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Abstract

The marine oil-degrading bacterium Alcanivorax borkumensis SK2 has attracted
significant interest due to its hydrocarbonoclastic lifestyle, its alkane-centered
metabolism, and for playing an important ecological role in cleaning up marine oil
spills. In this study, we used microarray technology to characterize the transcrip-
tional responses of A. borkumensis to n-hexadecane exposure as opposed to
pyruvate, which led to the identification of a total of 220 differentially expressed
genes, with 109 genes being upregulated and 111 genes being downregulated.
Among the genes upregulated on alkanes are systems predicted to be involved in
the terminal oxidation of alkanes, biofilm formation, signal transduction, and
regulation.
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Introduction

Marine oil-degrading bacteria play an essential role in
degrading crude oil and thus in cleaning up marine oil spills
(Yakimov et al., 2007). Alcanivorax borkumensis has become
a paradigm of marine ‘hydrocarbonoclastic’ bacteria, as it
exclusively grows on alkanes and plays a predominant
ecological role in oil-degrading consortia that form follow-
ing marine oil spills (McKew et al., 2007; Gertler et al.,
2009). Alcanivorax borkumensis SK2 metabolizes a wide
range of alkanes, such as linear alkanes, cyclo-alkanes, and
isoprenoids (Dutta & Harayama, 2001; McKew et al., 2007).
Given its important ecological role in the removal of oil
spills and with the availability of its full genome sequence
(Schneiker et al., 2006), Alcanivorax may now serve as a
model organism to understand bacterial alkane metabolism.

Previous studies of bacterial alkane metabolism have been
mostly focused on studying the terminal degradation of
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alkanes by Pseudomonas putida GPO1, a bacterium that uses
linear alkanes as a single carbon and energy source, where a
monooxygenase encoded by the alkBI gene plays a central
role in the terminal oxidation of alkanes (van Beilen et al.,
1994). Other alkane-degrading bacteria use for this initial
oxidation step enzymatic systems other than AlkB (for
reviews, see van Beilen & Funhoff, 2007; Wentzel et al.,
2007). Our genome-wide study of alkane utilization by A.
borkumensis using a proteomics approach has revealed
several alternative systems for terminal oxidation of alkanes
by this bacterium, as well as major rearrangements of its
central carbon metabolism (Sabirova et al., 2006). However,
a number of specific questions intrinsically linked to alkane
utilization by this organism, for example how alkanes enter
the cell and which transport systems may be involved, how
the cells physically interact with the hydrophobic substrate,
whether and how they attach to it, and which molecular
mechanisms allow the cells to protect themselves against the
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toxic effect of alkanes, are left unanswered. Finally, the
regulatory implications of alkane degradation on the overall
cellular activity could not be comprehensively studied using
the proteomic approach. To obtain a still more comprehen-
sive picture of alkane utilization, and in particular to be able
to look more closely into some of the aforementioned issues,
we have now used microarray technology to compare the
transcriptional profile of SK2 grown on n-hexadecane, as a
model alkane, as compared with pyruvate, one of the few
non-alkane substrates A. borkumensis is able to use.

Materials and methods

Bacterial strains and growth conditions

Alcanivorax borkumensis SK2 was used for all experiments.
Alcanivorax borkumensis was grown until the late-exponen-
tial stage of growth as described earlier (Sabirova et al.,
2006). Bacteria from alkane- and pyruvate-grown cultures
were centrifuged for 10 min at 8000g, and the cell pellets
were immediately frozen in liquid nitrogen and conserved
at — 80 °C until RNA was isolated.

Oligonucleotide design, printing, and layout
of the A. borkumensis microarray

The Abo3kOLI microarray used in this study is based on the
sequenced genome of A. borkumensis (Schneiker et al.,
2006). The array contains 2924 50mer to 70mer oligonu-
cleotides representing predicted protein-encoding genes. In
addition, the array contains 15 stringency controls of the
genes gap, rpsA, rpsO, rpsP, and rpmlI (70%, 80%, and 90%
identity to the native sequence), 12 alien DNA oligonucleo-
tides, and five spiking control oligonucleotides. Oligonu-
cleotides were designed using OLIGODESIGNER software
(Bioinformatics Resource Facility, CeBiTec, Bielefeld Uni-
versity). All oligonucleotide probes were printed in four
replicates. Microarrays were produced and processed as
described previously (Brune et al., 2006). Oligonucleotides
(40puM) in 1.5M betaine, 3 x SSC (1 xSSC is 0.15M
sodium chloride, 0.015 M sodium citrate) were printed onto
Nexterion Slide E (Schott AG, Mainz, Germany) using the
MicroGrid II 610 spotter (BioRobotics, Cambridge, UK)
equipped with 48 SMP3 stealth pins (TeleChem Interna-
tional, Sunnyvale, CA). DNA was cross-linked to the surface
by incubation of the slides for 2 h at 85 °C. Microarray data
have been submitted to ArrayExpress under accession num-
ber A-MEXP-1990.

RNA isolation and synthesis of labeled cDNA

Total RNA was purified using the RNeasy Mini Kit (Qiagen,
Hilden, Germany). Cells were disrupted in RLT buffer
provided with the Kit in Fast Protein tubes (Qbiogene,
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Carlsbad, CA) using the Ribolyser (Hybaid, Heidelberg,
Germany) (30s, level 6.5) before spin column purification
according to the RNeasy Mini Kit RNA purification protocol.

Fluorescent-labeled amplified RNA was prepared using
the MessageAmp II-Bacteria RNA Amplification Kit (Ap-
plied Biosystems, Darmstadt, Germany). Starting from
500 ng total RNA, cDNA carrying a terminal T7 promoter
was synthesized. Subsequent in vitro transcription resulted
in aminoallyl-modified RNA that was labeled with Cy3- or
Cy5-N-hydroxysuccinimidyl ester dyes (GE Healthcare, Lit-
tle Chalfont, UK). Uncoupled dye was removed applying the
RNeasy MinElute Kit (Qiagen).

Microarray hybridization and image acquisition

Processing of microarrays before hybridization included the
following washes: once in 0.1% Triton-X100 (5 min, 20 °C);
twice in 0.032% (w/v) HCI (2 min, 20 °C); once in 0.1 M KCI
(10 min, 20 °C); once in H,O (1 min, 20 °C); once in 0.064%
(w/v) HCI, 1 x Nexterion blocking solution (Schott AG)
(15min, 50 °C); and once in H,O (1 min, 20 °C). Micro-
arrays were dried by centrifugation (3 min, 185g, 20 °C).

Hybridization was performed in an EasyHyb hybridiza-
tion solution (Roche, Mannheim, Germany) supplemented
with sonicated salmon sperm DNA at 50 pgmL ™" in a final
volume of 100 uL for 90 min at 45 °C using the HS 4800
hybridization station (Tecan Trading AG, Switzerland).
Before application to the microarrays, labeled samples were
denatured for 5 min at 65 °C.

After hybridization microarrays were washed once in
2 % SSC, 0.2% sodium dodecyl sulfate (SDS) (w/v) (5 min,
42 °C), twice in 0.2 x SSC, 0.1% SDS (w/v) (1 min, 21 °C),
twice in 0.2 x SSC (1 min, 21 °C), and once in 0.05 x SSC
(1 min, 21 °C). Following the washes, slides were dried by
centrifugation (3 min, 185 g, 20 °C) and scanned with a pixel
size of 10 um using the LS Reloaded microarray scanner
(Tecan Trading AG). Four independent biological replicates
including a dye swap were processed for each comparison.

Transcriptome data analysis

The mean signal and the mean background intensities were
obtained for each spot of the microarray images using the
IMAGENE SOFTWARE 6.0 software (Biodiscovery Inc., Los An-
geles) for spot detection, image segmentation, and signal
quantification.

Spots were flagged as ‘empty’ if R < 0.5 in both channels,
where R=(signal mean — background mean)/background
SD. The remaining spots were considered for further analy-
sis. After subtractions of the local background intensities
from the signal intensities and the introduction of a floor
value of 20, the log, value of the ratio of intensities was
calculated for each spot using the formula M; =1log,(R/G;).
Ri=Ich1(i) — Bgehiiy and Gi = Lna(i) — Bgenaqi), where L)
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or Iy is the intensity of a spot in channel 1 or channel 2
and Bgcy1 (i) or Bgena(i) is the background intensity of a spot
in channel 1 or channel 2, respectively. The mean intensity
was calculated for each spot, A; = logz(RiGi)O'5 (Dudoit et al.,
2002). A normalization method based on local regression
was applied according to Yang et al. (2002), M;=log,(Ri/
Gi) — logx(Ri/G;) — c(A) =log,(Ri/[kj(A) G;]), where c(A) is
the LOWESS (locally weighted scatter plot smoothing) fit to
the MA plot.

Significant up- or downregulation of genes was identified by
t statistics (Dudoit et al., 2002). Genes were accounted as
differentially expressed if P < 0.05and M>1.00 or < — 1.00.

Normalization and ¢ statistics were carried out using the
EMMA 2.2 microarray data analysis software developed at the
Bioinformatics Resource Facility, Center for Biotechnology,
Bielefeld University (Dondrup et al., 2003).

Electron microscopy

For scanning electron microscopy (SEM), cells were grown
on Permanox slides in ONR7a with either 1.5% hexadecane
or 2% pyruvate as the carbon/energy source. SEM was
carried out as described by Liinsdorf et al. (2001).

Results and discussion

The microarray experiments were performed with the
exponentially grown cells grown on either hexadecane or
pyruvate (as control conditions), and led to the identifica-
tion of a total of 220 differentially expressed genes, with 109
genes being upregulated and 111 genes being downregu-
lated. Differentially expressed genes could be grouped into
15 functional categories, according to designated metabolic
functions of the corresponding gene products. Both upre-
gulated and downregulated genes were found in most
groups, with the exception of those genes grouped under
‘alkane oxidation), ‘stress’, and ‘iron uptake’, whose functions
were exclusively induced in the presence of alkanes. ‘Nitro-
gen assimilation’ genes were all found to be expressed on
pyruvate only, as were a number of other genes known to
enable the cells to assimilate essential macroelements other
than N, namely phosphorus and sulfur from less favorable
sources. This effect may at least partially be attributed to
higher cell densities present in pyruvate cultures, leading to
some scarcity of these macroelements in the pyruvate, but
not yet in the alkane-grown cultures. In the following, we
therefore focus primarily on the functions that were found
to be upregulated on alkanes, and thus can most clearly be
attributed to A. borkumensis responses to growth on alkanes.

Terminal oxidation of alkanes

The presence of an enzymatic system mediating the terminal
oxidation of alkanes distinguishes an alkane-degrader from
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a non-alkane-degrading organism. Our earlier proteomic
study has already revealed the presence of several alternative
ways for the terminal oxidation of alkanes by A. borkumensis
(Sabirova et al., 2006). In accordance with the proteomic
data, here, we find alkane monooxygenase alkBI
(ABO_2707, Table 1) to be upregulated on hexadecane.
Moreover, a second alkane monooxygenase alkB2
(ABO_0122, Table 1) was also found to be upregulated,
which corresponds to data using earlier reverse transcrip-
tase-PCR (Schneiker et al., 2006). In addition, two flavin-
binding monooxygenases were found to be upregulated
during growth on alkanes indicative of two novel pathways
likely to be involved in alkane degradation by A. borkumensis
(ABO_0282, ABO_1097, Table 1). Moreover, we detected
the up-expression of two genes similar to the ones involved
in the degradation of halogenated alkanes in other bacteria,
namely haloacid dehalogenase-like hydrolase dhlA
(ABO_1537, Table 1) and haloalkane dehalogenase dhmA
(ABO_2415, Table 1). If the first enzyme is known to convert
haloalkanes to corresponding alcohols and halides, the
second one catalyzes hydrolytic cleavage of carbon-halogen
bonds in halogenated aliphatic compounds, leading to the
formation of primary alcohols, halide ions, and protons.
Alkane-induced coexpression of these enzymes mediating the
breakdown of haloalkanes, alongside the induction of enzymes
degrading aliphatic alkanes, signifies unspecific upregulation
of expression, probably reflecting the presence of halogenated
alkanes in sea water. Additionally, we found alkane-induced
expression of aldehyde reductase (ABO_2414, Table 1). This
gene is predicted to be involved in the metabolic activation of
polycyclic aromatic hydrocarbons (PAHs), as shown recently
for human aldehyde reductase AKRIAI (Palackal et al., 2001).
However, as yet, A. borkumensis has not been shown to either
degrade or transform PAHs, and thus requires further experi-
mentation to explore what coexpression of this gene alongside
those mediating the degradation of aliphatic alkanes may
signify for the degradation of alkanes or petroleum. These data
allow us to update the list of enzymatic systems shown before
by our proteomic study to be potentially involved in the initial
terminal oxidation of alkanes by A. borkumensis (Figs 1 and 2).

Alkane-induced biofilm formation
and adhesion to hydrocarbons

Attachment of A. borkumensis to hydrocarbons and its
molecular mechanisms have not yet been studied, although
such abilities are likely to form part of the specific ecological
adaptation of this bacterium. EM observation of Alcanivorax
SK2 indeed indicates that this organism forms biofilm-
supporting structures during growth on alkanes (Fig. 3).
Cells grown on alkane seem to more connect to each other
rather than to the solid surface of the carrier slide, and they
are shorter and rounder, and produce considerable amount
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alkS alkB1 alkG alkH alkJ
2706 2707 2708 2709 2710
alkB2 frp
0121 0122 0144 0145 0146
fdx P450-1 alkJ2
0199 0200 0201 0202 0203 2482 2483 2484
P450-2
Fig. 1. Combined schematic representation
of genomic regions containing genes encoding 2288 2289 1715 1716 1717 1718
monooxygenases and enzymes presumably P450-3
involved in the initial oxidation of alkanes derived
from the analysis of proteomic (Sabirova et al., 2383 2384 2385 2106 2107 2108
2006) and transcriptomic data. Genes dhiB
upregulated in alkane-grown cells are shown in
black; white-colored ORFs with black frames 0191 0190 0189 0188 1537 1538 1539
show genes in the Alcanivorax borkumensis AKRIAI dhmA
genome that seem not to be upregulated,;
grey-colored ORFs show the P450-1 and P450-2 0281 0282 0283 2414 2415
genes (ABO_0201 and ABO_2288, correspond-
ingly), encoding identical p450 cytochrome
1096 1097 1098

proteins.

of extracellular polymeric substances (EPS), which appears
to support the three-dimensional structure of a biofilm.
After 10 days of growth, alkane-grown cells develop a
biofilm, which exhibits a pronounced three-dimensional
architecture supported by extracellular matrix (Fig. 3).

The argument of an alkane-induced formation of EPS
is supported by alkane-induced up-expression of gmhA
(ABO_0584). GmhA encodes a phosphoheptose isomerases
that mediates the synthesis of heptose, a conserved compo-
nent of outer membrane lipopolysaccharide, that for exam-
ple in Yersinia, was shown to contribute to the formation of
biofilms (Darby et al., 2005). Another indication for alkane-
induced biosynthesis of EPS in Alcanivorax could be the
upregulation of mannose-6-phosphate isomerase algA, en-
coded by ABO_0395 (Table 1), predicted to encode an
enzyme known to catalyze the first and third steps of the
biosynthetic pathway of alginate, a known component of
biofilms in other organisms (Shinabarger et al., 1991);
however, algA, like other related alg genes, may also be
involved in the biosynthesis of lipopolysaccharide, as shown
elsewhere (Goldberg et al., 1993; Gaona et al., 2004). As
direct experimental evidence is still missing as regards
alginate production by Alcanivorax, our findings may point
more to the biosynthesis of lipopolysaccharide, rather than
of alginate. While the biosynthesis of alginate has not yet
been shown for Alcanivorax, it has been described for
marine algae and bacteria belonging to the genera Pseudo-
monas and Azotobacter (Gorin & Spencer, 1966; Lin &
Hassid, 1966; Evans & Linker, 1973).

With respect to the expression of genes thought to be
involved in the signalling and regulatory processes essential
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for the formation of biofilm, our transcriptomic data show
that the widely suggested mechanism of biofilm formation
mediated by elevated concentrations of messenger c-di-
GMP does not seem to be clearly effective in the case of
Alcanivorax growing on alkanes. One regulatory system
(encoded by ABO_2433), containing the known GGDEF
and EAL domains, responsible for the biosynthesis and
hydrolysis of c-di-GMP, respectively, was found to be down-
regulated, while another gene, ABO_2132 encoding the HD-
GYP domain with phosphodiesterase activity responsible
for hydrolysis of c-di-GMP (Galperin et al., 1999; Ryan et al.,
2006), was found to be upregulated. Hence, the precise role
of intracellular c-di-GMP levels for biofilm formation may
be more complex than previously assumed (Hickman et al.,
2005; Romling et al., 2005). We furthermore found that a
whole set of genes involved in the formation of pili
(ABO_0463, ABO_0467, ABO_0613, ABO_00614, and
ABO_2670, Table 1) is downregulated during growth on
alkanes; hence, attachment of Alcanivorax to alkane droplets
does seem to require quorum sensing, and leads to enhanced
biosynthesis of EPS, and yet, it may not be classical biofilms
that are formed to access alkane droplets, triggered by
intracellular ¢-di-GMP and by the formation of pili and/or
fimbriae, but rather irregular aggregates glued together by
extracellular polysaccharides.

Transport systems

Our expression data also shed some new light on the
acknowledged uncertainty as to how alkanes are transported
into the bacterial cell. One of the alkane-induced genes,

© 2011 Federation of European Microbiological Societies
Published by Blackwell Publishing Ltd. All rights reserved


http://femsle.oxfordjournals.org/

166 J.S. Sabirova et al.

Signals

T

QS-responsive genes

T

Aldehyde
dehydrogenase

[(GniR tamity ] - AkCoam
'L-m — v [AakCon deydragensse iy
.
Citrat
2-Enoyl-CoA Oxalo;:etate {a e
: ¢ - Malate "_ Isocitrate
3-Hydroxy-CoA \ - l
o _ Fumarate /' 2-oxoglutarate
: N assimilation regulator * - K & x

3-B-ketoacyl-CoA Succinate

nd—] '
Acyl-CoA (n-2) + Acetyl-CoA

v—
Succinyl-CoA

Fig. 2. Representation of the metabolic response of Alcanivorax borkumensis SK2 to alkane exposure as opposed to pyruvate. Genes repressed or
induced after exposure to alkanes are shown with a grey or a red background, respectively.

Fig. 3. Transmission electron microscopy obser-
vations of Alcanivorax borkumensis SK2 cells,
their adhesion, and biofilm formation on abiotic
surfaces. The cells were grown on either pyruvate
(a, b) or hexadecane (c, d) on Permanox slides in
ONR7a medium. The biofilms were monitored
after 4 days (a, ¢) and 10 days (b, d) of growth.
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ABO_0902 (see Supporting Information, Table S2), encod-
ing an outer membrane lipoprotein Blc, may directly be
involved in the alkane uptake process, as it contains a so-
called lipocalin domain, which, in contact with organic
solvents, forms a small hydrophobic pocket catalyzing the
transport of small hydrophobic molecules, such as lipids and
steroid hormones (Pervaiz & Brew, 1987). This alkane-
induced protein would thus be a prime candidate potentially
mediating alkane transport.

Regulation

Using a transcriptomics approach, a number of additional
alkane-induced regulatory systems have been detected
(Table 1), as compared with our previous proteomics study
(Sabirova et al., 2006). A transcriptional regulator of the
GntR family, encoded by ABO_0121, is located next to the
ABO_0122 encoding the alkB2 monooxygenase, suggesting
that the ABO_0121-encoded gene product might regulate
the expression of the adjacent monooxygenase. Another
regulatory system consisting of ABO_1708 and ABO_1709,
adjacent to each other and likely to be operon-arranged,
encodes a pair of sensor histidine kinase and DNA-binding
response regulator that are also upregulated on alkanes.
Their close proximity to the gene of fatty acid degradation
(fadH dienoyl-CoA reductase) may indicate that this reg-
ulatory system controls the oxidation of fatty acids in
Alcanivorax. Our transcriptome data also hint towards
quorum sensing playing a role in biofilm formation of
Alcanivorax on alkanes, as the major transcriptional regu-
lator QseB encoded by ABO_0031 was found to be upregu-
lated on hexadecane (Table 1). Quorum sensing has indeed
been reported to trigger biofilm formation via the biosynth-
esis of extracellular exopolysaccharides (EPS) (Sauer et al.,
2002), also visible on our EM pictures. We did not detect
increased expression of the cognate histidine kinase, QseC,
encoded by ABO_0030. This finding indicates that for initial
signal reception and transduction constant levels of sensor
protein suffice, while the subsequent coordinated regulation
of the expanded quorum-sensing regulon gse does require
increased titers of Qse regulator protein. Finally, an HD-GYP
domain protein encoded by ABO_2132 and mentioned
earlier in ‘Alkane-induced biofilm formation and adhesion
to hydrocarbons’ is also upregulated on alkanes and hence
represents another worthy target for regulatory studies of
growth on alkanes.

To conclude, our transcriptomics analysis of A. borku-
mensis responses to alkane exposure adds a complementary
view on alkane metabolism by this bacterium, in addition to
our previous proteomics study, and reveals a number of
novel observations, for instance concerning the molecular
mechanisms of alkane transport across the cytoplasmic
membrane, and pointing to a diverse set of enzymes for the
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degradation of alkanes. Alcanivorax SK2 seems to respond to
growth on alkanes by forming cell aggregates, probably
supported by enhanced synthesis of EPS and probably
following in a quorum-sensing-mediated aggregation pro-
cess. Finally, the study has also revealed many transcrip-
tional regulators to be differentially expressed, indicating a
complex regulatory interplay of alkane degradation with
other metabolic functions in this marine organism. Knock-
ing out these alkane-responsive regulators should provide a
valuable insight into the scope of regulons and subregulons
essential for alkane degradation by A. borkumensis SK2.
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