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Polar motion of Titan forced by the atmosphere
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[1] Titan’s atmosphere possesses an equatorial component of angular momentum, which
can be transferred to the surface and can excite polar motion of Titan. The atmospheric
excitation of Titan’s polar motion is calculated using the wind and pressure data prediction
from a general circulation model. The polar motion equation is solved considering Titan’s
triaxial shape and different hypothetical interior models. Titan’s polar motion basically
consists of a superposition of small diurnal wobbles and larger semiannual and annual
wobbles caused by seasonal redistribution of wind and pressure pattern. If the entire
interior of Titan is solid, the polar motion has total amplitudes of a few meters, but the
diurnal and seasonal wobble may be intermingled due to preferential damping of the
seasonal wobble by Saturn’s gravitational torque. If instead there is a subsurface ocean
underneath the crust, the wobble amplitude could be larger by an order of magnitude. If the
crust is thin, a resonance between the seasonal and Chandler wobble further increases the
polar motion amplitude and makes the polar motion path elliptical. The seasonal wobble of
a crust lying on a subsurface ocean experiences damping by either gravitational and
pressure torque or elastic torque, but the relative reduction of the polar motion amplitude

by these torques is likely to be smaller than that of the length-of-day variations.

Citation: Tokano, T., T. Van Hoolst, and O. Karatekin (2011), Polar motion of Titan forced by the atmosphere, J. Geophys.

Res., 116, E05002, doi:10.1029/2010JE003758.

1. Introduction

[2] Saturn’s largest moon Titan is covered by a dense
atmosphere of ~1.5 bars. Such a dense atmosphere could
appreciably change the rotation rate or length of day (LOD)
of Titan due to a periodical exchange of angular momentum
between the surface and atmosphere [Tokano and Neubauer,
2005; Friedson et al., 2009]. Observations of Titan’s rota-
tional state by Cassini have been used in combination with
model predictions [Tokano and Neubauer, 2005] to con-
strain the interior structure of Titan, particularly the presence
or absence of an internal ocean [Lorenz et al., 2008]. Sub-
sequent theoretical studies [Karatekin et al., 2008; Van
Hoolst et al., 2009; Mitchell, 2009; Goldreich and Mitchell,
2010] discussed how various additional torques would sup-
press the large LOD variation or cause a seasonal shift with
respect to the prediction by Tokano and Neubauer [2005].

[3] All these studies considered only the relationship
between the axial component of the atmospheric angular
momentum (AAM) and Titan’s rotation rate. However, the
AAM is a three-dimensional vector, which can contain
equatorial components in addition to the axial (polar) com-
ponent [Barnes et al., 1983]. Cassini observations of Titan’s
atmosphere revealed a 4° tilt of the symmetry axis of the
stratospheric atmospheric circulation from the polar axis and
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its westward rotation [Achterberg et al., 2008; Roman et al.,
2009; Teanby et al., 2010]. This is direct evidence of an
equatorial component of the AAM on Titan. Subsequently,
the presence of a nonzero equatorial AAM and its westward
rotation (precession) was also recognized in the output of the
Titan general circulation model (GCM) of Tokano [2010].
This was ascribed to thermal tides and the same GCM also
predicted a seasonal variation in the tilt angle or, equivalently,
the amount of the equatorial AAM.

[4] An important effect of the time variation of the equa-
torial AAM is the polar motion or wobble of the underlying
body [e.g., Munk and MacDonald, 1960; Barnes et al., 1983].
The polar motion is the motion of the planetary rotation axis
across its surface and has been observed on Earth [Munk and
MacDonald, 1960] and Mars [Konopliv et al., 2006]. Con-
sidering the large AAM of Titan, a similar effect can also
be expected on Titan as tentatively suggested by Bills and
Nimmo [2008]. This effect, however, has not yet been
quantified. It fundamentally differs from the secular wobble
forced by the spin-orbit synchronization calculated by
Noyelles et al. [2008] and Noyelles [2008].

[5s] This study aims at numerically quantifying the polar
motion of Titan using the output of the Titan GCM of
Tokano [2010] and taking into account Titan’s shape and
various models of Titan’s interior [e.g., Sotin et al., 2009].
This is the logical next step once the relationship between
the axial AAM and LOD variation is addressed and the
equatorial AAM is quantified. We expect that this calcula-
tion is not only important in its own right, but can contribute
to the investigation of Titan’s interior structure in combi-
nation with observational data. Our approach is analogous to
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Table 1. Parameters of Titan’s Interior Calculated With the Gravity
Data of /ess et al. [2010]

Parameter Symbol Value
Iess et al. [2010]
Mean radius (m) R 2.575 x 10°
Degree 2 order 0 gravity coefficient J 3.18 x 107°
Degree 2 order 2 gravity coefficient Cy 9.98 x 107°
Degree 2 order 2 gravity coefficient S2n 022 % 10°°
Axial MOI factor C/AMR?) 0.34
This Study
Axial MOI (kg m?) c 3.03218 x 10%
Semimajor equatorial MOI (kg m?) A 3.03172 x 10**
Semiminor equatorial MOI (kg m?) B 3.03208 x 10°*°
Polar flattening a 9.355 x 107°
Load Love number (no ocean) k> —-0.03
Load Love number (with ocean) k' —0.83
Tidal potential Love number (no Iy 0.03
ocean)
Tidal potential Love number (with 23 0.28-0.4
ocean)

Chandler frequency (no ocean) (Hz) ocw 3.25132 x 10710
Chandler period (no ocean) (years) Pcy 612.4

the calculation of Mars’ polar motion by Van den Acker et al.
[2002] and Sanchez et al. [2004].

[6] Section 2 describes the methods of our study, i.e., the
description of the physics, of the mathematical treatment
and of the model used. Section 3 presents the various results
of the calculation including the atmospheric forcing, para-
meters of Titan’s interior relevant for the polar motion and
the polar motion itself. Section 4 discusses how the polar
motion could be modified by additional effects.

2. Methods
2.1. Chandler Wobble

[7] In general, the polar motion of a planet/moon is a
combination of the Chandler wobble and wobbles forced
by geophysical fluids such as atmosphere or ocean. The
Chandler wobble is the free wobble of a nonrigid planet/
moon, which owes its existence to the misalignment of the
rotation axis and the figure axis. Its period/frequency is
solely determined by the shape and interior structure of the
body and is fully independent of the atmospheric or oceanic
forcing.

[8] The angular location of the instantaneous spin pole
with respect to the principal axes of Titan can be represented
by the complex function m(f) = m(f) + im,(f). By analogy
with the geodetic definition for the Earth, we define the
x component of m as being directed toward Saturn (0° lon-
gitude) at Titan’s pericenter and the y component toward the
equator at 90°E.

[s] Following this convention, the three principal
momenta of inertia (MOI) are defined as C (axial), 4
(semimajor equatorial, along the x axis) and B (semiminor
equatorial, along the y axis). The equatorial principal MOI,
A and B, are determined as

A= C—HhMR* —2MR*\/C3, + S5, (1)

B=C —LhMR* +2MR*\/C3, + 53, (2)
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where M = 1.345 x 10** kg is Titan’s mass and R = 2575 km
is Titan’s mean radius. The gravity coefficients of Titan
(J/5, C»5 and S5,) have been determined by the Cassini radio
science [less et al., 2010] and are also listed in Table 1.

[10] The equations of the Chandler wobble m, and m, of
Titan considering the triaxial shape can be derived from the
Liouville equations, which describe the change in angular
momentum of a deformable planet/moon due to an applied
torque [Van Hoolst, 2007], as

, DR QRS

AQni, + Q*(C — B)m, + ko0 =g k2 T 0 (3)
, DR QRS

Bme — QZ(C — A)mx + kZQ wmy + k292 me =0 (4)

where = 4.56 x 10° s™" is Titan’s angular velocity, k is
the degree 2 tidal potential Love number describing the
resistance of the body to deformation (see section 3.1) and G
is the universal gravitational constant.

[11] The Chandler wobble frequency is the eigenfrequency
of equations (3) and (4):

ow 5 (5)
where
O*RS
A=A+k 6
+ K 3G (6)
O*RS
B=B+k 7
+ K 3G (7)

describe the equatorial MOI modified by a mass redistri-
bution of deformable Titan due to the variable centrifugal
potential.

[12] Equation (5) extends the classical expression for the
Euler frequency for a triaxial body (for which 4 < B < C) by
including the effect of deformation and is equivalent to the
expression of Van Hoolst and Dehant [2002] up to the order
in the flattenings considered by them. Equation (5) applies if
Titan has no decoupling subsurface ocean.

[13] If there is a subsurface ocean and the overlying crust
can be assumed to be decoupled from the deeper interior,
the Chandler wobble frequency inversely scales with the
effective MOI, so equation (5) has to be multiplied by C/C,,
where C, is the polar MOI only of the outer crust. C. is a
function of the crustal thickness, which is a free parameter in
the model, and is calculated as

8 2
Cczﬁﬂpc(RS fcf)(1+§a> (8)

where p. =917 kg m "> is the density of the outer crust (ice I),
¢, is the inner radius of the crust (radius of the crust-ocean
interface), i.e., R — ¢, is the crustal thickness, and « is the
dynamical polar flattening. Equation (8) is modified from
equation (8) of Sohl et al. [2003]. The factor 2/3« accounts
for the relative difference between the mean and polar MOL.
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[14] The dynamical polar flattening is defined as

2.2. Atmospheric Excitation of Polar Motion

[15] Besides the Chandler wobble, the atmosphere also
excites wobbles with periods characterized by the various
timescales occurring in the atmosphere such as seasonal or
diurnal cycle. The equation of polar motion (wobble) pre-
dicts the change in the instantaneous pole position m in
response to perturbations of inertia products due to mass
redistribution and motion. It can be deduced from the line-
arized Liouville equations, which can be expressed as

At + Q2 (€ = B )my + I — Oy + (1 -+ k2) Q13

— (1 + k)% =0 (10)

BQm}—(F( )mx+h + Qb + (1 4 k) Qs

by extending the method of Barnes et al. [1983] for a biaxial
planet to a triaxial body (see Van Hoolst [2007] for the
derivation for a triaxial body). The difference of equations (10)
and (11) with those for a biaxial body arises solely from the
inequality of 4 and B. Here, k', is the degree 2 load Love
number (see section 3.1). The atmospheric excitation manifests
itself in the relative AAM (wind term of the AAM), &, and 4,,
and the incremental inertia elements (pressure term of the
AAM divided by ), ¢35 and ¢,3, which are both explained
in section 2.3.

[16] The solutions of equations (10) and (11) yield the
instantaneous position of the pole as a function of time,
which are given by integrating the polar motion at a given
frequency over the entire frequency spectrum

m(t) = m(o)exp(iot)

o

(12)

If Titan is entirely solid, the x and y component of m(c) are
given by
[(c - E) 0t 0273] e + Q1 + kb)ens]
ABQ (08w — 0?)
iCoQ[hy + Q1 + k) eas]
ABQ) (UZCW — 02)

my(o) =

(13)

[(C - Z) 0+ UZZ] [y + Q1 + kb)cos]
ZéQ(Uch — 02)
iCoQh, + Q1 4 kb)cis)
ZIA);Q(UZCW - 0'2)

my(0) =

(14)

[17] Here, the terms on the right-hand side including #,,
h,, c13 and c,3 are complex quantities depending on o. This

TOKANO ET AL.: POLAR MOTION OF TITAN

E05002

solution shows that polar motion in both x and y compo-
nents is resonant at the Chandler wobble frequency as for
the classical polar motion solution for a biaxial planet, to
which it reduces when 4 is set equal to B.

[18] If Titan’s interior harbors a subsurface ocean under-
neath the outer crust and no coupling between the outer
crust and mantle/core is assumed, only the outer crust
undergoes polar motion. Therefore, all the momenta of
inertia in equations (13) and (14) have to be replaced by
those of the outer crust, except the MOI differences in the
first term:

[(c- B)Q B e + (1 + K3 )er3

o) = Q(GCW ~0?)
+lC O’Q[ + ( +k2)C23:| (15)
Q(oty — %)
C—A)D + 24| [hy + Q1 + k)
W)J )2l 40 45

’zfcng(UzCW - ‘72)
iCCO'Q[hx + Q(l —+ k’z)CB]
“TC[;CQ(UZCW —0?)

(16)

Here, the internal parameters (k'», ocy) for the ocean case
have to be used. The MOI of the deformed crust, 4. and B,
are calculated from A4 and B, respectively, analogously to
equation (8). In equations (15) and (16) the MOI differences
C — 4 and C — B are not replaced by the differences of the
MOI of the crust because full decoupling implies a spheri-
cally symmetric interior.

[19] The variable m(t) is expressed in radians, which can
be converted to meters by multiplying by Titan’s radius.
Equation (12) is solved numerlcally with a spectral resolu-
tion of Ao = 1.69 x 10™° Hz.

[20] In our baseline calculation we assume that there is no
interaction between Titan’s polar motion and Saturn or
between the outer crust and the subsurface ocean and
mantle/core. This is not correct since there are additional
torques that would counteract the polar motion. Depending
on the assumed interior structure the additional torques
comprise Saturn’s gravitational torque (external coupling)
on Titan [Van Hoolst et al., 2009], the gravitational and
pressure torque between the outer crust above a subsurface
ocean (internal coupling) [Karatekin et al., 2008; Van Hoolst
et al., 2009] or the elastic torque acting on the crust
[Goldreich and Mitchell, 2010]. We discuss separately in
section 4 how these additional torques may affect our model
results.

2.3. Atmospheric Forcing

[21] In this work only the forcing of Titan’s polar motion
by the atmosphere is considered, although we do not a
priori rule out the presence of other forcing mechanisms on
Titan. We apply the angular momentum approach, which
means that the atmospheric torque acting on Titan is not
explicitly calculated but derived from the time derivative
of the equatorial AAM predicted by a GCM. The alter-
native, torque approach is known to be more delicate than
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the angular momentum approach [de Viron and Dehant,
1999].

[22] We use the time series of the equatorial AAM pre-
dicted by the three-dimensional Titan GCM of Tokano
[2010]. The time series covers a full Titan year and is
sampled 24 times per Titan day in order to resolve the
diurnal cycle. This GCM does not contain topography and
no geographical variation in the surface properties (albedo,
thermal inertia etc.). The only mechanism to cause longi-
tudinal anisotropy is Saturn’s gravitational tide. It was
shown by Tokano [2010] that the tilt of the AAM vector in
the stratosphere predicted by the GCM roughly agrees with
Cassini data [Achterberg et al., 2008], while the axial AAM
in the stratosphere is underestimated. Since the tilt angle is
given by tan ' of the ratio of the equatorial to the axial
AAM this could mean that the equatorial AAM in the
stratosphere is underestimated as well. However, the vast
majority of the equatorial AAM is contributed by tropo-
spheric winds, which are not underestimated by this GCM.

[23] The two equatorial components of the relative AAM
are given [Tokano, 2010] by

ps T2 2r
R3
hy=—— / /(usin¢cosA — vsin\)cospdAdopdp  (17)
& 0 —m/2 0
R3 Ds /2 2r
hy = —E / /(usinq&sinA + veosA)cospdAdpdp  (18)
0 —m/2 0

The two equatorial components of incremental inertia ele-
ments are given by

/2 2m

/ / pssingcos® peosAdAd ¢

-m/2 0

R4
C13 = ——
4

(19)

/2 2m

/ /pssin¢cos2¢>sin)\d)\d¢
—n/2 0

Cy3 = —— (20)
g

Here, g = 1.354 m s ~ is Titan’s gravitational acceleration,
ps 1s the surface air pressure, u is the zonal wind, v is the
meridional wind, ¢ is the latitude, A is the longitude and p is
the air pressure.

[24] The time derivative of 4, and A, corresponds to the
surface friction torque as a result of tangential stress placed
upon the surface by the surface wind. In the absence of
topography in the GCM we used, there is no mountain
torque associated with the atmospheric pressure on the
topography. Therefore, we note that the atmospheric torque
in our model may be underestimated to some extent.

3. Results

3.1. Parameters of Titan’s Interior and Chandler
Wobble

[25] The polar motion of a planet/moon strongly depends
on the parameters that describe the planetary interior. In the
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case of Titan, some of the parameters are reasonably well
known, while others are uncertain or even totally unknown.

[26] The axial MOI factor of Titan was determined by
gravity measurements of the Cassini radio science [/ess
et al., 2010]. An axial MOI factor of 0.34 was derived, so
the axial moment of inertia amounts to C = 0.34M R*> =
3.03218 x 10*° kg m?. With Titan’s gravity coefficients .J5,
S5 and C,, determined by Zess et al. [2010], equations (12, 2),
and (9) yield egluatorial MOI of 4=3.03172 x 10** kgm?, B=
3.03208 x 10*° kg m* and polar flattening of o =9.355 x 107,

[27] In the case of an internal ocean the unknown thick-
ness of the outer crust controls several model parameters.
Among various models of Titan’s interior, the model of
Grindrod et al. [2008] predicts the largest crustal thickness
(176 km). Medium crustal thicknesses of 90 km and 100 km
are suggested by Mitri and Showman [2008] and Nimmo
and Bills [2010], respectively. Older models preferred a
crustal thickness around 70 km [Grasset et al., 2000; Sohl
et al., 2003; Tobie et al., 2005]. The smallest nominal crustal
thickness (10-50 km) was suggested by Béghin et al. [2009]
based on measurements of the Schumann resonance by the
Huygens probe.

[28] Figure la shows how the ratio C/C, depends on the
crustal thickness. Should Titan have a decoupling subsur-
face ocean, the polar motion amplitude would amplify by at
least a factor of 5 compared to Titan without such an ocean.
As long as the crust has a relatively large thickness this ratio
almost linearly increases with decreasing thickness. How-
ever, if the crustal thickness approaches the lower limit, C/C,
rapidly grows.

[20] The available gravity data of Cassini do not yet allow
a reliable estimation of the degree 2 tidal potential Love
number k, [less et al., 2010], which is required for the
Chandler frequency. Therefore, we adopt the theoretically
calculated value after Sohl et al. [2003]. If there is a sub-
surface ocean, k, increases with decreasing crustal thickness
from 0.28 (200 km crustal thickness) to 0.4 (20 km crustal
thickness). If there is no internal ocean, k, = 0.03.

[30] We adopt the load Love number (mass load coeffi-
cient) k5 from the theoretical work of Sohl et al. [1995]. In
the absence of a subsurface ocean k5 = —0.03 and in the
presence of an ocean k5 = —0.83. The latter number should
somewhat depend on the crustal thickness, but there are
other uncertainties that affect the number as well. Therefore,
we refrain from varying k5 with the crustal thickness.

[31] In the presence of a subsurface ocean, mass redistri-
bution of the crust is facilitated, so it largely compensates
the atmospheric load, which is given by the pressure term.
This is expressed by a load Love number close to —1, so 1 + k5
is close to zero. If instead no ocean is present, the pressure
term is barely compensated.

[32] Ifthere is no subsurface ocean, the Chandler frequency
is 3.2513 x 10 '° Hz after equation (5), corresponding to a
Chandler period of 612.4 years, which is 20 times longer
than one Titan year (29.5 years, i.e., Saturn’s orbital period).
As long as the AAM variation is characterized by seasonal
or subseasonal oscillations, a resonance between the atmo-
spherically excited wobble and the Chandler wobble is
unlikely in the no-ocean case.

[33] We can quantify how the triaxiality and deformation
of Titan change the free wobble period of Titan. If Titan
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Figure 1. Parameters of Titan’s interior relevant for the

polar motion as a function of the crustal thickness (R — c¢,)
above a putative subsurface ocean. (a) Ratio of momentum
of inertia of whole Titan to that of the outer crust only. The
amplitude of the polar motion amplifies by this factor if
Titan has a decoupling internal ocean. C, is obtained from
equation (8). (b and c) Chandler wobble frequency and
period.

were a biaxial, rigid body, the free wobble period (Euler
period) would be

27

Pr={c— /a0

(21)

where 4 = (4 + B)/2. Pr amounts to 472.8 years.

[34] The free wobble period of a_triaxial, rigid body is
given by equation (5), where 4 and B are replaced by 4 and
B, respectively. This amounts to 599.6 years, i.e., the tri-
axiality lengthens the free wobble period by 126.8 years.
The deformation of Titan lengthens the free wobble period
by another 12.8 years. As a whole the deformation in Titan’s
interior and the triaxial shape lengthen the free wobble
period by ~30%.

[35] However, if there is a subsurface ocean, the Chandler
wobble of the crust accelerates because the crust has a
smaller MOI than entire Titan. Generally, a subsurface
ocean reduces the Chandler period by an order of magnitude
(Figure 1c). The Chandler period decreases with decreasing

TOKANO ET AL.: POLAR MOTION OF TITAN

E05002

crustal thickness. It turns out that there is a certain thickness
at which the Chandler period coincides with the annual
period of Titan. This coincidence is found at a crustal thick-
ness of ~35 km. In such a case a substantial modification of
the polar motion by the Chandler wobble can be expected,
as shown below.

3.2. Atmospheric Forcing

[36] In our study the temporal variation in the equatorial
AAM is the only forcing mechanism of Titan’s polar
motion. The time series of the relative AAM used in this
study were presented in Figures 1 and 3 of Tokano [2010].
The time series of ¢35 and cp3 times ) were presented in
Figure 4 of Tokano [2010]. A, and h, undergo a diurnal
oscillation due to thermal tides. The amplitude of the diurnal
oscillation varies semiannually and becomes maximal twice
per Titan year between solstice and subsequent equinox.

[37] Figure 2 shows the atmospheric forcing in the fre-
quency domain used in equations (13) to (16). It elucidates
how much the atmosphere forces polar motion at which
frequency. The wind term exhibits the largest peak at the
diurnal period (4.56 x 10~° Hz frequency). Secondary, broad
peaks are seen in the low-frequency band. They reflect
atmospheric waves present in the model, which are neither
thermal nor gravitational tides. The most distinct peaks in the
low-frequency band are found at the semiannual (o = 1.35 x
107® Hz) and annual (6.76 x 10~ Hz) period. The semiannual
variation of the amount of the equatorial AAM of Titan is
mainly caused by the reversal of the Hadley circulation twice
per Titan year that covers both the troposphere and strato-
sphere [Tokano, 2010].

[38] The pressure term is 2 orders of magnitude smaller
than the wind term, so it contributes much less to the polar
motion of Titan. In the presence of a subsurface ocean the
pressure contribution to the polar motion is further reduced
by the load Love number k5 close to —1. The seasonal
forcing (at low frequencies) is as strong as the diurnal
forcing and there is another broad peak around 10 Titan
days. While negative frequencies are negligible in the wind
term, they are present in the pressure term. They are caused
by the fact that gravitational atmospheric tides contain both
westward and eastward propagating modes. However, because
of the overall weakness of the pressure term forcing on Titan
a retrograde wobble does not become apparent.

3.3. Polar Motion

[39] In this section we present and discuss the polar motion
predicted under the hypothetical assumption that besides the
atmospheric torque no external and internal torques and
dissipation exist. This serves as a baseline model to which
further studies on additional torques can be referred. Some
discussion on additional torques follows in section 3.4.
Therefore, the model prediction in this section should not be
directly used for the interpretation of possible observations
of Titan’s polar motion.

[40] We calculated the polar motion for a period of 1 Titan
year for various models of Titan’s interior (no subsurface
ocean, with subsurface ocean, three different crustal thick-
nesses). Polar motion with a period of longer than 1 Titan year
is neglected since the atmospheric data themselves cover only
1 Titan year, i.e., the lower limit of o in equation (12) is 6.76 x
10~° Hz. The upper limit is 0 = 1.09 x 10~* Hz, corresponding
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Figure 2. (left) Equatorial components of the AAM in the frequency domain. (a and b) The wind term of
the AAM (h, and 4,). (c and d) The pressure term of the AAM (c;5€2 and ¢,5€2). The term o =4.56 x 10 °Hz
corresponds to the diurnal frequency, o ~ 1.35 x 10~® Hz to the semiannual frequency and 6.76 x 10~° Hz to
the annual frequency on Titan, latter of which is marked by an arrow. Positive and negative o causes pro-
grade (anticlockwise) and retrograde (clockwise) rotation of the rotation axis around the geographical ref-
erence pole. (right) A zoom of the low-frequency band.

to 1/24 Titan day. We do not predict the possible interannual
variability in the polar motion since the significance of
interannual variability in the atmospheric circulation of Titan
is yet unclear.

[41] The solution of the polar motion equation is an initial
value problem with a possible nonzero phase with respect to
ot in equation (12). In other words, it is not possible to
unambiguously determine the absolute coordinates of x and
y as a function of season unless the initial position is known.
In the lack of observational data we started the simulation
arbitrarily from Lg = 0° at ¢ = 0. If the simulation is started
from an another season, the starting point would be at
another location on the displayed polar motion path.

[42] The calculation shows that the polar motion depends
both qualitatively and quantitatively on the interior structure
assumed. Figure 3 shows the time series of the polar motion.
A superposition of high-frequency and low-frequency oscil-
lations can be readily recognized in each Titan model,
although the low-frequency oscillations do not necessarily
exhibit a simple sinusoidal shape. In order to better under-
stand the shape of the polar motion and its dependence on the
crustal thickness we also decomposed the polar motion time
series into different frequency bands, which are shown in
Figures 4 and 5.

[43] Figure 4 elucidates that the high-frequency oscilla-
tion is a diurnal wobble caused by thermal tides described
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Figure 3. Time series of the polar motion for different interior models. The curves show the instanta-
neous position of the rotation axis (deviation from Titan’s figure axis in meters) as a function of time.
The left and right column show the x and y component, respectively. The first row shows the result
for Titan without a subsurface ocean, the second through fifth rows show the results for Titan with a sub-
surface ocean of different crustal thickness. The polar motion amplitude has been converted from radians
to meters for convenience. The corresponding paths of the polar motion are depicted in Figures 6 to 8.

by Tokano [2010]. In the absence of a subsurface ocean the
amplitude of the diurnal wobble is of the order of a meter.
However, the amplitude (polar motion radius) of the diurnal
wobble is modulated seasonally as with the tilt angle of the
AAM vector [Tokano, 2010]. If Titan has a decoupling
subsurface ocean, the amplitude of the diurnal wobble is
1 order of magnitude larger because only the outer crust
responds immediately to the atmospheric forcing. The ampli-
tude gradually grows from ~5 m at a crustal thickness of
100 km to ~20 m at a crustal thickness of 30 km. This
amplitude increase mostly reflects the increase of C/C.
shown in Figure la. The tidal potential Love number has
little influence since ¢;3 and c,3 are small on Titan. Also the

Chandler wobble has no influence on the diurnal wobble
because the periods of both wobbles differ by several orders
of magnitude from each other.

[44] The medium-frequency band (Figure 5, left) is domi-
nated by the semiannual wobble (two waves per Titan year)
associated with the periodical reversal of the Hadley circu-
lation, which occurs twice per Titan year around equinoxes.
The low-frequency band almost exclusively consists of the
annual wobble with one wave per Titan year. This analysis
shows that the semiannual and annual wobble have com-
parable amplitudes although the relative importance of each
wobble depends on the interior structure as discussed below.
In these two frequency bands the wobble has an amplitude
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Figure 4. Zoom of Figure 3 at the season Lg = 90°
(northern summer solstice) for 2 consecutive Titan days
showing the diurnal wobble. The solid and dashed line show
the x and y component, respectively.

larger than the diurnal wobble although the forcing is weaker.
The reason for the larger wobble is the closer proximity of
the forcing frequency o to the Chandler frequency ocy.

[45] The overall shape in Figure 3 can be basically under-
stood as a superposition of the annual, semiannual and diurnal
wobbles. The magnitudes of two consecutive semiannual
wobbles slightly differ from each other because of Titan’s
asymmetric seasons caused by Saturn’s orbital eccentricity.
Interestingly the shape of the polar motion depends on the
crustal thickness. If Titan is entirely solid or if there is a
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decoupling subsurface ocean below a relatively thick crust
(e.g., 100 km or more), the x and y component of the polar
motion have similar amplitudes. However, if the crust be-
comes thinner, the y component increases at the expense of
the x component. This can be already recognized in the
70 km case, but is much more pronounced if the crust is
thinner. The reason for this asymmetry between x and y is

the fact that C — 4 is 4 to 5 times larger than C — B in
equations (15) and (16). The terms containing these MOI
differences become relatively more important if the crust
becomes thinner, i.c., C., 4. and B, are small. At crustal
thicknesses larger than 100 km (not shown) the result is rather
similar to that of the 100 km case, but slowly approaches
the solid Titan case. Also, if the outer crust is not fully
decoupled from the interior by the ocean, the resulting polar
motion would be closer to that of the solid Titan case.

[46] A mathematical singularity in the polar motion
equation would occur, should the crustal thickness be about
35 km. In this particular situation o = ocy for the annual
forcing period, i.e., a resonance occurs between the annual
period and the Chandler period. According to equations (15)
and (16) the polar motion amplitude would become infinite.
In reality, an infinite polar motion is impossible since dis-
sipation in Titan’s interior would damp the polar motion.

[47] The dissipation of the polar motion is characterized
by the wobble dissipation factor O, which contains infor-
mation about the budget and processes of kinetic energy
dissipation in the planetary interior. The Chandler wobble
amplitude decays to ¢! of its original value in a timescale
ty = 2Q/ocw [Gross, 2009]. It is common practice to
estimate Q from comparisons between the observed and
modeled Chandler wobble because the dissipation mechan-
isms are not well understood. Unfortunately, in the lack of
observational data and theoretical studies about the wobble
dissipation in an icy crust we are unable to estimate Q at this
stage. It is even unclear if Q would be of the same order of
magnitude as for the Earth, which varies between 40 and 180
[Gross, 2009].

[48] Aninfluence of a resonance with the Chandler wobble
can be seen in the case with a subsurface ocean underneath a
thin crust, exemplified here by the 40 km and 20 km case.
The predicted wobble in the 40 km case basically consists of
one sine curve per Titan year. This is a manifestation of the
resonance between the annual atmospheric forcing and the
Chandler wobble, whose period is about 30 years (Figure 1c),
corresponding to 1 Titan year. The resonance with the
Chandler wobble amplifies the annual wobble, while the
semiannual wobble is not affected. In contrast to this, the
20 km case shows a resonance between the semiannual
wobble and the Chandler wobble. Therefore, there are two
large sine curves per Titan year, while the annual wobble is
of minor importance.

[49] Figures 6 to 8 show the calculated paths of the polar
motions, for which the time series are shown in Figure 3. In
the no-ocean case (Figure 6) the polar motion path consists
of anticlockwise rotating small circles, which themselves
spiral anticlockwise with a larger radius around the reference
pole. Since the amplitudes of the diurnal and semiannual
wobble do not strongly differ from each other they are
sometimes intermingled. Furthermore, the wobble as a whole
is rather circular.
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Figure 5. Time series of the polar motion in different frequency bands. (left) The medium-frequency
band (10°® Hz < 0 < 4.56 x 10"’ Hz) covering forcing periods between 10 Titan days and 456 Titan days
(0.676 Titan year). (right) The low-frequency band (o < 10~® Hz) covering forcing periods longer than
456 Titan days. The solid and dashed line show the x and y component, respectively.

[50] The presence of a subsurface ocean does not sub-
stantially change the shape of the polar motion path as long
as the crust is 100 km thick (Figure 7, top) or thicker.
However, if the crust is substantially thinner, the polar
motion is more elliptical in that it is elongated in the y
direction (leading and trailing side or 90°W and 90°E of
Titan). The thinner the crust is the more the elliptical shape
pronounced (Figures 7 and 8).

[5s1] The shape of the polar motion path also depends on
the resonance with the Chandler wobble. In the 40 km case
the annual wobble is greatly amplified by the Chandler
wobble resonance, so there is basically one large elliptic
wobble, which is slightly deformed to a heart shape by the
semiannual wobbles, which describe smaller ellipses (Figure 8,
top). The 20 km case, which is characterized by a Chandler
wobble resonance with the semiannual wobble, exhibits two

large ellipses elongated to the y direction (Figure 8, bottom).
The size of these two ellipses differs from each other because
of the asymmetric seasons on Titan. In this particular case the
amplitude along the y axis is roughly twice as large as that
along the x axis. The wobble amplitude of the order of 1 km
is 2-3 orders of magnitude larger than if Titan is entirely
solid.

4. Discussion

[52] As briefly mentioned at the end of section 2.2, the
baseline study does not account for the external and internal
gravitational coupling and elastic restoring torque whose
influences on Titan’s rotation rate variations were investi-
gated by Karatekin et al. [2008], Van Hoolst et al. [2009],
and Goldreich and Mitchell [2010]. The external coupling
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(gravitational torque by Saturn) arises from the misalign-
ment of the long axis of Titan with the line joining the mass
centers of Titan and Saturn [Van Hoolst et al., 2009]. If
Titan has no subsurface ocean, the external gravitational
torque by Saturn is the only additional torque that would
counteract the polar motion. Its effect on LOD variations of
Titan is important and reduces the amplitude of LOD var-
iations by more than an order of magnitude [Van Hoolst et al.,
2009]. However, the effect is expected to be much smaller for
seasonal polar motion because the averaged torque over one
Saturn’s orbit is much smaller than the instantaneous torque.

[53] If there is a subsurface ocean, which frictionally
decouples the outer crust from the mantle/core, additional
torques exist due to Titan’s triaxial shape. First, there is a
gravitational torque on the crust by the ocean and deeper
interior [Karatekinet al., 2008; Van Hoolst et al., 2009].
Secondly, there is a pressure torque caused by variations in
the gravitational field due to relative rotation of different
internal layers and to orientation change with respect to the
direction of Saturn [Van Hoolst et al., 2009]. These two
represent the internal coupling between layers. Viscous and
electromagnetic interlayer torques are usually neglected on
such short timescales as considered in this study.

[54] The internal torques would reduce (in addition to
external coupling) the amplitude of the polar motion com-
pared to the results presented in this paper. We here estimate
this amplitude reduction based on the effect the couplings
have on the LOD variations of Titan induced by the atmo-
sphere [Van Hoolst et al., 2009]. This estimate should be
fairly good since similar physical effects are at play, except
for the effect of possible resonances with the Chandler
wobble. For LOD, we can use equation (40) of Van Hoolst
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et al. [2009]. At diurnal (high) frequencies, the inertia terms
in the right-hand side are several orders of magnitude larger
than the coupling terms and the solution reduces to the
simple form:

r

— 22
o2C, (22)

8 — —

where I is the atmospheric torque. The effect of internal and
external couplings can be neglected at these high frequen-
cies and this is also expected to apply to polar motion.

[s55] On the other hand, at seasonal (say, semiannual)
frequencies, the internal coupling cannot be neglected and
strongly lock the rotations of the crust and the solid interior
[see Karatekin et al., 2008; Van Hoolst et al., 2009, Table 2].
This suggests that seasonal polar motion with a subsurface
ocean would be of the same order as magnitude as for Titan
without an ocean, as is the case for LOD. Generally, the

Ocean with 100 km crust

100 T T T
50 -
E
> 0 B ]
€
50 | 4
_100 1 1 1
-100 -50 0 50 100
m, (m)
Ocean with 70 km crust
140 T T T
70 -
E
> 0 B ]
€
.70 F 4
-140 L L L
-140 -70 0 70 140
m, (M)

Figure 7. Same as Figure 6 but for the case with a subsur-
face ocean and a crustal thickness of 100 km and 70 km. The x
and y range cover (top) £2.23 x 10> degrees or +3.89 x 10>
rad and (bottom) £3.12 x 10> degrees or +5.45 x 10> rad.
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additional torques become more important for low fre-
quencies, i.e., the seasonal wobble becomes more strongly
attenuated than the diurnal wobble. Hence the diurnal and
seasonal wobble are likely to be more intermingled than
shown in Figure 8.

[56] The above torques were calculated in the assumption
of a rigid crust, neglecting its deformation. Goldreich and
Mitchell [2010] introduced an elastic torque related to the
idea that incremental rotation with respect to the equilibrium
position would lead to deformation of the shell such that it
conforms its form to that of the ocean. This reasoning is
based on the comparison of elastic energy of deformation to
gravitational energy associated with rigid body rotation due
to Titan being under the influence of Saturn. Goldreich and
Mitchell [2010] obtain a maximum orientation shift in the
long axis of Titan in the orbital plane due to the atmosphere
of Titan of 7 x 10™* rad if (only) the elastic torque is taken
into account, a subsurface ocean underneath a crust of 100 km
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thickness is assumed and the atmospheric torque of Tokano
and Neubauer [2005] is used. This is somewhat larger than
the maximum orientation shift considering (only) the external
and internal coupling (~10"* rad) in the rigid crust approxi-
mation for the same atmospheric torque [Van Hoolst et al.,
2009].

[57] One might think that due to its smaller atmospheric
torque the seasonal wobble would be easier to damp than the
diurnal wobble. However, the situation for the seasonal
wobble is complicated since the orientation of Titan with
respect to Saturn changes by 360° over one Saturn’s orbit. It
is unlikely that Titan would continuously deform to conform
its shape to be symmetric with respect to the direction to
Saturn. As a whole, the effect of the elastic torque on the
polar motion can be expected to be less than for LOD
variations as calculated by Goldreich and Mitchell [2010].

[58] We expect that the inclusion of all these additional
torques would not completely erase the polar motion and the
polar motion amplitude in the presence of a subsurface
ocean is at least as large as that for solid Titan. Possible
resonances with the Chandler wobble would still cause a
large polar motion despite the additional torques discussed
above. It is rather unlikely that the additional torques can
substantially modify the Chandler wobble period, as this
depends mainly on the effective crust moment of inertia
difference. As a supporting argument, Dehant et al. [2003]
found that the Chandler wobble period of Mars is rather
insensitive to the unknown radius of the inner core under-
neath a liquid outer core.

[s59] Without a substantial modification of the Chandler
wobble, a resonance between the seasonal wobble and
Chandler wobble would occur despite the additional torques
that tend to suppress the overall magnitude of the polar
motion. Most importantly, the elliptical shape predicted in
the case of thin crusts (Figure 8) would still occur. For this
reason the main difference between the solid and ocean
case is the shape rather than the amplitude of the seasonal
wobble.

[60] In the above consideration of the additional torques,
all interior layers of Titan are assumed to have the same
triaxial shape. However, the shape of the internal layers
(ocean, solid interior) is unknown from observations in
contrast to the shape of the surface. If the crust is conduc-
tive, the polar crust would be thinner than the equatorial
crust because of isostatic compensation [Nimmo and Bills,
2010]. In this configuration the polar subsurface ocean is
thicker in comparison with the equatorial ocean, contrary to
an ocean with a triaxial shape. The ocean-crust interface
would be flat (triaxial global shape) if the lower part of the
crust is assumed to be convective [Nimmo and Bills, 2010],
but in this case the surface shape (with a slight equatorial
depression) would be inconsistent with the observed shape
of Titan’s surface. A mismatch between the shape of Titan’s
surface and of the ocean-crust interface would modify the
internal coupling to an extent we cannot estimate without
knowing the shape/topography of the internal layers. We
conclude that there are several unknowns about Titan’s
interior, which hamper an exact calculation of Titan’s polar
motion.

[61] We also remark that the atmospheric forcing based on
GCM predictions itself is uncertain and additional forcing
mechanisms (hydrology, hydrocarbon seas, subsurface ocean)
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are not taken into account in this study. Therefore, one
should keep in mind that there are not only effects that would
damp Titan’s wobble but possibly also additional external
forcing mechanisms, which enhance the polar motion.

[62] The Cassini spacecraft is unlikely to detect the diurnal
wobble because of its small size and too infrequent Titan
flybys for this purpose. However, the large and slow semi-
annual or annual wobble might be detectable if it is strongly
amplified to several kilometers by a resonance with the
Chandler wobble. In such an event Titan’s outer crust would
be thin. More promising would be a monitoring of the polar
motion by a long-term Titan orbiter or a polar lander.

5. Conclusions

[63] Titan’s atmosphere has a large equatorial AAM,
which is evidenced by the observed tilt of the symmetry axis
of the global circulation from the pole axis [Achterberg et al.,
2008] and predicted by a three-dimensional GCM [Tokano,
2010]. This orientation and magnitude of the equatorial
AAM are predicted to vary with solar local time and with
season. This is accompanied with an exchange of angular
momentum with the underlying surface along the equatorial
principal axes. Consequently, Titan is forced to perform polar
motion (wobble).

[64] This study is a first attempt to quantify Titan’s atmo-
spherically excited polar motion using the output of a Titan
GCM. We paid attention to the pronounced triaxial shape of
Titan in the derivation of the equations of polar motion. Since
Titan’s interior structure is less known than the interior
structure of the terrestrial planets or even many other large
moons we calculated the polar motion assuming different
interior models. However, parameters of Titan’s interior
constrained by recent gravity measurements of the Cassini
radio science are taken into account.

[65] Polar motion is excited by the transfer of the equa-
torial component of the AAM with the surface. The atmo-
spheric forcing mainly occurs with diurnal, semiannual and
annual periods. The shape and size of Titan’s polar motion
are shown to depend on the interior structure. If Titan has no
subsurface ocean, the diurnal wobble has a typical radius of
1 m, although it is seasonally modulated. Additionally, there
are two cycles of semiannual wobbles per Titan year with a
radius of about 5 m. Since the amplitudes of the diurnal and
seasonal wobbles do not strongly differ from each other the
path of the polar motion is intermingled. Although Saturn’s
gravitational torque counteract the polar motion, the damping
of the polar motion may not be as strong as the damping of the
LOD variation.

[66] The presence of a subsurface ocean amplifies both the
diurnal and seasonal wobble by an order of magnitude and
more. The polar motion radius increases with decreasing
crustal thickness since the moment of inertia of that portion
of Titan that responds to atmospheric forcing becomes
smaller. If the crustal thickness is 100 km and more, which
is on the larger side among the theoretical models of Titan’s
interior, the diurnal wobble has a typical radius of 10 m and
a semiannual and annual wobbles with radii of 50 m.

[67] A resonance between the annual wobble and Chandler
wobble would occur if the crustal thickness is close to 35 km.
In this particular situation the annual wobble is further
amplified, while the superposed semiannual and diurnal
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wobbles do not change. If the crust is only 20 km thick, a
resonance between the Chandler wobble and semiannual
wobble would occur, so two large semiannual wobbles would
dominate Titan’s wobble. Titan’s triaxial shape with a tidal
bulge at the sub-Saturnian and anti-Saturnian point causes the
polar motion to be elliptical if there is a subsurface ocean and
the outer crust is relatively thin. The wobble is elongated
along the y axis, i.e., toward the leading point (90°W) and
trailing point (90°E).

[68] If a subsurface ocean is present, the nature of internal
coupling between the crust, ocean and solid interior would
depend on the assumed mechanical behavior of the crust. If
the crust is assumed to be rigid, gravitational and pressure
torque act on the crust, while the shell experiences an elastic
restoring torque if it is assumed to be deformable. In either
case should the torques damp the seasonal wobble more
strongly than the diurnal wobble. However, the damping of
the polar motion is expected to be generally smaller than the
damping of the LOD variation. It is unlikely that the addi-
tional torques entirely eliminate the polar motion and polar
motion amplitudes of at least the order of meters may be
present under any configuration. An elliptical shape rather
than the amplitude of the polar motion is probably the best
signature of the possible presence of a subsurface ocean in
Titan.

[69] Acknowledgments. The work of T.T. was funded by the DFG.
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