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Hydrologic Information Systems (HIS) have emerged as a means to organize, share, and 

synthesize water data.  This work extends current HIS capabilities by providing 

additional capacity and flexibility for marine physical and chemical observations data and 

for freshwater and marine biological observations data.  These goals are accomplished in 

two broad and disparate case studies – an HIS implementation for the oceanographic 

domain as applied to the offshore environment of the Chukchi Sea, a region of the 

Alaskan Arctic, and a separate HIS implementation for the aquatic biology and 

environmental flows domains as applied to Texas rivers.   These case studies led to the 

development of a new four-dimensional data cube to accommodate biological 

observations data with axes of space, time, species, and trait, a new data model for 

biological observations, an expanded ontology and data dictionary for biological taxa and 

traits, and an expanded chain-of-custody approach for improved data source tracking.  A 

large number of small studies across a wide range of disciplines comprise the “Long 
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Tail” of science.  This work builds upon the successes of the Consortium of Universities 

for the Advancement of Hydrologic Science, Inc. (CUAHSI) by applying HIS 

technologies to two new Long Tail disciplines: aquatic biology and oceanography.  In 

this regard this research improves our understanding of how to deal with collections of 

biological data stored alongside sensor-based physical data.  Based on the results of these 

case studies, a common framework for water information management for terrestrial and 

marine systems has emerged which consists of Hydrologic Information Systems for 

observations data, Geographic Information Systems for geographic data, and Digital 

Libraries for documents and other digital assets.  It is envisioned that the next generation 

of HIS will be comprised of these three components and will thus actually be a Water 

Information System of Systems.  
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Chapter 1: Introduction 

1.1. BACKGROUND 

 

The digital era has brought about a deluge of water information.  Today’s 

satellites, flux towers, aircraft, instruments, and ships are capable of monitoring the water 

environment with unprecedented spatial and temporal density, and today’s high-

performance computers are capable of processing tremendous numbers of operations for 

complex modeling and visualization.  A growing world population coupled with an 

increasing global standard of living results in a pattern of increasing demand on the 

world’s finite freshwater resources.  Operating under the model that better information 

leads to better science and better decisions, Hydrologic Information Systems are 

emerging to organize, share, and synthesize this wealth of water information, but much of 

this information is held in independent databases that are unconnected.   

If hydrologic science is taken to be “the science that treats the waters of the Earth, 

their occurrence, circulation and distribution, their chemical and physical properties, and 

their reaction with their environment, including their relation to living things” (Maidment 

1993), then Hydrologic Information Systems are entities which store and transmit 

information that describes the properties of water and its motion through the earth 

system.  In the sense used here, hydrology includes all aspects of the global water cycle, 

both terrestrial and marine, both above and below ground, and also incorporates the 

impact of water on living systems.  This is a broader definition of hydrologic science than 
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that usually employed since it incorporates all the waters of the earth including oceanic 

waters and is not limited to just the waters directly associated with the land system. 

In this new “sensor era” of the Information Age, a small number of scientific 

fields generate the vast majority of new data – particularly high energy physics, 

astronomy, climate modeling, and genomics.  Research projects in these “Big Science” 

fields have terabyte- to petabyte-scale, relatively homogenous datasets and specific 

resources to deal with them – often million to billion dollar funding and hundreds to 

thousands of parallel processors.  However, a great deal of useful research takes place 

outside of Big Science in a far larger number of smaller studies across a wide range of 

disciplines –the “Long Tail” of science (Figure 1).  The term ‘Long Tail’ is derived from 

the probability distribution of data volume generated across various scientific disciplines, 

assumed to follow a power law distribution.  

 

 

Figure 1.  Few scientific fields – Big Science – produce the largest volume of data (blue 

area) and many fields – the Long Tail – each produce a smaller data volume 

(green area) (adapted from Chong and Carraro 2006). 
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The same data distribution has emerged in the hydrologic sciences.  A small 

number of large-scale sensor networks and earth-observing systems produce sizable data 

streams describing the conditions of the planet’s atmosphere, hydrosphere and 

cryosphere.  These projects tend to originate in the national research labs and federal 

agencies of developed nations and typically have the financial, technical, and human 

resources for adept data management.   

But a far larger number of hydrologic studies take place at the universities, labs, 

and other similar water research organizations of the world.  These entities often collect 

“wet” data – samples from the field or the lab – which are heterogeneous and from ad hoc 

studies largely driven by funding availability and specific project needs.  Compared to 

Big Science data on a per-data value basis, data in the Long Tail is often more expensive 

to collect and more difficult to curate.  Yet these data have much potential value: as 

reference data, for validation, for transparency, for reuse, for aggregation and synthesis; 

the collective value of Long Tail data is enormous. 

The Consortium of Universities for the Advancement of Hydrologic Science, Inc. 

(CUAHSI) has advanced the study of hydrologic science in the United States over the 

past decade.  The CUAHSI Hydrologic Information System (HIS) project has been 

successful in designing and deploying a national academic prototype Hydrologic 

Information System.  CUAHSI HIS has greatly improved data access and data synthesis 

for the physical and chemical characterization of hydrologic systems ranging in scope 

from broad-scale (such as the United States Geological Survey streamflow monitoring 

network) to site-scale (such as the Critical Zone Observatory sites).  While successful, the 
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CUAHSI HIS efforts to-date have largely excluded biological observations of the water 

environment and have largely been constrained to terrestrial hydrologic systems. 

   

1.2. RESEARCH GOAL  

 

Hydrologic Information Systems have emerged to address the data management 

needs of the Big Science elements of hydroinformatics, but very little work has been 

done to address the Long Tail data community within the hydrologic sciences.  My work 

seeks to extend the current capabilities of Hydrologic Information Systems in order to 

provide additional capacity and flexibility for marine physical and chemical 

observations data and for freshwater and marine biological observations data.   

Consequently, one major goal of my work is to add biology to what has largely 

been a physical and chemical discussion and thus to make a step toward the integration of 

physical, chemical, and biological information for the water environment in a consistent 

and accessible manner in one system in one place.  Furthermore, this work seeks not only 

to define how such information systems should look, but to actually implement prototype 

freshwater and marine systems, thus adding an oceanographic element to Hydrologic 

Information Systems which have thus far focused only on terrestrial elements.   
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1.3. PROBLEM STATEMENT 

 

The nature of the problem being addressed by the research presented herein is the 

difficulty of accessing and synthesizing biological and oceanographic data for the water 

environment, and the solution put forth is improved organizing systems and tools.  The 

challenges of water data management were recently summarized in the keynote address 

of the American Water Resources Association Spring Specialty Conference on GIS: 

 

“Water observations data are stored in many distributed tabular databases, each 

having its own output data format. Commonly measured variables such as 

streamflow or dissolved oxygen are labeled differently from one organization to 

another. The tabular databases are independently managed, not spatially enabled, 

and have no over-arching community or sponsor. In large water agencies, it can 

occur that data for different geographic regions are managed independently from 

one district or field office to another. The implication of this vast heterogeneity of 

water data systems is that data access and integration is laborious, so much so that 

perhaps 80% of an analyst’s time is spent acquiring and processing data into 

useful forms before analysis can be carried out. As a result, water resources 

information is not leveraged as much as it could be, and big problems are not 

addressed effectively.” (Dangermond and Maidment 2010). 
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These challenges are evident in Texas, where the Texas Commission on 

Environmental Quality (TCEQ) is tasked with developing instream flow 

recommendations.  However, no comprehensive database of information is available for 

review and there is no systematic method for identifying or classifying Texas streams in 

order to determine the applicability of existing methods.  Moreover, Texas Senate Bill 3 

(2007) tasks stakeholders and regulators with determining and reviewing environmental 

flow needs, yet no repository of relevant data exists that could be shared with these 

stakeholders as they embark on the tasks of reviewing existing data and developing 

technical recommendations.   

These same challenges hold true in an interdisciplinary Arctic Ocean project, and 

are even more evident when considering biological data for the water environment. 

Typically, aquatic biology studies involve more data complexity, data stored by 

individual investigators in their own way, and less effort expended on providing the 

necessary organizing systems and tools across projects.  For every federal agency with 

redundant servers and a formal relational database structure, there are myriad researchers 

with “Dark Data” – folders of Excel files on their personal computer desktop, or, even 

worse, stacks of field data sheets tucked away in a file cabinet.  In other words, everyone 

has data, few have databases. 

A session was convened at the 2011 American Geophysical Union (AGU) Fall 

Meeting discussing “data scientists,” an emerging role which defines those who can 

effectively communicate with both domain specialists (such as scientists and ecologists) 

and data managers (such as database experts and Information Technology (IT) 
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specialists).  Data scientists are the practitioners who implement such Hydrologic 

Information Systems.   This dissertation is written from the perspective of a data scientist. 

 

1.4. SCOPE 

 

The research proposed herein includes two case studies: the Chukchi Sea 

Offshore Monitoring in Drilling Area – Chemical and Benthos (COMIDA-CAB) project 

and the Texas environmental flows program.  These case studies led to the development 

of a new four-dimensional data cube to accommodate biological observations data with 

axes of space, time, species, and trait.  These case studies and the supporting research 

were conducted and are presented in such a way that scope increases successively and 

complexity is added successively – a “V-shaped” exposition from the Arctic to Texas. 

In the first case study, the Chukchi Sea Offshore Monitoring in Drilling Area: 

Chemical and Benthos project (COMIDA CAB) is a robust, comprehensive effort to 

characterize the lease area biota and chemistry and to conduct a baseline assessment of 

the continental shelf ecosystem off the northwest coast of Alaska.  A particular focus in 

this study is on ship-based physical, chemical, and biological sampling of the benthos and 

on the development of a workable food web model.  As can be expected from such a 

multi-disciplinary effort, data management is an important and potentially challenging 

task and it is especially critical that a project-scale rather than investigator-specific 

database is developed.  The reason for having the COMIDA CAB survey is to 

characterize the water and benthic conditions in the Chukchi Sea prior to drilling for oil 
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there.  As such, it is likely that, decades into the future, comparisons will need to be made 

between historic and current Chukchi Sea conditions to assess the environmental impact 

of oil and gas exploration and production.  To meet the project’s data management needs, 

a data manager was ship-board to provide real-time, field-based data services and 

Geographic Information System (GIS) support.   The author of this study established this 

role in the COMIDA CAB project.  

In the second case study, stakeholders and regulators across Texas are in the midst 

of a legislatively-driven process to determine the environmental flow needs of the bays, 

basins, and rivers of the state.  As is common elsewhere, the environmental flow program 

in Texas includes analyses of hydrology and hydraulics, geomorphology and physical 

processes, water quality, biology, and the connectivity between and among these four 

primary disciplines.  The integration of sometimes disparate findings from these 

disciplines stands to be one of the most challenging and most important steps in 

developing instream flow recommendations.  The Environmental Flows Information 

System for Texas created in this research seeks to provide improved data access and 

integration to aid stakeholder committees, expert science teams, and the Texas 

Commission on Environmental Quality in their collective efforts to determine statewide 

environmental flow needs.     

To address the challenges posed by these two case studies and to help fill in these 

gaps, this research puts forth the concept of a next-generation Water Information System 

of Systems comprised of three components:  

1. Geographic Information Systems (GIS) for geographic data,  
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2. Hydrologic Information Systems (HIS) for observations data, and  

3. Digital Libraries for digital assets (documents, images, videos).   

This research is novel in its integration of physical, chemical, and biological data 

describing the freshwater and marine ecosystem.   As such, it seeks to help advance the 

maturity of the field of hydroinformatics. 

 

1.5. RESEARCH QUESTIONS 

 

In light of the above challenges, my research seeks to answer the following 

questions: 

1. How can existing Hydrologic Information Systems which focus largely on 

physical and chemical data be made more robust to accommodate biological 

data?   

 

This research questions is addressed via an examination of the issues associated with 

biological data integration, the conceptualization of a data model for biological 

information, an elaboration of use cases and scenarios, and improvements and expansions 

to the information model currently in use for Hydrologic Information Systems. 

 

2. How can existing Hydrologic Information Systems which focus largely on 

observations of the terrestrial water environment be made more robust to 

accommodate oceanographic data?   
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This research questions is addressed via an analysis of the nature of oceanographic 

observations data and a comparison with the nature of terrestrial aquatic data, discussion 

of observing the ocean environment, organizing and storing oceans data, and 

communicating the results. 

 

3. Is there a common framework for water information management for 

terrestrial and marine systems? 

 

This research questions is addressed via a detailed literature and technology review of 

existing tools and systems, an investigation and assessment of digital library 

technologies, and the introduction of a more robust ‘system of systems’ for water 

information which can accommodate geographic data, observations data, documents, and 

other digital assets (as opposed to existing systems which can only accommodate point 

observations data). 

 

These three research questions are addressed in two case studies – an HIS 

implementation for the oceanographic domain as applied to the Chukchi Sea, located in 

the Arctic Ocean off the northwest coast of Alaska, and a separate HIS implementation 

for the aquatic biology and environmental flows domain as applied to Texas rivers. 
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1.6. WATER RESOURCE CHALLENGES 

 

There exist multiple challenges in water resources today.  Aquatic habitats are 

susceptible to habitat degradation and many aquatic species are globally imperiled.  

Imperiled species are those which are classified as threatened, endangered, or vulnerable.  

Habitat loss is listed as the primary threat in 85% of the species listed on the International 

Union for Conservation of Nature (IUCN) Red List (IUCN 2011).  The Red List includes 

17,000 imperiled species worldwide; of the 32,000 estimated fish species, 9,400 were 

evaluated and over 2,000 (21%) were deemed to be threatened (IUCN 2011).  The picture 

is even bleaker in the United States– a 2008 study performed by the American Fisheries 

Society and the USGS found 39% of North American fish species to be imperiled (Jelks 

et al. 2008).  The challenge here is one of habitat protection and restoration. 

Further compounding other challenges faced by aquatic organisms, a changing 

climate is placing additional strain on numerous organisms and ecosystems the world 

over and threatens to materially affect water resources planning and management.  The 

average surface temperature has risen 0.8 ºC in the last 100 years and is expected to rise 

an additional 1.5 to 6.1 ºC by 2100 based on varying emissions scenarios presented in the 

2007 Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report 

(Pachauri and Reisinger 2007).   Recent discussion over ‘the end of stationary’ has many 

water managers concerned over the extent and timing of impacts to glaciers, precipitation 

regimes, extreme weather, and snow pack (Milly et al. 2008).  The engineering 

challenges here are myriad – better forecasting and assessment, better adaptation 

http://en.wikipedia.org/wiki/International_Union_for_Conservation_of_Nature
http://en.wikipedia.org/wiki/International_Union_for_Conservation_of_Nature
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strategies, better response preparedness, better long-term preservation, and perhaps even 

more extreme responses such as geoengineering. 

These big problems require big solutions and comprehensive global databases, but 

they also require detailed, specific solutions.  The research discussed here seeks to add 

detail to the regional-to-global coverage of aquatic biology information in freshwater and 

marine environments. 

       

1.7. DISSERTATION OUTLINE 

 

This dissertation is organized into six chapters.  Chapters two through five consist 

of four related papers which describe the research completed in response to the questions 

posed: 

 Chapter 2 – Hydrologic Information Systems of the Past, Present, and Future 

 Chapter 3 – Extending Existing Hydrologic Information Systems to 

Accommodate Biological Information 

 Chapter 4 – Managing Arctic Marine Observations Data 

 Chapter 5 – Managing Environmental Flows Information for Texas 

Chapter 6 provides concluding remarks, discussion of how the research questions were 

addressed, and the anticipated contributions to science and engineering offered by this 

work.  A glossary of acronyms is provided immediately following the conclusions. 

 The argument discussed here can be thought of as a V-shaped exposition (Figure 

2).  In the second chapter, a survey of past, present, and future of the field of 
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hydroinformatics is presented.  The third chapter lays out the particular challenges 

associated with managing biological observations of the water environment and 

introduces something new called “the 4-D data cube.”  The fourth chapter addresses these 

biological data challenges for a relatively narrow, academic case study in the Arctic 

Ocean and brings hydroinformatics to the oceanographic realm.  The fifth chapter 

branches out further to a case study which considers observations data for aquatic biology 

alongside other types of information and which serves a wider audience of stakeholders 

and practitioners in Texas in the field of environmental flows, plus a vision for the future 

of Hydrologic Information Systems is presented.  

 

 

Figure 2. The dissertation narrative here can be depicted as a V-shaped exposition, where 

each successive chapter builds upon what was learned previously.   
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Chapter 2: Hydrologic Information Systems of the Past, Present, and 

Future  

2.1. EXISTING EFFORTS 

 

The field of hydroinformatics is relatively nascent.  A thorough literature review 

was performed as part of this research encompassing dozens of hydrologic information 

systems, tools, projects, and efforts; not one of them existed just ten years ago.  The 

general field for the research discussed herein is hydroinformatics: the science of 

information, the practice of information processing, and the engineering of information 

systems applied to water.  Alternatively, hydroinformatics can be thought of as “the study 

of the flow of information related to the flow of water (and the entire water environment, 

in general).”  (UNESCO-IHE 2010)  Some of the work discussed herein lies at the 

interface of hydroinformatics and ecoinformatics; to understand the latter, simply replace 

“water” with “life.”  Note that some scientific communities, especially many in the 

European Union, use the term ‘hydroinformatics’ to encompass both the information 

science concepts discussed here as well as the field of computational fluid mechanics.  

The Journal of Hydroinformatics has been published since 1999, initially focusing on 

fluid mechanics aspects, but more recently broadening to incorporate research addressing 

both usages of the term.  What follows is a broad survey of the state of hydroinformatics. 
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2.1.1 Cyberinfrastructure 

“The term infrastructure has been used since the 1920s to refer collectively to the 

roads, power grids, telephone systems, bridges, rail lines, and similar public works that 

are required for an industrial economy to function. Although good infrastructure is often 

taken for granted and noticed only when it stops functioning, it is among the most 

complex and expensive thing that a society creates. The newer term cyberinfrastructure 

refers to infrastructure based upon distributed computer, information and communication 

technology. If infrastructure is required for an industrial economy, then we could say that 

cyberinfrastructure is required for a knowledge economy.”  (Atkins et al. 2003) 

If cyberinfrastructure is analogous to transportation infrastructure, carrying data 

instead of cargo, service-oriented architecture (SOA) is the Eisenhower Interstate 

Highway System plan.  SOA is a design model based on services that communicate via a 

shared protocol. (Erl 2004, Erl 2005)  It’s variously a paradigm, perspective, or concept 

applied to large, distributed information systems where resources on a network are made 

available as independent services, decoupled from operating systems and platforms. 

(Josuttis 2007)   

Web services “provide the ability to pass messages between computers over the 

Internet, therefore allowing geographically distributed computers to more easily share 

data and computing resources.” (Goodall et al. 2008)  Web services make use of 

standardized protocols to announce their capabilities and content (the Web Services 

Description Language, or WSDL), to communicate their content (via Simple Object 

Access Protocol, SOAP, or, increasingly, via Representational State Transfer, REST), 
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and to publicize their existence (via Universal Description, Discovery, and Integration, 

UDDI).  Simply put, data access through REST is explicitly communicated through a 

Uniform Resource Locator (URL) while data access through SOAP is communicated via 

a set of objects contained within a WSDL. (Curbera 2002, Kumar et al. 2006)  The 

communication of web services via SOAP and REST is now overwhelmingly 

accomplished using the Extensible Markup Language (XML) – the lingua franca for data 

encoding (Curbera 2002, Kumar et al. 2006).  XML can be thought of as a generalization 

of the HyperText Markup Language (HTML).  Web pages deliver text and images over 

the internet encoded as HTML, whereas web services deliver data over the internet 

encoded as XML. 

The Consortium of Universities for the Advancement of Hydrologic Science, Inc. 

Hydrologic Information System (CUAHSI HIS) team developed WaterML as a 

customized XML specifically for describing the data and metadata for physical and 

chemical water observations collected at point locations.  CUAHSI was involved in the 

Open Geospatial Consortium/World Meteorological Organization (OGC/WMO) 

Hydrology Domain Working Group which designed an updated version of WaterML 

compliant with the international information standards set forth by those two bodies 

(Maidment 2009).   

As a result of that Working Group’s efforts, OGC adopted WaterML 2.0 part 1: 

Time Series Encoding Standard as an official OGC standard. (OGC 2012b)  WaterML 

has an associated set of web services called WaterOneFlow which supports four client 

requests: (1) GetSites, for a list of sampling sites in a particular network; (2) GetSiteInfo, 
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for detailed site metadata, variables list, period of record, and value count for each 

variable; (3) GetVariableInfo, for variable metadata; and (4) GetValues, for a time series 

of data values at a given site for a given time period (Zaslavsky et al 2007).  The United 

States Geological Survey (USGS) now publishes both daily streamflow data and unit 

values data (real-time information) from the National Water Information System (NWIS) 

in WaterML. (Maidment 2009) 

No discussion of data would be complete without a discussion of metadata – data 

about data.  Stored in a standardized format and transmitted via XML and WaterML, 

metadata describes the basic characteristics of data or information: the who, what, where, 

when, why and how (FGDC 2009).  Although multiple standards exist, metadata for 

Geographic Information Systems in the United States are often published using the 

Federal Geospatial Data Committee (FGDC) Content Standard for Digital Geospatial 

Metadata or the International Organization for Standardization (ISO) 19115 Metadata 

Standard. (Kumar er al. 2006, FGDC 2009, ISO 2009)  Examples of geospatial metadata 

include geographic extent, projection, and scale.  Similarly, metadata for Digital Library 

contents are often published using the Dublin Core Metadata Initiative (DCMI) standards. 

(DCMI 2009)  Examples of library metadata include title, abstract, publisher, and 

publication year.   

Thus far, metadata for Hydrologic Information Systems are published within the 

CUAHSI Observations Data Model (ODM) structure, a customized metadata format. 

(Horsburgh et al. 2008)  Important to note is the distinction between storing and 

communicating data; in CUAHSI’s case, the ODM is used as a storage repository data 



 5 

and metadata whereas WaterML is used as the transmission language to communicate the 

same data. 

  

2.1.2 Geographic Information Systems 

A Geographic Information System “integrates hardware, software, and data for 

capturing, managing, analyzing, and displaying all forms of geographically reference 

information.” (ESRI 2009)  Geographic data are typically static in time, complex in 

space, and are organized in standardized formats such as geodatabases.  Geographic 

Information Systems were first conceptualized in the 1960s and now sustain a mature 

commercial market (Foresman 1998).   

ESRI is the leading global provider of traditional GIS software and services.  

Founded in 1969, ESRI is, by many accounts, the research and development leader in the 

geospatial information market and the dominant player in the ‘traditional GIS space’ of 

desktop and enterprise software.  It is interesting to note, however, that ESRI GIS 

products represent only approximately 40% of the GIS market share (Arc Advisory 

Group 2010).  Furthermore, the advent of web mapping services such as Google Maps, 

Google Earth, and Microsoft Bing Maps has rapidly and dramatically reshaped the GIS 

market, and this new online GIS space dwarfs the traditional desktop GIS space.  For 

example, Google estimates that there are over 500 million active users of its mobile and 

web mapping applications (Siegler 2011).   
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The most common building block for geographic data today is the proprietary 

geodatabase from ESRI.  Introduced in 1999 as part of the ArcGIS 8.0 release, a 

geodatabase is a collection of geographic elements stored within a relational database 

structure or in a file database structure.  A geodatabase is comprised of: (1) feature 

datasets, collections of feature classes of vector-based geographic data with the topology 

and network objects supporting them; (2) tables of attributes; (3) relationships linking the 

tables and feature classes; (4) raster data for continuous geographic phenomena; and (5) 

metadata (Arctur and Zeiler 2004).   

Data models provide the underlying structure to both Geographic Information 

Systems and Hydrologic Information Systems.  Data models are a formal method of 

describing the behavior of real-world entities, “sets of concepts describing a 

simplification of reality expressed in database structures such as tables and relationships, 

and they provide standardized frameworks for users to store information and serve as the 

basis for applications.” (Arctur and Zeiler 2004)  Geographic data models are a special 

case of data model where spatial database structures are used and stored in a spatial 

database to describe geospatial phenomena using Geographic Information Systems.  Put 

more simply, data models define objects of interest and identify relationships and 

geographic data models do this in a spatial context.  In a GIS, geography is dominant and 

variable and time are subordinate; in an HIS, variable is dominant and geography and 

time are subordinate.  That is to say, geography is the central focus of a GIS data model 

and the observation itself is the central focus of an HIS data model. 
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ESRI supports and maintains 34 data models in fields ranging from agriculture to 

defense to petroleum (ESRI 2010b).  Arc Hydro is the data model for surface water 

resources, combining geospatial and temporal data within an ESRI geodatabase schema 

in order to support hydrologic analysis and modeling (Maidment 2002).  Arc Hydro is 

built on a thematic framework of river and stream network, terrain elevation data, and 

watershed boundaries and includes a basic treatment of physical water observations data 

via a coupled point feature class and time series representation.  Arc Hydro has been 

adopted, applied, and extended by a diverse user community and has recently been 

spawned a corresponding data model, Arc Hydro Groundwater, which extends the Arc 

Hydro surface water framework by introducing a representation of multi-dimensional 

ground water data, including geologic stratigraphy, hydrostratigraphy, aquifer maps, 

borehole data, and simulation model support (Strassberg et al 2007, ESRI 2010b, 

Strassberg et al. 2011). 

A related data model has been developed to support observations in the ocean 

realm, Arc Marine.  Arc Marine includes similar representations of vector, raster, and 

time series data as Arc Hydro but adds additional support for limited three-dimensional 

geographic data from model mesh volumes and also the unique feature of storing 

observations data collected from along a moving track, such as a ship towing a sensor 

measuring conductivity and temperature at various water depths (Wright et al 2007, ESRI 

2010b).  Streamflow data and other similar surface water observations are made at fixed 

point locations, as are many marine observations made from buoys, Acoustic Doppler 

Current Profilers (ADCPs), hydrophones and tidal gauges.  However, it is not uncommon 
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for marine data to come from a mobile sampling platform such as a ship, drifter, 

autonomous underwater vehicle, or even a tagged animal.  Arc Marine’s schema has the 

capacity to store the observations themselves as well as the track and its attributes 

(Wright et al 2007). 

 

2.1.3 Hydrologic Information Systems 

A Hydrologic Information System is “a services-oriented architecture for water 

information” consisting of a repository of hydrologic time series data (HIS Server), a 

national water metadata catalog (HIS Central), and a desktop appliance for hydrologic 

data access (Hydro Desktop). (Maidment 2009)  These three elements are linked via web 

services, “automated functions that enable one computer to make appropriate requests of 

another computer and receive responses through the internet.” (Maidment 2009)  Water 

observations data are typically dynamic in time (time series), simple in space (sampling 

and gaging points), lacking in standardized formats, and potentially stored in relational 

databases.  Hydrologic Information Systems were conceived in the early 2000s by the 

National Science Foundation-supported Consortium of Universities for the Advancement 

of Hydrologic Science, Inc. and are a new and evolving concept; HIS development has 

thus far been accomplished by the CUAHSI university partnership with some business 

partners. (Maidment 2009) 

The CUAHSI Hydrologic Information System is built around a normalized data 

storage schema called the Observations Data Model (ODM).  (Horsburgh et al. 2008)  



 9 

The ODM provides a consistent relational database format for storing point observations 

data and their supporting metadata in a manner which exposes each single measurement 

as a unique record with associated descriptors as to location and time of measurement and 

the method used, and which addresses many of the syntactic and semantic differences 

between heterogeneous data sets (Horsburgh et al 2008).  The ODM logical data model 

features the data value itself in a central role with the supporting metadata attached to it 

via associated metadata tables – a ‘star’ schema.  The central DataValues table includes a 

number of Foreign Keys which link to Primary Keys in other tables: site location, offset, 

units, variable, source, sampling method, lab method, data qualifiers, and quality control 

level, along with a compiled series catalog to facilitate indexing and searching (Figure 3). 
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Figure 3.  CUAHSI Observations Data Model schema (Horsburgh et al. 2008) 

 

With support from the NSF Earth Science Division, the 125 member universities 

of CUAHSI developed a national academic prototype Hydrologic Information System.  

The national CUAHSI HIS has been adapted and implemented at a state-level in Texas – 

the Texas Hydrologic Information System.  By using traditional and hybrid web services, 

over 23 million observations have been catalogued, encompassing over 7,000 variables 

from nearly 16,000 sites and 15 state-specific data providers (Whiteaker et al 2010).  The 

Texas HIS presents the concept of thematic data organization, a synthesis across data 

providers via a region- or discipline-specific grouping.  For example, four independent 

state agencies each collect salinity data along the Texas coast, and the aggregation of 
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these data likely provides additional value to a researcher.  The prototype Texas HIS has 

been supported by the Texas Water Development Board and that agency is currently in 

the process of transitioning to a permanent production system (Whiteaker et al 2010).   

Just as the US National Science Foundation is supporting the development of the 

CUAHSI HIS, the Australian Commonwealth Scientific and Industrial Research 

Organisation (CSIRO) Land and Water is supporting the parallel development of the 

Australian Water Resources Information System (AWRIS).  The two entities have largely 

similar goals and have enjoyed a partnership and cooperation, particularly in the 

development of WaterML 2.0 (CSIRO 2009).  The US Environmental Protection Agency 

(US EPA) has an internal data management system somewhat akin to the Hydrologic 

Information Systems of CUAHSI and CSIRO.  The Water Quality Exchange schema, or 

WQX, is a data storage and communication format designed to facilitate the aggregation 

of regulatory water quality data from states and tribes into a Central Data Exchange, then 

to a National STORET Data Warehouse (STORET is the EPA’s legacy data STOrage 

and RETrieval system), then to be disseminated via web services and consumed by 

analysis and mapping applications (US EPA 2010). 

A suite of tools and systems has emerged to manage the variety of information 

types present in the water environment, but significant gaps remain (Table 1).  With 

respect to geography, the pioneering Arc Hydro data model for surface water (Maidment 

2002) helped to shape the Arc Marine data model for oceanography (Wright et al. 2007) 

and spun-off the Arc Hydro Groundwater data model for hydrogeology (Strassberg et al. 

2011).  With respect to relational databases for physical and chemical observations, the 
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CUAHSI Observations Data Model (Horsburgh et al. 2008) was without specific 

counterpart for marine systems prior to the work presented herein.  Similarly, relational 

databases for biological observations did not exist prior to this work. 

 

Table 1.  Prominent existing systems for freshwater and marine data management. 

Data Type Freshwater Marine 

Geographic 

Arc Hydro (Maidment 2002) 

& Arc Hydro Groundwater  

(Strassberg et al. 2011) 

Arc Marine 

(Wright et al. 2007) 

Physical and chemical 

observations 

CUAHSI Observations Data Model 

(Horsburgh et al. 2008) 
-- 

Biological observations -- -- 

 

2.1.4 Digital Libraries 

A Digital Library is a collection of digital materials (as opposed to print, 

microform, or other physical media) accessible via computer. (Greenstein and Thorin 

2002)  Digital libraries, also known as digital repositories, provide for large-scale, stable, 

managed long-term storage of digital material in any format and are designed to capture, 

describe, distribute and preserve these materials. (Kainerstorfer and Perkins 2009)  

Digital content may include technical reports, articles, books, maps, tables, photographs, 

images, videos: any material which is either born-digital or digitized.  Digital libraries 
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were conceptualized in the mid-1990s, sustain a modest commercial and open-source 

presence, and are the focus of more widespread experimentation and development. 

(Greenstein and Thorin 2002)   

DSpace (http://www.dspace.org/) is a digital repository system developed by the 

Massachusetts Institute of Technology (MIT) Libraries and Hewlett-Packard Labs that 

captures, stores, indexes, preserves, and redistributes an organization's research data and 

is the repository system used by The University of Texas at Austin.  Digital repositories 

such as DSpace allow organizations to organize and store a variety of data formats in an 

accessible and persistent manner. DSpace accepts content such as articles, technical 

reports, working papers, conference papers, theses, datasets, images, audio and video 

files, and reformatted digital library collections.  DSpace operates on a logical 

infrastructure, utilizing metadata for organization and retrieval.  Data files, also called 

bitstreams, are organized together into related sets. Each data file has a technical format 

and other technical information (DSpace 2008).   

 

2.1.5 Digital Library Systems Review and Evaluation 

As part of a demonstration Digital Library project for the river basin and bay 

system consisting of the Trinity and San Jacinto Rivers and Galveston Bay, a number of 

existing digital repository systems were reviewed and evaluated.  These included: 

Knowledge Tree, Brazos River Instream Flows Study Database, Xythos Server Products, 

and Inmagic Presto (in addition to DSpace, described above). 

http://www.dspace.org/
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Knowledge Tree (http://www.knowledgetree.com/) is a commercial open source, 

web-based document management system that is currently licensed by the Aerospace 

Engineering Department at UT-Austin and is best suited for document workflow 

management. (Knowledge Tree 2008)  The Brazos River Instream Flow Study Database 

is a Microsoft Access database developed by Espey Consultants, Inc. that is used to 

document project reports. This application features a Microsoft Access interface and a 

GIS component for spatial representation. (Espey 2005)  Xythos Server Products 

(http://www.xythos.com/products/webfile_server.html) are three software suites used to 

accommodate an institutional repository. (Xythos 2008)  Inmagic Presto 

(http://www.inmagic.com/products/research/presto.html) is a Web-based application for 

accessing, sharing, and managing research information that is partnered with WebFeat to 

provide federated search capability across external data sources. (Inmagic 2008; Hersh et 

al. 2008) 

 

2.1.6 Managing Ecological Information 

While CUAHSI is viewed by many to be the main standard-bearer for 

hydroinformatics in the United States, a number of cyberinfrastructure projects are 

underway in the realm of ecoinformatics with widely varying degrees of maturity, 

support, scope, and acceptance; this situation might be a result of the wide diversity of 

researchers and projects under the ecology banner and of the previously-discussed 

challenges presented by biological data management. 

http://www.knowledgetree.com/
http://www.xythos.com/products/webfile_server.html
http://www.inmagic.com/products/research/presto.html
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The National Ecological Observation Network (NEON) is deploying a sensor 

network and cyberinfrastructure to support ecological research (NEON 2010).   The 

Long-Term Ecological Research Network (LTER) program consists of a series of 

research sites designed to facilitate comparison and synthesis across diverse habitats 

(LTER 2010).  The National Center for Ecological Analysis and Synthesis (NCEAS) has 

as its mission to serve as a data center for the ecology and evolutionary biology 

communities and has created a flexible metadata standard for the description of 

ecological data, the Ecological Markup Language (EML) (Madin et al 2007).  EML’s 

allowed flexibility in format and content and its design goal to support data discovery 

differs fundamentally from the rigid specifications of WaterML, a format designed to 

support both data discovery and integration.   

Similarly, the USGS National Biological Information Infrastructure (NBII) is 

working to provide national metadata standards unique to biological information 

(Ruggiero et al 2005).  The non-profit group NatureServe is developing a network of 

natural heritage programs and conservation data centers in the Western Hemisphere for 

the application of ecoinformatics to conservation science and policy.  In support of this 

effort, the Biotics4 Physical Data Model has been created to store ecological observations 

data and web services to communicate these data are being developed (NatureServe 

2010).  Finally, the Global Biodiversity Information Facility (GBIF) is an international 

effort to provide a cyberinfrastructure for information on the world’s biodiversity data.  

GBIF largely focuses on cataloging the described species of the world and recorded 

observations of those species (Edwards 2000, GBIF 2010). 
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2.1.7 Managing Aquatic Biology Information 

As discussed, there exist a diverse range of ecoinformatics efforts, some of which 

are relatively mature and some of which are very well-funded.  In the specific realm of 

biological observations for the water environment, there are many fewer projects with a 

collectively lesser degree of maturity.   

The most well-known and well-used such effort is FishBase, an online collection 

of fish observations from across the globe, boasting “31,500 species, 279,900 common 

names, 49,200 pictures, 43,800 references, 1750 collaborators, and over 33 million hits 

per month.” (Froese and Pauly 2010).  Started in 1995 as a CD-ROM, the goal of 

FishBase (as in, ‘Fish Database’) is to host and serve information on the biology, 

distribution, and taxonomy of the world’s fishes (McCall and May 1995, Froese and 

Pauly 2010).  

The North-Temperate Lakes Long Term Ecological Research site (NTL LTER) in 

Wisconsin has developed a database and an internal data model for storing observations 

of physical and chemical limnography plus some aquatic organism observations and 

collections, ranging from plankton to fish.   The data model for fish includes: LakeID, 

Year, SampleDate, GearID (the equipment used to sample), SpName (species common 

name), SampleType, Depth, Rep (Replicate Number), Indiv (individual ID), Length, 

Weight, Sex, FishPart (the portion of the fish analyzed or sampled, such as stomach, 

scale, or otolith), and SpSeq (species sequence number).  Similarly, the benthic 

macroinvertebrate data model includes: LakeID, Year, Site, Rep, Taxon_Code 

(taxonomic code), Description (taxonomic code description), Number_Indiv (number of 
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individuals collected), and Flag (data flag for number counted); embedded within the 

taxon code is an eight-tiered taxonomic classification, from phylum down to genus (NTL 

LTER 2008). 

The ISEMP Aquatic Resources Metadata Framework was created by the 

consulting company Environmental Data Services of Portland, Oregon for the Integrated 

Status and Effectiveness Monitoring Program of the Northwest Fisheries Science Center.  

Essentially a customized Observations Data Model for fish observations in the US Pacific 

Northwest, the Framework includes fields for the fish (redd presence and condition, 

electrofishing details, fish attributes, size class, taxonomy, and genetics); habitat 

(physical parameters, survey station, transect, water quality, cover, large woody debris, 

riparian vegetation, alteration, and substrate); data collection event (weather, samplers, 

equipment, and data provenance); protocol (sampling methodology); site (diagram, map, 

survey, position, geographic setting, and hydrographic setting); statistical design; and 

project (Environmental Data Services 2008). 

Two other such internal biological data management systems exist.  The first is 

the Ecological Data Application System (EDAS) developed by Tetra Tech, Inc.  EDAS is 

designed to facilitate data analysis for the multi-metric indices commonly calculated and 

used in the study of benthic macroinvertebrates, particularly in relation to environmental 

monitoring and assessment efforts.  EDAS is built on a Microsoft Access-based relational 

database of benthics, water chemistry, and physical habitat and includes index 

calculations and an export to STORET feature (Tetra Tech 2000).  The second is the 

Freshwater Biodata Information System (FBIS) of the New Zealand National Institute of 
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Water and Atmospheric Research (NIWA).  FBIS is the database which resulted from a 

reorganization of decades of internal biological data collection for fish, invertebrates, 

submerged macrophytes, and bryophytes/algae/diatoms.  FBIS supports some search 

functionality and an interactive map viewer (Robertson and de Winton 2004).    

 

2.1.8 Managing Marine Observations Data 

At another state of database maturity, we arrive at the marine biology community.  

Biological oceanographers have a number of large-scale, well-received data archives, 

notably the National Oceanographic Data Center (NODC) and National Center for 

Atmospheric Research Earth Observing Laboratory (NCAR EOL), but these archives 

store datasets; very few databases and/or data models exist for biological observations in 

the marine environment.  Both the NODC and NCAR EOL archives include a wealth of 

researcher-submitted data for a wide range of physical, chemical, and biological 

oceanographic observations.  However, data is welcomed in any native physical format or 

structure and is archived as such; no efforts toward synthesis or integration are evident 

(NODC 2010, NCAR EOL 2010).   

Data from the Western Arctic Shelf-Basin Interactions (SBI) project of the 

National Science Foundation are an example of project data stored in the EOL archive; a 

brief investigation of the SBI data archive yields various data provided in txt, pdf, gif, 

and xls file formats with access via html and ftp; no standardization appears evident (SBI 

2008).     
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There are some nascent efforts toward developing cyberinfrastructure for the 

ocean realm, however.  One such effort is the Ocean Biogeographic Information System 

– Spatial Ecological Analysis of Marine Megavertebrate Animal Populations, or OBIS-

SEAMAP.  This project seeks to develop a geodatabase of sea turtle, marine mammal, 

and seabird global distribution and abundance data (Halpin et al 2006). 

 

2.2 CURRENT EFFORTS 

2.2.1 Current Efforts in Hydroinformatics 

The CUAHSI HIS project grant ended on December 31, 2011, but research on 

Hydrologic Information Systems continues elsewhere, particularly in three new projects.  

First is EarthCube: “A collaboration between the U.S. National Science Foundation 

(NSF) and geo, atmosphere, ocean, computer, information, and social 

scientists.  EarthCube aims to transform the conduct of research through the development 

of community-guided cyberinfrastructure to integrate information and data across the 

geosciences.”  (EarthCube 2012)  Second is HydroShare, an NSF-sponsored cooperative 

effort between the Renaissance Computing Institute at UNC Chapel Hill (RENCI), Utah 

State University, and six other university partners to expand the work of the CUAHSI 

HIS project as it relates to the particular focus of data sharing (RENCI 2012).  

HydroShare is focused on providing an online community for hydrologists who want to 

work collaboratively sharing data and models (Figure 4).   
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Figure 4.  A mock-up of the HydroShare community data sharing interface (RENCI 

2012). 

 

Third is CI-WATER, where an interdisciplinary team from Utah and Wyoming in 

seeking to “develop a better understanding of the interconnectivity of natural and human 

water resources systems – a critical environmental sustainability problem facing both 

Western states.” (CI-WATER 2011)   
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2.2.2 Current Efforts in Spatial Data Infrastructure 

In addition to the focused hydroinformatics efforts discussed above, a number of 

broader efforts are underway with the goal of organizing and advancing the global spatial 

data infrastructure.  Primary among these global efforts is the Global Earth Observing 

System of Systems (GEOSS) (Figure 5).  A 10-year effort initiated in 2005, GEOSS 

“seeks to connect the producers of environmental data and decision-support tools with the 

end users of these products, with the aim of enhancing the relevance of Earth 

observations to global issues. The result is to be a global public infrastructure that 

generates comprehensive, near-real-time environmental data, information and analyses 

for a wide range of users.”  (GEO 2012).     

 

 

Figure 5.  The Global Earth Observing System of Systems (GEO 2012). 
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GEOSS is being developed by the Group on Earth Observing (GEO), whose 

membership includes 75 nations and 51 partner organizations and which was founded as 

an outcome of the 2002 World Summit on Sustainable Development by the Group of 

Eight (G8) leading industrialized nations.  The GEOSS “‘system of systems’ will 

proactively link together existing and planned observing systems around the world and 

support the development of new systems where gaps currently exist” and also seeks to 

provide a “GEO Portal” for online data access (GEO 2012).  GEOSS seeks to serve nine 

“societal benefit areas:” disasters, health, energy, climate, agriculture, ecosystems, 

biodiversity, water, and weather via the linkage of existing and planned observing 

systems.     

 

2.3 DATA-INFORMATION-KNOWLEDGE-WISDOM 

 

A popular model in information theory is the Data-Information-Knowledge-

Wisdom Pyramid, also variously known as the DIKW Hierarchy, and the Knowledge 

Hierarchy (Ackoff 1989) (Figure 6).  This model holds that Data is the raw facts, 

Information gives meaning to Data, Knowledge is analyzing and synthesizing 

Information, and Wisdom is using Knowledge to establish and achieve goals (Baker 

2007, Elias 2011).  Under this model, value is added at each step of the hierarchy. 

An interpretation of the DIKW Pyramid was developed specifically for water 

information – The Water Information Value Ladder (Vertessy 2010) (Figure 7).  In this 
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interpretation, Data leads to Information which leads to Insight, each possessing 

increasing value.   

 

 

Figure 6.  The Data-Information-Knowledge-Wisdom Pyramid (Rowley 2007). 

 

 

Figure 7.  The Water Information Value Ladder (Vertessy 2010). 
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Here, the relative maturity of existing hydroinformatics tools and systems from 

varying domains and disciplines is presented in similar fashion (Figure 8).  Is it hoped 

that, as with the DIKW Pyramid and the Water Information Value Ladder, additional 

value will be realized as each of these efforts develop and mature.  This could be in the 

commercial sense, as dollars and cents, in the conservation sense, as increased awareness 

and protection of our limited resources, or in the research sense, as increased 

understanding of the processes and mechanism of the world around us.    

   

 

Figure 8.  The hydroinformatics maturity ladder (adapted from Vertessy 2010). 
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2.4 KNOWLEDGE MANAGEMENT 

 

The approach presented here is a step toward more complete “knowledge 

management,” the sharing of not just data but of information and insight derived from 

those data (Alayi and Leidner 2001).  A common viewpoint is that “data is raw numbers 

and facts, information is processed data, and knowledge is authenticated information,” 

that which has been “actively processed in the mind of an individual through a process of 

reflection, enlightenment, or learning.” (Alayi and Leidner 2001) 

For the dual purposes of knowledge management and quality control, a “data 

chain” is envisioned which connects information in publications with the data sources 

from which it is drawn, thus linking information in a report back to the data sources upon 

with the figures and tables in the report were prepared (Figure 9).  In this vision, all types 

of project information relevant to the analysis, reporting, and publication of results are 

accommodated.   

 

 

Figure 9.  The "data chain" vision. 
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2.5 CONCLUSIONS 

 

This chapter has presented an in-depth look at the suite of systems, tools, projects, 

and efforts in the relatively nascent field of hydroinformatics.  Significant advances have 

been made in information management within each ‘pillar’ of data, databases, data 

themes, and digital assets via such technologies and Hydrologic Information Systems, 

Geographic Information Systems, and Digital Libraries.  But very little work has been 

accomplished to-date in holistic data management – adequately organizing and storing 

information of differing types.  More complete data integration of different data types 

represents a step toward more complete “knowledge management,” where data is 

presented alongside the information and insight derived from those data.  The following 

chapters will describe advances made toward that goal.   
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Chapter 3: Extending Existing Hydrologic Information Systems to 

Accommodate Biological Information 

 

3.1. THE WATER ENVIRONMENT 

 

The importance of water cannot be overstated.  “Water is the most abundant 

substance on earth, the principal constituent of all living things, and a major force 

constantly shaping the surface of the earth.” (Chow et al. 1988)  As such, numerous 

disciplines have developed to study various aspects of the water environment.  Hydrology 

is the study of water as a physical environment – the movement and distribution of water 

through the land and air.  Aquatic biology and marine biology are the study of water as a 

living environment – the habitat and organisms that live in freshwater systems and 

marine systems, respectively.  Finally, water resources is the study of water as it pertains 

to human need – providing and maintaining water for drinking, for agriculture, for 

industry. 

Accordingly, there are distinct types of water data, each type with its own 

character. Physical data describe the movement of water and its properties.  Chemical 

data describe the constituents moving with, in, and through the water.  Biological data 

describe the organisms inhabiting the water environment.  Subsets and hybrids of these 

broad domains exist; for example, bathymetric and geomorphic data describe the physical 

environment of the water but also the geochemistry and the habitat.  As is often the case 
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for hydrology, the spatial and temporal extent of data required for meaningful analysis 

likely exceeds that which can reasonably by accomplished by individual project-specific 

data collection efforts.  Data collection in a freshwater or terrestrial setting is a very 

different experience than in a marine or offshore setting.  And data from a federal 

observation network is different than data from a community volunteer monitoring 

organization.  

This chapter lays out the particular challenges associated with managing 

biological observations of the water environment.  This is accomplished through an 

investigation into the characteristics of biological observations data and both conceptual 

and practical means of organizing these data.  A novel conceptual approach to 

accommodating both organism taxonomy and traits called the 4-D data cube will be 

introduced, as will a new observations data model custom-designed for biological 

observations. 

 

3.2. THE NATURE OF BIOLOGICAL INFORMATION 

 

As a result of the typical complexity of biological information and the limitations 

of biological data collection, biological data is distinguished from physical and chemical 

data by a number of aspects.  Much of the biological information for the freshwater and 

marine ecosystems is collected by techniques including: grab samples, electrofishing, net 

hauls, and population surveys – distinct sampling ‘events.’  Researchers visit a field site, 

deploy gear, collect a sample, and process that sample on-site or in a lab.  These discrete 
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collections are in contrast to continuous time series collections where a sensor, gage, or 

other real-time or data logging instrument collects a large volume of data at regular 

intervals.  Thus, the resources required to collect biological samples often render 

biological data more irregular in time and space and generally less voluminous than 

physical or chemical data for the water environment (Table 2). 

 

Table 2.  Data characterization and comparison. 

Data Type Water Resources GIS Aquatic Ecology 

Temporal dynamic (time series) static event-based (irregular) 

Spatial simple (points) complex complex (3-D) 

Format non-standardized standardized 

non-standardized & 

compound (data interplay) 

 

Biological data is an important component of the “data ecosystem” and contains a 

specific kind and organization of information that attempts to capture the very 

considerable complexity of biological processes.  There are hundreds of physical 

parameters, thousands of chemical constituents, and millions of biological species 

affected by water systems.  Biology is necessarily more complex than physical and 

chemical characterization of water properties because it deals with living systems whose 
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species are interacting with one another and with the environment in which they are 

immersed. 

Although the methodology is labor-intensive to get each data value when 

compared to the elaborate continuously-monitoring sensor networks in use today, 

biological collections provide additional information content based on the parameters 

measured during a sampling event.  For example, a common riverine fisheries data 

collection effort might include sampling to determine the size and characteristics of 

multiple species of fish plus a suite of sampling to determine the water quality, flow 

conditions, and physical habitat which support that particular fish community.   

The physical and chemical conditions are strong drivers of the diversity, size, and 

character of the fish community, as are the different types of fishes present (predators and 

prey, invasive species, tolerant and intolerant species, varying life stages, etc).  Thus, the 

interplay of the observations made during a sampling event can provide considerable 

value, and another important distinction is drawn: the lateral (i.e., multiple variables 

measured as part of one sample) nature of biological data typically characterizes 

additional value of that data, whereas the longitudinal (i.e., one variable measured 

through time) nature of physical and chemical observations through time typically 

provides the information content in those realms.   

In summary, biological data management is to a collections-based framework as 

physical data management is to a series-based framework; chemical data management is 

an intermediary, consisting of both sampled collections (the majority of effort today) and 

continuously monitored information.  
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3.3. TAXONOMIC CLASSIFICATION 

 

There are 1.2 million distinct species currently catalogued on earth (Bisby et al. 

2010).  Estimates of the actual number of species on earth range from 3 to 100 million, 

and one popular estimate posits that there are actually as many as 8.7 million species 

globally, of which approximately 2.2 million species reside in the ocean (Mora et al. 

2011).  Assuming this estimate is relatively accurate, only 14% of terrestrial species and 

only 9% of marine species have been catalogued!   

Modern taxonomic classification was introduced by Swedish scientist Carolus 

Linnaeus in 1735 in his book Systema Naturae and the current incarnation of Linnaean 

classification was set forth in the 10
th

 edition of that book (1758).  Modern taxonomists 

group organisms based on shared traits and categorize these groups hierarchically, with 

some variation within and among the defined level (Figure 10).  Recent advances in DNA 

sequencing and genomics have led to a new super-tier of classification, the Domain 

(Woese et al. 1990).  Most biologists now define three Domains: 

1. Bacteria – prokaryotes, mostly unicellular, whose cells lack a nucleus or 

any other organelles; 

2. Archaea – single-celled prokaryotic microorganisms with separate 

evolutionary history and distinct genetics from bacteria; and 

3. Eukarya – organisms whose cells contain complex structures enclosed 

within membranes. 
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Figure 10.  Example hierarchical taxonomic classification system. 

 

A particular organism is unique defined by the binomial nomenclature of genus 

and species.  For example, the largest animal on earth, the blue whale, is classified as 

Balaenoptera musculus (Table 3).   

 

Table 3.  Taxonomic classification for Balaenoptera musculus (blue whale). 

Level Classification Description 

Domain Eukarya complex cell structures enclosed within membranes 

Kingdom Animalia animals 

Phylum Chordata chordates (possessing a nerve cord) 

Subphylum Vertebrata vertebrates (with backbone and spinal column) 

Class Mammalia mammals 

Order Cetacea whales and dolphins 

Suborder Mysticeti baleen whales (possessing baleen plates instead of teeth) 

Family Balaenopteridae rorquals (possessing pleated throat grooves)  

Genus Balaenoptera finback whales 

Species Balaenoptera musculus Blue whale 
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In addition to taxonomic classification which identifies an organism, any particular 

organism also has characteristics which might be worth recording in a database.  When 

you go for an annual checkup, the doctor records your name (your identification) and also 

your height and weight – traits about you.  That blue whale might be up to 100 feet long 

and weigh 400,000 pounds.  If that particular blue whale was observed in the field, an 

estimate of length was made, and these data were to be entered in a database, both the 

taxonomy (Balaenoptera musculus, blue whale) and also the trait (length = 100 feet) 

would be necessary to sufficiently describe that biological observation.  This distinction 

between taxonomy and trait sets the context for the ensuing discussion.  

 

3.4. THE DATA CUBE 

 

This distinction in data management approaches arises from (and leads to) 

differing data dimensionality.  Conceptually, a single data value can be thought of as 

occupying a unique combination of space, time, and variable – where, when, and what 

was measured.  This conceptual approach can be visualized using a data cube (Figure 11) 

(Maidment 2002). 
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Figure 11.  The data cube (Maidment 2002). 

 

A collection or series of multiple data values taken together can be visualized as 

‘slices’ across the data cube.  Figure 12a depicts all values across all time at one location; 

Figure 12b is one variable measured across all time and all space (such as data commonly 

expressed in raster format); and Figure 12c is all values at one point in time.  This is akin 

to a “time series” – one location, one variable, with a set of observed values through time 

(a line in the T direction from a particular point in the S,V plane) (Figure 13a); and a 

“collection” – one location, many variables, with a set of values for a particular time (a 

line in the V direction originating at a particular point in S,T plane).  Similarly, raster 

layers are commonly used to depict one variable at one point in time across all space 

(Figure 13b); for example, land surface elevation across a watershed.    
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Figure 12.  Data cube representations depicting: (a) all values from one station; (b) all 

values for one variable; and (c) all values at one point in time (sensu 

Maidment 2002) 

 

 

Figure 13. Data cube representations depicting: (a) a time series of values and (b) a raster 

layer. 
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Biological data can have many more variables (all the species of the world and 

numerous traits within each species) but many fewer observations per variable (a handful 

of samples versus a time series).  Biological data tend to be collected by researchers as 

part of distinct studies, finite in space and time, but sometimes densely-spaced within a 

collection region.  Physical and chemical data for monitoring the water environment are 

often collected on an ongoing basis, across a wide spatial extent, by public agencies.  

Occasionally, denser physical and chemical data are collected by researchers on a study 

basis, often more common with chemical data than physical. 

For physical and chemical data, the sample space which defines any particular 

observation is a function of {x, y, z, t, and v}.  x and y represent the location in space, 

expressed in latitude and longitude, with a known spatial reference system.  z is the 

vertical location, either ignored or treated as an offset from a known datum (such as 

ground or water surface).  t is time, expressed in Coordinated Universal Time (UTC) and 

the local UTC offset.  v is the variable being measured, expressed according to a 

standardized ontology of variable names.  The sample space may be conceptualized using 

the data cube: the three dimensions of space, time, and variable uniquely define a 

particular observation (where, when, what) (Figure 14a). 

Many of the distinctions between physical, chemical, and biological water data 

become evident when viewed in the context of the data cube.  Physical water data (such 

as streamflow) tend to have long periods of record, broad spatial extents, and a very 

limited number of variables measured (Figure 14b).  Chemical water data (water quality) 

tend to have many more variables, a broad spatial extent, and moderately-long periods of 
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record, although they tend to be much more irregular in time as compared to physical 

data (Figure 14c).  Biological data can have orders of magnitude more variables, but 

often much shorter temporal extent and much smaller spatial extent.  When considering 

biological data management, the concept of ‘variable space’ becomes more complicated, 

however, because variables are needed for both biological species and for descriptors or 

traits of those species, and these traits may apply to individual species or to collections of 

species. 

 

 

Figure 14. Data cube representations for (a) generic water data; (b) physical water data, 

which tend to have long periods of record, broad spatial extents, and a very 

limited number of variables; and (c) chemical water data, which tend to have 

more variables, a broad spatial extent, and moderate periods of record. 
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For biological data, the sample space is still a function of {x, y, z, t, and v}, but 

the variable is now a combination of the taxonomic identification (such as Genus species) 

and the trait (i.e. the measurements, traits, and characteristics of an organism) such as 

length, biomass, sex, or count (Figure 15).   

 

 

Figure 15.  Data cube representations for biological water data, which tend to have much 

smaller spatial and temporal extents, a relatively small number of traits 

measured, and a potentially much larger number of taxa observed. 

 

In essence, taxonomy is added to the data cube as a fourth dimension with the 

existing variable axis taken to mean ‘trait.’  This is important because taxonomy is often 

used to index and perform searches on observations within a biological data collection, 

analogous to date and time in a time series.  The 3-D data cube characterizes values 
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within space and time whereas a biological-specific data model built around the 4-D data 

cube would also characterize phenomena in ‘variable space.’  As such, if an ontology of 

variables is defined to facilitate data discovery it must allow for searching via taxonomy 

and not only via trait.   

Had either taxonomy or trait been solely recorded in the database, it would not be 

known how long the Guadalupe bass was (if only taxonomy were recorded) or it would 

not be known what organism was 18 cm in length (if only the trait were recorded).  

Obviously, both of these solutions are inferior.    

An early solution for storing biological observations data considered during this 

research was to use a variable definition which was a concatenation of taxonomy and 

trait; for example, Guadalupe_bass.total_length.  With this variable name, biological 

observations could be shoehorned into the existing 3-D data cube without the loss of 

information content exemplified above.  This hybrid variable name has two distinct 

shortcomings, however.  First, a new variable must be added to the database for every 

combination of taxonomy plus trait.  If 55 fish species were observed in a sample, and if 

organism count, average length, minimum length, and maximum length are recorded for 

each species, the database variable dimension balloons in size to 55 species x 4 traits = 

220 variables.  This results in a database with a considerable number of null values – 

computationally inefficient for large databases.   

Second, and perhaps more importantly, this hybrid variable system is particularly 

difficult to query.  If a researcher wanted to know everything about Guadalupe bass in a 

particular dataset, they must first know exactly which traits were measured for the 
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Guadalupe bass.  In the above example, this would be 4 queries.  If the researcher wanted 

to know the count for every species in a sample (such as would be necessary to calculate 

relative abundance), they must query every species.  In the above example, this would be 

55 queries. 

 

When taxonomy is added to the data cube as a fourth dimension with the existing 

variable axis as trait, it becomes possible to easily and efficiently query by taxonomy 

and/or trait. Databases can be queried by species (“I want to know everything about 

Guadalupe Bass (Micropterus treculii) in the Blanco River.”) and also by trait (“What is 

the relative abundance (the trait) of Bering Flounder (Hippoglossoides robustus) 

observed in the Beaufort Sea?” or “What is the average length (a statistic calculated on 

the trait “length”) of Bering Flounder observed in the Beaufort Sea?”)  In this sense, there 

are ‘Traits that have Species’ and ‘Species that have Traits’ and both can be easily 

searched and discovered. 
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3.5. SEMANTIC MEDIATION 

 

What and how we name the thing being measured is non-trivial and can lead to 

significant difficulties in the exchange of information.  Variations in how data are 

formatted can be addressed via standardized formats for storage and communication.  For 

example, CUAHSI achieves this syntactic mediation through the use of the Observations 

Data Model and WaterML web services.  Variations in how data are described can be 

addressed via a standardized translation among languages of variables – semantic 

mediation.  Semantic mediation allows for the communication of data across multiple 

systems – a common terminology allows for information sharing and prevents data 

duplication.   

Some examples: (1) reservoir inflow versus discharge.  Both are the volumetric 

flow of water.  The two terms represent the same variable, but are expressed in different 

terms native to specific domains (reservoir operations versus hydrologic science). (2) 

‘Gage height’ versus ‘stage height’ versus ‘stage’ versus ‘water level’ (Maidment 2008).  

As shown, subtle differences in how an observation is described can lead to significant 

confusion in data discovery and interpretation.  Thus, an ontology is employed – a formal 

description of the concepts and relationships within a domain.  "An ontology is a 

description (like a formal specification of a program) of the concepts and relationships 

that can formally exist for an agent or a community of agents.” (Gruber 1995)   

   



 42 

3.6. ONTOLOGIES 

 

CUAHSI has developed a hydrologic science ontology which uses as a starting 

point NASA’s Global Change Master Directory and incorporates the chemical substances 

catalogued in the EPA’s Substance Registry System; this latter system is also used for 

chemical characterization by the USGS.  The CUAHSI ontology is structured in a stem 

and leaf pattern, where “Keywords are arranged hierarchically and end in a ‘leaf concept’ 

using the same terms as the ODM Controlled Vocabulary…The higher levels of the 

ontology, which contain many child elements, are only for navigation and are not 

searchable because the returns would be too large (e.g., “Chemical properties”).  Lower 

levels of the hierarchy are searchable (e.g., “Nutrients”) and will return all child 

concepts.” (CUAHSI HIS 2008)   

Eleven media are represented in the CUAHSI ontology (e.g.: air, surface water, 

groundwater, snow, tissue) within three domains layers (physical, chemical, biological) 

(Figure 16).  The biological domain of the CUAHSI ontology was developed and refined 

as part of this proposed work and currently includes taxonomic classification at the 

Family, Genus, and Species levels within six subgroups (benthic, fish, 

macroinvertebrates, nekton, phytoplankton, and zooplankton) (Maidment 2009).   
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Figure 16.  The CUAHSI hydrologic data ontology. 

 

The CUAHSI Controlled Vocabulary master list is comprised of 13 sublists – 

CensorCode, DataType, GeneralCategory, SampleMedium, SampleType, SiteType, 

SpatialReferences, Speciation, TopicCategory, Units, ValueType, VariableName, and 

VerticalDatum.  The CV refers to specific dimensions within an ODM database, for all 

data and metadata, such as sample medium, variable name, spatial reference, and units, 

and its purpose is to standardize how data are described (i.e., to provide semantic and 

syntactic mediation).  Relatedly, the CUAHSI ontology standardizes how variables are 

uniquely described and provides a single term for data queries.  The CUAHSI 

VariableNameCV and the ontology have very significant overlap, and data publishers 
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ideally will tag their variables onto the ontology using the Controlled Vocabulary 

terminology when they register new data services.  This tagging is performed manually 

now but could be performed automatically in the future.   

Another data discovery improvement currently under development is faceted 

search, where the number of metadata dimensions by which a search can be performed is 

expanded.  In faceted search, a user selects a facet upon which to search (spatial extent, 

time window, variable category or variable), and the search interface dynamically 

updates to show the trimmed-down results field.  Faceted search is common today in 

online shopping and travel sites, where price, customer rating, size, and style are example 

facets.  In the CUAHSI HIS, faceted search will likely include sample medium, sampling 

organization, space, time, and variable, all accessed via a map interface (Bedig 2011).     

The biological component of the CUAHSI ontology has at its origin a study made 

by the author of the biological data stored within the TCEQ Regulatory Activities 

Compliance Systems (TRACS) Surface Water Quality Monitoring (SWQM) database.  

“STORET parameter codes within TRACS were divided into groupings of biologic and 

ecologic significance (Table 4).  SQL Queries were then performed in Microsoft Access 

to extract appropriate data and statistics, and the results of these queries were summarized 

(Table 5).  From these analyses, it was confirmed that TRACS contains relatively little 

data (number of records) specific to biology, but a large proportion (over 55%) of the 

codes in TRACS are dedicated to biologic data.” (Hersh 2007) 
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Table 4.  Groupings of EPA STORET parameters developed for analysis of the TCEQ 

Surface Water Quality Monitoring database (Hersh 2007). 

 

 

Hierarchically, the CUAHSI ontology has “Hydrosphere” at its core, then the three 

domains (physical, chemical, biological), then multiple stems, many branches, and 

numerous leaves, also known as “leaf concepts.”  The procedure for adding new leaves to 

the ontology (i.e., new variables) is defined by the CUAHSI HIS team and includes 

requesting new additions to the controlled vocabulary (Maidment 2009).   
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Table 5.  Summary of biological data in TCEQ Texas Regulatory and Compliance 

System Surface Water Quality Monitoring database.  (Hersh 2007) 

 

 

Under the Biological domain of the CUAHSI ontology are three stems: Biological 

taxa, Indicator organisms, and Biological community.  The Biological taxa stem is where 

the six categories of TCEQ SWQM data are represented (excluding Site and Sample) 

(Figure 17), and each of these categories in turn includes tens to hundreds of taxa as 

species.  The ontology includes leaves only for those species currently represented in the 

data cataloged at HIS Central but the stem-and-leaf structure of the ontology allows for 

the additional leaves as needed to accommodate new taxa.  The biological domain 

includes three stems: biological taxa, indicator organisms, and biological community.  

Here is an example to illustrate the hierarchical nature of the CUAHSI ontology.  If a 

Data Values Variables 
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researcher had collected data on the how many fish in a seine haul sample have a diet 

consisting primarily of other fish, she would tag those data as shown in Table 6.  

 

Table 6.  An example to illustrate the hierarchical nature of the CUAHSI ontology. 

Ontology Level Value 

Core Hydrosphere 

Domain Biological 

Stem Biological Community 

Branch Fish 

Leaf Concept % of individuals as piscivores, fish 

    

 

Figure 17. Biological taxa hierarchy of the CUAHSI ontology.  (CUAHSI HIS 2011) 

 

The Biological community stem includes a number of metrics commonly used in 

the characterization of a community of organisms and in the assessment of ecological 
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health (Figure 18).  It includes metrics common to the development of the Index of 

Biological Integrity (IBI) for fish and macroinvertebrates (Karr 1981) (Table 7) plus 

metrics for planktonic biomass, for assessing fish kill severity, and for chlorophyll- and 

non-chlorophyll-based pigments (CUAHSI HIS 2011). 

 

Table 7.  Metrics used in determining the Index of Biotic Integrity (Linam et al. 2002). 
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Figure 18.  Biological community hierarchy of the CUAHSI ontology. (CUAHSI HIS 

2011) 

 

 

3.7. BIOODM 

 

CUAHSI has developed and refined the Observations Data Model (ODM) for the 

storage and retrieval of series-based hydrologic observations in a relational database.  As 

discussed, some incompatibilities arise when trying to employ the ODM for biological 

information due to the collections-based nature of these data.  Thus, a relational data 

model was developed for biological observations in the aquatic environment – BioODM.  

BioODM is designed to directly associate the water environment (i.e. habitat) 

with its inhabitants.  Conceptually, BioODM differs from the CUAHSI ODM via: (1) its 

explicit incorporation of taxonomy and habitat, (2) its treatment of sampling 

methodology, (3) its reliance on multi-dimensional variable space, (4) its linkage to 
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documents and other knowledge products, (5) its partnership with geographic data stored 

within a GIS, and (6) its structure which places the focus on the organism(s) observed 

(Figure 19 and Figure 20).  For comparison, version 1.1 of the CUAHSI ODM has no 

capacity to simultaneously incorporate taxonomy and traits, has limited sampling 

methodology resolution (e.g. no ability to address sampling effort or gear size), and has a 

focus on a single observation indexed within a time series.  As such, the BioODM 

presented here is a conceptual, idealized version of a relational data model for aquatic 

biology data.   

All that being said, the existing CUAHSI ODM offers considerable flexibility and 

adaptability for the storage of physical and chemical data for the water environment, 

however, and it has the distinct advantage of having tools developed which facilitate its 

use: (1) the ODM Data Loader software to input data into the XML schema, (2) the Time 

Series Analyst to graphically view the data and perform limited statistical analysis, and 

(3) the WaterML web language and the WaterOneFlow web services to communicate the 

data.  As a result of the support infrastructure already in-place for the CUAHSI ODM, 

there is a significant strategic advantage in adapting and refining the structure of the 

existing CUAHSI ODM rather than starting from scratch.   

In light of this recognition, a pragmatic, middle-ground BioODM was developed 

here which is designed to leverage as much as possible of the CUAHSI ODM 

infrastructure and institutional support while adding the critical components necessary for 

the adequate storage and representation of biological data for the water environment.  

This compromise BioODM added a Taxonomy table to the CUAHSI ODM and a TaxaID 
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Foreign Key to the central DataValues table.  The Taxonomy table includes a unique 

TaxaID as its Primary Key; optional fields for the Family, Genus and/or Species of an 

organism; and an optional field for Comments related to the taxonomic identification 

and/or classification (Table 8).   

 

 

Figure 19.  Schematic representation of the BioODM, version 1.2. 
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Figure 20.  BioODM table specification, version 1.2.
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Table 8.  ODM Taxonomy table fields and specifications. 

Field Name Data Type Description Example Constraint 

TaxaID 
Integer, 

Identity 

Unique integer identifier for each 

taxonomic classification 
42 

Mandatory; 

Unique 

Primary Key 

Family 
Text (50 

char) 
Scientific family name Centrarchidae Optional 

Genus Text (50) Scientific genus name Micropterus Optional 

Species Text (50) Scientific species name salmoides Optional 

TaxaComment Text (256) 
Comments related to the taxonomic 

identification and/or classification 
- Optional 

 

As discussed, the taxonomic classification represented within the Taxonomy table 

is performed according to the CUAHSI variable ontology which has been derived from 

the Integrated Taxonomic Information System (ITIS) species classification, the 

authoritative taxonomic catalog for the United States (http://www.itis.gov/).  In that 

regard, ITIS can be thought of as the controlled vocabulary for species identification, and 

semantic mediation for taxonomic identification is accomplished internal to the ITIS 

program.  The benefit of used a standardized, hierarchical taxonomic classification 

include the ability to aggregate data searches and analyses up the taxonomic chain.  For 

example, organisms can be stored in the database at the species level but can be queried 

at the family or genus level.  ITIS resulted from an interagency partnership formed to 

address deficiencies identified by the White House Subcommittee on Biodiversity and 

Ecosystem Dynamics in federal systematics efforts, especially in the organization, access, 

http://www.fishbase.org/summary/FamilySummary.php?ID=302
http://www.itis.gov/
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and standardized nomenclature of data necessary to support ecosystem management and 

biodiversity conservation (ITIS 2012).  The ITIS partnership founding members include:  

 Department of Commerce – National Oceanographic and Atmospheric 

Administration (NOAA); 

 Department of Interior (DOI) – US Geological Survey (USGS); 

 Environmental Protection Agency; 

 US Department of Agriculture (USDA) – Agricultural Research Service 

(ARS) and Natural Resources Conservation Service (NRCS); 

 Smithsonian Institution – National Museum of Natural History; 

and additional current partners include: 

 Department of Interior – National Park Service (NPS) and US Fish and 

Wildlife Service (USFWS); 

 NatureServe; 

 Comisión Nacional para el Conocimiento y Uso de la Biodiversidad of 

Mexico (CONABIO); and 

 Agriculture and Agri-Food Canada (ITIS 2012). 

 

3.8. DATA THEMES 

 

ODM databases are typically organized by data source/provider; that is, for each 

agency and for each observations network that supplies water data, there is a separate 

ODM database.  Unfortunately, this isn’t the most desirable format to many users – it is 
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common to seek data across all data providers for one variable, one related group of 

variables, or for a specific geographic extent.  These sets of geospatial or observations 

data grouped together for some purpose are called themes, and they are a promising 

avenue for biological water data management.  Themes are common in a GIS sense, and 

have recently been extended to an observations sense. (CUAHSI 2010)  Themes may be 

implemented via a thematic dataset catalog – a feature that contains geospatial 

information, summary data, and the information required to call a web service to retrieve 

time series data for each site (Seppi 2009; Whiteaker 2009).   

A theme for Texas salinity was developed which included data for one variable 

(salinity) across multiple data providers (TCEQ, TWDB, and TPWD), and across a wide 

spatial extent (Texas rivers and coast) (Figure 21).  

  

 

Figure 21.  Example of a 'Texas salinity' data theme, where observations data from 

multiple data providers (TCEQ, TPWD, and TWDB) are merged into a 

unified data theme for salinity across the State of Texas. 
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The themes concept could be extended to support data discovery for the 

disciplines of the Texas environmental flows program: hydrology, water quality, 

geomorphology, and aquatic biology (Figure 22).   

 

 

Figure 22.  Thematic representation of the Texas environmental flow program 

disciplines. 

 

3.9. CONCLUSIONS 

 

As has been shown in this chapter, biological observations of the water 

environment and thus their associated data differ strongly from physical and chemical 

observations.  A 4-D data cube was developed to accommodate a primary difference 

whereby the variable space of the traditional data cube is re-envisioned to include both 

the organism’s taxonomy and also its traits.  An ontology was developed for use in the 
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CUAHSI Hydrologic Information System based on an analysis of approximately 30 years 

of data from the TCEQ TRACS database using the EPA STORET parameters.  A 

BioODM data model was developed in both a conceptual and practical variation.  

Collectively, these modifications serve to adapt the existing CUAHSI Observations Data 

Model for use with biological observations of the water environment.   

 

Because of the 4-D data cube innovation, databases can be queried by species (“I 

want to know everything about Guadalupe Bass (Micropterus treculii) in the Blanco 

River.”) and also by trait (“What is the relative abundance of Bering Flounder 

(Hippoglossoides robustus) in the Beaufort Sea?”)  In this case, the Integrated 

Taxonomic Information System (ITIS), the authoritative taxonomic catalog for the 

United States, was used to provide a standardized species nomenclature and thus to help 

rein-in the vastness of biological data.   
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Chapter 4: Managing Arctic Marine Observations Data 

 

4.1 INTRODUCTION 

 

The Arctic is changing.  Temperatures are warming and the minimum sea ice 

extent is retreating (Pachauri and Reisinger, 2007).  Changes in the presence and 

condition of sea ice are stressing some ice-dependent species such as polar bears (CFR 

2010).  On shore, the yield of the Prudhoe Bay oil field has diminished and the Trans-

Alaska Pipeline is operating below capacity (API 2009).  America’s continued thirst for 

oil and gas has led to an increased desire to explore new offshore sources, including the 

outer continental shelf regions of the Chukchi and Beaufort Seas off the northwest and 

north coasts of Alaska.  In 2008, the Minerals Management Service (now the Bureau of 

Ocean Energy Management) generated $2.6 billion in high bids for 488 blocks under 

Lease Sale 193 (MMS 2008, MMS 2008b).  The Chukchi Sea Offshore Monitoring in 

Drilling Area: Chemical and Benthos (COMIDA CAB) project was initiated in 2008 to 

be a robust, comprehensive effort to characterize the lease area biota and chemistry, to 

conduct a baseline assessment of the continental shelf ecosystem via ship-based physical, 

chemical, and biological sampling of the benthos, and to develop a workable food web 

model.  

The COMIDA CAB effort involves seven Principal Investigators hailing from 

five universities and one Contracting Office Representative.  Over two field seasons 

aboard the R/V Alpha Helix (summer 2009) and the R/V Moana Wave (summer 2010) in 
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the northeastern Chukchi Sea, the project team collected diverse observational data from 

multiple instruments and sensors, in varying sample media, across varying spatial and 

temporal scales, in the broad disciplines of physical, chemical, and biological 

oceanography.  In all, a total of 48 stations were occupied in 2009 and 44 in 2010 

including 27 stations which were reoccupied for quality control and time series 

comparative purposes (Figure 23).  One operational goal for this project is to establish an 

environmental baseline so that “undisturbed” conditions can be described prior to the 

commencement of oil drilling activities.  This necessitates the compilation of information 

from the project into a database synthesized in a uniform way across the study area rather 

than having just the original investigator files.   

As can be expected from such a multi-disciplinary effort, data management is an 

important and challenging task.  The COMIDA CAB project includes a dedicated, ship-

board data manager to provide real-time, field-based data services and Geographic 

Information System (GIS) support.  Project data management is accomplished via the 

SQL/Server relational database and the Observations Data Model (ODM) relational 

database schema.  The ODM originates from the Consortium of Universities for the 

Advancement of Hydrologic Science – Hydrologic Information System (CUAHSI HIS), 

a National Science Foundation-supported cyberinfrastructure project for the hydrologic 

sciences, used extensively for storing observations of the physical, chemical, and 

biological components of the water environment (Maidment 2009, Horsburgh et al. 

2008). 
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Figure 23.  Stations occupied during the 2009 and 2010 COMIDA CAB field seasons in 

the northeastern Chukchi Sea, Alaska. 

 

But actively managing data during the project isn’t enough.  The size, scope, and 

interdisciplinary nature of this project results in a wealth of information and represents a 

significant research investment.  Effective project data management must include public 

outreach, data sharing, and data archiving both during and after the life of the project.  As 

such, a secure, web-based system was developed for observational data storage (via the 

Integrated Rule-Oriented Data System (iRODS), geographic data storage (via the ArcGIS 

Online community), document sharing, and public outreach (Rajasekar et al 2009, 

Rajasekar et al 2006).    
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Thus, the objectives of this chapter are, broadly: to present an approach to making 

observations of the ocean environment, to put forth a methodology for organizing and 

storing these observations, and to offer various avenues for communicating scientific 

results widely via the use of open standards. 

This chapter addresses the challenges of biological data management in a 

relatively narrow academic study.  It presents the adaptation of the CUAHSI 

Observations Data Model for application with physical, chemical, and biological 

oceanographic data – a new extension of the CUAHSI Hydrologic Information System, 

thus bringing hydroinformatics into the oceanographic realm. 

 

4.2 THE NATURE OF OCEANOGRAPHIC DATA 

 

Ocean science is multi-disciplinary and conducting ocean research is logistically 

complex.  While remote and satellite-based sensing are common in physical 

oceanography, chemical oceanography and marine biology largely require in-situ field 

sampling.  Researchers across the globe are connected by a common interest in many of 

the same questions in many of the same oceanic regions so it is important that data from 

individual cruises are stored and made permanently accessible.  Many parallels exist in 

collecting, organizing, and storing data for freshwater and marine ecosystems, and though 

the organisms observed may differ greatly from land to sea, many of the same 

collections-based principles apply.  Some differences exist, however, with respect to 

biological data management for freshwater versus marine systems.   
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From a geographic perspective, freshwater systems focus on a waterway (e.g. 

river, stream, creek, lake, pond, or reservoir) with observations made at point locations, 

such as at gaging stations, grab sample locations, etc.  Marine systems often feature a 

much broader physical area with sampling performed in a much more spatially dispersed 

fashion, but due to the perception of higher spatial homogeneity within the marine 

environment, marine observations are often interpolated across a much larger physical 

area than freshwater observations.  Marine observations are either made at a point (on the 

water surface, in the water column, or on the seafloor) or along a moving track (such as a 

ship’s path).   

A sampling ‘point’ in an oceanographic study may not actually be that – wind and 

waves may push a vessel off-station resulting in a positional accuracy much less than that 

for a ‘fixed’ point (such as a gaging station) in a land-based freshwater study. Although 

the use of towable acoustic instrumentation is increasing in riverine sampling, marine 

sampling has traditionally featured more data collection from moving tracks: a ship path, 

tagged organisms, drifters, and remotely-operated vehicles (ROVs) are a few examples.  

Lastly, oceanography often features a wider variety of media sampled across a wider 

array of vertical zones – atmosphere, water surface, water column, epibenthos, benthos, 

and subfloor. 

The character of the data from the COMIDA project differs fundamentally from 

the majority of typical hydrologic information such as for precipitation or streamflow 

with regard to the time-domain, or, more specifically, the lack thereof.  While traditional 

water data visualized using a data cube include a time dimension, the COMIDA project 
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data really only includes a time stamp – that is, when one-time samples were collected, 

rather than being regularly recorded through time.  This distinction is not unique to 

COMIDA as it is shared by other environmental sampling studies, but is important 

nonetheless in the consideration of project data management. 

Just as data from a terrestrial environmental flows case study can be 

conceptualized by discipline (hydrology, water quality, geomorphology, and aquatic 

biology) and by data provider (state agency, EPA, USGS, etc), so too can COMIDA data 

be conceptualized by discipline (physical, chemical, or biological oceanography) and by 

data provider (in this case, project Principal Investigators instead of agencies).  So even 

though data from the terrestrial case study comes from surveys and data from the Alaska 

case study comes from studies, the conceptual approach to managing water data for each 

study has much in common (Figure 24).  

 

 

Figure 24.  Thematic organization of COMIDA CAB data by Principal Investigator 

institution and by data type. 
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4.3 OBSERVING THE OCEAN ENVIRONMENT 

4.3.1 Basemap Development 

 

The study area extends from approximately 65º N to 72º N and from 169º W to 

157º W.  A basemap was developed for the study area based on bathymetric data from the 

NOAA National Geophysical Data Center. The ETOPO1 1-Arc Minute Global Relief 

Model (Figure 25) integrates land topography and ocean bathymetry from numerous 

global and regional data sets (Amante and Eakins 2008).   

 

 

Figure 25.  ETOPO1 1-Arc Minute Global Relief Model (Amante and Eakine 2008). 
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Coastlines, cities, and political boundaries are added for spatial orientation and oil and 

gas wells, Bureau of Ocean Energy Management Lease Sale Area 193 information, 

existing moorings, and previous sampling locations are added to provide a context of 

former and current energy development activities (Figure 26). 

 

 

Figure 26.  Chukchi Sea basemap data for the Bureau of Ocean Energy Management’s 

Lease Sale Area 193. 
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4.3.2 Sampling Design 

 

Station locations were determined via two methods for random yet even 

distribution: (1) a general randomized tessellation stratified design (GRTS) in the core 

project area (Figure 27), and (2) a spatially-oriented, nearshore-to-offshore, south to north 

grid overlaying the GRTS design. This arrangement allowed for putting the core station 

sites in a spatial grid. Of the 30 GRTS stations, 10 were chosen as overlap stations to 

cross-calibrate and provide QA/QC based on replicate benthic samples.  The GRTS 

design was based on the approach employed by the US Environmental Protection 

Agency’s Environmental Monitoring and Assessment Program (EMAP) (White et al 

1992).  The grid stations were positioned to provide insight into upstream and 

downstream conditions with some stations outside the lease area as control sites.  Twenty 

seven stations were sampled in both field seasons to provide a time-comparison of 

benthic and water column parameters and for quality control purposes. 
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Figure 27.  General randomized tessellation stratified (GRTS) design for COMIDA 

station selection. 

 

4.3.3  Data Collection 

Observations were made of the water column, sediments, epibenthos and benthos.  

During the 2009 field effort, 270 sampling events occurred totaling 142 hours of 

sampling time with events such as: epibenthic trawls, data sondes, light meters, discrete-

depth water column pumping, double van Veen grabs, single van Veen grabs, HAPS 

sediment cores, box cores, phytoplankton nets, zooplankton nets, and benthic camera 

deployment. During the 2010 field effort, 273 sampling events occurred over 117 hours 

of sampling time with similar equipment deployed.  Project data collected includes 
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physical, chemical, and biological observations and the associated geographic data plus 

video and still imagery.  A summary of the diverse data collected is shown in Table 9. 

  

Table 9.  Examples of the types of data collected in various sample media. 

Water Column Epibenthos Sediment 

Surface & subsurface PAR Community composition Hydrocarbons 

Chlorophyll a Abundance, biomass, population size structure 19 anthropogenic metals 

POC & POM Organic contaminants Cesium and lead dating 

Zooplankton Nutrients, stable isotopes TOC, POC, nutrients 

Phytoplankton Caloric content Sediment chlorophyll 

Hydrographic profiles Oxygen consumption Benthic infauna 

Turbidity, TSS, nutrients Nutrient flux experiments Biomarkers 

Trace metals Qualitative video habitat survey Grain size distribution 

Fish toxicology 

 

Oxygen uptake experiments 

Birds & marine mammals     

 

 

 

4.4 ORGANIZING AND STORING OCEAN OBSERVATIONS DATA 

4.4.1 Data Management Workflow 

 

It is the goal of the COMIDA CAB project team and a requirement of the Bureau 

of Ocean Energy Management (BOEM) contracting procedure that all project data be 

preserved in the public domain.  However, adequate data and metadata management can 

be a cumbersome and time-consuming task for project scientists unfamiliar with best 

practices for good data stewardship.  In recognition of these dual interests, a data 

management workflow was developed for the COMIDA CAB project seeking to 

minimize the burden to project Principal Investigators yet providing sufficiently 
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described data such that it may be discovered, accessed, and used by others in the future.  

The workflow is described below and is depicted in Figure 28. 

 

 

Figure 28.  The COMIDA CAB project data management workflow. 

 

Data are collected by PIs while aboard the research vessel or from samples 

brought back to the laboratory.  Data are recorded by PIs in their native, traditional 

format in Microsoft Excel, a widely used platform which requires no specialized database 

knowledge.  Data spreadsheets are uploaded to a secure online document-sharing system, 

in this case the Integrated Rule-Oriented Data System, which has been created for the 

project team and is password-protected.  This security is afforded since, according to 

contract requirements, access to preliminary project data was limited to project 
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participants and was provided via a log-in interface.  The data have now been quality-

controlled and approved for release, so project data and analytical products have now 

become publicly-available. 

At this point, the data team ‘takes over’ management of the data.  However, a 

chain-of-custody is established at the data handoff and this custody signature persists 

throughout the data workflow, from loading the database all the way through to 

archiving; the chain-of-custody is described further below.  Customized scripts are 

developed using Visual Basic which establish a ‘template’ for each PIs data format.  

These templates serve to map the PIs data to the ODM data model, from the PIs personal 

terminology to a standardized ontology of variables and controlled vocabularies for 

metadata.   

Since templates are developed for each PI and each data type, repeat and/or 

revised submissions may be loaded simply and efficiently into the project database; this 

feature is convenient since the project included two years of field sampling with many 

similar observations made year-to-year.  Finally, data are loaded into the ODM using the 

CUAHSI ODM Data Loader (http://his.cuahsi.org/odmdataloader.html).  This data 

management workflow may be characterized as an Extract-Transform-Load (ETL) 

procedure: data are extracted from diverse file formats, transformed into a standardized 

data structure, and loaded into the project database. 

In all, the 2009 and 2010 COMIDA CAB field efforts yielded a database of 

510,405 data values.  Of these, 474,129 (93%) were derived from sonde profiles and 

36,276 (7%) were from non-sonde samples of the sediment, epibenthos, and water 

http://his.cuahsi.org/odmdataloader.html
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column.  The data sondes used in this project are akin to the conductivity, temperature, 

and depth (CTD) samplers commonly used in oceanographic research.  These data values 

represent 301 variables measured at 65 sites and originating from 26 different source 

files.  The biological observations represented 519 distinct taxa.  In this sense, the 4-D 

data cube has axes with length 301 (variables), length 65 (space), length 519 (taxa), and 

with the time axis reflecting 1 to 2 measurements made at each station depending on 

whether the station was resampled in the 2010 field season (Figure 29).   

 

 

Figure 29.  Axis lengths for the 4-D data cube representing the dimensions of the 

COMIDA CAB project database. 

 

Of the 301 variables represented in the COMIDA CAB project database, 11 (3.7%) are 

physical in nature, 244 (81.1%) are chemical, and 46 (15.3%) are biological. 
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4.4.2  Data Model Adaptations 

When originally developed, the CUAHSI Observations Data Model was viewed 

as an extensible “core data model,” tolerant of and suitable for customization and 

adaptation (Horsburgh et al 2008).  The ODM has traditionally been used to manage 

physical and chemical observations of the water environment, so the biological 

observations data here necessitated modifications to the data model, data loader, and the 

associated Controlled Vocabulary.  Three of the seven COMIDA CAB Principal 

Investigators collected some type of biological oceanographic data – benthic and 

epibenthic abundance, biomass, density, diversity, and taxonomy.  The ODM is 

structured as a “star schema” meaning that each data value has primacy and the 

associated metadata are linked to the primary data value using database relationships.  In 

the case of the biological data represented here, the trait or descriptive characteristic is 

the data value (abundance, biomass, etc) and thus the taxonomic identification must be 

accomplished elsewhere in the data model.  To accomplish this, a TaxaID foreign key 

was established within the ODM Data Values table which links to a newly-created 

Taxonomy table.  The Taxonomy table is built upon a ten-level hierarchical taxonomic 

classification system and includes non-mandatory attribute fields for hierarchical 

classification along with mandatory inclusion of the Taxonomic Serial Number (TSN) 

obtained from the Integrated Taxonomic Information System (ITIS, http://www.itis.gov/), 

the authoritative taxonomic catalog for the United States (Table 10).  

  

http://www.itis.gov/
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Table 10.  Attributes of the new ODM Taxonomy table. 

Field Name Data Type Description Example 

TaxaID integer; identity 
Unique integer identifier for each taxonomic 

classification 
37 

TSN integer Taxonomic Serial Number, from itis.gov 180542 

Domain nvarchar (50) Scientific Domain name Eukarya 

Kingdom nvarchar (50) Scientific Kingdom name Animalia 

Phylum nvarchar (50) Scientific Phylum name Chordata 

Class nvarchar (50) Scientific Class name Mammalia 

Order nvarchar (50) Scientific Order name Carnivora 

Suborder nvarchar (50) Scientific Suborder name Caniformia 

Infraorder nvarchar (50) Scientific Infraorder name n/a 

Family nvarchar (50) Scientific Family name Ursidae 

Genus nvarchar (50) Scientific Genus name Ursus 

Species nvarchar (100) Scientific Species name Ursus maritimus 

Subspecies nvarchar (150) Scientific Subspecies name n/a 

CommonName nvarchar (500) Common name Polar Bear 

Synonyms nvarchar (max) Common synonyms ours blanc 

TaxaLink nvarchar (500) Hyperlink to the taxa report on itis.gov www.itis.gov/...180542 

TaxaComments nvarchar (max) Comments on the taxonomic classification n/a 

 

The extension of the CUAHSI data model necessitated corresponding changes to the 

CUAHSI ODM Data Loader and also a number of additions to the CUAHSI master list 

of Controlled Vocabulary (http://his.cuahsi.org/mastercvreg.html) – in all 133 additions 

and 17 edits to existing elements in the CUAHSI Observations Data Model controlled 

vocabulary tables were made to accommodate information from this investigation.  

 

http://his.cuahsi.org/mastercvreg.html
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4.4.3  Chain-of-Custody Tracking 

 

The importance of establishing data provenance is widely acknowledged, for 

quality control and quality assurance purposes, for questions of clarification and of 

collaboration, for discovering errors or making revisions, and for providing appropriate 

credit and citation for data use.  As previously discussed, each data value stored in the 

COMIDA CAB project database is treated as an individual entity.  As such, each data 

value has associated metadata describing the source of that value – who was the data 

collector/provider, what organization do they represent, and how can they be contacted.  

This type of provenance-tracking is in use in many data systems today, although 

admittedly not frequently enough, and might be considered the current best-practice.   

The COMIDA CAB project team has taken the chain-of-custody approach one 

step further, however.  Since this is a large project with diverse and complex project data, 

quality assurance and quality control assume increased importance.  To aid project PIs in 

data validation and to allow for individual researchers to ‘track’ their input data as it 

moves through the data management workflow process, each data value maintains as 

metadata the name of the Excel file in which it was originally provided.  Since the 

ultimate data archiving will include the ‘raw’ Excel files in addition to the project 

database, each data kernel may be traced back to its file of origin and to the PI who 

provided it.  The Observations Data Model was amended slightly to explicitly assist in 

this chain-of-custody tracking effort: in the Source table, a mandatory attribute named 

SourceFile was added.   
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This enhanced chain-of-custody tracking affords the opportunity for each PI to 

review their data as it is represented within the complete project database.  This data 

review was accomplished via a “data check” spreadsheet, prepared for and supplied to 

each PI populated with their data.  The data check consists of 57 fields of data and 

metadata and was constructed as a view onto the project database with the data selected 

for inclusion via a query by PI name.  As such, PIs can be confident that their own data 

has been represented faithfully and accurately within the database.  Similarly, queries 

may be performed on the data by individual PI and/or by Excel file of origin.   

 

4.5 COMMUNICATING RESULTS 

4.5.1 Web-Based Data Access 

 

The COMIDA CAB project is federally-funded; this means that the United States 

taxpayer owns the project results and data.  Access to the complete project results is 

beneficial to the multiple project PIs, to other scientists, to regulators, and to stakeholders 

in the Chukchi Sea and its environs.  As such, a project website was established as the 

primary project outreach platform, http://www.comidacab.org (Figure 30).   

 

http://www.comidacab.org/
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Figure 30.  The COMIDA CAB project homepage, http://www.comidacab.org. 

 

The website includes tabs for: (1) Home – providing a brief project overview plus 

recent updates; (2) Maps – linked to the ArcGIS Online community for sharing 

geographic data; (3) Data – linked to the Integrated Rule-Oriented Data System (iRODS) 

on the Corral Server of the Texas Advanced Computing Center (TACC); (4) Documents 

– to share project reports, posters and presentations; and (5) About – the COMIDA CAB 

project team.  The project leverages ArcGIS Online (http://www.arcgis.com/), an online 

community for sharing geographic data, and iRODS, a grid software system for 

managing data on the web.  iRODS is housed on the Corral Server of the Texas 

http://www.comidacab.org/
http://www.arcgis.com/
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Advanced Computing Center (TACC), a 1.2-petabyte set of disk arrays  

(https://goodnight.corral.tacc.utexas.edu/tacc/home/comidacab) (Figure 31).  

 

 

Figure 31.  The COMIDA CAB  iRODS online data storage system. 

 

4.5.2  Data Visualization 

ESRI ArcGIS 10 and the Geostatistical Analyst extension are being used for the 

analysis and visualization of observational data.  The GIS provides for management, 

analysis, and display of spatially-referenced point samples and the interpolation of raster 

surfaces; these maps are useful for viewing and analyzing the data in a geospatial context 

https://goodnight.corral.tacc.utexas.edu/tacc/home/comidacab
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and also have significant value for communicating results to both technical and lay 

audiences.  A selection of example visual representations is presented in Figure 32, 

Figure 33, and Figure 34. 

 

 

Figure 32.  Examples visual representations of geographic data: (a) Polycyclic Aromatic 

Hydrocarbons in surface sediments. 
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Figure 33.  Examples visual representations of geographic data; (b) mercury 

concentration in organismal tissue. 
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Figure 34.  Examples visual representations of geographic data: (c) infaunal biota taxa 

count. 

 

4.5.3  Data Archiving 

In addition to these project-specific outreach efforts, the project data have been 

archived externally at the National Oceanographic Data Center (NODC), which has as its 

mission the provision of scientific stewardship of marine data and information and 

represents the world’s largest holding of publicly-accessible oceanographic data.  As 
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such, NODC serves as the national repository for information specific to the 

oceanographic discipline (NODC 2011).   

The NODC operates as part of the National Oceanographic and Atmospheric 

Administration (NOAA).  NOAA, and thus NODC, commonly employs the Network 

Common Data Format (NetCDF) to manage data.  Featuring a binary structure well-

suited for multidimensional data, NetCDF is an open-source data format that is widely-

used in the atmospheric science community.  It was developed by Unidata (2012) and has 

been adopted as a standard by the Open Geospatial Consortium (OGC 2012a).  To assist 

oceanographers in submitting data to its data archive, the NODC has developed data 

submission templates which conform to Unidata’s NetCDF Attribute Convention for 

Dataset Discovery (ACDD) and NetCDF Climate and Forecast (CF) conventions (NODC 

2012).  While not mandatory for data submission to the NODC, these NetCDF templates 

represent the current best practice for open-source and open-standard data sharing and 

data access.   

Based on discussions with NODC data officials, the COMIDA CAB project team 

will submit a data package to the NODC upon approval for public data release.  The 

package will consist of: (1) original PI data files as Microsoft Excel; (2) the project 

database in NetCDF format using the NODC data submission template; and (3) the final 

project report.   

It is believed that the COMIDA CAB data submission package represents the 

most complete description available of the project results and affords the greatest 

flexibility for others to find, access, and ultimately use the project data from the NODC 

NetCDF 

http://www.unidata.ucar.edu/software/netcdf-java/formats/DataDiscoveryAttConvention.html
http://www.unidata.ucar.edu/software/netcdf-java/formats/DataDiscoveryAttConvention.html
http://cf-pcmdi.llnl.gov/documents/cf-conventions
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archive.  It is hoped that this novel submission package template will serve as a model for 

others submitting data to NODC to better leverage this valuable public resource for 

understanding and protecting our oceans. 

The flow of information for the COMIDA CAB project can be envisioned as 

going from the bottom of the ocean…to a pile of Excel files…to a unified, homogenized 

project database…in a common data format…to a stable and persistent federal 

archive…to authoritatively establish the baseline conditions of the Chukchi Sea (Figure 

35). 

 

 

Figure 35.  Flow of information for the COMIDA CAB project, from collection through 

homogenization and database creation to publishing and archiving. 
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4.6 CONCLUSION 

 

Scientific oceanographic cruises have taken place for over 100 years and have 

yielded valuable insight into the patterns and processes of our planet’s oceans.  The value 

of this information is as high now as it has ever been due to multiple stressors on and 

numerous competing demands for oceanic resources.  As such, thoughtful oceanographic 

data management is of critical importance.  Presented herein is a workflow for observing 

the ocean environment, organizing and storing those observations, and communicating 

the resulting data and knowledge.  Central to this workflow is the process of converting a 

heterogeneous “stack” of data files into a unified project database.  The benefits of this 

process can be multiple: more transparent information, better decision support, better re-

use opportunities, easier archiving, better documentation and metadata, better quality 

control and higher data quality.  

On a more local level, thoughtful data management is of equal or greater 

importance for the COMIDA CAB project.  One stated goal of the project is to establish 

quantitative baseline conditions of the Chukchi Sea ecosystem – of the epifaunal and 

infaunal biota, the sediment, and the water column – in advance of any potential oil and 

gas exploration and production in the region.  As such, the data itself resulting from the 

COMIDA CAB cruises is a valuable product, additional analyses notwithstanding.  By 

working with and providing data to the National Oceanographic Data Center, the stable 

long-term storage of the COMIDA CAB data is ensured, and the availability of these data 
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is furthered by embracing open-source data access and data standards in the manner 

described here. 

One of the main reasons why the COMIDA CAB team was successful in securing 

the project grant was that they had a comprehensive idea about data management for the 

project.  There was a significant question whether an observations model developed for 

CUAHSI HIS could be applied to the very different COMIDA CAB data.   This 

investigation showed that, with the additions to handle taxonomy and chain of custody, 

the CUAHSI Observations Data Model proved to be quite robust and a modified version 

of the “star schema” of the ODM with the additional descriptor of a TaxaID proved to be 

a robust model for storing the project data even though 93% of them were physical CTD-

type data and 7% were the much more complex biological kind of data.    

The objectives of this paper were to present an approach to making observations 

of the ocean environment, to put forth a methodology for organizing and storing these 

observations, and to offer various avenues for communicating scientific results widely via 

the use of open standards.  What was accomplished via this case study was the adaptation 

of the CUAHSI Observations Data Model for application with physical, chemical, and 

biological oceanographic data – a new extension of the CUAHSI Hydrologic Information 

System.  Furthermore, the need for accommodating biological observations of the ocean 

environment in a cohesive project database drove further refinement of the BioODM data 

model, which was also amended to include better source tracking for the novel chain-of-

custody approach introduced here.  In this sense, a complete, real-world implementation 
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of an expanded Hydrologic Information System is presented, inclusive of biological and 

oceanographic data, for a multidisciplinary academic study. 
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Chapter 5: Managing Environmental Flows Information for Texas 

 

5.1. TEXAS ENVIRONMENTAL FLOWS INFORMATION SYSTEM CASE STUDY 

 

Stakeholders and regulators across Texas are in the midst of a legislatively-driven 

process to determine the environmental flow needs of the bays, basins, and rivers of the 

state.  Environmental flows are defined as “the quantity, timing, and quality of water 

flows required to sustain freshwater and estuarine ecosystems and the human livelihoods 

and well-being that depend on these ecosystems.”  (Brisbane Declaration 2007)  As is 

common elsewhere, the environmental flow program in Texas includes analyses of 

hydrology and hydraulics, geomorphology and physical processes, water quality, biology, 

and the connectivity between and among these four primary disciplines.  The synthesis of 

sometimes disparate findings from these disciplines stands to be one of the most 

challenging and most important steps of developing instream flow recommendations.   

Given the large spatial and temporal scales of analysis necessary for sufficiently 

detailed study of environmental flow issues, a relative paucity of data exists to support 

these analyses.  This challenge is acutely evident in the determination of flow-biota 

linkages and the assessment of habitat availability and suitability.  As such, there is a 

need for the development of tools and systems to organize, share, and synthesize 

information.  The case study presented here is an effort to have biological information for 
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environmental flow studies organized in a manner consistent with that currently used for 

physical and chemical information.    

The Environmental Flows Information System for Texas project seeks to provide 

improved data access and integration to aid stakeholder committees, expert science 

teams, and the Texas Commission on Environmental Quality in their collective efforts to 

determine statewide environmental flow needs.  In addition, a demonstration project for 

the river basin and bay system consisting of the Trinity and San Jacinto Rivers and 

Galveston Bay was conducted which sought to organize and foster access to documents, 

reports, and studies.   

Continuing the V-shaped exposition, this chapter branches out further to a case 

study which considers observations data for aquatic biology alongside other types of 

information and which serves a wider audience of stakeholders and practitioners in the 

field of environmental flows. 

 

5.2. EXAMPLE USE CASES FOR ENVIRONMENTAL FLOWS 

 

Often when designing software or information systems, a useful first step is to 

determine the expected typical usage.  This determination can be accomplished via the 

development of typical usage scenarios: who will use the system and what do they hope 

to do with it?  What is the typical user’s skill level?  Do they want to find something, 

share something, analyze something?  This process is called “defining a use case.” 

(Jacobson et al 1992)  Although use case formats vary, common elements include: 
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 Usage description (goal) 

 Actors (user profile) 

 Assumptions 

 Workflow (steps to achieve the goal) 

 Variations and Special Requirements. 

The following are some example use cases: situations from the perspective of a 

user (scientist, researcher, stakeholder, general public, etc) making a query on the Texas 

Environmental Flows Information System (Table 11).  These use cases may also be found 

online at:  http://www.cuahsi.org/docs/EnvironmentalFlows.pdf 

 

http://www.cuahsi.org/docs/EnvironmentalFlows.pdf
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Table 11.  Example queries for the study of environmental flows. 

Example Query General Query Type 

What data were collected on the Lower Sabine 

River study?  

All variables for all time for all space within a 

specified geographic extent (basin, reach, 

river, site) 

I’m interested in fish distribution; what 

largemouth bass data are available in Texas? 
One variable for all time for all space. 

What sites measure channel bed substrate? Sites (space), identified by variable. 

What invertebrate data is available in Texas?  

How about mesohabitat data?  Sunfish family?   

All data by variable group (fish taxonomy, 

habitat). 

Was a report or article written based on the 

data at this site? 
Specific document by site and/or sample. 

What reports or articles are available for the 

Trinity River basin? 

All documents by specified geographic extent 

(basin, etc). 

For Guadalupe bass, what is the trophic group 

(omnivore, piscivore, herbivore etc); 

conservation status (threatened, endangered, 

etc); mesohabitat guild (fast riffles, deep pools, 

etc); habitat suitability criteria (acceptable 

depth, velocity, and substrate, etc)?  

Data value (variable) linked to supporting 

relational database.   

 

Another use case developed for the Texas Environmental Flows Information 

System concerns coastal processes, relevant to the determination of environmental flow 

needs in Texas since the “instream” water is delivered to coastal bays and estuaries as 

“freshwater inflows” and thus acts as a significant control on salinity levels (Table 12).  

The previous use cases discussed are framed around typical queries that a scientist might 

be seeking data in order to answer.  In the following use cases, these typical queries are 
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still present in the Example column, but have been structured to demonstrate sample 

queries which may draw from a range of data services, sampling sites, and variables. 

 

Table 12.  Example use case displaying cardinality of data services, sites, and variables. 

 
 

 

These use cases demonstrate one distinct advantage of a database and an 

information system over individual data files – the ability to access all data pertinent to a 

specific question (e.g.: “What is the salinity in Galveston Bay?”) regardless of whether 

the data come from one data source or multiple sources.  Table 12 also shows the 

cardinality between entities in the database – the numeric relationship between each 

attribute.  For example, Use Case #1 can be accomplished using data from only one 

service (Texas Coastal Ocean Observation Network, TCOON), at one site (Galveston 
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Pier 21), for one variable (salinity), whereas Use Case #8 requires data from many 

services (TCOON, Texas Parks and Wildlife Department (TPWD), and Texas Water 

Development Board (TWDB)), for many sites (all locations within the extent of 

Galveston Bay), for many variables (salinity, wind speed, and water temperature).  In this 

regard, Use Case #1 displays a one-to-one cardinality between site and variable, Use 

Case #8 displays a many-to-many cardinality between site and variable, and the 

intermediate Use Case #6 displays a one-to-many cardinality between site and variable.  

 

 

5.3. LOWER SABINE RIVER CASE STUDY 

5.3.1 Background and Purpose 

The discussion that follows presents a case study from the Texas Instream Flows 

Program for the Lower Sabine River in Texas and Louisiana.  The data were collected by 

staff from the Sabine River Authority of Texas, the Texas Parks and Wildlife 

Department, TCEQ, and TWDB and the analysis described here was conducted by the 

author.   

Of the first two Bay and Basin Expert Science Teams (BBESTs) to deliver reports 

of their findings to TCEQ regarding environmental flow recommendations, one (the 

Trinity/San Jacinto/Galveston BBEST) was unable to reach a consensus with their 

recommendations.  This was attributed partly to a fine-scale analysis of hydrology with 

little or no connection to the aquatic biology of the basin and bay system.  One benefit of 

the Environmental Flows Information System is to aid in the synthesis and analysis of the 
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available biological datasets in Texas, incorporating data from state agencies all the way 

down to individual academic researchers.   

An example biological data analysis was performed using data collected from the 

Texas Instream Flow Program on the Lower Sabine River in 2006.  “The study on the 

Lower Sabine River was prioritized based on the potential for water transfers within the 

Sabine Basin, proposed inter-basin water transfer projects, and Federal Energy 

Regulatory Commission hydropower relicensing of the Toledo Bend Dam.” (SRATX 

2007).  These data were obtained by request from the TWDB and the purpose of 

presenting this limited analysis here is to showcase one example of the type of basin 

understanding which could be achieved via improved access to the state’s aquatic biology 

data.  These previously-inaccessible data have now been made publicly-accessible via 

EFIS (http://efis.crwr.utexas.edu/downloads/SanAntonio_baseline_fish_sampling.zip), 

via the data.crwr website (http://data.crwr.utexas.edu/tifp_sabine.html), and via CUAHSI 

HIS Central (http://hiscentral.cuahsi.org/pub_network.aspx?n=50).    

The purpose of this case study is thus two-fold: (1) to provide a detailed view of 

the types of information used, the types of questions posed, and the types of analyses 

conducted to aid in the determination of environmental flow needs; and (2) to 

demonstrate how an improved Hydrologic Information System which can accommodate 

biological data can be of use in these efforts.  Of particular importance is the inclusion of 

both taxonomy and traits – the genus and species of all fish observed is recorded along 

with the organism count and the minimum and maximum total lengths of each fish 

species.  In this configuration, taxonomy exerts primacy over trait in the sense that a 

http://efis.crwr.utexas.edu/downloads/SanAntonio_baseline_fish_sampling.zip
http://data.crwr.utexas.edu/tifp_sabine.html
http://hiscentral.cuahsi.org/pub_network.aspx?n=50
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researcher is much more likely to perform a query on the database by species (“What was 

the maximum length of a harlequin darter in study reach 5020?”) than by trait (“Of all 

fishes observed over 30 centimeters in length, what percent of them were longnose 

gar?”).   

 

5.3.2 Lower Sabine River Instream Flow Study Observations 

Over 8 field days, 165 samples were collected at 8 study reaches with 147 of 

those samples (89%) yielding fish (Figure 36, Figure 37).  Fish were collected using seine 

nets and backpack- and boat-mounted electroshock units.   

 

 

Figure 36.  Lower Sabine River baseline fish sampling sites, May to September 2006 

(SRATX 2007).  At the southern end of the map is Sabine Lake salt water 

estuary and at the northern end is the Toledo Bend Reservoir, formed by the 

Toledo Bend hydropower dam.  
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Figure 37.  Sabine River sampling locations.  Noteworthy in this image is the referential 

integrity of the handheld GPS unit used to identify the location of samples 

marked with identifiers such as “right bank,” “left sand bar,” and “center of 

tributary channel.” (SRATX 2007) 

 

In addition to fishes, physical habitat data were collected on mesohabitat type 

(pool, backwater, run, or riffle), on water depth, on stream velocity (at either 60% or 20% 

and 80% of water depth based on the depth encountered), on channel substrate material 

(silt/clay, sand, gravel, rubble/cobble, boulder, or bedrock), on cover type (such as 

overhanging vegetation, undercut banks, submerged vegetation, submerged rocks and 

logs, and floating debris), and embededness (the degree to which larger substrate grains 

are covered by fine sediment) (Table 15).  Furthermore, data were collected on the level 

of sampling effort – seine length (the cross-stream width dimension of the seine net), haul 

length (the distance the net was dragged), and shock distance (the length along which 

electrical current is being applied in the water).  
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The types of data collected in this study on fish and habitat are representative of 

those commonly collected across the globe for environmental flow assessments.  

Although conditions vary from study-to-study and site-to-site, a few common categories 

of research questions are asked and answered using data such as these (Table 13).  This 

list is by no means exhaustive, and some of these questions are addressed somewhat is 

the discussion which ensues.    

 

Table 13.  Example common research questions posed in an environmental flows 

assessment and the corresponding data requirements. 

Research Question Data Requirements 

What is the (fish, mussel, invertebrate, etc) 

community structure? 
Species counts and richness, diversity indices 

What are the habitat drivers and controls? Stream and channel habitat data 

What is the distribution and relative 

abundance of native/ invasive species? 
Native/invasive status 

What is the status of species of conservation 

concern? 

State and federal lists of threatened and 

endangered species 

What is the long-term habitat quality? 
Tolerance/intolerance thresholds, habitat 

suitability indices 

 

5.3.3 Fish Community Analysis and Characterization 

A total of 5831 fish were observed representing 58 species (averaging 40 fish per 

sample).  On average, 729±433 fish were collected per study reach with a range of 72 to 

1365 fish.  The average study reach had 24±8 species represented with a range of 10 to 
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36 species present (out of 58 total across all sites).  The five most abundant species 

collectively accounted for nearly 70% of the fishes observed (Table 14, Figure 38).     

 

 

Figure 38.  (a) Blacktail shiner (Cyprinella venusta); (b) Bullhead minnow (Pimephales 

vigilax); (c) Bay anchovy(Anchoa mitchilli); (d) Spotted bass (Micropterus 

punctulatus); and (e) Sabine shiner (Notropis sabinae).  Not to scale.  

Figures a, b, d, e from (Thomas et al. 2007); Figure c from (Wood and 

Williams 2005). 
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Table 14.  Fish species abundance in the Lower Sabine River. 

Species 
Common 

Name 
Figure Family Count 

Relative 

Abundance 

Cyprinella 

venusta 

blacktail 

shiner 
a Cyprinidae 2101 36.0% 

Pimephales 

vigilax 

bullhead 

minnow 
b Cyprinidae 595 10.2% 

Anchoa mitchilli bay anchovy c Engraulidae 542 9.3% 

Micropterus 

punctulatus 
spotted bass d Centrachidae 446 7.6% 

Notropis sabinae Sabine shiner e Cyprinidae 365 6.3% 

All others    1782 30.6% 

Total    5831 100.0% 

 

Table 15.  Variables in the Lower Sabine River observations database. 

Biological Physical Sampling Effort 

scientific name  

(genus and species) 
water depth seine length 

common name velocity at 20% depth haul length 

count velocity at 60% depth shock distance 

minimum total length velocity at 80% depth shock time 

maximum total length substrate type   

  habitat type   

  cover type   

  embededness   
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The fish community structure in each of the eight study reaches was examined 

using three methods: the Shannon-Weiner Diversity Index (H’), Pielou’s Evenness Index 

(J’), and the Simpson Dominance Index (D).  Calculation of these indices relies on the 

total organism Count (N) and the total Species Richness (S) (Table 16).  The Shannon-

Weiner Diversity Index was originally developed to quantify entropy in written text, 

whereby the uncertainty associated with correctly predicting the next letter in a string is 

greater if more different letters are present (Shannon 1948).  In this sense, the index itself 

increases as the number of letters (or species) increases.  Pielou’s Evenness Index is a 

measure of how equal the relative abundance is of various species within a community 

(Pielou 1966).  If the same number of every species is present, the community is 

completely even and therefore J’=1.0, whereas if one species dominates, J’ approaches 

zero.  Similarly, a value of D=1.0 in the Simpson Dominance Index represents infinite 

species diversity whereas zero represents no diversity whatsoever (Simpson 1949). 

A limited investigation in possible spatial patterns of the fish community structure 

yielded the following results.  The downstream-most study reach 5010, closest to the 

Sabine Lake salt water estuary, exhibited high fish presence (count), moderate species 

richness, and low diversity.  This reach was dominated by bay anchovies, a coastal 

species tolerant of a wide range of salinities.  The next three reaches moving upstream 

(5020 through 5040) exhibited higher fish presence but lower species richness.  

Cyprinids, especially blacktail shiner, dominated these reaches and thus caused lower 

diversity, lower evenness, and more dominance.  The next three reaches (5050 through 

5070), exhibited higher fish counts and lower diversity with high relative abundance of 
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blacktail shiner, bullhead minnow, and Sabine shiner.  The upstream-most study reach 

5080, located less than 20 miles below the Toledo Bend hydropower dam, exhibited a 

very low fish count and a corresponding very low species richness.  This reach was 

dominated by blacktail shiner and longear sunfish.    

 

Table 16.  Lower Sabine River fish community characterization. 
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Figure 39.  Frequency distribution of the relative abundance of the family Centrarchidae 

(sunfishes and bass) in the Lower Sabine River study area. 

 

Across all sites, 889 fishes of the family Centrarchidae (sunfishes and bass) were 

observed with a relative abundance of 22% ±24% (Figure 39).  Additionally, three blue 

suckers (Cycleptus elongatus) were observed, a state-listed threatened species.  The 

presence and geographic distribution of imperiled species (i.e., those species classified as 

vulnerable, threatened, or endangered) is often an important factor in the determination of 

environmental flow regimes and in the prioritization of stream restoration and 

conservation efforts.  However, there is some disagreement regarding the public release 

of observations data for imperiled organisms which specifies a known location for those 

organisms; this concern stems from a desire to protect the imperiled organisms from 

disturbance from curious and interested parties.  

   The only fish non-native to the Sabine River Basin observed was Menidia 

beryllina (inland silverside); 192 of these individuals were collected ranging from 0 to 

90% of the sample population with a mean of 3% ± 12% (Figure 40).  M. beryllina was 
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“originally found in coastal waters and upstream in coastal streams along the Atlantic and 

Gulf coasts; widely introduced into freshwater impoundments.” (Hubbs et al. 1991; 

Thomas et al. 2007)   

 

 

Figure 40.  Distribution of the non-native inland silverside (Menidia beryllina) fish 

species in the Lower Sabine River Basin, Texas/Louisiana. 

 

From an environmental flows perspective, two broad conclusions may be drawn from the 

analyses presented here.  First, the Toledo Bend hydropower dam appears to be having an 

impact on downstream fish abundance and species richness, so a consideration of the 

release schedule and potential dam reoperation merits attention.  Second, the inland 

silverside has had some, but limited, success in invasion in the Lower Sabine River.  
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Thus, an examination of freshwater inflows to Sabine Lake is warranted, as is an 

investigation into the salinity balance and its effect on invasive species control.   

5.3.4 Linking Observations Data to Maps and Documents 

“The Texas Environmental Flows Information System and a corresponding Texas 

Water Development Board-sponsored project to develop a Texas Hydrologic Information 

System both seek to organize and facilitate spatially-explicit access to water data.  One 

common means of accessing these data is through a map interface.  It is sometimes the 

case that the data collected and made available through such information systems were 

aggregated and analyzed into a journal article, thesis, research report, data summary, 

study, or other similar document, and the analyses, conclusions, and recommendations 

from these documents often provide added value.  Thus, it is worthwhile to provide 

parallel access to both the data and the knowledge products derived from that data.   

“A prototype linkage to a georeferenced digital archive of documents (orange 

polygon in Figure 41) was developed using the same map interface that hosts the data so 

the user can access both types of information concurrently.  The documents have been 

represented by polygons instead of points as polygons are believed to be more spatially-

explicit and thus provide a more accurate geographic representation of the study area 

addressed in any given document. 
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Figure 41.  KML-based polygonal geographic representation of the Lower Sabine River 

Instream Flow Study, depicted alongside the study sampling sites; linkages 

to both the data and the document are provided from the map interface. 

(Hersh et al. 2008) 

 

“Thus far, example geographic representation of digital documents has been 

provided via KML (formerly, Keyhole Markup Language) and ESRI shapefiles; the use 

of Web Feature Services (WFS) is currently being explored by CRWR and the Texas 

Natural Resources Information System (TNRIS).  KML is a geographic language 

developed and made popular by Google in their Google Earth software; KML has 

recently been accepted as an Open Geospatial Consortium (OGC) standard (OGC 2008).  

Shapefiles are a proprietary vector data format of the ESRI software company, providers 

of the popular ArcGIS line (ESRI 1998).  WFS is an OGC interface standard for the 

communication of geographic data designed to support interoperability in that it is not 

tied to any specific software program, operating system, or platform (OGC 2008b).” 

(Hersh et al. 2008)       
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5.4. THE TEXAS ENVIRONMENTAL FLOWS INFORMATION SYSTEM 

 

The current Senate Bill 3 process has had mixed success in establishing 

environmental flow needs in Texas bay and basin systems.  In a memo to the stakeholder 

committees and expert science teams, The SB3 Science Advisory Committee has noted 

that “…issues have arisen with regard to the lack of sufficient site-specific scientific data 

and analyses describing the essential relationships between environmental flows and the 

actual needs of aquatic organisms in those systems.” (SAC 2010)  One step toward 

solving this problem is to bring biological data into a structured format to stand on the 

same footing as hydrologic data.   

A prototype environmental flows information system is developed for the State of 

Texas that incorporates relevant known available datasets from federal, state, academic, 

river basin, and local sources (http://efis.crwr.utexas.edu) (Figure 42).  Tools are 

developed to assist in the publishing, visualization, and access of data and documents via 

map-based, spreadsheet-based, and other methods.  This project puts forth the concept of 

a Water Information System comprised of three components: (1) Geographic Information 

Systems (GIS) for geographic data; (2) Hydrologic Information Systems (HIS) for 

observations data; and (3) Digital Libraries for digital assets (documents, images, videos). 

Six information types are included in the Information System: 

1. Point observations data (communicated via the WaterML web language and 

stored in the CUAHSI Observations Data Model) (CUAHSI 2009); 

http://efis.crwr.utexas.edu/
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2. Geographic data (such as shapefiles, feature classes, KML, 

WFS/WCS/WMS); 

3. Documents (stored in the DSpace digital archive); 

4. Tables (such as fishes conservation status and trophic guilds); 

5. Tools (such as a Microsoft Excel-based Calculator for Low Flows); and 

6. Links (including the Fishes of Texas project, the Indicators of Hydrologic 

Alteration model, and many others). 

Altogether, the Information System contains nearly 100 components from over 25 

contributors, including: state sources (e.g.: Texas Commission on Environmental Quality, 

Texas Water Development Board, Texas Parks and Wildlife Department, Texas Coastal 

Ocean Observation Network, and Texas Natural Resource Information System); federal 

sources (e.g.: United States Geological Survey, US Environmental Protection Agency, 

National Weather Service, National Oceanographic and Atmospheric Administration, and 

US Fish and Wildlife Service); academic (e.g.: University of Texas, Texas A&M 

University, Texas State University, University of New Orleans, and CUAHSI); non-

governmental organization sources (e.g.: World Wildlife Fund and The Nature 

Conservancy); and river authorities (e.g.: San Antonio River Authority, Sabine River 

Authority of Texas.  This content may be accessed through one of four avenues: (1) Web 

page; (2) Interactive Map Viewer; (3) Digital Library; and (4) HydroPortal.   

The tables in EFIS provide an additional level of analytical support not typically 

found in present-day Hydrologic Information Systems.  A great deal of current thinking 

in biological research focuses on the structure and function of ecosystems, on trophic 
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redundancy, and on the ecosystem services offered by various species and organisms.  In 

this sense, higher-level knowledge products such as compilations of trophic groups, 

mesohabitat guilds, reproductive guilds, conservation status, and functional feeding 

groups provide additional meaning and add value to the raw observations data.  In this 

regard, the design and content of EFIS supports analysis on three tiers: (1) at the 

organism level (e.g., individual organism traits); (2) at the community level (e.g., 

abundance and diversity metrics); and (3) at the functional level (e.g., across guilds and 

trophic groups).     

An Interactive Map Viewer was developed which incorporates hydrologic 

basemap data for the United States developed and hosted by ESRI, overlain by 

observations data developed and hosted by the Center for Research in Water Resources at 

the University of Texas at Austin (Figure 43).  Geographic and observations data is also 

available via the HydroPortal, a customization of the ESRI Geoportal Toolkit extension 

(Figure 44).  Finally, a Digital Repository was developed in conjunction with the 

University of Texas Library system based on the open-source DSpace digital archive 

system (Figure 45) (DSpace 2009). 
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Figure 42.  Environmental Flows Information System for Texas site homepage: 

http://efis.crwr.utexas.edu. 

http://efis.crwr.utexas.edu/
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Figure 43.  EFIS Interactive Map: http://efis.crwr.utexas.edu/map.html. 

 

 

 

Figure 44.  Environmental Flows Information System for Texas HydroPortal. 

http://efis.crwr.utexas.edu/map.html
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Figure 45.  Environmental Flows Information System for Texas Digital Repository 

 

5.5. THE CALCULATOR FOR LOW FLOWS 

 

One contribution of the CUAHSI HIS project was the conceptualization and 

development of a Services-Oriented Architecture (SOA) for the communication of water 

data over the internet via a standard language, WaterML (Figure 46).  The CUAHSI SOA 

includes HydroServer for data storage, HydroCatalog for data inventory and discovery, 

and HydroDesktop for data access and analysis.  The significance of an SOA is that it 

enables data to be made accessible and communicated over the internet via web services, 

not just stored locally.  In recognition of the value of SOA, the USGS has adopted 



 110 

WaterML as its standard for online data sharing and is currently publishing and sharing 

data in its National Water Information System (NWIS) via WaterML. 

     

 

Figure 46.  The CUAHSI HIS Services-Oriented Architecture (CUAHSI 2012). 

 

 As part of the EFIS project, a Microsoft Excel-based application called the 

Calculator for Low Flows was developed.  CaLF is discussed here as an example of a 

relatively simple tool which leverages a significant federal data reserve via water web 

services to readily provide exactly the kind of information needed by environmental flow 

practitioners in their determination of environmental flow needs.  CaLF is a tool for: (1) 

downloading USGS daily streamflow data; (2) calculating the seven-day two-year low 

flow (7Q2); (3) calculating and plotting the flow duration curve; (4) calculating the 

harmonic mean; (5) calculating the Lyons’ method monthly minimum streamflow and the 

modified Lyons’ method streamflow and adjusting them via a Drainage Area Ratio if 
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desired; and (6) graphing these two minimum flows.  CaLF is designed in part to aid in 

the parameterization of the Hydrology-Based Environmental Flow Regime tool (HEFR) 

(SAC 2011).   

The CaLF tool uses web services to download U.S. Geological Survey (USGS) 

mean daily streamflow data over an internet connection (Figure 47).  This data is 

imported to the CaLF tool and manipulated through Visual Basic programming.  CaLF is 

based on the technology of HydroObjects (Whiteaker 2008) and LDCurve, a tool for 

automatically creating bacterial load duration curves for water quality segments in the 

State of Texas. (Johnson 2009, Johnson et al. 2008)  CaLF is accessible at: 

http://efis.crwr.utexas.edu/tools_guidance.html or at http://tools.crwr.utexas.edu/CaLF/. 

The 7Q2 is calculated and reported on the “7Q2” worksheet by calculating the 

seven-day minimum flow within each year of record (the 7Q1), then determining the 

value in this new series with a 2-year return interval (i.e., the median of the 7Q1 values).  

The 7Q2 is defined as “The lowest average stream flow for seven consecutive days with a 

recurrence interval of two years, as statistically determined from historical data” and is 

relevant in Texas because “some water quality standards do not apply at stream flows 

which are less than the 7Q2 flow.” (TCEQ 2000)  

 

http://efis.crwr.utexas.edu/tools_guidance.html
http://tools.crwr.utexas.edu/CaLF/
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Figure 47.  Station Definition tab of the Calculator for Low Flows tool. 

 

  The Lyons’ flows are calculated as 40% of the monthly median streamflow for 

October through February and 60% of the monthly median streamflow for March through 

September.  The Modified Lyons’ method simply replaces any monthly calculated 

Lyons’ flows which fall below the 7Q2 with the calculated 7Q2 value (effectively using 

the 7Q2 minimum flow as an absolute floor) (Figure 48).  If desired, the Lyons’ and 

Modified Lyons’ flows can be adjusted via a user-input Drainage Area Ratio (DAR) on 

the “Lyons” worksheet.  The DAR can be entered directly, or the Diversion Point Area 

and the Stream Gage Area can be entered and the DAR will be calculated accordingly.    
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Figure 48.  Example output for the Lyons method and modified Lyons method 

streamflows, USGS #08065350, Trinity Rv nr Crockett, TX.  Note that the 

7Q2 streamflow is used in the months of August, September, and October 

per the modified Lyons methodology.   

 

Water web services are critical in the success of the CUAHSI Hydrologic 

Information System project.  As has been shown via the CaLF example, water web 

services can play an important role in a wide range of disciplines – supporting analysis, 

modeling, and interpretation of data via the internet.  While CaLF is a relatively simple 

tool designed to support the work of an environmental flows practitioner, there is no 

reason any number of similar tools could not be developed which use USGS streamflow 

data for any other particular application, nor any reason that a similar tool couldn’t be 

developed to leverage any other water web service. 
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5.6 DIGITAL REPOSITORIES 

 

Access to existing data and documents is a valuable and necessary tool for future 

scientific and engineering analyses.  Some documentation is readily available through 

various means.  Much is currently unavailable, however – a significant detriment to 

accomplishing the goal of establishing environmental flow needs.  In addition to the 

Digital Repository created for the Environmental Flows Information System of Texas 

project, a demonstration project for the river basin and bay system consisting of the 

Trinity and San Jacinto Rivers and Galveston Bay was conducted which sought to 

organize and foster access to documents, reports, and studies.   

The objectives of this demonstration project were to create a comprehensive 

Environmental Flows Document Model that would provide the format and organizing 

scheme for the incorporation of information from the multiple relevant disciplines; 

compile representative existing information on the hydrology, biology, physical habitat, 

physical processes (geomorphology), and chemical processes (water quality, aquatic life 

uses, etc.) of the study area; and deliver a prototype temporally- and spatially-explicit 

annotated bibliography of documents, reports, studies, and journal articles pertaining to 

the study area.  In conjunction with the University of Texas Libraries, the DSpace digital 

repository system was used to capture, store, index, preserve, and redistribute documents.  

The Trinity River Basin document collection is an early adopter of a much larger 

DSpace adoption effort at the University of Texas at Austin and in cooperation with the 

Texas Digital Library, “a multi-university consortium providing the digital infrastructure 
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to support an online scholarly community for higher education in Texas” 

(http://www.tdl.org) (Figure 49). The goals of the Texas Digital Library are very much 

aligned with the goals of the Trinity River demonstration project.  TDL seeks to provide: 

(1) Access to a wide range of digital materials, (2) Long-term preservation of digital 

collections, (3) Support for the scholarly community, and (4) Aggregation of resources 

(TDL 2008). 

 

 

Figure 49.  Texas Digital Library members. 

 

The UT-Austin DSpace Repository (http://repositories.lib.utexas.edu/) was 

initiated on September 1, 2008; it’s stated purpose is “to collect, record, provide access 

to, and archive the scholarly and research works of the University of Texas at Austin, as 

well as works that reflect the intellectual and service environment of the campus.”  (UT 

Libraries 2008).  The Trinity River Basin project falls into the latter category. 

http://www.tdl.org/
http://repositories.lib.utexas.edu/
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Additional information is kept with the data file as metadata.  The term metadata 

means “data about data” and is used to classify content for organization and retrieval.  

The Trinity River Basin prototype document management system metadata is as follows:   

 Title 

 Author(s) 

 Sponsorship (i.e., organization) 

 Date 

 Classification (i.e., discipline) 

 Subject (i.e., keywords) 

 Citation 

 Description 

 Publisher 

 Type (e.g., technical report, article, audio recording) 

 URI 

 

Storing accurate and useful metadata makes searching for relevant documents 

simple.  The data files that are organized into related sets are then grouped into items.  An 

item is an “archival atom” consisting of grouped, related content and associated 

descriptions (metadata). An item’s exposed metadata is indexed for browsing and 

searching. Items are organized into collections of logically related material. The highest 

level of DSpace content hierarchy is a community, a collection of items. A community 

corresponds to parts of the organization implementing the DSpace such as a department, 

lab, research center, etc. The end user accesses the files in DSpace via a web interface. 

Once an item is located, Web-native files can be displayed in a Web browser while other 

formats can be downloaded and opened with suitable software.  The Trinity River Basin 

system can be accessed at: http://repositories.lib.utexas.edu/handle/2152/4029. 

http://repositories.lib.utexas.edu/handle/2152/4029
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5.7 THE TEXAS WATER DIGITAL LIBRARY 

 

A pilot project has been initiated in Texas to implement and evaluate a statewide 

digital library for water resources information and issues.  The goal of the Texas Water 

Digital Library (TWDL) is to be a centralized, online location for the research and works 

of university and other water resource entities in Texas, effectively federating water 

research currently housed at several universities across the state 

(https://repositories.tdl.org/twdl-ir/) (Figure 50).  The TWDL began a partnership 

between water researchers and digital library professionals and librarians.  Founding 

members include Dr. John Leggett of the Texas A&M University Libraries and Mark 

McFarland of the University of Texas Libraries, co-directors of the Texas Digital Library 

(TDL), plus the Directors of the Texas Water Resources Institute (TWRI) at Texas A&M, 

the Center for Research in Water Resources (CRWR) at UT-Austin, and the Water 

Research Center (WRC) at Texas Tech University. 

 

https://repositories.tdl.org/twdl-ir/
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Figure 50.  The Texas Water Digital Library homepage, https://repositories.tdl.org/twdl-

ir/. 

 

One featured digital repository of the TDL is that of Texas A&M University 

(http://repository.tamu.edu/), “a digital service that collects, preserves, and distributes the 

scholarly output of the university. The repository facilitates open access scholarly 

communication while preserving the scholarly legacy of Texas A&M faculty.”  Similarly, 

the featured repository of the University of Texas at Austin 

(http://repositories.lib.utexas.edu/) has the stated purpose “to collect, record, provide 

access to, and archive the scholarly and research works of the University of Texas at 

https://repositories.tdl.org/twdl-ir/
https://repositories.tdl.org/twdl-ir/
http://repository.tamu.edu/
http://repositories.lib.utexas.edu/
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Austin, as well as works that reflect the intellectual and service environment of the 

campus.”  Both of these repositories, along with the TWDL, are built using the DSpace 

system. 

A number of universities in Texas have successfully implemented university-wide 

digital libraries.  Many of these same universities also have water research centers, and 

some of these research centers have leveraged the TDL infrastructure to create water-

specific digital repositories.  For example, TWRI at Texas A&M 

(http://repository.tamu.edu/handle/1969.1/6061), WRC at Texas Tech 

(http://esr.lib.ttu.edu/handle/2346/1732), and CRWR at UT-Austin 

(http://repositories.lib.utexas.edu/handle/2152/4028) currently host such research 

products as technical reports, project data, outreach publications, theses and dissertations. 

   One goal of the TWDL is to link written research products like articles and 

reports with their supporting analytic products – models and data.  Two examples are 

offered of this: an academic study and a professional project. 

A project was performed at UT-CRWR to develop and test a stream classification 

system for Texas to support analyses of environmental flows.  The classification system 

is based on quantitative data for 18 distinguishing parameters encompassing watershed 

and stream channel processes from four disciplines: (1) Hydrology & Hydraulics, (2) 

Water Quality, (3) Geomorphology & Physical Processes, and (4) Climatology.  The 

State of Texas was partitioned into five regions: East Texas, South-Central Texas, Lower 

Rio Grande Basin, West Texas, and North-Central Texas by 8-digit Hydrologic Unit 

Code (HUC) basins (Hersh and Maidment 2007).   

http://repository.tamu.edu/handle/1969.1/6061
http://esr.lib.ttu.edu/handle/2346/1732
http://repositories.lib.utexas.edu/handle/2152/4028
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A report describing the findings of the study is housed in the CRWR Digital 

Repository (http://repositories.lib.utexas.edu/handle/2152/7029) and its metadata has 

been harvested for inclusion in the TWDL (https://repositories.tdl.org/twdl-

ir/handle/2152/7029).  Should a researcher wish to further investigate the results of this 

study or use the data for further analysis, they can now get a data summary 

(https://goodnight.corral.tacc.utexas.edu/tacc/Collections/TWDL/StreamClass/StreamCla

ssificationDataSummary_CRWR.doc), the project tabular data 

(https://goodnight.corral.tacc.utexas.edu/tacc/Collections/TWDL/StreamClass/StreamCla

ssificationData_CRWR.xls), and the project geospatial data 

(https://goodnight.corral.tacc.utexas.edu/tacc/Collections/TWDL/StreamClass/StreamCla

ssification_CRWR.zip) from the TWDL.  These data are housed in the iRODS data 

system on the Corral Server at TACC and the URLs are linked via the TWDL metadata. 

But TWDL does not have to be limited to academic research endeavors – it can 

also support public-private partnerships and even private analyses (providing that 

necessary permissions have been granted for intellectual property access).  An example 

of such a partnership, an updated flood study, is presented here as representative of a 

common water resources project typically undertaken by the engineering consulting 

community in Texas. 

 

http://repositories.lib.utexas.edu/handle/2152/7029
https://repositories.tdl.org/twdl-ir/handle/2152/7029
https://repositories.tdl.org/twdl-ir/handle/2152/7029
https://goodnight.corral.tacc.utexas.edu/tacc/Collections/TWDL/StreamClass/StreamClassificationDataSummary_CRWR.doc
https://goodnight.corral.tacc.utexas.edu/tacc/Collections/TWDL/StreamClass/StreamClassificationDataSummary_CRWR.doc
https://goodnight.corral.tacc.utexas.edu/tacc/Collections/TWDL/StreamClass/StreamClassificationData_CRWR.xls
https://goodnight.corral.tacc.utexas.edu/tacc/Collections/TWDL/StreamClass/StreamClassificationData_CRWR.xls
https://goodnight.corral.tacc.utexas.edu/tacc/Collections/TWDL/StreamClass/StreamClassification_CRWR.zip
https://goodnight.corral.tacc.utexas.edu/tacc/Collections/TWDL/StreamClass/StreamClassification_CRWR.zip
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5.8 WATER INFORMATION SYSTEM OF SYSTEMS 

 

As part of this study, Hydrologic Information Systems were implemented as part 

of two disparate case studies – freshwater rivers in Texas and the offshore shelf 

ecosystem in the Alaskan Arctic.  Although the environmental conditions and the array of 

species present couldn’t be more dissimilar in these two case studies, the observations 

data resulting from each of these two studies is remarkably similar in character and 

structure.  As such, a common framework for water information management for 

terrestrial and marine systems is emerging.   

If the information derived from a study was just observations data, then a 

relational database in an existing Hydrologic Information System alone would be 

sufficient.  If the information was only geographic in nature, a geodatabase in a 

Geographic Information System would be sufficient.  If the information was only articles, 

reports, and documents, a Digital Library would be sufficient.  However, modern studies 

of the water environment are often multi- and interdisciplinary and highly complex in 

nature, encompassing some or all of the information types discussed above.   

Given all of these considerations, it is recognized there is no single tool which 

will adequately fit the project information management needs, but rather some 

combination of tools is required – a “system of systems.”  This system of systems likely 

includes multiple means of data storage and multiple avenues of data access aggregated 

into a shared data portal.  It likely includes water web services, maps, documents, and 

databases. As such, it is envisioned that the next generation of Hydrologic Information 
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Systems will be comprised of three component systems and will thus actually be a Water 

Information System of Systems (Figure 51, Figure 52):  

1. Hydrologic Information Systems (HIS) for observations data,  

2. Geographic Information Systems (GIS) for geographic data, and 

3. Digital Libraries for digital assets (documents, images, videos). 

 

 

Figure 51.  Water Information System of Systems schematic representation. 

 

Note that the “system of systems” proposed here is a system of information systems.  As 

such, the Water Information System of Systems differs from the Global Earth Observing 

System of Systems (GEOSS), which is proposed as a system of observing systems (i.e., 

from satellites and other data collection networks).  Although the general concepts of 

information synthesis and integration are applicable in both cases, the scope and 

challenges associated with the development of each of these “system of systems” varies 

greatly. 
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 In many instances, comprehensive project information management requires the 

multi-system approach detailed in Figure 52.  The traditional starting point for 

information management is data, often formatted in individual files, stored on a personal 

computer, shared via email, and so forth.  This level of data management is cheap and 

easy, but offers limited searchability and minimal (if any) organization.   

Relational databases offer a structured and organized data storage solution and 

support for queries and more advanced analysis, but require additional expertise and 

resources for successful application.  Some generic database programs in wide use are 

Microsoft Access, Oracle, and Microsoft SQL Server.  Relational databases have been 

customized for use in the hydrologic sciences and are the central component of a 

Hydrologic Information System.   

If the project information to be managed has a spatial component (such as a 

county, watershed, stream, well, or sampling location), data themes can be used to store 

the geographic representation of the observations data, commonly managed inside a 

Geographic Information System.  Historically, proprietary software such as ESRI ArcGIS 

has been used for GIS databases, but spatial data are increasingly stored and shared on 

the web via ArcGIS Online, Google Maps, Google Earth, and portals like Geo.Data.gov 

(http://geo.data.gov/geoportal/catalog/main/home.page).  Data themes offer place-based 

awareness and can greatly aid in technical communications but are not as robust of a 

metadata storage solution as are relational databases. 

If the project information to be managed includes journal articles, project reports, 

photos, video, or other digital assets, a digital library offers the appropriate storage 

http://geo.data.gov/geoportal/catalog/main/home.page
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solution for both the bitstream itself (i.e., the article or report) and for the associated 

metadata.  Digital libraries are growing in popularity and offer a searchable interface for 

access to products of ‘higher knowledge content’ – the results of analysis and 

interpretation, not just raw data.  However, the articles and reports must somehow be 

linked back to the data itself to support reanalysis.    
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Figure 52.  Proposed Water Information System of Systems.
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5.9 IMPACT TO-DATE 

 

Google Analytics has been installed on the http://efis.crwr.utexas.edu/ website to 

anonymously gather data on the site’s audience and traffic sources (Figure 53).  Since its 

launch in December 2009, the EFIS website has experienced 1526 visits from 1024 

unique visitors for a total of 4616 page views (Table 17).  The average visitor views 3.02 

pages and spends 3:14 on the site per visit.  Visitors hail from 32 countries and 43 US 

states, with 35% visiting the site more than once and 10% visiting 10 or more times! 

 

Table 17.  Summary of audience and usage statistics for EFIS, COMIDA CAB, and 

Texas seagrass data portals. 

 

 

Besides EFIS, Google Analytics has also been installed on the COMIDA CAB 

project site (http://comidacab.org/) and a Texas seagrass monitoring project site 

(http://texasseagrass.org/).  The seagrass site includes details on a statewide monitoring 

program on seagrass presence, condition, and associated environmental factors along 

http://efis.crwr.utexas.edu/
http://comidacab.org/
http://texasseagrass.org/
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with documents, presentations, sampling design, maps, geostatistical results, and the 

complete project database.  (Wilson and Dunton 2012) 

For these three data portals, EFIS has received 1526 visits from 1024 unique 

visitors in less than 3 years; COMIDA CAB has received 2200 visits from 1109 unique 

visitors in less than 2-1/2 years; and Texas Seagrass has received 799 visits from 452 

unique visitors in less than 2 years.  In total, these three information systems have 4525 

visits from 2585 unique visitors who have collectively spent 189 hours on the sites – 

nearly 7.9 days! 
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Figure 53.  Overview of the EFIS website audience, November 7, 2009 to November 7, 

2012, as obtained via the Google Analytics tools. 

 

5.10 CONCLUSIONS 

 

An example case study of an HIS implementation was presented in this chapter – 

the Texas Environmental Flows Information System (EFIS) – which aggregates and 

makes available information on hydrology, biology, water quality, and geomorphology in 
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support of the determination of environmental flow needs in Texas bays and basins for 

use by practitioners and stakeholders involved in that process across the state. In addition, 

a specific, detailed case study of invasive fish species in the Sabine River in Texas was 

presented as an example of the type of analysis which can be accomplished with access to 

robust biological databases. 

It is hoped that the Texas Environmental Flows Information System (EFIS) might 

be used to provide: (1) rapid low-cost data integration, (2) improved data access by the 

public, and (3) support for the analysis and determination of environmental flow needs.  

EFIS represents the integration of the physical, chemical, and biological information for 

rivers and streams in a consistent and accessible manner in one system in one place. 

In this chapter, a complete, real-world implementation of an expanded Hydrologic 

Information System was presented, inclusive of biological observations data, geographic 

data, tools, and documents, for a highly multi- and interdisciplinary arena – the field of 

environmental flows.  As compared to the Arctic case study presented earlier, the Texas 

environmental flows case study includes information provided by many more partners 

hailing from public, private, university, and not-for-profit organizations, and has as its 

target audience a much more diverse community of stakeholders and practitioners 

working together in the determination of environmental flows needs in Texas. 

Furthermore, it was recognized that no single tool is sufficient for complete 

project information management, but rather some combination of tools.  As such, a Water 

Information System of Systems was introduced which consists of a Hydrologic 

Information System, a Geographic Information System, and a Digital Library.  This 
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system of systems likely includes multiple means of data storage and multiple avenues of 

data access aggregated into a shared data portal.  It likely includes water web services, 

maps, documents, and databases.  And it is envisioned that the next generation of 

Hydrologic Information Systems will be comprised of these three component systems 

and will thus actually be a Water Information System of Systems. 
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Chapter 6: Conclusions 

 

6.1. ADDRESSING THE RESEARCH QUESTIONS 

 

Three research questions were posed at the beginning of this dissertation which 

served to guide the work discussed herein.  Through the chapters provided here, the 

research questions have been addressed in the following manner: 

 

1. How can existing Hydrologic Information Systems which focus largely on 

physical and chemical data be made more robust to accommodate biological 

data?   

 

This research questions was addressed via an examination of the issues associated 

with biological data integration, via the conceptualization of a data model for biological 

information, via an elaboration of use cases and scenarios, and via improvements and 

expansions to the information model currently in use for Hydrologic Information 

Systems. 

This work has shown that existing Hydrologic Information Systems can 

accommodate biological data with some modifications.  Of particular importance is the 

introduction of the 4-D data cube which considers both species and traits in place of the 

traditional ‘variables’ axis of the 3-D data cube.  A corresponding BioODM data model 
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was conceived and developed for the four-dimensional biological observations data of 

species plus trait.  Because of this treatment, databases can be queried by species (“I want 

to know everything about Guadalupe Bass (Micropterus treculii) in the Blanco River.”) 

and also by trait (“What is the relative abundance (the trait) of Bering Flounder 

(Hippoglossoides robustus) observed in the Beaufort Sea?” or “What is the average 

length (a statistic calculated on the trait “length”) of Bering Flounder observed in the 

Beaufort Sea?”)  Additionally, the reworked and expanded biological domain of the 

CUAHSI HIS ontology allows for the incorporation of biological observations in the 

same system and on the same plane as physical and chemical observations.   

 

2. How can existing Hydrologic Information Systems which focus largely on 

observations of the terrestrial water environment be made more robust to 

accommodate oceanographic data?   

 

This research questions was addressed via an analysis of the nature of 

oceanographic observations data and a comparison with the nature of terrestrial aquatic 

data, via discussion of observing the ocean environment, organizing and storing oceans 

data, and communicating the results. 

This work has shown that existing Hydrologic Information Systems can 

accommodate oceanographic data with some other modifications.  What was 

accomplished via this case study was the adaptation of the CUAHSI Observations Data 

Model for application with physical, chemical, and biological oceanographic data – a new 
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extension of the CUAHSI Hydrologic Information System.  Furthermore, the need for 

accommodating biological observations of the ocean environment in a cohesive project 

database drove further refinement of the BioODM data model, which was also amended 

to include better source tracking for the novel chain-of-custody approach introduced here 

for more robust data quality control, accountability, transparency, and persistence.  In this 

sense, a complete, real-world implementation of an expanded Hydrologic Information 

System is presented, inclusive of biological and oceanographic data, for a 

multidisciplinary academic study. 

   

3. Is there a common framework for water information management for 

terrestrial and marine systems? 

 

This research questions was addressed via a detailed literature and technology 

review of existing tools and systems, via an investigation and assessment of digital 

library technologies, and via the introduction of a more robust ‘system of systems’ for 

water information which can accommodate geographic data via inclusion of a 

Geographic Information System, observations data via inclusion of a traditional 

Hydrologic Information System, and documents and other digital assets via inclusion of a 

Digital Library (as opposed to existing systems which can only accommodate point 

observations data). 

This work has shown that many common elements exist between terrestrial and 

marine systems and a common framework has emerged and is emerging as a result.  This 
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is a somewhat surprising result given the significant structural and functional differences 

which exist between freshwater and marine ecosystems.  Also, this work has shown that 

Digital Libraries play an important role in the Water Information System of Systems of 

the future, envisioned to be a composite system of a Hydrologic Information System for 

observations data, and Geographic Information System for geospatial data, and a Digital 

Library for documents and other digital assets. 

 

6.2. CONTRIBUTIONS TO SCIENCE AND TECHNOLOGY 

 

By addressing the research questions posed above, this research contributes to the 

current state of science and engineering, particularly in that this work extends current 

Hydrologic Information System capabilities by providing additional capacity and 

flexibility for marine physical and chemical observations data and for freshwater and 

marine biological observations data.  The case studies presented herein led to the 

development of a new four-dimensional data cube to accommodate biological 

observations data with axes of space, time, species, and trait.  Collectively, the 

information systems and data portals presented here offer: (1) improved access to 

biological data and information for the freshwater environment; (2) improved access to 

oceanographic data and information for the marine environment; and (3) improved data 

discovery and data storage methodologies for freshwater and marine environments. 

The BioODM data model presented here offers improved biological data 

management and represents progress toward the ultimate goal of synthesis and 
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integration of the physical, chemical, and biological elements of the water environment.  

Likewise, the two case studies conducted here have led to an improved understanding of 

the common elements and common framework of terrestrial and marine water 

information systems.  The chain-of-custody approach introduced here represents better 

source tracking and thus a step toward more complete and more seamless knowledge 

management.  The Water Information System of Systems introduced here is a vision for 

the next generation of Hydrologic Information Systems in that it includes far greater 

adaptability for multiple types of information – geographic data stored in a geodatabase 

in a Geographic Information System, observational data stored in a relational database in 

a Hydrologic Information System, and documents and other digital assets stored in a 

digital repository in a Digital Library.   

This research contributes to the advancement of the CUAHSI Hydrologic 

Information System in a number of specific ways as well.  This research improves our 

understanding of how to deal with collections of biological data stored alongside sensor-

based physical data.  The new 4-D data cube for biological observations data with axes of 

space, time, species, and trait represents an improved model for data storage, and the 

reworking and expansion of the biological domain ontology represents improved 

semantic mediation and a more robust data dictionary for biological observations.  
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6.3. RECOMMENDATIONS FOR FUTURE WORK 

 

While significant progress in hydroinformatics has been made in data storage and 

communication, much work remains to be done in data access (Tarboton et al. 2010).  For 

example, how do users interact with information systems?  What tools and applications 

do they need?  One promising avenue of exploration is the use of web geoprocessing 

services to provide online analytical capabilities.  The Calculator for Low Flows (CaLF) 

tool uses web services to automatically access USGS streamflow data to assess low flows 

and environmental flows; this approach can be expanded for a broader assessment of 

flow regimes and could be made geospatially-explicit – for different freshwater 

ecoregions, different state requirements, and different stream types.  And how can new 

user communities and data types be incorporated?     

A session was convened at the 2011 AGU Fall Meeting discussing “data 

scientists,” an emerging role which defines those who can effectively communicate with 

both domain specialists (scientists, ecologists, etc) and data managers (database experts, 

IT specialists, etc).  The role of the data scientist needs to continue to be defined and 

these professionals need to be better leveraged as a means to bridge data managers and 

domain specialists.   

Better education and training in informatics is needed to best prepare data 

scientists, and all scientists and engineers who work with data would benefit from this 

training as well.  Many accredited undergraduate civil engineering programs in the 

United States require coursework in surveying, drafting, and basic computer 
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programming; what about informatics, analytics, data mining, and advanced statistics?  

The expanding role and presence of data-intensive science is driven, to some degree, by 

new and evolving data management requirements by the National Science Foundation 

(NSF) and others.  Better training in informatics and analytics will better prepare the next 

generation of scientists and engineers to be completive in the new global economy. 

Although the original CUAHSI HIS project has completed, its ground-breaking 

work in hydroinformatics could be expanded in a number of important directions in order 

to increase its utility for a broader audience (Figure 54). 

 

 

Figure 54.  Possible directions for the expansion of current CUAHSI Hydrologic 

Information System focus areas. 
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Similarly, an improved global geospatial model for riverine systems would 

enhance our understanding of the lotic environment and would facilitate improved data 

management – it’s time to move beyond “blue lines.”  Ideally, this geospatial model 

would incorporate four-dimensional data, with physical data georeferenced in both 

rectangular coordinates as {x,y,z} and also as curvilinear (a.k.a. fluvial) coordinates as 

{s,n,z} (Table 18), both of which are reflective of the dynamic nature of fluvial systems 

with respect to geomorphology and hydrology.  Using fluvial coordinates simplifies and 

enhances the process of linear referencing and stream addressing.  By moving to such a 

4-D model, scientist and engineers can better answer such questions as:  Was a Dissolved 

Oxygen sample taken near the surface?  In the water column?  At the sediment-water 

interface?  In the pore space?   

 

Table 18.  Three-dimensional curvilinear coordinate system for stream network linear 

referencing. 

 

 

It is also important to note that hydrologic sciences exist outside just the river 

channel.  In the sense used in this research, hydrology includes all aspects of the global 
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water cycle – on the land surface, in the oceans, below the ground surface, and in the 

atmosphere.  As new research increasingly focuses on hydrologic processes at the 

interface of various systems, hydrologic information systems must advance accordingly 

in order to support these research frontiers.  

In conclusion, it is recognized that the collective value of Long Tail data is 

enormous.  As such, it is hoped that the tools and systems presented herein serve to 

advance the field of hydroinformatics, especially with respect to biological and 

oceanographic observations of the water environment, in order to help harness the 

collective power of the Long Tail. 
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Glossary 

 

7Q1 Seven-day average, one-year recurrence interval discharge 

7Q2 Seven-day average, two-year recurrence interval discharge 

ADCP Acoustic Doppler Current Profiler 

AGU American Geophysical Union 

API Application Programming Interface 

API American Petroleum Institute 

ARS Agricultural Research Service 

ASCE American Society of Civil Engineers 

ASCII American Standard Code for Information Interchange 

AWRIS Australian Water Resources Information System 

BBEST Bay and Basin Expert Science Teams 

BioODM Biological Observations Data Model 

BOEM Bureau of Ocean Energy Management  

CAB Chemical and Benthos 

CaLF Calculator for Low Flows 

CFR Code of Federal Regulations 

CFS Cubic feet per second 

CI-WATER Cyberinfrastructure-Water 

COMIDA Chukchi Sea Offshore Monitoring in Drilling Area 

CONABIO Comisión Nacional para el Conocimiento y Uso de la Biodiversidad 

of Mexico 

CRWR Center for Research in Water Resources 

CSIRO Commonwealth Scientific and Industrial Research Organisation 

CSV Comma-separated value 

CTD Conductivity, temperature, and depth 
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CUAHSI Consortium of Universities for the Advancement of Hydrologic 

Science, Inc. 

DAR Drainage Area Ratio 

DCMI Dublin Core Metadata Initiative 

DOI United States Department of Interior 

EDAS Ecological Data Application System 

EFIS Environmental Flows Information System 

EMAP Environmental Monitoring and Assessment Program 

EML Ecological Markup Language 

EOL Earth Observing Laboratory 

EPA United States Environmental Protection Agency 

ETL Extract-Transform-Load 

FBIS Freshwater Biodata Information System 

FGDC Federal Geographic Data Committee 

G8 Group of Eight 

GBIF Global Biodiversity Information Facility 

GEO Group on Earth Observing 

GEOSS Global Earth Observing System of Systems 

GIS Geographic Information System 

GRTS General Randomized Tessellation Stratified design 

HEC-RAS Hydrologic Engineering Center – River Analysis System 

HEFR Hydrology-Based Environmental Flow Regime 

HIS Hydrologic Information System 

HTML HyperText Markup Language 

HUC Hydrologic Unit Code 

IBI Index of Biological Integrity 

IHA Indicators of Hydrologic Alteration 

IHE Institute for Hydraulic and Environmental Engineering 

IPCC Intergovernmental Panel on Climate Change 
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iRODS Integrated Rule-Oriented Data System 

IT Information Technology 

ISO International Organization for Standardization 

ITIS Integrated Taxonomic Information System 

IUCN International Union for Conservation of Nature 

LDAP Lightweight Directory Access Protocol 

LDCurve Load Duration Curve tool 

LTER Long-Term Ecological Research 

MIT Massachusetts Institute of Technology 

MMS Minerals Management Service 

NBII National Biological Information Infrastructure 

NCAR National Center for Atmospheric Research 

NCEAS National Center for Ecological Analysis and Synthesis 

NEON National Ecological Observation Network 

NGDC National Geophysical Data Center 

NIWA National Institute of Water and Atmospheric Research 

NOAA National Oceanic and Atmospheric Administration 

NODC National Oceanographic Data Center 

NPS National Park Service 

NRCS Natural Resources Conservation Service 

NSF National Science Foundation 

NTL North-Temperate Lakes 

NWIS National Water Information System 

NWS National Weather Service 

OBIS-SEAMAP Ocean Biogeographic Information System – Spatial Ecological 

Analysis of Marine Megavertebrate Animal Populations 

ODM Observations Data Model 

OGC Open Geospatial Consortium 

PAR Photosynthetically Active Radiation 
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PI Principal Investigator 

POC Particulate Organic Carbon 

POM Polycyclic Organic Matter 

QA/QC Quality Assurance/ Quality Control 

R/V Research Vessel 

RENCI Renaissance Computing Institute at UNC Chapel Hill 

REST Representational State Transfer 

ROV Remotely-Operated Vehicle 

SB3 Senate Bill 3 

SBI Western Arctic Shelf-Basin Interactions project 

SOA Services-Oriented Architecture 

SOAP Simple Object Access Protocol 

SQL Structured Query Language 

SSIS SQL/Server Integration Services 

STORET Storage and Retrieval 

SWQM Surface Water Quality Monitoring 

SWQMIS Surface Water Quality Monitoring Information System 

TACC Texas Advanced Computing Center 

TCEQ Texas Commission on Environmental Quality 

TCOON Texas Coastal Ocean Observation Network 

TDL Texas Digital Library 

TNRIS Texas Natural Resources Information System 

TOC Total Organic Carbon 

TPWD Texas Parks and Wildlife Department 

TRACS TCEQ Regulatory Activities Compliance Systems 

TSS Total Suspended Solids 

TWDB Texas Water Development Board 

TWDL Texas Water Digital Library 

TWRI Texas Water Resources Institute 
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UDDI Universal Description, Discovery, and Integration 

UML Unified Modeling Language 

UN United Nations 

UNESCO United Nations Educational, Scientific and Cultural Organization 

URI Uniform Resource Identifier 

URL Uniform Resource Locator 

USDA United States Department of Agriculture 

USFWS United States Fish and Wildlife Service 

USGS United States Geological Survey 

UTC Coordinated Universal Time 

VBA Visual Basic for Applications 

WaterML Water Markup Language 

WCS Web Coverage Service 

 WebDav Web-based Distributed Authoring and Versioning 

WFS Web Feature Service 

WMO World Meteorological Organization 

WMS Web Map Service 

WQX Water Quality Exchange 

WRC Water Research Center 

WSDL Web Services Description Language 

XML Extensible Markup Language 
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