disseminated neoplasia 

BIOTOXINS AND BIVALVES 

In coastal areas where toxigenic microalgae occur, bivalves 
pose a public health risk because they accumulate a variety of 
biotoxins by filter feeding on phytoplankton Exposures to toxic 
microalgae are usually acute, and high levels of toxins in bivalves 
prone to toxin accumulation can be reached withm days or after 
only a few weeks Biotoxins in shellfish are transferred to humans 
(and other predators) through consumption The most common 
poisonings of humans from the consumption of shellfish are par­
alytic shellfish poisoning (PSP), diarrheic shellfish poisoning 
(DSP), neurotoxic shellfish poisoning (NSP), and more recently, 
amnesic shellfish poisoning (ASP) Venerupin shellfish poisoning 
(VSP) has rarely been documented Biotoxins causing human 
shellfish poisonings are usually associated with dinoflagellates or, 
in the case of ASP, with diatoms 

In addition to the public health nsk associated with eating toxic 
bivalves, the bivalves themselves may be affected by toxin expo­
sure The accumulation of biotoxins in bivalves varies between 
species, with geography, with the toxicity of specific dinoflagel­
lates, and in the localization of toxins m bivalve tissues Bivalve 

feeding behavior may be one of the principal factors controlling 
toxin levels Some bivalves show immediate behavioral responses 
to avoid the consumption of toxic dinoflagellates (Gainey and 
Shumway 1988, Shumway 1990) Some species typically burrow 
into and feed on sediments, whereas others filter plankton from the 
water Toxigenic dinoflagellates can produce benthic cysts and/or 
vegetative planktonic stages, so bivalves may be differentially 
exposed to toxms because of their feeding modes 

Although some studies have evaluated the effects of short-term 
toxin exposure on bivalve behavioral and physiological responses, 
other effects of biotoxins on bivalve health are generally unknown 
Despite the frequent exposure of bivalves to biotoxins, no apparent 
associated pathological effects have been reported (Prakash et al 
1971) The detrimental effects of dinoflagellates and their toxins 
on bivalves have only recently been considered (Shumway 1990, 
Shumway et al 1990, Wikfors and Smolowitz 1993, 1995, 
Smolowitz and Shumway 1996) 

The tissues that accumulate toxins and their different compo­
nents are known to vary both geographically and temporally 
among bivalve species, but the effects of chronic exposures are 
unknown The majority of available information is on dinoflagel­
lates known to be producers of toxins that are lethal or deletenous 
to mammals The existence of biotoxins or toxic components that 
are potentially lethal or sublethal to molluscs should be consid­
ered Recent evidence has shown that dinoflagellates that are ap­
parently not toxic to mammals may be pathogenic to bivalves 
(Wikfors and Smolowitz 1995) 
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Figure 3. The distribution of Prorocentrum spp. implicated in shellfish toxicity and the distribution of disseminated neoplasia and germinomas 
in bivalves. 

ASP 

The first outbreak of ASP, in 1987 in Prince Edward Island, 
Canada, occurred after humans consumed toxic bivalves exposed 
to a bloom of the diatom Pseudo-nitzschia multiseries (Hasle) 
(Bates et al. 1989). Although the effects of diatoms and their 
toxins on bivalves have not been well documented, ASP is not 
considered here to be involved with the initiation of bivalve neo­
plasia. For the remainder of this article, only biotoxins associated 
with dinoflagellates will be considered. 

NSP 

NSP associated with brevetoxins has been documented from 
the Gulf of Mexico, the eastern United States, and New Zealand 
and is produced principally by toxins of Gymnodinium breve Davis 
and Gymnodinium spp. (Steidinger 1993, Chang 1995). Given that 
the known distribution of NSP is restricted to these areas, bre­
vetoxins are not considered to play a role in the etiology of bivalve 
neoplasia. Although brevetoxin is well known for its role in fish 
kills (Steidinger 1993), its effects on molluscs are less well doc­
umented. 

PSP 

Since the 1970s, there has been a steady increase in the distri­
bution of PSP woridwide (Hallegraeff 1993). Outbreaks of PSP 
are now common in temperate regions, particularly in North and 

South America, Europe, South Africa, Japan, and Australasia, and 
in equatorial regions in the Far East, Central Americas, northern 
South America, and India (Fig. 1). Outbreaks of PSP are related to 
a series of factors, including dinoflagellate distributions, environ­
mental conditions favoring high concentrations of cells, popula­
tion toxicity.levels, bivalve distributions, and differential toxin 
uptake and accumulation by bivalves (Shumway 1990, Hallegraeff 
1993). Many bivalve species accumulate PSP toxins, and these 
species pose a high public health risk during particular seasons and 
at certain geographical locations. 

Dinoflagellate Distribution 

Dinoflagellate species associated with the production of para­
lytic shellfish toxins (saxitoxin [STX] and its derivatives) are Al-
exandrium acatenella (Whedon and Kofoid), Alexandrium ca-
tenella (Whedon and Kofoid), Alexandrium fundyense (Balech), 
Alexandrium lusiianicum (Balech), Alexandrium minutum 
(Halim), Alexandrium ostenfeldii (Paulsen), Alexandrium tama-
rense (Lebour), Alexandrium tamiyavanichi (Balech), Gymnodi­
nium catenatum Graham, Pyrodinium bahamense var. compres-
sum (Böhm), and possibly, Alexandrium monilatum and Lingulo-
dinium ( = Gonyaulax) polyedrum (Stein) (Steidinger 1993). Some 
cyanobacteria are associated with the production of STX (Mah-
mood and Carmichael 1986), and bacteria have been implicated in 
paralytic shellfish toxin production (Kodama et al. 1990). How-
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TABLE 5a. 

Distribution and prevalence of germinomas in bivalves with suspected 
etiology or conditions. 

TABLE Sb. 

Corresponding records of dinoflagellate blooms 
or shellfish toxicity events by nearest location 

and date. 

Bivalve Species 
and Locality 

Prevalence (%) 
(N = ) Date Etiology Reference 

Toxins/ 
Blooms Site/Date Bivalve Reference 

Arciica islan-
dica 

Newport, Rl 
A irradians 
Massachusetts 
M calcarea 
Baffin Island, 

Canada 
C edule 
Cork Harbor, 

Ireland 

C virgimca 
Delaware Bay, 

DE, Chesa­
peake Bay, 
MD, Black 
Rock Harbor, 
CT 

T chilensis 
New Zealand 

1 case C) 

1 case C) 

1 case 

0 15(1,356) 

2 0 (50) 

0 01 (20,000) 
0 23 (420) 

21 cases 

7 

0 

•'1986 

2/83-2/85 

8/69 
1974-1977 

1985 

0 

o i r 

M arenaria 
Searsport, Ma-

chtasport, 
Dennysvdle, 
ME, Wash­
ington 
County, ME 

M eduhs 
New York 

M mercenaria 
Narragansett 

Bay, RI, 
Indian R 
Lagoon, FL, 
Charleston, 
SC 

Mercenaria 
campechiensis 

Tampa Bay, FL, 
Indian R 
Lagoon, FL, 
Charleston, 
SC 

M campechien­
sis X 
M merce­
naria 

Indian R La­
goon, FL; 
Charleston, 
SC 

6 0-12 5(2,125) 1971-1976 
6 4 (204), <22 0 C) 
32 0-40 0 (300) 1979 

oil spill, 
virus her­
bicides 

10 0-43 0 C) 

1 case 

0 23 (1,300) 
2 3-2 7 (539) 
3 3-31 5(1,263) 
6 5 (708) 
42 0 C) 
58 0-75 0 (440) 

7 7 (26) 
11 8(85) 

42 0 C) 
58 0-75 0 (440) 

21 6(75) 

>42 0 C) 
100 0 (440) 

1993 

? 1987 

summer 68 
summer 69/70 
5/85-6/87 
9/87-8/88 
9/87-10/88 
1988-1992 

9/86 
9/87-8/88 

9/87-10/88 
1988-1992 

9/87-8/88 

9/87-10/88 
1988-1992 

No relation­
ship with 
water 
quality 

Peters et al 1994 

Peters et al 1994 

Neffetal 1987, Peters 
1988 

Peters et al 1994 

Farley 1976a, Harsh-
barger et al 1979, 

Gardner el al 1986 

Peters et al 1994 

DSP Dmo-
phvsis 
spp 

A minutum 

P minimum 
A lama-
rense 

PSPA 
minutum. 

1984 M eduhs 
1987 

1978 
1986-1989 

1993 

Hurst 1979 

Hurst 1979 

Jackson and 
Silke 1995, 
Gross 1988 

Seliger et al 
1975, 
Nuzzi and 
Waters 
1993 

Chang et al. 
1995 

Yevich and Barszez 
1976, 1977, Brown et 
al 1977, Harshbarger 
et al 1979, Gardner 
et al 1991b, Barber 
1996 

Peters et al 1994 

Yevich and Barry 1969, 
Barry and Yevich 
1972, Hesselman et 
al 1988, Bert et al 
1993, Eversole and 
Heffeman 1993, Ever-
sole and Heffeman 
1966 

Hesselman et al 1988, 
Bert et al 1993, 
Eversole and Hef­
feman 1993, Eversole 
and Heffeman 1996 

Bert et al 1993, 
Eversole and Hef­
feman 1993, Eversole 
and Heffeman 1996 

A tama-
rense 

PSP/i 
lama-
rense 

A tama-
rense 

D acumi­
nata 

A month-
turn 

A monila-
tum 

1972 
York 
Harbor, 
ME 

NY 1986-
1989 

M eduhs 
M arenaria 

1984 

1978 Indian 
R La­
goon, FL 

1978 Indian 
R La­
goon, FL 

Twarog and 
Yamaguchi 
1975 

Nuzzi and 
Waters 
1993 

Maranda and 
Shimuzu 
1987, 
Noms 1983 

Noms 1983 

A montla-
tum 

1978 Indian 
R La­
goon, FL 

Noms 1983 
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ever, the majority of outbreaks worldwide have been attributed to 
dinoflagellates. 

The taxonomy of Alexandrium has been in flux. Balech (1995) 
synonym\zed Alexandrium excavatum with/I. tamarense and syn-
onymized Alexandrium ibentum (Balech) with A. minutum. Ba­
lech (1994) named a new species A. tamiyavanwhi that had been 
previously identified as Alexandrium cohorticula in the Far East 
(Kodama et al. 1988, Ogata et al. 1990, Pholpunthin et al. 1990, 
Wisessang et al. 1991, Han et al. 1992) In this article, the most 
updated references have been used (Anderson et al. 1994, Balech 
1995). I acknowledge that some records that are based on the original 
authors' descnptions may be inaccurate When the taxonomy has 
changed, the original designation has been noted wherever possible. 

Figure 1 shows the distribution of blooms of the more common 
toxic dinoflagellate species associated with PSP. In the majority of 
cases, PSP outbreaks are associated with A. tamarense, A. fundy-
ense, A. catenella, A. minutum, G. catenatum, and P. bahamense 
var. compressum (Fig. 1) Particular species have distinct distri­
bution patterns. P. bahamense var. compressum is tropical and is 
common in Asia and Central America; G. catenatum is common 
along the West Coast of North America, the European Atlantic, 
southeastern Australia, New Zealand, southern South America, 
and Japan; A. tamarense is common in northwestern and north­
eastern North America and in Europe, New Zealand, Argentina, 
and the Far East; and A. catenella is common from Alaska to 
north-central California, central and southern Chile, southeastern 
Australia, New Zealand, and South Africa but is rare in southern 
California and Central America (Taylor 1984, Balech 1995). 

Dinoflagellate Toxicity 

No natural toxigenic dinoflagellate population has been found 
to contain all naturally occurting PSP toxin derivatives, so the 
toxin profile is considered to be characteristic of the dinoflagellate 
strain (Cembella et al. 1993). Some of the PSP toxin derivatives 

are highly toxic (as sodium channel-blocking agents in mammals) 
and include the carbamate toxins, saxitoxin (STX), neosaxitoxin 
(NEO), and the gonyautoxins (GTXl, GTX2, GTX3, and GTX4). 
The decarbamoyl analogues (dcSTX, dcNEO, dcGTXl, dcGTX2, 
dcGTX3, and dcGTX4) and deoxydecarbamoyi analogues 
(doSTX, doGTX2, doGTX3) are of intermediate toxicity. The 
least toxic derivatives are the A'-sulfocarbamoyI toxins Bl 
(GTX5), 82 (GTX6), CI, C2, C3, and C4 (Sullivan 1988, 
Oshima 1995). GTX1/GTX4, GTX2/GTX3, CI/C2, and C3/C4 
are pairs in an epimeric relationship: GTXl, GTX2, CI, and C3 
are the a-epimers, and GTX3, GTX4, C2, and C4 are the 
(3-epimers. Essentially, these pairs are in equilibrium with each 
other, but different physicochemical conditions can shift the ratio 
of the a- and [J-forms (Shimuzu 1987). In some assays, the epimer 
pairs are combined because of inconsistent epimerization and are 
thus represented as a combined mol%. 

The toxin profiles of the more common dinoflagellate species 
associated with PSP are different (Table 6). By species, the indi­
vidual toxin components (mol%) are quite varied. In P. baha­
mense var. compressum, there is a lack of CI to C4 and GTXl to 
GTX4; in A. minutum, only GTX is present, with high levels of 
GTXl and GTX4 in strains from Spain and Australia and only 
GTX2 and GTX3 in strains from France (Table 6); in G. catena­
tum, there are zero to trace levels of GTXl to GTX4; in A. ta­
marense, there are trace to low levels of STX, Bl, and B2 and high 
levels of NEO and GTXl to GTX4; in A. fundyense, there are low 
levels of GTXl, GTX2, and GTX4 and high levels of GTX3, and in 
A. catenella, there are high levels of NEO, GTX4, Bl, and B2 and 
low levels of GTXl, GTX2, and GTX3 (Table 6). Toxin profiles for 
A monilatum are unknown (Schmidt and Lx)eblich 1979). 

Toxin composition in dinoflagellate species and strains can 
vary with geographical range and can be influenced by environ­
mental factors or experimental conditions (Cembella et al. 1988, 
Anderson et al. 1990, Anderson et al. 1994). Alexandrium strains 

TABLE 6. 

Toxin profiles of dinoflagellates associated with PSP. 

Toxin 
(mol%) 

STX 
NEO 
GTXl 
GTX2 
GTX3 
GTX4 
Bl (GTX5) 
B2 (GTX6) 
Cl 
C2 
C3 
C4 
dcSTX 
dcGTX2 
dcGTX3 
Ix)cation 
of isolate 
Reference 

A 
tamarense 

0 0-3 2 
0 3-30 1 
0 9-20 3 
0 1-23 0 
0 3-86 0 

12 1-80 5 
trace 

1 2-3 2 
49 0-69 1 

0 7-1 8 
0 7-3 0 

trace 
Japan, Korea 

Lassus et al 
1989, Lee el al 
1992, 
Kimetal 1993 

A 
minutum 

5 0-45 2 
<3 0-15 7 
<3O-10 8 
28 3-90 0 

Australia, 
Spain 
Hallegraeff et 
al 1991, 
Franco et al 
1994 

A 
minutum 

0 0 
18 0 
80 0 

0 0 

France 

Erard-Le-
Denn 1991 

A 
catenella 

trace-2 8 
trace-22 8 
trace-3 9 

0 1 
trace-O 9 
trace-26 2 
trace-35 5 
trace-57 3 

0 6-3 1 
15 9-70 9 
0 5-2 3 
0 2-10 3 

0 1 
0.1 
0.1 

Australia, 
Korea 
Hallegraeff et 
al 1991, Kim 
étal 1993 

Dinoflagellate species 

A 
fundyense 

26 8 
13 2 
0 6 
1 5 

50 1 
5 1 

1/2 2 7 
+ 

USA 

Bncelj et al 
1990 

A 
ostenfeldii 

0 6 
0 1 

91 6 
1/2 7 7 

+ 

Denmark 

Hansen et al 
1992 

A 
tamiyavanwhi 

0 4-23 0 

1 1-3 8 
0 3-3 9 
2 2-10 2 

36 8-72 8 
7 2-13 3 

0 1-7 5 
0 4-2 2 
1 9-2 9 
5 1-15 0 

Thailand 
Japan 
Wisessang et al 
1991, 
Oshima et al 
1990 

A 
lusitamcum* 

26 0-41 0 
6 0 

12 0 
41 0-53 0 

Portugal 

Mascarenhas et 
al 1995 

G 
catenatum 

0 2 
0 1-3 8 

trace 
trace 

0 8 
0 3-20 0 
0 1-36 0 
1 2-11 1 
6 3-52 2 
6 3-31 3 

30 5-68 4 
0 1-4 0 

2/3 0 1-9 2 
+ 

Australia, 
Japan, Spain 
Oshima et al 
1987, 1990, 
Oshima 
et al 1993 

P bahamense 
var 

compressum 

0 0-15 6 
10 5-68 0 

26 0-69 4 
4 0-8 0 

0 0-4.5 

Malaysia 

Oshima et al 
1987, Usup et 
al 1995 

* Considered to be a synonym of A mmulum by Franco et al 1995 
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can vary from highly toxic to nontoxic (Anderson 1990) The 
original isolate of A tamarense from the River Tamar, Plymouth, 
England, and other strains from La Jolla, CA, were found to be 
nontoxic (Schmidt and Loeblich 1979) The toxicity of A tama­
rense strains increases northwards along the northeast Atlantic 
Coast of North Amenca (Maranda et al 1985, Cembella et al 
1988) and northwards in Japan (Kim et al 1993) This toxicity 
gradient in isolates from the more northerly latitudes is a reflection 
of the increased proportion of the highly potent carbamate toxins 
(STX, NEO, and GTXl to GTX4) in A tamarense (Anderson et 
al 1982, Anderson et al 1994) The proportion of the less toxic 
N-sulfocarbamoyl fractions such as CI, C2, Bl, and B2 is higher 
in the more southern areas (Anderson 1990, Anderson et al 1994) 
The presence of A tamarense has been documented in southern 
New England and Long Island, but PSP outbreaks are rarer in 
these areas than they are in the more northerly regions of New 
England and Canada (Anderson et al 1982) Bncelj et al (1991) 
also pointed out that blooms of A tamarense are typically less 
dense in the southern region of its geographical range, which may 
explain the relative lack of shellfish toxicity in the Long Island 
area Analyses of the toxin composition and morphology of 28 
strains of A tamarense and A /Mnrf>'en5« indicate that although the 
two species are interspersed geographically from New Jersey to 
the St Lawrence estuary and Newfoundland, Canada, only A 
fundyense occurs in the Gulf of Maine (Anderson et al 1994) The 
north-south trend in toxicity in these isolates was not as distinct as 
that described by Maranda et al (1985), but this finding can be 
partially explained by the fact that high-toxicity isolates from 
northern areas were not tested (Anderson et al 1994) 

The toxin profiles that are discussed in outbreaks of PSP typ­
ically refer to those of the bloom-forming vegetative stages How­
ever, the cysts of Alexandrium spp are known to be more toxic 

than the vegetative cells When newly formed, the cysts can be up 
to 1,000 times more toxic than the vegetative cells and are 10 
times more toxic even after several months of dormancy (Dale and 
Yentsch 1978) Benthic bivalves such as M arenaria could there­
fore be exposed to high levels of toxins at all times if sediments are 
filtered during feeding 

Toxicity in Bivalves 

The distribution of paralytic shellfish toxins in bivalves vanes 
among species and individuals This variation occurs initially be­
cause of differences in dinoflagellate bloom duration, density, and 
inherent toxicity The exposure of bivalves to paralytic shellfish 
toxins can result in increased mucus and pseudofeces production, 
modification of valve activity, change in filtration rate, impaired 
burrowing activity, and altered byssus production, cardiac activ­
ity, and oxygen consumption (Shumway and Cucci 1987, Gainey 
and Shumway 1988, Shumway 1990) In the presence of A ta­
marense, M mercenana close the shell valves (Shumway 1990) 
This response may partly explain the absence or low level of PSP 
in this species (Table 7) Other species, like M arenaria, retract 
the siphon (Shumway and Cucci 1987) or, like C gigas, reduce 
pumping rates (Dupuy and Sparks 1967) when exposed to A ta­
marense and A catenella, respectively PSP toxicity levels for C 
gigas are lower than those of Placopecten magellanicus (Gmelin) 
and Patinopecten yessoensis (Jay) (Table 8), and levels for M 
arenaria are lower than those of M edulis (Tables 7 and 9), which 
may partly be the result of these behavioral adaptations Further 
differences in uptake dynamics and detoxification mechanisms, in 
anatomical localization, and in physiological breakdown or trans­
formation mechanisms determine the persistence of the toxins in 
the bivalve tissue (Shimuzu and Yoshioka 1981, Maruyama et al 

TABLE 7. 

Selected examples of maximum toxicity levels reported in clams and the associated dinoflagellate species involved in the PS? outbreak. 

Bivalve 

M mercenana 

M arenaria 

S solidissima 

S giganteus 

S nuttalh 
Meretrix meretrix 

Callista chione 

Arctica islandica 

Date and Location 

1972 Eastham, MA, 

1975 Monhegan Island, 
ME 

1972 York Harbor, ME, 

1972 Memmack River 
Estuary, MA, 

1972 Essex, MA 

1981 Phippsburg, ME, 

1990 Georges Bank, ME 
1985 Bnush Columbia, 

Canada 
1980 Campbell Cove, CA 
1988 Indonesia 

1989 Mediterranean Coast, 
Spain 

1985 Jonesport, ME, 

1990 Georges Bank, ME 

Toxicity 
(figof STXeq 100 g"') 

0 

1,113 

1,726 

9,600 

3,500 

7,934 

6,423 
9,600 

14,000 
1,400 

200 

> 1,895 

1,218 

A 

A 

A 

A 

A 

A 

Dinoflagellate 

fundyenselA 
tamarense 

fundyenselA 
tamarense 
fundyenselA 
tamarense 

fundyenselA 
tamarense 

fundyenselA 
tamarense 

tamarense 

''A tamarense 
A 

A 
P 

G 

A 

catenella 

catenella 
bahamense var 

compressum 
catenatum 

tamarense 

''A tamarense 

Tissues 

Whole body 

Whole body 

Whole body 

Whole body 

Whole body 

Viscera 

Whole body 
Whole body 

Whole body 
Whole body 

Whole body 

Whole body 

Whole body 

Reference 

Twarog and 
Yamaguchi 
1975, 

Shumway pers 
comm 

Twarog and 
Yamaguchi 
1975, 

Twarog and 
Yamaguchi 
1975, 

Twarog and 
Yamaguchi 
1975 

Shumway et al 
1988, 

White et al 1993 
Chiang 1988 

Price et al 1991 
Adnan 1993 

Bravo et al 1990 

Shumway et al 
1988, 

White et al 1993 
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TABLE 8. 

Selected examples of maximum toxicity levels reported in oysters, scallops, and cockles and the associated dinoflagellate species involved in 
the PSP outbreak. 

Bivalve 

A irradians 

C virginica 

C gigas 

Crassostrea mdescens 

0 edulis 

Cerastoderma sp 

P yessoensis 

P magellanicus 

Date and Location 

1972 Eastham, MA 

1972 Eastham, MA, 

1988 Gulf of St 
Lawrence, Canada 

1972 Bntish Columbia, 
Canada, 

1980 Mann County, CA, 

1986 Okeover Inlet, BC, 
Canada 

1989 SE Mexico 

1986 Haipswell, ME, 

1988 Bnttany, France 
1986 Obidos Lagoon, 

Portugal 
•'1984 Japan 

1978 Bay of Fundy, 
Canada, 

1990 Georges Bank, ME, 

1992 Bay of Fundy, 
Canada 

Toxicity 
(ftgofSTXeq 100 g"') 

2,040 

0 

214 

1,900 

5,500 

9,929 

811 

1,300 

282 
1,096 

220,000 

150,000 

14,775 

6,180 

Dinoflagellate 

A fundvenselA 
tamarense 

A fundyenselA 
tamarense 

A fundyenselA 
tamarense 

A catenella 

A catenella 

"^A catenella 

Pyrodmium 
bahamense var 
compressum 

A tamarense 

A minutum 
G catenatum 

''A tamarense 

A tamarense 
i=A 
excavatum) 

A tamarense 

A fundyense 

Tissues 

Whole body 

Whole body 

Whole body 

Whole body 

'Whole body 

Whole body 

Whole body 

Whole body 

Whole body 
Whole body 

Digestive gland 

Digestive gland 

Whole body 

DigesUve gland 

Reference 

Twarog and 
Yamaguchi 
1975 

Twarog and 
Yamaguchi 
1975, 

Worms et al 
1993 

Chiang 1988, 

Nishitani and 
Chew 1988, 

Shumway pers 
comm 

Cortes Altamirano 
etal 1993 

Shumway et al 
1990, 

Behn 1993 
Franca and 

Almeida 1989 
Noguchi et al 

1984 
Jamieson and 

Chandler 1983, 

White et al 
1993, 

Waiwood et al 
1995 

1983, Beitler and Liston 1990, Bricelj et al 1990, Bncelj et al 
1991, Cembellaet al 1993, White et al 1993, Cembella et al 
1994, Shumway et al 1994, Cembella and Shumway 1995) 

STX was first isolated from toxic butter clams, S giganteus 
(Schantz et al 1957, Schantz 1960), and it and at least 20 deriv­
atives (Oshima 1995) in various combinations and concentrations 
have been associated with PSP The total toxicity of shellfish meat 
is usually represented as the integrated potency of all toxins 
present in the sample and expressed in micrograms of STXeq 
(STX equivalents) per 100 g (Sulhvan et al 1985, Anderson et al 
1984) Shellfish-monitoring standards have an acceptable safety 
level of 80 jig STXeq 100 g~ ' in raw shellfish soft tissues, and 
toxicities above this level are considered to pose an immediate 
public health risk (Clem 1975) A range of STX toxicity levels is 
found in different bivalves (Tables 7-9) P yessoensis, P magel­
lanicus, and Mytilus spp become highly toxic (Tables 8 and 9), 
M arenana have intermediate toxicity levels (Table 7), and M 
mercenana and C virginica tend not to accumulate or have low 
levels of toxin (Tables 7 and 8) In general, toxicity levels in 
bivalves exposed to the various dinoflagellates can range from 
high to low high when exposed to A tamarense and A catenella, 
medium when exposed to A fundyense and G catenatum, and low 
when exposed to A minutum and P bahamense var compressum 

(Tables 7-9) When exposed to A catenella, maximum toxicity 
levels (in micrograms of STXeq per 100 g) in bivalves varied from 
9,929 in C gigas, 14,000 in Saxidomus nuttalli, 30,360 in M. 
trossulus, and 127,000 in Mytilus chtlensis (Tables 7-9) 

Bivalve species have different toxin profiles, pnmanly because 
of the toxin profile and toxigenicity of the dinoflagellate species to 
which they are exposed (Tables 10 and 11) and secondarily be­
cause of their inherent and differential abilities to accumulate and 
to bioconvert, depurate, or otherwise modify the various PSP tox­
ins Bivalves exposed to P bahamense var compressum or G. 
catenatum accumulate very low levels of GTX, whereas some 
species that are exposed to Alexandrium spp. accumulate high 
GTX levels (Tables 10 and 11) Different bivalve species acquire 
totally different toxin profiles when exposed to the same di­
noflagellate species (e g , A tamarense. Table 12) Additionally, 
individuals of the same bivalve species can have totally different 
toxin profiles, depending on the particular dinoflagellate species 
and strain to which they are exposed and the location and season 
of exposure For example, M edulis accumulate >20 mol% of the 
derivatives NEO, GTXl, GTX2, GTX4, and CI when exposed to 
A tamarense, >20% of the denvatives GTXl, GTX2, GTX3, and 
GTX4 when exposed to A minutum, and >20 mol% of the denva­
tives STX and GTX2 when exposed to A fundyense (Table 10) 
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TABLE 9. 

Selected examples of maximum toxicity levels reported in mussels and the associated dinoflagellate species involved in the PSP outbreak. 

Bivalve 

M edulis 

Mvtilus planulatus 

M trossulus 

M galloprovmciahs 

M californianus 
Mytilus sp 
Mytilus chilensis 
ChloromMilus 

palhopunctatus 

Perna viridis 

Perna perna 

Modiolus modiolus 

Date and Location 

1972 York Harbor, ME, 

1972 Merrimack River Estuary, ME, 

1972 Essex, MA, 

1980 Argentine Sea, Argentina, 

1981 SW Norway, 

1986 Harpswell, ME, 
1990 Georges Bank, ME, 
1988 Bnttany, France 
1986 S Tasmania, Australia, 
1986/1987 Adelaide, S Australia 
1978 Puget Sound, WA 
1982 British Columbia. Canada, 
1987 Kodiak, AK 
1976 Vigo, Spain, 
1984 Gahcia Spain 
1980 Mann County, CA 
1986 NW Portugal 
1992 S Chile 
1989 SW Mexico 

1988 Indonesia 

1989 Venezuela 

1990 Georges Bank, ME 

Toxicity 
(jig of STXeq 

100 g-') 

10,092 

7,392 

7,200 

50,000 

42,000 

2,100 
24,417 

401 
8,350 
2,700 

30,360 
30,000 

>5,000 
6 000 

445 
16,000 

1,600 
127,200 

542 

1,054 

1,309 

5,016 

Dinoflagellate 

A fundyensel 
A tamarense 

A fundyensel 
A tamarense 

A fundyensel 
A tamarense 

A tamarense 
( = A excavatum) 

A tamarense 
( = A excavatum) 

A tamarense 
M tamarense 
A minutum 
G catenatum 
A minutum 
A catenella 
A catenella 
''A catenella 
G catenatum 
A minutum 
A catenella 
G catenatum 
A catenella 
P bahamense 

var compressum 

P bahamense 
var compressum 

G catenatum 

'^A tamarense 

Tissues 

Whole body 

Whole body 

Whole body 

•'Whole body 

Whole body 

Whole body 
Whole body 
Whole body 
Whole body 
Whole body 
•'Whole body 
Whole body 
•'Whole body 
Whole body 
Whole body 
Whole body 
Whole body 
•'Whole body 
Whole body 

•'Whole body 

•'Whole body 

Whole body 

Reference 

Twarog and Yamaguchi 
1975, 

Twarog and Yamaguchi 
1975, 

Twarog and Yamaguchi 
1975, 

Carreto et al 1985, 

Langeland et al 1984, 

Shumway et al 1990 
White et al 1993 
Behn 1993 
Hallegraeff et al 1989, 
Hallegraeff et al 1989 
Nishitani and Chew 1988, 
Chiang 1988, 
Nishitani and Chew 1988 
Luthy 1979, 
Bianco et al 1985 
Pnce et al 1991 
Sousa et al 1995 
Benavides et al 1995 
Cortés-Altamu-ano et al 

1993 

Adnan 1993 

La Barbera-Sanchez et al 
1993 

White et al 1993 

Tissue Deposition of Toxins 

Bivalve toxin profiles vary by geographic region (Tables 7-9), 
by season, and in the distribution of toxic components m different 
tissues (Beitler and Liston 1990, Cembella et al 1993, Cembella 
et al 1994, Shumway et al 1994) Some of these differences are 
reflected in the ability of bivalves to convert toxins both from 
highly toxic carbamates (SIX, NEO, GTXl, GTX2, GTX3, 
GTX4) to mildly toxic decarbamoyl analogues (dcSTX, dcGTXl, 
dcGTX2, dcGTX3, dcGTX4) and vice versa or in the ability to 
store less toxic N-sulfocarbamoyl toxins (Tables 10 and 11) The 
ability to convert carbamates to decarbamoyl derivatives has been 
demonstrated in S solidissima, Protothaca staminea (Conrad), 
Peronidia venulosa, and Mactra chinensis (Sullivan et al 1983, 
Bncelj and Cembella 1995, Oshima 1995, Bncelj et al 1996) 
Bivalves may therefore have different toxin profiles from those of 
the dinoflagellate to which they were exposed, and their toxin 
profiles can vary as a function of time since exposure (Cembella et 
al 1994) Depuration times vary between different species Most 
species can naturally eliminate PSP toxins within weeks (Shum­
way 1990) Pacific oysters, C gigas, are able to depurate toxins 
from their tissues in less than 9 wk (Shumway et al 1990) How­
ever, 5 giganteus, P magellamcus, and 5 solidissima are known 
to retain high levels of toxins for long periods of time (from 

months up to 3 -I- y) (Shumway and Cembella 1993, Shumway et 
dl 1994, Shumway pers comm ) In S giganteus, the siphons are 
the main sites of toxin accumulation (Beitler and Liston 1990), and 
toxins are stored as STX, NEO, GTX2, and GTX3 (Kitts et al. 
1992) In f magellamcus and P yessoensis, the majority of the 
toxins is concentrated in the digestive gland, with toxicity levels in 
the gills and gonads typically less than 80 \xg of STXeq 100 g~ ' 
(Shumway and Cembella 1993) In S solidissima, toxicity levels 
of more than 20,0(X) (xg of STXeq 100 g'^ ' were recorded in the 
gills (Shumway et al 1994) Tissue storage of toxins can vary by 
season and by concentration (Cembella et al 1994) Differences in 
toxin accumulation in individual bivalves exposed to PSP ranged 
from 40 to 3,213 \xg of STXeq 100 g" ' in September (White et al. 
1993) 

The bivalve accumulation of particular toxins and the deposi­
tion of these toxins in different tissues have been studied dunng 
laboratory-controlled exposures (Lassus et al 1989, Bricelj and 
Cembella 1995) Bricelj and Cembella (1995) exposed S solidis­
sima to A minutum even though 5 solidissima would not typically 
be exposed to this dinoflagellate, which is rare in North America. 
The toxins of the A minutum strain to which the bivalves were 
exposed were exclusively GTX1/GTX4 (96 9 mol%) and GTX2/ 
GTX3 (3 1 mol%) After 40 days, the deposition of GTX1/GTX4 
in the gills and viscera of the bivalves had declined to less than 5 0 
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TABLE 10. 

Toxin concentrations (mol%) in dinoflagellate species and clams and mussels associated with PSP outbreaks. Where possible, concentration 
ranges have been provided to reflect the dynamics of toxin sequestration, conversion, and depuration. 

Bivalve/ 
Dinoflagellate 

M edulis 
A tamarense 
M edulis 
A tamarense 
M edulis 
A mtnutum 
M edulis 
A fundyense 
M irossulus 
M catenella 

M californianus 
A catenella 

M planulatus 
G catenatum 
M galloprovincialts 
G catenatum 
M mercenaria 

A fundyense 
M arenana 
A fundyense 
M arenana 
A tamarense 
R phillipinarum 
A tamarense 

P viridis 
A tamiyavamchi 

P vmdis 
P bahamense var 

compressum 
Spondylus bullen 
P bahamense var 
compressum 
Spisula sp 
A tamarense 
Meretrix casta 
M tamiyavamchi 

STX 

1 3-9 7 
0 3-0 5 
0 0-0 5 

0 0 

40 0 
26 8 

60 9 

0 1 0 3 
0 2 
5 0 
6 0 

25 4-30 2 

25 8 
+ 

23 3 

0 0-2 0 
0 0 

0 2 
0 4 

46 7 
15 6 

+ 

89 0 

0 4 

NEO 

1 4-50 2 
13-2 2 
2 0-9 0 
0 3 11 

10 0 
13 2 
+ 

30 4 

0 0 
2 0 

12 2-12 6 

13 8 
+ 

16 2 

0 0-2 0 
0 3-1 1 

1 8 
0 0 

8 6 
10 5 

+ 

9 1 

0 1 

Carbamates 

GTXl 

2 0-45 7 
17 7-20 3 
2 0-7 0 
1 1-2 1 

38 8-42 4 
40 5 

1/4 13 0 
0 6 
+ 

1-4 8 7 

0 5-3 0 

1/4 0 0 
1/4 2 0 

1/4 
9 3-9 6 

8 9 
+ 

19 2 

0 0-5 0 
1 1-2 1 

30 6 
7 0 

4 6 

22 8 

GTX2 

8 8-36 1 
7 0-7 5 
8 0-13 0 
7 0-23 0 

21 9-30 7 
5 2 

2/3 48 0 
1 5 
+ 

0 3 
trace 

2/3 0 0 
2/3 0 0 

2/3 
46 0-^9 6 

47 8 
+ 

17 4 

1 0-17 0 
7 0-23 0 

13 4 
0 7 

4 1 

17 8 

GTX3 

2 1-7 0 
1 9-2 1 
9 0-51 0 

70 0-86 0 
<0 1-30 7 

1 3 

50 1 
+ 

0 2 
trace 

+ 

15 6 

2 5-60 0 
70 0-86 0 

4 7 
8 5 

2 3 

5 9 

GTX4 

2 6-26 3 
12 5-13 5 
0 0-6 0 
2 4-4 0 

25 9-76 8 
52 9 

5 1 
+ 

3 6-5 2 
0 8 

+ 

5 4 

0 0-5 0 
2 4 - 4 0 

49 3 
56 4 

I 

12 9 

/V-sulfocarbamoyls 

B1/B2 

+ 

1 5-2 7 
0 3-0 8 

38 5-^2 0 

0 3 

25 5 
69 4 

+ 

0 6 

C1/C2 

13 5-42 9 
43 6-^4 1 
17 0-24 0 
0 8-1 4 

27 

8 9-18 5 
7 5-63 3 

42 0 
36 0 

1 8-3 9 

37 
+ 

2 7 

2 0 - 1 3 0 
0 8-14 

+ 

6 8 

27 9 

C3/C4 

55 9-79 4 
36 8-99 7 

11 0 
170 

0 3 

Decarbamoyl'i 

dcSTX dcGTX2/3 

5 3-16 2 
0 3-1 2 

19.1 
4.5 

+ 

1 2-1 8 

Reference 

Lee et al 
1992 

L^ssus et 
al 1989 

Oshitna et 
al 1990 

Bncelj et 
al 1990 

Shimuzu 
et al 
1978 

Whitefleet 
Smith et 
al 1985 

Oshima et 
al 1987 

Anderson et 
al 1989 

Bncelj et 
al 1991 

Martin et 
al 1990 

Hurst et al 
1985 

Lassus et 
et al 
1989 

Wisessang 
et al 
1987 

Oshima et 
al 1987 

Oshima et 
al 1990 

Hurst et al 
1985 

Karunasagar 
étal 1990 

+ , present but no value given 

mol% toxin concentration, and GTX2 and GTX3 had been con­
verted to dcGTX2 and dcGTX3 Exposures of M mercenaria to 
A tamarense and A fundyense (Bricelj et al 1991) indicated that 
M mercenaria could accumulate toxins (Table 10), even though 
toxin accumulation may not occur in the field (Table 7) Cells of 
the high-toxicity A fundyense isolate were only consumed if sup­
plemented with a nontoxic diatom, Thalassiosira weissflogii 
(Bricelj et al 1991) 

Effects of PSP on Bivalves 

In the short term, bivalves are not usually affected by paralytic 
shellfish toxins (Kao 1993) because their neuromuscular functions 
operate mainly by voltage-gated calcium channels STX and its 
derivatives block only the voltage-gated sodium channels, which 
function in mammalian nerves and skeletal and cardiac muscle 
fibers (Kao 1993) High levels of STX are therefore typically not 
considered to be lethal or pathogenic to bivalves (Prakash et al 

1971 ) However, the effects of the chronic exposure of bivalves to 
STX and its derivatives are unknown Paralysed M arenana were 
reported during the PSP outbreak in western Maine and Massa­
chusetts in 1972, whereas toxic M arenana in eastern Maine and 
Canada showed no effects (Prakash et al 1971) Paralysed M 
arenana are seen in Maine regularly (Shumway pers comm ) 
Morbidity and mortality of shellfish were associated with a PSP 
outbreak in eastern England in 1968 (Adams et al 1968, Ingham 
et al 1968) Eighty percent of C gigoi that had been exposed to 
10 X W^A monilatum cells 1~ ' died within 48 h (Sievers 1969) 

The various combinations of the individual toxins described 
above determine the toxic potential of the shellfish to humans and 
the physiological damage expected to occur in the bivalves in 
which they accumulate The total STX toxicity is the most impor­
tant measure for public health concerns, yet the relative propor­
tions of these toxic derivatives and their distnbution m different 
tissues are not always considered The long-term effects of these 
exposures on molluscan health needs critical evaluation 
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TABLE 11. 

Toxin concentrations (inol%) in dinoflagellate species in scallops and oysters associated with PSP outbrealis. Where possible, concentration 
ranges have been provided to reflect the dynamics of toxin sequestration, conversion, and depuration. 

Dinoflagellate 

P magellamcus 
A tamarense 

{ = A excavatum) 
P magellamcus 
A tamarense 
P yessoensis 
A catenella 
P maximus 
A tamarense 
C gtgas 
A tamarense 
C gtgas 
A catenella 
C gtgas 
G catenatum 
Crassostrea cucullata 
''A tamiyavamchi 

STX 

20 0 
0 0 

11 5 

2 7 

0 0 -15 
0 0 

0 0-2 0 
0 0 
+ 

0 2 

0 7 

NEO 

1 0 
11 0 

8 4 

Ml 

0 0-2 0 
0 3-1 1 
2 0-7 0 
0 3-1 1 

+ 

0 0 

0 0 

Carbamates 

GTXl 

3 0 
9 0 

4 6 

0 0-5 0 
1 1 2 1 
0 0-3 5 
1 1 2 1 

+ 

0 7 

13 5 

GTX2 

58 0 
9 0 

39 2 

5 4 

1 5-29 0 
7 0-23 0 
2 0-22 0 
7 0-23 0 

+ 

0 2 
trace 
52 5 

GTX3 

11 0 
41 0 

23 8 

0 6 

4 0-40 0 
70 0-86 0 
1 5 ^ 6 0 

70 0-86 0 
+ 

0 1 
trace 
10 1 

GTX4 

<1 0 
30 0 

0 5-3 5 
2 4-4 0 
0 0 - 4 0 
2 4 - 4 0 

+ 

4 0 
0 8 
4 7 

N 

B1/B2 

2 3 

0 4 

+ 

3 1 
0 3-0 8 

-sulfocarbamoyls 

C1/C2 

7 7 

76 8 

3 0-21 0 
0 8-14 
7 0-35 0 
0 8-14 

10 0 
7 5-63 3 

14 2 

C3/C4 

+ 

79 8 
36 8-99 7 

Decarbamoyls 

dcSTX dcGTX2/3 

0 3 2 3-4 8 

2 1 
0 3 12 

0 0 4 2 

Reference 

Fix Wichmann 
etal 1981 

Hurst et al 
1985 

Oshima el al 
1990 

Lassus et al 
1989 

Lassus et al 
1989 

Onoue et 
al 1981 

Oshima et al 
1987 

Karunasagar 
etal 1990 

DSP 

DSP is associated with the consumption of shellfish that have 
been exposed to the dinofldgellates Dmophysis spp (Fig 2) and 
Prorocentrum lima (Ehrenberg) (Fig 3) DSP outbreaks are most 
commonly reported in temperate areas m Europe, the Far East, 
South America, and Australasia (Fig 2) (Lassus and Marcaillou-
Le Baut 1991, Aune and Yndestad 1993) Recently, DSP was 
documented in eastern Canada (QuiUiam et al 1993) Bivalves 
currently implicated in DSP outbreaks are M edulis, Mytilus cor-
uscum M galloprovincialis, P yessoensis, Chlamysmpponensis, 
Tapes japonica, Gomphira melanaegis, M mercenana, Aula-
comya ater, and M arenana (Lassus and Marcaiilou Le Baut 
1991,Lembeyeet al 1993) 

Dinophysistoxins (DTXs) (DTX-1, DTX 2, and DTX 3) and 
okadaic acid (OA) are the major toxins currently known to be 
involved with DSP DTXs have been found in Dinophysis acumi­
nata (Claparede and Lachmann), Dinophysis acuta (Ehrenberg), 
Dinophysis caudata (Saville-Kent), Dinophysis fortii (Pavillard), 
Dinophysis norvegica (Claparede and Lachmann), Dinophysis 
sacculus (Stem) (Lee et al 1989), and P //ma (Marr ct al 1992) 
OA, which is found in some benthic dinoflagellates in tropical 
regions (Steidinger 1993) and is suspected to have a role in cigu 

TABLE 12. 

Comparative toxin proflles of selected bivalves after exposure to A 
tamarense. Where possible, concentration ranges have been 

provided to reflect the dynamics of toxin sequestration, conversion, 
and depuration. 

Bivalve 

C gtgas 

M edults 

P maxtmus 

P magellamcus 

Spisula sp 

R phtlltptnarum 

M arenana 

STX 
(mol%) 

0 0-2 0 
0 0-9 7 

11 5 
11 5 20 0 

89 0 
0 0-2 0 

23 3 

GTX1/GTX4 
(mol%) 

0 0-7 5 
0 0-72 0 
0 0-8 5 

<1 0-7 6 
4 6 

0 0-10 0 
24 6 

GTX2/GTX3 
(mol%) 

3 5-68 0 
17 0-64 0 
5 5-69 0 
0 0-81 8 

6 4 

3 5-77 0 
33 0 

atera poisoning, has also been found in the planktonic P lima 
(Jackson et al 1993) and Dinoph\sii spp (Lassus and Marcaiilou 
Le Baut 1991) OA and DTX 1 have been experimentally shown 
to induce skin tumors in mice (Fujiki et al 1988, Suganuma et al 
1988) 

The accumulation and metabolism of DTXs in bivalves have 
not been well investigated, and the effects on molluscan health are 
unknown The exposure of mussels to high concentrations of P 
lima resulted in reduced filtration rates and was attributed to tox­
icity associated with inhibitory or cytotoxic effects (Fillet and 
Houvenaghel 1995) M edulis that were experimentally exposed 
to P lima accumulated OA and DTX 1 in the hepatopancreas No 
mortality was associated with exposure (Pillet et al 1995) Clear­
ance rates of juvenile and adult Argopecten irradions were not 
inhibited by exposure to toxigenic P lima, and no mortalities were 
observed Toxin saturation levels were attained within the first 2 
days of exposure, but toxin retention efficiency was low (Bauder 
etal 1996) 

Dinophysis spp and P lima are widely distributed (Figs 2 and 
3), and the effects of the exposure of bivalves to low level con­
centrations of these dinoflagellates should be investigated The 
presence of OA in the planktonic P minimum has not been con­
firmed (see VSP) 

VSPIProrocentrum minimum 

VSP has been associated with the consumption of shortnecked 
clams, Venerupis semidecussata, and Pacific oysters, C gigas, 
and was coincidental with blooms of the dinoflagellate Prorocen­
trum minimum in Japan (Akiba and Hatton 1949) VSP is rare, and 
Its true role in shellfish poisonings has been the subject of some 
discussion Because of its association with VSP, the widespread 
distribution of P minimum (Fig 3) will be reviewed here P 
minimum is considered to consist of strains that are largely non 
toxic to humans (Taylor 1984), but toxins that could be pathogenic 
to bivalves have been isolated (Okaichi and Imatomi 1979) Other 
shellfish toxicity events associated with P minimum have been 
documented in M edulis in Norway (Tangen 1983), in C edule 
and Venerupis decussatus (Silva 1985) in Portugal, and in M 
mercenana in northeastern North Amenca (Freudenthal and Jijina 
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1988) In Chesapeake Bay, blooms of P minimum appear to be 
fairly common (Sellner et al 1993) (Tables lb to 5b) and have 
recently been associated with shellfish mortalities (Luckenbach et 
al 1993) 

Recent studies have shown pathological effects, inhibition of 
feeding, and mortality in shellfish exposed to P minimum (Bar-
douil et al 1993, Luckenbach et al 1993, Wikfors and Smolowitz 
1993, Wikfors and Smolowitz 1995) M mercenaria and A irra 
dians were fed Prorocentrum micans, P minimum and Isochrysis 
sp in single-species and mixed-species tests (Wikfors and 
Smolowitz 1993) M mercenaria survived well in all experi­
ments, but in A irradians none of the diets supported good 
growth A mixed diet of/wc/iryjw and P min/mM/n caused 100% 
mortality in 1-4 wk A irradians ingested P minimum, but his 
topathological observations showed poorly developed digestive di 
verticula, attenuation of the epithelium with abnormal vacuolation 
and necrosis, and large thrombi in the heart and in the open vas­
cular system of the mantle, digestive diverticula, gill, and kidney 
tissues (Wikfors and Smolowitz 1993) All juvenile oysters, C 
virgmica, exposed to 100% P minimum bloom density died 
within 14 days, and 43% exposed to 33% bloom density died 
within 22 days, but oysters exposed to 5% bloom density had good 
shell growth and no mortality (Luckenbach et al 1993) Wikfors 
and Smolowitz (1993) suggested that P minimum produces an 
enterotoxin that gradually affects absorptive cells, an effect that 
was indicated by the development of thrombi throughout the vas­
cular system Spat of C virgmica exposed to P minimum had an 
abnormal accumulation of lipids in the stomach epithelium (Wik­
fors and Smolowitz 1995) 

A Prorocentrum species has recently been implicated in mass 
mortalities of flat oysters, Ostrea nvularis in southern China 
(Yomgjia et al 1995) The pathology was consistent with a sys 
temic toxicosis resulting from the absorption of toxins by the di­
gestive gland Interestingly, the most intense lesion was formed by 
hemocytes that accumulated in and around the hemolymph chan 
nels, infiltrated the walls of the blood sinus, and formed intravas­
cular thrombi This pathology appears to be similar to that found 
in C virgmica by Wikfors and Smolowitz (1993) These studies 
suggest that Prorocentrum spp may induce pathological effects m 
the hematopoietic system of oysters If P minimum produces tox­
ins that are important in neoplasia development, could the chronic 
exposure of oysters to low-level concentrations of P minimum 
induce neoplasia of the hematopoietic system"' 

A COMPARISON OF BIVALVE NEOPLASIA AND 
BIOTOXIN DISTRIBUTION 

The epizootiology of disseminated neoplasia and germinomas 
in bivalves appears to closely parallel, both spatially and tempo 
rally, the distribution of blooms of dinotlagellate species associ­
ated with PSP or VSP (Tables 1-5, Figs 1 and 3) The correlations 
noted here are conservative because they reflect only the coinci­
dences of acute bloom formations and high concentrations of tox­
ins in bivalves They do not take into account the distribution of 
low levels of dinoflagellate concentrations and thus do not address 
the potential effect of chrome exposure of bivalves to toxins 
These correlations need to be experimentally and statistically ver 
ified A relationship between the distributions of neoplasia and 
DSP IS not currently indicated (Tables 1-5, Fig 2) 

My working theory that certain dinoflagellate toxins induce 
neoplasia in bivalves is based on the currently available toxin 

profiles of bivalves and dinoflagellates I recognize that there are 
gaps in the data and inconsistencies between studies in techniques 
used, dinoflagellate species, strains, and geographical isolates ex­
amined, and time elapsed between bivalve exposures to dinoflagel­
late blooms and subsequent analysis of their toxin profiles How­
ever, patterns and trends in the relationship between biotoxins and 
neoplasia may still be recognized 

One of the earliest descriptions of disseminated neoplasia in 
bivalves in North America mentioned that an outbreak of PSP had 
been going on in the area at the same time (Farley 1976a) (Table 
2) During the first red tide that led to a major PSP outbreak from 
southern Maine to Cape Ann, MA, m September 1972 (Hartwell 
1975, Mulligan 1975), M edulis and M arenaria were the most 
prone to PSP (Tables 7 and 9) and they remained toxic until Apnl 
1973 (Hartwell 1975) M arenaria was heavily affected by dis­
seminated neoplasia and germinomas, but M edulis was refractory 
(Tables 2a, 3a, and 5d), even in locations where M arenaria and 
M edulis had high toxin levels (Twarog and Yamaguchi 1975) 
(Tables 1,9) M mercenaria and C virginica did not accumulate 
toxin (Tables 7 and 8), and they were also refractory to dissemi­
nated neoplasia and germinomas (Tables la, 2a, and 5a) PSP 
outbreaks coincided with several reports of disseminated neoplasia 
in M arenaria in Maine during 1972-1975 (Table 2) (Farley 
1976a) In August 1986, Momson et al (1993) found dissemi­
nated neoplasia in 3 1 % of M arenaria from Lepreau Harbor, 
New Brunswick, a month after PSP had been found there in the 
same species (Martin ct al 1990) Numerous parallel temporal and 
spatial occurrences of PSP and disseminated neoplasia are shown 
in Tables 1 ^ 

With the exception of the Gulf of Mexico, it appears that the 
distribution of disseminated neoplasia in bivalves is restricted to 
comparatively temperate regions m both the northern and the 
southern hemispheres Disseminated neoplasia has not been re­
ported in Asia, California, Africa, the Middle East, central and 
northern South America, or the tropics (Tables la to 4a, Fig 1) 
Thus, for the most part, the distribution of disseminated neoplasia 
in bivalves more closely parallels the distribution of Alexandrium 
spp associated with PSP (Tables 1 ^ , Fig 1) than that of P 
bahamense var compressum or G catenatum PSP outbreaks in 
Asia are usually associated with P bahamense var compressum, 
and similar associations have recently been reported in Guatemala 
and Venezuela (Fig 1) However, toxicity levels in shellfish as­
sociated with P bahamense var compressum are typically low 
(Tables 7-9) and are associated with the toxins STX and NEO and 
their less potent derivatives (Tables 6 and 10) Unlike some Alex­
andrium spp , this dinoflagellate lacks toxin derivatives such as 
GTX that might be potential inducers of neoplasia (Table 6) Cur­
rently, there are no documented cases of bivalve neoplasia in areas 
where P bahamense var compressum occurs (Fig 1) 

G catenatum has trace levels of GTX (Tables 6, 10, and 11) 
Shellfish toxicity associated with exposure to G catenatum typi­
cally tends to be low (Tables 7-10) and is usually associated with 
high levels of the nontoxic components Bl, B2, and CI to C4 
(Tables 10 and 11) PSP outbreaks associated with G catenatum 
have been reported to occur m Europe, particularly along the At­
lantic Coasts of France, Spam, and Portugal, and in Tasmania, 
Argentina, and California (Fig 1) In some cases, this distnbution 
of G catenatum parallels that of disseminated neoplasia, but the 
dinoflagellate has not been reported to occur in northeastern and 
northwestern North America or in Scandinavia, areas in which 
there is a high prevalence of disseminated neoplasia The distri-
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butions of neoplasia and G catenatum therefore do not seem to be 
highly correlated (Fig 1) In areas where G catenatum and dis­
seminated neoplasia do co-occur, I think that the correlation is 
more likely to be caused by the presence of Alexandnum spp , 
which co-occurs with G catenatum in those areas (Fig 1) 

Analyses of the toxin compositions of PSP-causing dinoflagel-
late species (Tables 6, 10, and 11) show a possible connection 
between the presence of disseminated neoplasia and exposure to 
the highly toxic GTX It is postulated here that the combination of 
specific toxins will, in some cases, initiate neoplastic development 
in bivalves Dinoflagellate species with distributions that parallel 
that of disseminated neoplasia on a worldwide basis and that have 
toxin profiles with high levels of GTX are A tamarense, A minu-
tum, A catenella, and A fundyense (Table 6) 

If there is a relationship between disseminated neoplasia in 
bivalves and their toxin profiles and concentrations, then high 
STX or NEO levels do not appear to be as important as other 
combinations of STX derivatives It generally appears that when 
>20 mol% of the gonyautoxins GTX1/GTX4 are present, then 
disseminated neoplasia is also present (Tables 10-13) When >20 

mol% STX or NEO is present, then disseminated neoplasia is 
generally absent (Table 13) In M arenana, after exposure to A 
tamarense, >20 0 mol% of STX, GTX1/GTX4, and GTX2/ 
GTX3 are present (Table 12) However, after exposure to A. 
fundyense, M arenana had low levels of STX and high levels of 
GTXl, GTX3, and GTX4 (Martin et al 1990) In this case, the 
common toxin derivative associated with the presence of dissem­
inated neoplasia in M arenana appears to be GTX and not STX. 
Bivalves such as M trossulus and M arenana that store highly 
potent GTXs are affected by disseminated neoplasia, whereas 
those species that store STX, such as 5 giganteus, S solidissima, 
P magellanicus, P yessoensis, Spondylus butlen, and M cali-
formanus are unaffected by disseminated neoplasia (Table 13) 

Recent appearances of Alexandnum spp with high levels of 
GTX such as A tamarense and A tamiyavanichi (Balech 1995) 
(identified as A cohorticula) in Thailand, Korea, and Japan in the 
1980s (Ogata et al 1990, Pholpunthinet al 1990, Han et al 1992) 
and A minutum in Australasia (Hallegraeff et al 1991) may fore­
shadow the appearance of disseminated neoplasia in predisposed 
bivalves m these areas There is a noticeable absence of dissem-

TABLE 13. 

Geographic distribution of neoplasia in various bivalves associated with PSP (high-risk Alexandnum spp.), DSP, and VSP and distribution 
of toxins (at least > 20 mol%). 

Bivalve 

M edulis 

M trossulus 

M gatloprovmcmhs 
M californtanus 
M arenana 

M truncata 
C gigas 
C virgimca 

T chilensis 

0 edults 
0 conchaphda 

P magellanicus 
P yessoensis 
A irradians 

Mercenana mercenaria 

C edule 
S solidissima 
S bullen 
A islandica 

M balthlca 
M casta 
S giganteus 

Germmomas 

+ 

0 

0 
0 

+ + + 

0 
0 
+ 

?+ 

0 
0 

0 
0 
+ 

+ + + 

•>+ 
0 
0 
+ 

0 
0 
0 

Distribution 

NE North 
America 

NW North 
Amenca 

NE North 
Amenca 

E North 
Amenca 

New Zealand 

NE North 
Amenca 

E/SE North 
Amenca, 
Gulf of 
Mexico 

Western Europe 

NE North 
America 

Neoplasia 

+ + 

+ + + 

+ 
0 

+ + + 

+ 
0 
+ 

+ 

+ + 
+ + 

0 
0 
0 

0 

+ + + 
0 
0 
0 

+ + 
? 
0 

Distribution 

Europe 

NW North 
Amenca 

Europe 

NE North 
Amenca 

N Canada 

E North 
Amenca, 
Gulf of 
Mexico 

SW South 
America 
New Zealand 

Europe 
NW North 

America 

Western Europe 

Scandinavia 

C1/C2 

+ 

•> 

+ 

NO 
+ 

ND 

ND 
ND 

-
+ 

ND 

ND 

-
-

ND 

ND 
+ 
-

NEO 

+ 

— 

+ 

ND 

-

ND 

ND 
ND 

-
+ 

ND 

ND 

-
+ 

ND 

ND 

-
-

PSP 

STX 

_ * 

— 

+ 
+ 

ND 

-

ND 

ND 
ND 

+ 

+ 

ND 
+ 
+ 

ND 

ND 

-
+ 

GTXl/4 

+ 

+ 

+ 

ND 

-

ND 

ND 
ND 

-

ND 

ND 

-
-

ND 

ND 
+ 
-

GTX2/3 

+ 

+ 

+ 

ND 
+ 

ND 

ND 
ND 

+ 

ND 

ND 

-
-

ND 

ND 
-1-

-

DSP 

DTXl 

+ 

ND 

+ 
ND 

ND 
ND 
ND 

ND 

ND 
ND 

ND 
+ 

ND 

•' + 

ND 
ND 
ND 
ND 

ND 
ND 
ND 

OA 

+ 

ND 

+ 
ND 
• ' -1-

ND 
+ 

ND 

ND 

ND 
ND 

+ 
+ 

ND 

•' + 

+ 
ND 
ND 
ND 

ND 
ND 
ND 

VSP 

+ 

ND 

ND 
ND 
ND 

ND 
+ 

> + 

ND 

ND 

ND 
ND 
ND 

+ 

+ 
ND 
ND 
ND 

ND 
ND 
ND 

+ + + , high nsk, + + , medium nsk, + , low nsk, 0 no nsk 
* STX values for exposures to A fundyense are >20 0 mol% (Table 10) (ND, no data) 



220 LANDSBERG 

mated neoplasia in bivalves in California, which correlates with 
and may have been influenced by the absence of A tamarense in 
this area, by the presence of low-toxicity G catenatum, or by the 
fact that California mussels, M californianus, retain high STX 
levels when exposed to A catenella (Fig I, Table 10) 

From a public health standpoint, the toxicity of individual, 
nonconsumable bivalve organs is not usually considered because it 
IS the total toxicity value that is important for safety standards 
Toxicities that are reported as micrograms of STXeq per 100 g of 
shellfish meat (Prakash et al 1971) are a composite of the total 
toxicity of the shellfish tissues that are typically consumed by 
humans Even though the toxicity of individual organs can be 
much higher than the overall toxicity of the shellfish meat (Martin 
et al 1990), these individual values are only relevant from a 
human health perspective when particular organs, such as adductor 
muscles from scallops, are consumed (Shumway and Cembella 
1993) From a molluscan health perspective, however, the distri­
bution of toxins and derivatives in individual organs may be crit­
ical If neoplastic induction requires a particular period of chronic 
exposure to one or more toxins, then the deposition of the various 
toxin derivatives, their concentrations, and their persistence in 
different organs may play a significant role At present, both the 
sites for hematopoiesis and the cellular origin of disseminated 
neoplasia in bivalves are unknown (Elston et al 1992) Likely 
organ sites could include those with open blood sinuses such as the 
gills, heart, kidney, and brown gland, whereas those such as the 
adductor muscle and mantle might be less likely 

If there is a correlation between the tissue deposition of the 
highly toxic carbamate gonyautoxins and the prevalence of neo­
plasia, then It may be apparent in current bivalve data (Tables 10 
and 11) In New England, M arenana is affected by both dis 
seminated neoplasia and germinomas (Tables 2a and 5a) Martin et 
al (1990) showed that the toxicity of whole M arenana extracts 
had a typical seasonal pattern, with a maximum of 2,103 jjig of 
STXeq 100 g~' present in July 1986 in Lepreau Harbor, New 
Brunswick Toxicities for some individual tissues were far higher 
than the total maximum toxicity levels reported (Martin et al 
1990) Levels of approximately 10,000 \xg of STXeq 100 g " ' 
were present in the digestive gland, 6,500 (jig of STXeq 100 g ' 
in the heart, kidney, and brown gland, 500 |i,g of STXeq 100 g~ ' 
in the gills, 300 |xg STXeq 100 g" ' in the gonad, and 120 p.g of 
STXeq 100 g ~ ' in the muscle Could the deposition of PSP toxins, 
and particularly the gonyautoxins, in tissues such as the gills, 
kidney, heart, or brown gland trigger the development of dissem­
inated neoplasia'' Could the deposition of these same toxins in the 
gonad trigger germinoma development'' After M arenana were 
exposed to A fundyense blooms, PSP toxins were transferred rap­
idly from the digestive gland to the kidney, where they were 
retained for extensive penods of time (Martin et al 1990) Mor­
rison et al (1993) found disseminated neoplasia in M arenana 
from the same area (Lepreau Harbor) as those M arenana studied 
1 month previously by Martin et al (1990) Presumably M are­
nana had retained high levels of GTX in susceptible tissues during 
that penod The presence of disseminated neoplasia appears to be 
more than coincidental, and verification of such a cause-and-effect 
scenario is critical 

In contrast, P yessoensis are known to be highly contaminated 
by toxins dunng PSP outbreaks (Table 8) but are refractory to 
disseminated neoplasia Toxin-profile studies of the scallop Pecten 
maximus show that the accumulation of STX, NEO, and GTX 
occurs mostly in the digestive gland The accumulation and sub 

sequent transformation of these toxins in the gonad, kidney, and 
adductor muscle of the scallop P maximus (L ) lead to an almost 
complete absence of GTXl and GTX4 in these tissues 15 days 
after experimental exposure to A tamarense However, the diges­
tive glands still contained GTXl to GTX4 and NEO after 35 days 
(Lassus et al 1992) Cembella et al (1994) reported seasonal 
variation in toxicity profiles of P magellanicus tissues In the 
digestive glands, GTX2 and C1/C2 were the main components, in 
the gill, NEO, in the mantle, GTX2 and GTX3, and in the gonads, 
C1/C2, GTX2, GTX3, and NEO Levels of GTXl and GTX4 
were negligible The low level or complete absence of GTXl and 
GTX4 might again explain the absence of disseminated neoplasia 
and germinomas in scallops (Cembella et al 1994) The ability to 
transform toxic PSP carbamates to their corresponding nontoxic 
decarbamoyl derivatives, as demonstrated by 5 solidissima, P 
staminea, P xenulosa, and M chmensis (Bricelj and Cembella 
1995, Oshima 1995, Bricelj et al 1996), may also correlate with 
a lack of neoplasia Again, species with high STX concentrations 
and low levels of GTX appear to be unaffected by disseminated 
neoplasia—or at least less affected by disseminated neoplasia than 
are those species that retain high levels of GTX 

Although M edulis is heavily affected by PSP in northeastern 
North America, the incidence of disseminated neoplasia has not 
been recorded in this species in this region However, M edulis 
from northern Europe (England and Scandinavia) are affected by 
disseminated neoplasia (Table 3a) Several factors could help to 
explain these geographical differences In northern Europe, M 
edulis are more than likely to be exposed to A tamarense or A 
minutum and, in general, have high GTX levels (>60 mol% 
GTX1/GTX4) (Table 10) In northeastern North America, M edu 
lis are typically exposed to A tamarense or A fundyense In 
Maine, where a high prevalence of disseminated neoplasia and 
germinomas is documented in M arenana (Tables 2a and 5a), M 
edulis are more than likely to be exposed to A fundyense (Ander­
son et al 1994) When exposed to A fundyense, more than 40 
mol% of STX but only about 13 mol% of GTX1/GTX4 is retained 
in M edulis (Table 10) In this situation, the high levels of STX 
and the low levels of GTX may explain the absence of dissemi­
nated neoplasia in M edulis in this region I postulate that high 
levels of GTX1/GTX4 are required to trigger neoplastic develop­
ment If M edulis are usually exposed to A fundyense in Maine 
and this results in the deposition of low levels of GTX1/GTX4, 
then the absence of disseminated neoplasia in M edulis in New 
England can be explained 

The worldwide distribution of germinomas is more localized 
than that of disseminated neoplasia (Figs 1-3) If Alexandnum 
spp are involved in tumor induction, then it might be expected 
that there would be a parallel distribution of germinomas and 
disseminated neoplasia in bivalves In some cases, this situation 
holds true, as for example, in M balthica in northern Canada, M 
arenana in New England, and C edule in Cork, Ireland How 
ever, in most cases, this situation does not occur (Table 13) The 
absence of germinomas in bivalves from most of Europe and their 
rare occurrences along the Pacific Coast of North America suggest 
that in these areas, toxins from the dinoflagellates A tamarense, 
A fundyense, A minutum, A catenella. and G catenatum are not 
necessarily involved in germinoma induction Alternatively, if 
these dinoflagellates are involved, then the toxin components re­
quired for germinoma induction are probably different than those 
required for the induction of disseminated neoplasia The high 
prevalence of germinomas in M mercenana and the fact that their 
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exposure to toxic Alexandnum spp under natural conditions may 
not always result in toxin accumulation (Table 7) suggest an al­
ternative hypothesis for germinoma induction in this species 

There may be a possible correlation between the distribution of 
neoplasia m bivalves in the Gulf of Mexico and southeastern North 
America and the distribution of toxigenic A momlatum or P 
minimum These dinoflagellates have been documented to occur 
throughout the Gulf of Mexico, the Caribbean, and southeastern 
and mid-Atlantic North America as far north as the Chesapeake 
Bay (Steidinger 1993) A potential relationship between the dis­
tribution of P minimum and A momlatum and neoplasia could 
also be postulated for the bivalves C virginica, T chilensis, M 
mercenaria, and Mertenana campechiensis (Figs 1 and 3, Tables 
1,5, and 13) The distnbution of disseminated neoplasia in oysters 
appears to be more related to the presence of P minimum or A 
momlatum than to other toxic dinoflagelldtes in the genus Alex­
andnum (Table 1 ) Most accounts of oyster exposure to Alexan 
drium spp report low or no toxicity (Table 8), whereas toxins 
from Prorocentrum spp cause pathological effects and have been 
associated with oyster mortalities (Wikfors and Smolowitz 1993, 
Wikfors and Smolowitz 1995, Yomgjid et al 1995) Currently, 
there is no information on the uptake of toxins from P minimum 
or A mo«;/arMm by, or their toxicity to, M mercenaria although 
P minimum cells were found in M mercenaria in Nassau County, 
NY in 1985 after an outbreak of human shellfish poisoning 
(Freudenthal and Jijina 1985) 

Although there are some incidences of neoplasia that parallel 
the distribution of DSP (Fig 2), there are few records of DSP from 
the East and West Coasts of North America or the Gulf of Mexico, 
where neoplasia is prevalent Dinoflagellate species with associ­
ated OA and DTX 1 would appear to be likely candidates for 
causing tumors in bivalves, yet the existing epizootiology of bi 
valve neoplasia does not appear to parallel the known distribution 
of these dinoflagellates (Fig 2) However, the focus of this article 
has been to review the distribution of toxicity outbreaks typically 
associated with high density planktonic blooms and acute expo­
sure to bivalves Therefore, if the long term, low-level exposure 
of bivalves to OA or DTX is occurring through the continual 
consumption of Dinophysis spp and P lima then field data com 
paring high density bloom distributions and neoplasia incidence 
may not be pertinent 

The influence of anthropogenic chemical carcinogens on the 
induction of neoplasia in invertebrates has been well investigated 

' (Mix 1986a) Many bivalves have been exposed to highly con 
laminated sediments containing chemical carcinogens known or 
suspected to affect aquatic organisms (Gardner and Yevich 1988) 

< In most cases, a direct cause-and effect relationship between bi 
valve exposure to carcinogens and the induction of disseminated 
neoplasia or germinomas could not be clearly demonstrated (see 
Etiology) However, in a few examples, benign tumors developed 
(Gardner et al 1991a) One could speculate that if there is a 
connection between bivalve exposure to particular dinoflagellate 
toxins and neoplasia, then the neoplasia found in chemical carcin 
ogen exposure studies could have been caused by exposure to 
sedimentary biotoxins The majority of sediment exposure studies 
were carried out using sediments from high risk PSP areas in New 
England such as Narragansett Bay, RI, Long Island Sound, Black 
port, CT, Searsport, Freeport, and Dennysville, ME, and New 
Bedford Harbor, MA (Yevich and Barscsz 1976, Yevich and 
Barscsz 1977, Gardner and Yevich 1988) (Table 2b)—all areas 
where Alexandnum spp cysts are known to be widespread in the 

sediments (Anderson et al 1982, Marandaet al 1985) It has been 
documented that the total toxin concentration in cysts of A ta-
marense is six-fold higher than that in the natural population of 
vegetative cells (Oshima et al 1992) Further, these cyst toxins 
comprised approximately 80 mol% of GTX compared with ap­
proximately 69 mol% of GTX in vegetative cells (Oshima et al 
1992) Theoretically, if these cysts were present in sediments from 
high-risk PSP areas during the exposure of bivalves to chemical 
contaminants, then bivalves could also have ingested toxic cysts 
along with other contaminated sediment particles 

There is little or no information about the potential role of 
natural biotoxins in the induction of tumors in aquatic organisms 
OA and DTX-1 produced by Dinophysis spp and P lima can, in 
addition to causing DSP, promote tumors in mammals The fact 
that bivalves accumulate toxins associated with Dinophysis and 
Prorocentrum is unequivocal, but the role of OA and DTX in 
inducing tumors in aquatic animals is currently unknown It re 
mains to be seen as to whether they can trigger neoplasia devel­
opment in bivalves Long-term studies to investigate the relation­
ship between toxin exposures and neoplasia should be initiated 

A multifactorial etiology of neoplasia development in bivalves 
could be hypothesized, but before such a step can be made, the 
role of biotoxins in tumor induction should be defined and clearly 
demonstrated In at least one species of bivalve (M arenaria) 
known to be affected by disseminated neoplasia, the presence of a 
retrovirus has been demonstrated (Oprandy et al 1981 ) Retrovi­
ruses may be endogenous in certain bivalve species and strains 
such as M arenana and Mytilus spp The proliferation of these 
viruses could be triggered by exposure to natural carbamate toxins 
Carbamate toxins could act directly as mutagens Different bi 
valves may also be predisposed to viral or cellular oncogenes 
Genetic differences in species predisposition to neoplasia may be 
significant (Van Beneden et al 1993) Genetic susceptibility to 
germinomas was determined for M mercenaria M campechien­
sis and their hybrids Hybrids were more affected by germino­
mas, which could be explained by decreased genetic fitness (Bert 
et al 1993) 

Although this concept is highly speculative at present, the geo­
graphic association of shellfish toxicity events, dinoflagellates, 
and neoplasia certainly represents strongly circumstantial evi­
dence If gonyautoxins induce disseminated neoplasia, then infor­
mation on the chronic deposition of these toxins in different bi­
valve species and tissues may be indicative of the differences in 
species' predisposition to neoplasia Table 13 shows the geograph­
ical distribution of disseminated neoplasia and germinomas, the 
species affected, and the typically high toxin concentrations (>20 
mol%) that some bivalves accumulate These data can be used to 
generate a theoretical risk assessment for the geographic distribu 
tion of bivalves with disseminated neoplasia (Table 14) and ger­
minomas (Table 15) 

Hypotheses 

1 Disseminated neoplasia and germinomas can be induced in 
bivalves by toxins produced by dinoflagellates, a bivalve's 
predisposition to neoplasms is dependent on genetic, behav­
ioral, physiological, environmental, and geographic factors 
that may operate in sequence 

2 Certain species, such as the softshell clam, M arenana, 
and the cockle, C edule, are affected by both disseminated 
neoplasia and germinomas, but only in spwcific geographic 
locations and at certain times of the year Other species, 
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TABLE 14. 

Predisposition and theoretical risk of bivalve species to disseminated neoplasia by geographic region and by exposure to 
dinoflagellate species. 

Bivalve 

M edulis 
M plamlatus 
M trossulus 
M galloprovtnaahs 
M caltformanus 
M arenana 
M truncala 
A aler 
C gigas 
C virgimca 
T chtlensis 
0 edulis 
0 conchaphila 
P magellanicus 
P yessoensis 
A irradions 
M mercenaria 
C edule 
S solidissima 
S hullen 
A islandica 
M balthica 
M casta 
P viridis 
S giganteus 
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0 
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•>+ + 

•»+ + 

•>+ + 
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such as the blue mussels, M edulis and M trossulus, and 
the eastern oyster, C virgimca, are rarely affected by both 
types of neoplasia Some species, such as M mercenaria, 
are apparently affected only by germinomas, and others, 
such as O edulis, are affected only by disseminated neo­
plasia The butter clam, S giganteus the Japanese scallop, 
P yessoensis, the sea scallop, P magellanicus the surf-
clam, S solidissima, and the California mussel, M calt­
formanus, are apparently unaffected by either disseminated 
neoplasia or germinomas 
The absence of disseminated neoplasia and germinomas in 
bivalves from particular geographic regions is likely to be 
correlated with the absence of dinoflagellate species with 
high-risk toxins, such as GTXs, or with the resistance to 
neoplasia of particular bivalve species 
Disseminated neoplasia is prevalent in most geographic re­
gions where PSP and Alexandrium spp occur, but only in 
certain species of bivalves More specifically, only certain 
species of Ateandni/m, such as/4 tamarense,A minutum, 
and A fundyense, are potential etiological agents of tumor 
induction 
Even though dinoflagellates such as P bahamense var 
compressum and G catenatum cause PSP, they are unlikely 
to induce disseminated neoplasia or germinomas 
The decreasing toxicity of A tamarense along a north-to-
south gradient in the coastal United States could explain the 
higher prevalence of disseminated neoplasia in bivalves in 
more northerly regions 

10 

11 

M mercenaria is apparently unaffected by disseminated 
neoplasia and does not usually accumulate toxins associated 
with A tamarense or A fundyense M mercenaria is, how-
ever, affected by germinomas Toxins from known PSP 
producing dinoflagellates do not appear to play a role in the 
development of germinomas in this species In M arenana, 
the incidence of germinomas appears to be related to the 
distribution of Alexandrium spp blooms 
A momlatum and P minimum may be potential etiological 
agents of neoplasms in some bivalves because of their par­
allel geographic distributions and their implicated toxicity 
The toxin profiles of these dinoflagellate species are un­
known 
There is a seasonal variation in the prevalence and intensity 
of neoplasia that parallels the seasonal variation of di­
noflagellate blooms and the changing toxin profiles of high-
risk toxins in particular tissues In general, there appears to 
be a time lag of a few weeks after exposure to dinoflagellate 
toxins before disseminated neoplasia appears in bivalves 

In the development of disseminated neoplasia, bivalves 
could be sufficiently stressed by toxin exposure to render 
them susceptible to virus infection Certain species may 
have cellular and viral oncogenes that are triggered by 
toxin exposure 
Certain bivalves that were historically affected by neopla­
sia in particular geographic areas may no longer be af­
fected because the bloom-forming toxic dinoflagellate spe­
cies are no longer dominant there 
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TABLE 15. 

Predisposition and theoretical risl< of bivalve species to germinomas by geograpliic region and by exposure to dinoflagellate species. 

PSP 

Bivalve 
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+ 

0 
0 

+ + 
+ 
0 

+ 

0 
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0 
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+ + + 
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0 

0 
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+ + 
+ 
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0 
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0 
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0 

'+ + 
0 
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•>+ + 

'0 
•'0 

0 
0 

0 0 

'' + 
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•>+ 
+ + 

0 

'' + 
0 •'+ + •'+ + 

''+ + 

+ + + - high nsk, + + — medium nsk, + = low risk, 0 = no nsk 

12 There is a strong likelihood that toxic microalgae play a 
role in both chronic disease and mortality in aquatic or­
ganisms 

Future Research 

No published surveys have been specifically targeted at eval­
uating the prevalence of neoplasia in relation to known biotoxin 
distributions Evidence presented here suggests that such a study 
should be conducted Field data can be obtained through the rou 
tine monitoring of both affected and unaffected bivalves from sites 
where neoplasia is known to be prevalent In addition to sampling 
bivalves, water quality and the presence of dinoflagellate species 
in water and sediment samples should be monitored There should 
be comparative studies on bivalve behavior and feeding strategies 
during dinoflagellate exposure Toxin profiles and the tissue de 
position of toxic derivatives in bivalves should be confirmed for a 
range of species Toxin profiles of suspect dinoflagellate species 
such as A monilatum, P minimum, anAL /jofyerfrum should also 
be established This information should be collected on both short-

and long-term bases and in parallel with routine diagnostic proce­
dures for monitoring molluscan health, disease, pathologies, and 
the distribution of neoplasia 

In addition to potential effects on bivalves, consideration 
should be given to the effects that chronic exposure to dinoflagel­
late biotoxins may have on other organisms This consideration 
should include the evaluation of toxin exposure through dietary 
transfer and the distribution and epizootiology of neoplasia in or­
ganisms that consume molluscs The long term effects of biotoxin 
exposure at all levels of the food chain should be investigated 
Cnterid for public health exposure may also require reappraisal 
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