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Abstract

Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity.
Previous studies project expansion of species range for some species and local extinction elsewhere under climate change.
Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances
such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened
vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change
impacts on protected areas. This study applies three species distribution models and two sets of climate model projections
to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including
seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected
candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change
in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential
threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average
rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially
exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas
were projected to be small. Although the models show large variation in the predicted consequences of climate change, the
multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered
species such as common skate (Dipturus batis) and angelshark (Squatina squatina).
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Introduction

The last 100 years have seen significant changes in the global

climate that are very likely to be attributed to anthropogenic

greenhouse gas emissions [1]. Mean global surface temperature

has increased by approximately 0.1uC per decade since the late

1950s and is projected to be 1.4–2.1uC above pre-industrial levels

by 2050 [1], with temperatures increasing in the Arctic at almost

twice the global rate in the last century. Furthermore, the ocean is

becoming more acidic and less oxygenated [1,2]. Climate change

has been observed to be having a profound effect on both marine

and terrestrial biodiversity [3–5], and this trend is expected to

continue, with associated changes in species compositions [6],

distributions [4] and phenological patterns [7]. Concern over the

impact of climate change in the marine environment is also

increasing, with longer-term shifts in mean environmental

conditions and climatic variability moving outside the bounds

within which adaptations in marine communities have previously

been associated [8]. The changes in abundances and distributions

that result from these ocean-atmospheric changes may severely

impact the biological and environmental functioning of ecosystems

or food webs [9], the goods and services derived from them and

conservation and resource management [10,11].

The effects of climate change on threatened or endemic species

(those unique to a defined geographic area) are of particular

concern. These species are frequently restricted to relatively small

areas and population sizes and may have highly specific habitat

requirements, likely reducing their adaptive capacity to climatic

change [12]. In addition, lack of knowledge or data concerning the

abundance, dispersal and life history characteristics of threatened

species is common. Recent years have thus seen an increase in

studies attempting to assess how climate change might impact

threatened and endemic species in terrestrial environments [13–

15] and how conservation goals and actions should adapt in a

changing climate [16–18]. There are far fewer studies, however,

that attempt to assess the impacts of environmental and climate
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change on threatened marine vertebrate species. This is likely due

to the issue of scarce and unreliable data available for the marine

environment [19]. Furthermore, there has been little attempt to

assess the interactions between climate change and other

anthropogenic stressors, such as fishing, on threatened marine

species.

Climate and ocean changes may also affect threatened species

by influencing the efficacy of measures designed to protect them.

Specifically, marine protected areas are a major tool to conserve

marine biodiversity [20] and have been shown to enhance

population resilience to climate-driven disturbance [21]. However,

their effectiveness may itself be influenced by climate change. For

example, future climate change has been predicted to reduce the

amount of suitable habitat for particular species that falls within

current protected areas [18,22], thereby reducing its future

conservation value. There is a need to increase the robustness

and enhance resilience of protected areas to climate change

[23,24]. By assessing the degree of future environmental change

within proposed protected areas, conservation planning may thus

be used to protect against biodiversity loss [25,26].

Species Distribution Modelling has been widely used to predict

the potential impacts of climate change on both terrestrial [27–29]

and marine species [30–32]. The bioclimatic envelope is defined

here as a set of physical and biological conditions suitable for a

given species [33] and is frequently obtained by using statistically

or theoretically derived methods to associate current climatic

variables with species occurrences. By predicting a species’ current

range as the manifestation of habitat characteristics that limit or

support its existence at a particular location, a shift in that range

may be elucidated by assessing shifts of the bioclimatic envelope

under climate change scenarios. Species Distribution Models

(SDMs) are able to predict species’ distributions with presence only

data and also perform well under small sample sizes (see [34–36]

for an overview of methods). Applications of SDMs have been

criticised [37] and it is acknowledged that some SDMs over-

simplify the mechanisms determining species’ distributions.

However, recently developed modelling approaches have increas-

ingly addressed these criticisms [38,39]. SDMs also remain useful

in exploring the possible magnitude and direction of species’

distribution shift under climatic change. Furthermore, key

uncertainties in using SDMs to assess climate change impacts on

marine biota, which stem from the differences in the structure of

the SDMs and the underlying climate forcing, can be explored by

comparing outputs from multiple SDMs and climate models.

Using multiple SDMs with a range of complexity, data require-

ment and statistical mechanisms is therefore a more robust way to

assess species’ distributions [40]. Climate scenarios developed from

multiple models are also considered to be more robust than using a

single model as climate models vary in complexity and reliability,

with uncertainty being introduced by data input as well as

interpolation method. There is therefore a need to compare future

species’ distribution predictions made using alternative SDM

algorithms, Global Climate Models (GCMs) and species’ occur-

rence/environmental tolerance data. The uncertainties in outputs

resulting from these variations help us understand the range of

potential predictions, the extent of agreement between them as

well as possible extremes.

This study aims to assess the potential impact of climate change

on a set of threatened species (under the International Union for

Conservation of Nature (IUCN) Red List of Threatened species)

predominantly inhabiting the North Sea, Northeast Atlantic and

Mediterranean Sea. These species are primarily threatened by

overfishing through being by-catch of commercially important

fisheries [41–44]. They are vulnerable to fishing due to particular

life history characteristics which make them intrinsically sensitive

to overexploitation, such as large body sizes, late maturation and

consequential slow rates of population increase [45,46]. We

express the level of impacts on these threatened species in terms of

changes in range area, changes in habitat suitability throughout

the species’ ranges and within key protected areas around the UK,

and of the possibility of bycatch. The latter is indicated by the

predicted range overlap between threatened species and commer-

cially exploited species. We hypothesize that the relative suitability

of protected areas for threatened species would change as climate

and ocean conditions change, thus influencing their efficacy in

protecting threatened species. If both the threatened and targeted

species respond similarly in direction and magnitude of distribu-

tion shift, the range overlap between species will remain similar

under climate change. In contrast, if the response to climate

change is species specific [47,48] and varies to a large degree,

change in overlap may be expected. We examine these hypotheses

by using three modelling approaches, AquaMaps, Maxent and the

Dynamic Bioclimate Envelope model (DBEM) [38,40], to project

future changes in distributions of threatened and commercially

exploited species in the North Sea, and their changes relative to

the distributions of example protected areas. We also examine

uncertainty of the projections. Finally, we discuss the implications

of results found on the threat facing these species, their likely

persistence and on the conservation value of protected areas.

Methods

Modelling Approaches
We applied three Species Distribution Models to predict the

distributions of seven threatened and ten targeted fish species

(Table 1). The SDMs are summarized here and described in

greater detail in the supplementary information (File S1) and

publications indicated. Two of these, Maxent [49] and AquaMaps

[19], apply a statistical approach to model species’ distributions.

These models were designed to overcome the problem of small

sample sizes in presence-only datasets [50] and the lack of data

and knowledge for many marine species respectively. Maxent [51]

and AquaMaps [19] both use generative approaches to estimate

the environmental co-variates conditioning species’ presence from

presence only occurrence data and a suite of environmental

variables. Using presence only data enabled the potential use of

the increasing quantity of publically available datasets and was also

considered more appropriate as recorded absence at a location

may not reflect true absence or may not result from tolerance

limits of environmental variables included in the models. While

Maxent applies a complex methodology, based on the principle of

maximum entropy, AquaMaps uses simple, numerical descriptors

of species’ relationships with environmental variables to predict

distributions from occurrence databases (see supplementary

information, File S1). Species’ current distributions (averaged over

30 years from 1971 to 2000) were predicted by associating species’

occurrence data with averaged ‘current’ environmental data

(1971–2000), thereby obtaining a bioclimatic envelope for each

species. Models trained on the set of current environmental data

were then ‘projected’ by applying them to the same environmental

variables representing future climate.

Expert opinion was incorporated into Maxent and AquaMaps

to refine predictions by eliminating (‘clipping’) areas that were

currently outside known occurrence ranges, including reported

occurrence/absence in large ocean basins [delineated by the

United Nations’ Food and Agricultural Organisation (FAO)

statistical area, www.fao.org/fishery/area/search/en] or depth

limits [40]. The use of large ocean-basin and wide depth limits in

Threatened Marine Species and Climate Change

PLOS ONE | www.plosone.org 2 January 2013 | Volume 8 | Issue 1 | e54216



‘clipping’ considered both the current and potential future-shifted

distribution. The ‘clipping’ procedure avoided over-prediction of

relative habitat suitability in areas of the world where species are

known not to occur, or which are unsuitable due to depth.

Although depth was included in each model to retain the relative

habitat suitability due to depth, maximum tolerance limits may be

over-estimated in Maxent and AquaMaps due to the relatively low

resolution of depth and occurrence data, in particular at the edge

of the continental shelf, thereby over-predicting range extent.

Maximum depth limits obtained from Fishbase [52] were

increased by 50% in predictions for both time periods. This

allowed for the deepening of species with ocean warming that has

been observed [53] while preventing difference in predictions

between the two time periods being inflated by applying different

depth cut off points.

The third model, DBEM [38], combines statistical and

mechanistic approaches in predicting species’ distributions. It

attempts to avoid the bias that might be introduced by the skewed

distribution of sampling effort present in many datasets collected

sporadically. Firstly, the associated Sea Around Us Project model [54]

is used to predict a species’ current distribution based on a set of

‘filters’, restricting a distribution based on known parameters,

geographic limits or habitat preferences. Filters were applied for

FAO area, habitat, latitudinal limits and depth. The DBEM then

uses the predicted current distribution to define a species’

bioclimatic envelope by its ‘preference profile’ (the relative

suitability of different environmental values) for each environ-

mental variable. Change in a species’ relative abundance following

changing environmental conditions is then simulated by incorpo-

rating a population growth model [33] as well as ecophysiological

parameters [33,38] (see supplementary information, File S1).

Comparison between model hindcast and historical distribution

changes of fishes and invertebrates from the 1970s to the 2000s in

the Bering Sea and Northeast Atlantic suggest that DBEM has

significant predictive skills for species distribution shifts in these

regions [55].

Species’ occurrence data
Two sets of species were selected to investigate how altered

range distributions under climate change might impact species

that are threatened by overfishing through bycatch. We assume

that the degree of range overlap between a commercially targeted

species and one classified here as ‘threatened’ is an indication of

bycatch potential of the threatened species. Ten commercially

targeted demersal species, being the top nine fish species and the

top invertebrate species by value of landings that were caught by

fleets in UK waters in 2006–2010 (Marine Management

Organisation, MMO) [56], were included (Table 1). Although

some of these species may also be listed as endangered, for

example under the IUCN Red List [41], they are still considered

main commercial species by the fisheries. A further set of species of

conservation concern, henceforth ‘threatened’, was chosen from

the IUCN Red List of Threatened Species [41], the Convention

for the Protection of the Marine Environment of the North-East

Atlantic (‘OSPAR’ Convention) List of Threatened and/or

Declining Species [57], and the UK Biodiversity Action Plan

(UK BAP) priority marine species [58]. These species are

specifically threatened by bycatch and have ranges restricted to

the North Sea, East Atlantic Ocean and Mediterranean Sea

(Table 1).

Species occurrence data were obtained from three global online

databases: the International Council for Exploration of the Sea

Table 1. Commercially targeted and threatened species selected for the study.

Commercially targeted species

Scientific name Common Name Landed Value 2010 (£ million)

Nephrops norvegicus Norway lobster 95.3

Lophius piscatorius Anglerfish/Monkfish 38.5

Melanogrammus aeglefinus Haddock 36.2

Gadus morhua Atlantic cod 28.6

Solea solea Common Sole 14.0

Pollachius virens Saithe 12.4

Merluccius merluccius European Hake 10.2

Lepidorhombus whiffiagonis Megrim 10.1

Merlangius merlangus Whiting 9.4

Microstomus kitt Lemon sole 6.3

Threatened species

Scientific name Common Name IUCN Red List Other lists

Dipturus batis Common skate Critically Endangered OSPAR, BAP

Squatina squatina Angelshark Critically Endangered OSPAR, BAP

Raja undulata Undulate ray Endangered BAP

Rostroraja alba White skate Endangered OSPAR, BAP

Leucoraja circularis Sandy ray Vulnerable BAP

Raja clavata Thornback ray Near Threatened OSPAR

Scyliorhinus stellaris Nursehound Near Threatened

(OSPAR: Convention for the Protection of the Marine Environment of the North-East Atlantic; BAP: UK Biodiversity Action Plan.)
doi:10.1371/journal.pone.0054216.t001
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(ICES) EcoSystemData database (http://ecosystemdata.ices.dk);

the Ocean Biogeographic Information System (OBIS) (Vanden

Berghe, 2007; http://www.iobis.org) and the Global Biodiversity

Information Facility (GBIF) (http://data.gbif.org), all last accessed

in 2011. Occurrence records were spatially aggregated on a 0.5u
latitude60.5u longitude grid and rigorously filtered according to

criteria detailed in Jones et al. [40]. This minimised recording

errors due to data being compiled from many sources and gave a

binary value of presence or absence of each species for each cell.

Projecting distribution shifts under climate change
A range of environmental oceanographic variables for predict-

ing species’ distributions were chosen, including bathymetry, sea

surface temperature (SST), sea bottom temperature (SBT), salinity,

sea ice concentration, primary productivity, and distance to coast.

The DBEM used additional variables mentioned previously.

Ocean oceanographic variables were interpolated onto a 0.5u
latitude60.5u longitude global grid using the nearest-neighbour

method. Models were trained for each of 2 sets of average annual

climatic data covering 1971–2000, the period corresponding as far

as possible to the average climatic conditions over which

occurrence data were compiled. For Maxent and Aquamap,

predictions were subsequently projected into the future using a 30

year average centred on 2050. For DBEM, the model simulates

changes in distribution over an annual time-step from 1971 to

2050. Environmental datasets (including physical variables as well

as O2 concentration, pH and primary productivity) were obtained

from Geophysical Fluid Dynamics Laboratory’s Earth System

Model (GFDL ESM2.1, [59]) and a further set of physical climate

data (including SST, SBT, salinity and ocean advection) obtained

from the World Climate Research Program (WCRP) Coupled

Model Intercomparison Project phase 3 (CMIP3) multi-model

dataset (http://esg.llnl.gov:8080). These data represented an

ensemble of 12 different models that assessed by the fourth

assessment of the Intergovernmental Panel on Climate Change

(IPCC AR4), henceforth referred to as CMIP3-E. Both climatic

datasets were modelled under the ‘high’ emission SRES A2

scenario and are thus characterised by a heterogenous world with

a continuously increasing global population and regionally

orientated economic development [60].

The changes in range of the seven threatened species were

predicted under two scenarios of dispersal: no dispersal and full

dispersal. Under the no dispersal scenario, distributions of the

species were restricted to their predicted current range only and

the species could not colonize areas outside its current distribution.

In contrast, under the full dispersal scenario, a species’ distribution

could shift into all potentially suitable habitat using Maxent and

AquaMaps and, in the case of DBEM, all suitable habitat within

the projected dispersal range [33]. The scenario of no dispersal

here represents a precautionary, conservative view and, following

this assessment, the scenario of full dispersal is used throughout,

agreeing with the observed ability of marine aquatic organisms to

disperse under environmental change [61,62].

A range of thresholds of minimum habitat suitability were

applied to investigate the effect of excluding cells with lower levels

of predicted habitat suitability on the analysis. Specifically,

predicted habitat suitability values that are lower than the specific

threshold equal 0. Thus, specific thresholds determine the extent

of a species’ most suitable (core) range. Thresholds are frequently

used to transform the continuous predictions of relative suitability

produced in species distribution modelling into predictions of

presence/absence. There are several methods for selecting

thresholds and their possible impacts on predicted distributions

have been explored and discussed in the literature [63–65].

However, there is currently no consensus on the most suitable and

stable method for applying thresholds to species’ range projections

[65]. As such, occurrence datasets for each species were split into

75% and 25% for model training and testing, respectively, and

used to find the threshold that maximised accuracy of the model in

predicting the observed occurrences/absences of a species

(maximum training sensitivity plus specificity) [64]. This was

implemented using the ROCR package in R [66]. Three fixed

thresholds, of 0.05, 0.5 and 0.7, were applied to investigate the

effect of increasingly restricting distributions and the implications

for conclusions drawn from analysing the predicted distributions.

Latitudinal centroids
Based on the results from the full dispersal scenario for each

model, the average degree of range shift was calculated for each

species in 2050 (average of 2036 to 2065) relative to 1985 (average

of 1971 to 2000). This was done for each SDM, climatic dataset

and each of the 4 thresholds and was calculated using an equation

for distribution centroids, equation (1) [30]:

C~

Pn

i~1

Lati|Abdi

Pn

i~1

Abdi

ð1Þ

where Lati is the latitude of the centre of the spatial cell (i), Abd is

the predicted relative abundance in the cell, and n is the total

number of cells [30]. The difference between latitudinal centroids

in projected and reference years was then calculated in kilometres

(km) using equation (2) [38]:

Latitudinal shift ~(Latm{Latn)
p

180
|6378:2 ð2Þ

Range overlap analysis
We used the degree of range overlap between the threatened

species and the top 10 commercially targeted species in UK waters

selected above as a proxy for investigating the degree of threat by

overfishing through bycatch. We measured the potential overlap

between the distributions of each threatened species with that of

each targeted species using the Schoener’s D index [67,68],

calculated by:

D(pxpy)~1{
1

2

X
i
Dpx,i{py,i D ð3Þ

where px,i and py,i denote the probability assigned in a species

distribution model computed for species x and y to grid cell i

respectively.

This index quantifies the degree of overlap between two

probability distributions or predictions of relative suitability,

ranging from no overlap (0) to identical distributions (1), and is

equivalent to the percent similarity index as proposed by

Renkonen (1938) [67]. It has further been suggested as being best

suited to computing niche overlaps from potential species’

distributions [69]. A value of 0.1 was added to all 1985 values

(D) to avoid extremely large percentage values caused by very low

overlap in 1985 relative to the difference. The final overlap value

thus represented the percentage difference in overlap relative to

the 1985 value.

Threatened Marine Species and Climate Change
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Habitat suitability in protected areas
We calculated the changes in habitat suitability for the

threatened species in candidate protected areas within and around

the UK, Dutch or German waters. A set of candidate Special

Areas of Conservation (cSACs) [70] that cover a range of habitat

types and latitudinal distributions were selected. These sites were

also chosen as being of appropriate size to the resolution of

predicted species’ distributions. Candidate SACs have been

proposed but are yet to be adopted by the European Commission

and formally designated by the local governments. They are

designated for habitats and species listed on the Habitats Directive

and include those areas considered to be in most need of

conservation at a European level [71]. Under the Habitats

Directive, Member States must take measures to maintain or

restore natural habitats and wild species listed on the Annexes to

the Directive at a favourable conservation status, introducing

robust protection for habitats and species of European importance

[71]. These cSACs include the Dogger Bank (UK, German and

Dutch), Haisborough, Hammond and Winterton, together with

North Norfolk Sandbanks and Saturn Reef (HHW & NNS), the

Central Oyster Grounds (COG) (Dutch), North-West Rockall

Bank, and Hatton Bank (Fig. 1.). Relative habitat suitability values

of our sample of species for all grid cells within each cSAC were

obtained for 1985 and 2050. The relative suitability values for

each species were standardized for each model across all cSACs,

resulting in a value scale between 0 and 1. The change in relative

habitat suitability between 1985 and 2050 (2050 value – 1985

value) was calculated for each 0.5u latitude60.5u longitude cell

within a cSAC.

Results

Outputs from GFDL ESM2.1 suggest an average warming

trend in the North Sea [72] from 1960 to 2065, with high

interannual variability (Fig. 2). The pattern is similar for SST and

SBT, which is to be expected given that the North Sea is relatively

shallow (average depth <90 m). Average SST increases between

1985 and 2050 is 0.77uC and 1.27uC based on projections from

GFDL ESM2.1 and CMIP3-E, respectively.

Latitudinal centroids
Almost all models predicted northwards shifts in latitudinal

centroid for the seven threatened species (Fig. 3a) and 10

commercially exploited species (Fig. 3b). Overall, our analysis

projected that the distribution centroids of all species are expected

to shift towards higher latitude from 1985 to 2050 under the SRES

A2 scenario. The difference in poleward shift between commer-

Figure 1. Candidate Special Areas for Conservation included in this study.
doi:10.1371/journal.pone.0054216.g001

Figure 2. Temperature trends from 1970–2065 in the North
Sea. Sea Surface Temperature (SST) and Sea Bottom Temperature (SBT)
trends in the North Sea were averaged over all cells at a 0.5u
latitude60.5u longitude resolution.
doi:10.1371/journal.pone.0054216.g002

Threatened Marine Species and Climate Change
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cially targeted and threatened species was not found to be

significant when tested within each SDM model and climate

dataset combination (two sample Wilcoxon test, p-value .0.05)

(Fig. S1). The median projected rates of poleward range shift are

167.0 and 185.6 km over 65 years, corresponding to 26 and

28 km decade21 for commercially exploited and threatened

species, respectively (Fig. 3b). There is, however, variation within

species predictions. For example, from 1985 to 2050, the predicted

centroid distribution shift for L. circularis ranges from 8.9 km to

450 km northwards while that for R. undulata ranges from 32 km

southwards to 247 km northwards. Contrasting these projections,

three out of six SDM/GCM model combinations predict a

.600 km northwards centroid shift for S. stellaris for the same

period. R. alba was projected to shift at the fastest rate amongst the

seven threatened species, reaching a maximum of 1046 km

northwards by 2050 (threshold = 0.7). There is considerable

variation in the predicted rate of range shift between SDMs,

and to a lesser extent, between climate forcing used. However, no

significant difference was found between latitudinal shifts projected

using different SDM models within each of the two climate

datasets, for both commercially targeted and threatened species

(two sample Wilcoxon test, p-value.0.05).

Predicted changes in range area
Changes in area of predicted suitable habitat between 1985 and

2050 vary considerably, both between species and models (Fig. 4).

Maxent and DBEM in general project net gains or no change in

range area while AquaMaps frequently predicts net losses. More

specifically, L. circularis, R. clavata and S. stellaris, were projected to

have a net loss in range area by 2050 using 3 out of 6 model SDM-

GCM combinations. While a net loss in range area is also seen in

R. alba using the DBEM with CMIP3-E data, it contrasts the

prediction with GFDL data that shows a net gain. The trend of

predicted range area also varies between different climate forcing

for D. batis, S. squatina and R. alba. Furthermore, the highest

predicted gain (53.08%) and loss (22.44%) in area as a percentage

of the 1985 range area were both predicted for L. circularis. The

outlying points in Figure 4 are caused by L. circularis and D. batis,

which are predicted to increase their range area by 53.08% and

42.17% respectively, using the DBEM model. These larger

increases in range area are due to the DBEM- CMIP3-E model

combination predicting greater range expansions to the northeast

and West Atlantic than is seen for other models.

Analysis of Range Overlap
The overall median change in range overlap between threat-

ened and commercial species (expressed as a percentage of the

1985 overlap value), across models and thresholds, is relatively

small (+/24%) with the distribution of differences for threatened

species showing no significant difference from 0 for N. norvegicus, L.

whiffiagonis, M. aeglefinus, M. kitt, M. merluccius and S. solea (one-

sample Wilcox test, p-value.0.05). However, selected model/

threshold combinations projected large changes in overlap

(exceeding +/250%) (Fig. 5). All commercial species are predicted

to decrease in overlap for at least one threatened species and

modelling scenario. In contrast, all but two commercial species

are, on average, projected to overlap more in predicted range with

threatened species by 2050 (Table S1). The notable exception is L.

piscatorius, which decreases in median overlap (median = 23.0%),

particularly with D. batis (median = 20.7%, min = 261.1%) (Fig.

S2a), R. clavata (median = 27.5%, min = 255.6) and S. stellaris

(median = 25.8%, min = 251.7%). R. alba was projected to have

the greatest increases in median range overlap across commercial

species (mean = 4.9%). This species may thus be most likely to

experience an increase in range overlap with the set of commercial

species under climate change. S. squatina, on the other hand, was

projected to have predominantly small, negative changes in

median overlap across all commercial species (mean = 22.7%) and

with only low variation between median values across species

(26%#x#1%) (Fig. S2b). D. batis shows a small average change in

Figure 3. Shifts in latitudinal centroid for threatened and
commercial species. Projected change (in km) in latitudinal centroid
from 1985 to 2050 across the six SDM and climatic dataset
combinations for a) each threatened species b) threatened and
commercial species, grouped. Thick bars represent median values, the
upper and lower ends of the box the upper and lower quartiles of the
data, and the whiskers the most extreme datapoints no greater than 1.5
times inter-quartile range from the box. Points that are more extreme
than whiskers are represented as circles.
doi:10.1371/journal.pone.0054216.g003
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median values (0.1%) but also varies most across all commercial

species (261.1%,x,34.2%). The commercial species showing

the maximum increase in range overlap by 2050 is N. norvegicus

(61.4%, overlap with R. alba, using a 0.5 threshold).

Change in relative suitability of key protected areas
The overall average change in relative habitat suitability (RHS)

over the protected areas is small, ranging between 20.03 and 0.09

from 1985 to 2050 (habitat suitability values lying between 0 and

1) (Fig. 6a). All species except S. stellaris were projected to have

almost no median change in overall habitat suitability across all

protected area sites. However, some species and SDM-GCM

combinations show larger projected change in relative habitat

suitability between 1985 and 2050. The greatest mean increase in

RHS across all cSACs was, for example, projected for S. stellaris

(0.08). This species, as well as S. squatina, with a mean increase in

RHS of 0.06 and minimum prediction of 20.008, is thus likely to

experience an average increase in habitat suitability over all the

cSACs by 2050. These proposed increases are reflected in the

Dogger Bank, with relatively consistently high and increasing

relative habitat suitability values for S. squatina and S. stellaris across

climate forcing and SDMs (Fig. S3). In contrast, R. clavata shows a

median decrease in relative habitat suitability across all cSACs.

Although averaging a small, positive change in relative habitat

suitability (0.002), R. alba shows a wide range of variation.

Comparing the changes in absolute values of predicted habitat

suitability in 1985 (Fig. 6b) is important as the impact of projected

changes in RHS will likely depend on how suitable that habitat is

currently for a particular species. For example, while the potential

decrease in habitat suitability for R. clavata is accompanied by a

mean habitat suitability in 1985 that is relatively high (0.43), the

small potential increase (0.67) or decrease (20.90) seen for R. alba

accompanies a low average habitat suitability (0.05). A potential

decrease in RHS may therefore have more adverse effect on R.

alba than R. clavata. The broad range of RHS change observed for

R. alba results from a strong predicted future increase in suitability

of the Hatton Bank, using CMIP3-E data (Fig. S4), and a strong

Figure 4. Changes in range area. Range loss and gain assuming no
dispersal and full dispersal, respectively, between 1985 and 2050 for
each SDM using GFDL and CMIP3-E climatic datasets.
doi:10.1371/journal.pone.0054216.g004

Figure 5. Changes in range overlap between species. Range of predicted changes in overlap (Schoener’s D) as a percentage of 1985 overlap
value for each commercial species with all threatened species. Values shown include all threatened species, SDMs, climatic datasets and thresholds.
doi:10.1371/journal.pone.0054216.g005
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predicted decrease in suitability of the Rockall cSAC (Fig. S5).

There are thus considerable variations in predictions between

SDMs. This is highlighted in the case of D. batis, which shows

consistent patterns of RHS across cSACs within the modelling

procedures but variation in the values of RHS between models. D.

batis is predicted to have highly suitable habitat and no future

decrease in RHS in all SACs using AquaMaps (Table S2).

Although positive, predictions for D. batis are generally lower in

Maxent, showing an average decrease in the future. Using DBEM,

suitability predictions of D. batis in 1985 are low or decreasing,

other than in Rockall. Similar patterns of variation in trends

predicted by the three SDMs were projected for S. squatina and S.

stellaris. In general, habitat suitability for the threatened species in

most SACs was projected to improve slightly under climate

change. Specifically, habitats for threatened species in the Rockall

cSAC are projected to improve in the future (Fig. S5).

Sensitivity Analysis
The projected range shifts were generally robust to different

threshold values, although variations in the projections between

different thresholds are high for selected species (Fig. 7). A notable

difference in latitudinal shift caused by applying different

thresholds to 1985 and 2050 distribution is seen in R. alba and R.

clavata using the DBEM model.

For the most part there is also strong agreement in the patterns

of overlap values between threshold predictions, with more

variation caused by differences in SDMs and GCMs. Variation

in overlap change was frequently seen using a 0.7 threshold. For

example, whereas the overlap of predicted ranges for L. circularis

and M. kitt was predicted to increase by 11.4% of that in 1985,

using a 0.7 threshold and averaged across SDMs and GCMs, this

decreases to ,2.5% when a larger range of habitat suitability area

is taken into account. Conversely, overlap for R. alba and S. solea

was predicted to increase by 4% to 6% using most thresholds but

decrease by 1.3% when ranges were reduced using the most

restrictive threshold (0.7).

Discussion

Analyses and results presented here highlight the usefulness of

using a multi-model approach in assessing climate change impacts

on the distribution of marine species, given the variation in

projections that can be obtained using different SDMs and GCMs

in predicting species’ distributions. For example, although

differences between models in projecting northwards latitudinal

shifts were not found to be significant, there are characteristic

differences between predictions that reflect differences in model

approaches and mechanisms. For example, the DBEM predicts a

wider range of northwards movement across species, likely

reflecting the incorporation of species specific values for intrinsic

population growth, larval dispersal and adult migration. However,

uncertainties and assumptions are inherent in any modelling

procedure, in particular those projecting under novel, non-

analogous climatic scenarios. It is therefore important to consider

a range of plausible outcomes from multiple modelling ap-

praoches. This corroborates studies modelling terrestrial species

that proposes the use of a multi-model or ensemble approach for

more robust predictions [73]. Here, general trends from a suite of

model combinations as well as individual projections or outliers

are considered and discussed.

Latitudinal centroid shift
Our projected northward shifts in species’ distributions

supported the hypothesis for poleward shifts in response to climate

change. They also agree with observed changes for marine species

in the last few decades [53,62,74]. In particular, our projected rate

of latitudinal centroid shifts corresponds well to observations in the

North Sea [62], where, out of 36 species examined, six species

showed boundary shifts in relation to both climate and time at a

rate of 22 km decade21. The projected rate of shift is smaller than

that from a previous study that applies DBEM to model

distribution shift of over 1000 species of marine fishes and

invertebrates [30]. This difference is likely due to the inclusion of

pelagic species by Cheung et al. [30], which are modelled using

higher dispersal abilities in the DBEM model while the set of

threatened species included in this study were all demersal, with

lower dispersal abilities. As temperature gradients are dynamic

and heterogeneous across the world, predicted rates of range shift

will also vary according to the regions studied. The greater shift

predicted here than observed for terrestrial species (0.6 km yr21

[4]) was also expected due to the lower constraints on dispersal in

Figure 6. Habitat suitability in assessed candidate Special Area
of Conservation (cSAC). a) Average difference in relative suitability
(2050 – 1985), b) average relative habitat suitability values in 1985 for
each threatened species in all assessed cSACs.
doi:10.1371/journal.pone.0054216.g006
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the sea. Furthermore, two measures of thermal shifts used by

Burrows et al. [75] showed that both the ‘velocity’ of climate

change (the geographic shifts of isotherms over time) and the shift

in seasonal timings of temperature to be higher in the ocean than

on land at particular latitudes. The velocity of climate change was

also less patchy in the sea than on land [75]. This disparity likely

also accounts for greater observed and predicted distribution shifts

seen in marine versus terrestrial species [4,30,62,75].

Changes in range area and overlap
Changes in range area under climate change may have

important implications for species persistence. The association

between patch area and extinction risk is one of the most

ubiquitous observations in ecology [76] and has served as the basis

for concepts central to conservation science, such as species area

relationships, and population viability analysis. For example, one

of the criteria employed by the IUCN Red List to define the level

of threat (Criteria B) faced by a species is based on the extent of

occurrence or area of occupancy [77]. Although it is frequently

assumed that marine species have wide geographic ranges, 55% of

skate species are endemic to single zoogeographic localities [78]

and 70% have ranges spanning less than 20 degrees of latitude, a

proxy for geographic range size [46]. Therefore, although results

presented here did not show a marked climate-driven decrease in

predicted range, contrary to projections for terrestrial species

[15,79], it would seem wise to take into account any potential

decrease in range area and evaluate the range of predicted values

rather than the median or mean.

While species are predicted to lose some of their range in at least

one model prediction, the actual proportion of range being lost

might also be informative, especially if more information on the

dispersal capabilities and observed current distribution becomes

available. While, for example, S. squatina is predicted by two

models to reduce in overall range, given full dispersal, both values

are relatively small. D. batis, on the other hand, is predicted to lose

11.6% of its current suitable habitat using one SDM/GCM model

combination. However, the two Critically Endangered species

assessed here, L. circularis and D. batis, may also experience net

gains in suitable habitat, of 10.24% and 40.95% respectively with

particular model combinations. The differing response of these

two Critically Endangered species to climate change may thus

likely depend on the relative dispersal ability of each species. For

example, if D. batis is able to fully exploit potential new habitats it

may overcome concurrent projected losses in suitable habitat.

Overall, as both threatened and commercially exploited species

were projected to shift northward simultaneously, the alteration in

their overlap change was low except for selected species.

Particularly, this study raises concern at increased threat from

bycatch for R. alba, which potentially increases in overlap with all

commercial species for at least one SDM/GCM combination.

Figure 7. Latitudinal centroid change with thresholds. Difference in latitudinal centroids (2050 minus 1985 values, in km) using different
threshold to restrict predictions made using AquaMaps, Maxent and DBEM. Thresholds applied include the three fixed thresholds (0.05, 0.5 and 0.7)
and that that of maximum training sensitivity plus specificity (Max S+S).
doi:10.1371/journal.pone.0054216.g007
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Protected area suitability
This study suggests that a change in climate will not result in an

overall, unidirectional change in the relative habitat suitability of

marine protected areas. This is generally because of the large

variation in the predicted changes in relative habitat suitability

between model combinations. Due to this variation across SDMs

in assessing the likely protection afforded by a particular protected

area to particular species, the magnitude of difference in relative

habitat suitability across different SDMs and climate models seems

of less importance than the actual identification of change in

suitability by a model. Applying the precautionary principle, the

possibility for decrease in habitat suitability of threatened species

in protected areas should therefore be noted, thereby using the

range of predictions to help identify the possible species and areas

of concern.

Consistencies in patterns of the relative habitat suitability

change between models for different SACs suggest that these inter-

variations stem from characteristics of each modelling procedure,

their mechanisms and algorithms. These differences might, for

example, result in the majority of cells in a predicted distribution

being given characteristically higher, or lower, values, explaining

why predictions made using different climate forcing frequently

show greater similarity than those made using the same climate

forcing but different SDMs. Thus, a multi-model approach can

capture structural uncertainty of projections in species distribu-

tions and suitability of candidate protected areas for particular

species under climate change.

Sensitivity and uncertainty
Analyses and results presented here highlight the variation in

future projections that can be obtained using different SDMs and

GCMs in predicting species’ distributions. For a threatened

species, variations in predictions may thus present the best and

worst-case scenarios for the potential range under climate change.

The variations in outputs are mainly driven by the algorithm by

which the SDMs predicted species’ distributions. For example,

while the high habitat suitability values and equal weighting of

variables in AquaMaps projections make this model less sensitive

to temperature change, Maxent, which weights temperature as

being the dominant predictor of distribution will be more sensitive

to warming. As the relative response of species to change in one or

other of the environmental variables and the possible interactions

between them is highly uncertain, both projected responses should

be considered. Thus, a multi-model or ensemble model approach

helps quantify the variability in projections. In addition, the skill of

a model in predicting changes in distribution could be assessed

using model hindcasts and historical distribution data, rather than

relying on the assumption that the models perform equally well in

making future as current species distribution predictions. For

example, comparison of historical projection of rate of range shift

of exploited species in the Bering Sea and North Sea by DBEM

showed a significant agreement between model outputs and

observed rate of range shift [80]. Such model assessments could be

applied to compare model preferences in future studies.

The implementation of a threshold value can often have a

notable impact on conclusions drawn using species distribution or

bioclimatic envelope models [50,63,65]. In this case, changes in

latitudinal centroids were found to be robust to a range of

thresholds. Alternative SDMs or climate forcing resulted in greater

variations in our projections than the use of thresholds. Thus for

this set of marine species, for which data paucity and reliability are

an issue, the use of thresholds is not justified. The setting of

thresholds would only allow reliable conclusions to be drawn if

adequate data are available and a species is known to preferen-

tially inhabit the most environmentally suitable habitat following

range contraction from its historic distribution. Without sufficient

data revealing the actual current of historical species distribution,

all model outcomes were considered as equally valid, both in

analysing latitudinal centroids and range overlaps.

A number of assumptions are made in Maxent, AquaMaps and

the DBEM to deal with issues of data scarcity and quality that are

especially common for marine organisms. Although data were

rigorously controlled for quality to ensure maximum reliability (see

[40]), the approaches do not incorporate ecological processes or

biological interactions. Although the DBEM greatly advances the

capabilities of modelling marine organisms in explicitly accounting

for population growth and dispersal, none of the models account

for predation pressure and food availability. As is common in

bioclimatic envelope models, we also assume no adaptation to

projected changes in environmental conditions.

A central criticism of species distribution and bioclimatic

envelope modelling lies in the assumption that a species is in

pseudo-equilibrium with its environment [35]. To ensure that this

assumption was upheld here, all available valid occurrence data on

each species was included to obtain as near as possible the species’

absolute environmental tolerance limits. However, each of the

species investigated here are thought to have been recently

restricted to areas which do not adequately reflect their historic

distribution for reasons other than change in environmental

suitability, such as fishing and other human disturbances.

Predictions made using these data are therefore unlikely to

represent the actual current distribution of each species, poten-

tially biasing estimates of a species’ environmental tolerance limits

and environmental envelopes. However, dated occurrence data

recorded between 2000 and 2011 (ICES BTS surveys, including

all beam trawl surveys) show that predicted distributions are within

the historic distribution. Historic data thus supports the environ-

mental tolerance limits and envelopes obtained using data

obtained from a recently recorded distribution, following range

contraction. Although range contraction may have consequences

for the future dispersal of these species within patterns of suitable

habitat, accurate hypotheses and conclusion could not be made

due to lack of comprehensive sampling effort across the entire

historic range in recent years. Future work could therefore involve

a wider sampling across historic ranges and the compilation of a

current observed dataset for each of these species.

Applying the precautionary principle, particularly for threat-

ened species, it is advisable to consider the ranges of predictions in

addition to the means, considering, for example, best and worst

case scenarios. This is especially important for the two Critically

Endangered species, D. batis and S. squatina, for which the ability to

respond to climatic change or novel threats is expected to be

limited by their putative restriction as small populations in areas

which are not optimal and from which dispersal might be limited.

Species that have shifted in distribution or increased in abundance

in warmer years have previously been observed to be those with

faster life history traits, with smaller body sizes, faster maturation

and smaller sizes at maturity [62,74]. This result would be

expected if the difference in rate of movement shown by particular

taxa resulted from differential rates of population turnover. The

threatened species assessed here are, however, characterised by

slower life history traits, with larger sizes and later maturation rates

than most species in the commercially exploited group, yet their

environmental envelope is shown to shift more. If dispersal and

distribution shift are linked to life history traits, even though

threatened species are here predicted to show a greater median

northward shift than commercial species, whether they actually

will be able to disperse to occupy predicted potential ranges is
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unknown. The study of these species and the threat to them posed

by climate change would therefore benefit from an assessment of

their observed shift over time and their capacity to disperse and

whether or not this might be promoted by the implementation of

particular protected areas. Further work should also assess the

variation in outputs produced by a range of emission scenarios

under SRES or RCP (Representative Concentration Pathways,

developed for the IPCC 5th Assessment Report).

Conclusion

Evaluating the possible effects of climatic change on species’

distributions using bioclimatic envelope models is a useful tool to

gain insight on how species might respond under future climatic

change. In particular, the ability to make this assessment for

threatened species marks an important contribution amid calls for

conservation planning to take an adaptive response to enhance

the resilience of protected areas and the biodiversity within them

to climate change. Although all species investigated in this study

are predicted to move northwards by 2050, the effect of climate

change on range areas and the suitability of a set of protected

areas for this set of threatened species is less detrimental than

would be expected based upon studies of similar changes in the

terrestrial environment. This study highlights the variation in

future projections according to the SDM and GCM used. As

variation stems from characteristics of the models themselves,

projections from multiple models better capture model uncer-

tainties and allow identification of a best and worst case scenario

of change. For critically endangered species and those facing high

levels of threat, it is particularly important to apply the

precautionary principle. In the marine environment, there exist

many unknowns and uncertainties concerning species, their

habitats and the threats they face. A multi-model approach

enables a precautionary approach when considering the persis-

tence of threatened species given their uncertain responses to

future climate change.

Supporting Information

Figure S1 Shifts in latitudinal centroid for threatened
and commercial species. Projected change (in km) in

latitudinal centroid from 1985 to 2050 using each of the six

SDM and climatic dataset combinations, for both threatened

species and commercial species. Thick bars represent median

values, the upper and lower ends of the box the upper and lower

quartiles of the data, and the whiskers the most extreme

datapoints no greater than 1.5 times inter-quartile range from

the box. Points that are more extreme than whiskers are

represented as circles.

(TIF)

Figure S2 Difference in overlap between species. Differ-

ence in range overlap, (Schoener’s D) as a percentage of the 1985

overlap value, between commercial species and a) Dipturus batis b)

Squatina squatina. Thick bars represent median values, the upper

and lower ends of the box the upper and lower quartiles of the

data, and the whiskers the most extreme datapoints no greater

than 1.56 inter-quartile range from the box. Points that are more

extreme than whiskers are represented as circles.

(TIF)

Figure S3 Differences in habitat suitability for threat-
ened species in the Dogger Bank. Difference in habitat

suitability for the each of the six SDM/GCM combinations.

Difference (2050 – 1985 values) in relative habitat suitability was

calculated following standardization across all cSACs for each

species and model.

(TIF)

Figure S4 Differences in habitat suitability for threat-
ened species in Hatton Bank. Difference in habitat suitability

for the each of the six SDM/GCM combinations. Difference

(2050 – 1985 values) in relative habitat suitability was calculated

following standardization across all cSACs for each species and

model.

(TIF)

Figure S5 Differences in habitat suitability for threat-
ened species in Rockall. Difference in habitat suitability for

the each of the six SDM/GCM combinations. Difference (2050 –

1985 values) in relative habitat suitability was calculated following

standardization across all cSACs for each species and model.

(TIF)

File S1 Supplementary Methods.
(DOCX)

Table S1 Median difference in range overlap, (Scho-
ener’s D) as a percentage of the 1985 overlap value,
between threatened and commercial species. Minimum,

maximum and average overlap values are given for threatened

species and average and overall median overlap values for

commercial species.

(PDF)

Table S2 Habitat Suitability values in 2000 and differ-
ences (2050 – 2000) for D. batis in all cSACs for each
SDM/GCM combination.
(PDF)
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