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Abstract
Several aspects describing the state of the atmosphere in the North Sea region are considered
in this chapter. These include large-scale circulation, means and extremes in temperature and
precipitation, cyclones and winds, and radiation and clouds. The climate projections reveal
several pronounced future changes in the state of the atmosphere in the North Sea region,
both in the free atmosphere and near the surface: amplification and an eastward shift in the
pattern of NAO variability in autumn and winter; changes in the storm track with increased
cyclone density over western Europe in winter and reduced cyclone density on the southern
flank in summer; more frequent strong winds from westerly directions and less frequent
strong winds from south-easterly directions; marked mean warming of 1.7–3.2 °C for
different scenarios, with stronger warming in winter than in summer and a relatively strong
warming over southern Norway; more intense extremes in daily maximum temperature and
reduced extremes in daily minimum temperature, both in strength and frequency; an increase
in mean precipitation during the cold season and a reduction during the warm season; a
pronounced increase in the intensity of heavy daily precipitation events, particularly in
winter; a considerable increase in the intensity of extreme hourly precipitation in summer; an
increase (decrease) in cloud cover in the northern (southern) part of the North Sea region,
resulting in a decrease (increase) in net solar radiation at the surface.
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5.1 Introduction

Wilhelm May

Projections of future climate change are obtained from
simulations with global coupled as well as regional climate
models (GCMs and RCMs, respectively). In these projec-
tions, concentrations or emissions of the well-mixed green-
house gases and of the anthropogenic aerosol load are
prescribed according to different scenarios, which take dif-
ferent possibilities for future developments into account. For
the Fourth Assessment Report (AR4) of the Intergovern-
mental Panel on Climate Change (IPCC), these scenarios
were based on the assumptions of the Special Report on
Emission Scenarios (SRES; Nakićenović et al. 2000), while
for the Fifth Assessment Report (AR5) the newly developed
Representative Concentration Pathways (RCPs; Moss et al.
2010; van Vuuren et al. 2011) were applied. The RCP sce-
narios differ from the SRES scenarios in that they assume
different pathways to specific targets of the radiative forcing
by the end of the 21st century. The two families of scenarios
were also applied in the Coupled Model Intercomparison
Project (CMIP), the SRES scenarios in phase 3 (CMIP3;
Meehl et al. 2007a) and the RCP scenarios in phase 5 of the
project (CMIP5; Taylor et al. 2012).

In the contributions of IPCCWorking Group I to AR4, the
projections of future climate change based on the SRES
scenarios are presented in two different chapters, one
addressing the global aspects of climate change (Meehl et al.
2007b) and one covering the regional aspects (Christensen
et al. 2007). In the latter, the projected changes in climate are
described separately for different continents and/or regions,
including Europe. In 2012, the AR4 was complemented by
the IPCC Special Report on climate extremes (SREX), where
among others the observed and projected future changes in
different kinds of extreme climate events were assessed
(Seneviratne et al. 2012). In Table 3.3 of the latter report, the
projected future changes in temperature and precipitation
extremes were summarised for different regions, including
northern, central and southern Europe. Also in 2012, the
European Environment Agency (EEA) published a report on
climate change, impacts and vulnerability in Europe, cover-
ing several aspects of climate and climate change (EEA
2012). In particular, the report includes references to several
scientific publications based on future climate projections
originating from a multi-model ensemble of RCM simula-
tions for Europe performed within the ENSEMBLES project
(Van der Linden and Mitchell 2009). The SRES scenarios
were applied in these simulations. Recently, a new set of
future climate projections for Europe has become available
within the World Climate Research Programme (WCRP)
Coordinated Regional Downscaling Experiment (CORDEX;
Giorgi et al. 2009), with the aim to increase both the number

of RCMs and the number of driving coupled climate models
compared to the ENSEMBLES project. These scenario
simulations are based on the RCP scenarios, with the driving
coupled climate model data taken from CMIP5. As for Eur-
ope, a specific set of climate scenarios at a horizontal reso-
lution of 12.5 km has become available within the CORDEX
initiative, with seven different RCMs to date (Jacob et al.
2014). In ENSEMBLES, the finest horizontal resolution of
the climate scenarios was 25 km.

In the contributions of IPCC Working Group I to AR5,
the global aspects of the projections of future climate change
based on the RCP scenarios are presented in a specific
chapter (Collins et al. 2013), while the regional aspects were
covered differently to AR4. In AR5, future changes in the
characteristics of a number of prominent climate phenom-
ena, i.e., monsoon systems, the El Niño-Southern Oscilla-
tion, annular and dipolar modes and large-scale storm
systems, and their relevance for regional climate change
were assessed (Christensen et al. 2013a), with the regional
changes in climate presented in the form of an atlas for as
many as 18 different regions distributed over the globe
(IPCC 2013). As for Europe, the northern and central parts
of the continent and the Mediterranean region were distin-
guished. The regional aspects of the projections of future
climate change were also considered in the contributions of
Working Group II to AR5 (Hewitson et al. 2014a, b), again
distinguishing between the aforementioned three parts of
Europe. A detailed assessment of the impacts of the pro-
jected changes in climate for Europe, as for several other
regions, is presented in a specific chapter of this part of AR5
(Kovats et al. 2014a, b).

Adaptation strategies are needed in response to the
observed as well as to the projected changes in climate
(Noble at el. 2014) and these are currently developed at the
national and local level in many countries. This is typically
done on the basis of national climate scenarios, which are
already available for several countries and are likely to
become more widespread in the future. Both the Netherlands
(KNMI 2014) and Denmark (DMI 2014), for instance, have
recently published reports on future climate scenarios for
their countries. In Germany, future climate scenarios have
even become available at a regional level through so-called
regional climate offices, which cover different parts of the
country. Despite their high value for the development of
adaptation strategies for a particular country or part of a
country, these national climate scenarios cannot easily be
combined to give a consistent scenario for a larger area, such
as the North Sea region. While the climate scenarios for
Denmark follow closely the scenarios used in AR4 and AR5
(DMI 2014), the future climate scenarios for the Netherlands
were developed by combining numerous climate scenarios
originating from different climate models in accordance with
the simulated rate of global warming and the simulated
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change in the large-scale circulation over western Europe
(KNMI 2014). This distinction resulted in four categories of
climate scenario: one with moderate warming (about 1.5 °C
by the end of the 21st century) and a weak influence of
circulation change (i.e. a small change in the frequency of
the dominant circulation patterns relative to present-day
conditions); one with moderate warming and a strong
influence of circulation change (i.e. a large change in the
frequency of the dominant circulation patterns); one with
strong warming (about 3.5 °C by the end of the 21st century)
and a weak influence of circulation change; and one with
strong warming and a strong influence of circulation change.
The dominant circulation patterns are characterised by pre-
vailing westerly winds during winter and prevailing easterly
winds in association with high surface pressure during
summer, respectively.

In this chapter, the projected changes in the atmosphere in
the North Sea region are assessed on the basis of the existing
literature, including the recent assessment reports referred to
above. Typically, these changes have been projected for the
end of the 21st century using conditions at the end of the
20th century as the baseline, but in the last few years several
projections have also become available for the middle of the
21st century. Because few studies have focussed specifically
on the North Sea region, most of the results described here
have been extracted from climate projections for Europe
(based on RCM scenario simulations from ENSEMBLES or
CORDEX) or even from projections covering the whole
globe (based on GCM scenario simulations from CMIP3 or
CMIP5). Several aspects describing the state of the atmo-
sphere in the North Sea region have been considered, such as
features of the large-scale circulation (Sect. 5.2), the mean
and extremes, primarily at daily time scales, in temperature
(Sect. 5.3) and precipitation (Sect. 5.4), cyclones and winds
(Sect. 5.5), and radiation and clouds (Sect. 5.6).

5.2 Large-Scale Circulation

Uwe Ulbrich, Birger Tinz, Wilhelm May

5.2.1 Prominent Climate Phenomena

Regional climate is affected by various kinds of climate
phenomena. Their change under rising greenhouse gas
concentrations is thus relevant for future regional climate
change (e.g. Christensen et al. 2013a). Prominent climate
phenomena include the monsoon systems in different parts
of the tropics, the El Niño-Southern Oscillation, different
annual or dipolar modes, and blocking and large-scale storm
systems. The interannual variability of the climate in the

North Atlantic region and specifically the North Sea region
is mainly affected by two modes of variability: the North
Atlantic Oscillation (NAO) and its hemispheric counterpart,
the Northern Annular Mode (NAM) or Arctic Oscillation
(e.g. Itoh 2008). Other large-scale factors affecting the cli-
mate in the Atlantic-European sector are atmospheric
blocking and the strength and position of the Atlantic jet
stream. These factors are all related to the strength and
location of the Atlantic storm track and in turn to the NAO.

5.2.2 Modes of Interannual Variability

The NAO is a dipolar mode of climate variability, charac-
terised by opposite variations in sea-level pressure between
the Atlantic sub-tropical High and the Icelandic Low (e.g.
Hurrell et al. 2003). Through its direct effect on westerly air
flow into Europe, its link with Atlantic cyclones and atmo-
spheric blocking, it strongly affects the climate over the
North Atlantic Ocean and the surrounding continents (e.g.
Hurrell and Deser 2009). The NAO can be established
throughout the entire year, despite different physical mech-
anisms initiating and maintaining this mode of variability
during winter and summer (e.g. Folland et al. 2009).

The CMIP5 simulations for the intermediate RCP4.5
scenario (i.e. 75 simulations with 37 different global climate
models) show an overall amplification of the NAO up to the
end of the 21st century in all seasons, with the greatest
increase in autumn (Gillett and Fyfe 2013). That is, the
pressure difference between the Azores High and the Ice-
landic Low is projected to increase in these scenario simu-
lations. This is consistent with earlier results from the
CMIP3 simulations (Miller et al. 2006). These trends,
however, are generally small compared to the natural climate
variability (Deser et al. 2012). It should be noted that Gillett
and Fyfe’s (2013) use of a particular index to define the
NAO might have had an effect on the magnitude of the
projected change in the NAO, as the respective centres of
action over the northern and southern parts of the North
Atlantic might have different positions under a changing
climate. For instance, Dong et al. (2011) found a poleward
and eastward shift in the pattern of NAO variability in
response to greenhouse gas forcing, in line with previous
findings by Ulbrich and Christoph (1999). Both the future
changes in the troposphere and the stratosphere as a direct
response to the prescribed greenhouse gas forcing and the
associated changes in sea surface temperatures in the North
Atlantic contribute to the aforementioned changes in the
NAO. In a recent study, Davini and Cagnazzo (2013)
pointed at the possibility of misinterpreting the NAO signals
in current climate models. This is because some of the
models were not able to realistically simulate the physical
processes connected to the NAO, namely atmospheric
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blocking and interaction with the Atlantic jet stream. This is
particularly the case for those models that strongly under-
estimate the frequency of atmospheric blocking in the
Greenland area. These shortcomings might affect studies
analysing the NAO under different mean climate states, i.e.
for future climate scenarios.

The NAO has been interpreted as the manifestation of an
annular mode in sea-level pressure, the NAM, over the
North Atlantic region (e.g. Thompson and Wallace 2000).
Similar to their findings for the NAO, Gillett and Fyfe
(2013) also found an overall amplification of the NAM
under future climate conditions in all seasons. The increase
is greatest in autumn and winter and smallest in summer.
Furthermore, none of the climate models simulated a sig-
nificant decrease in the NAM in any season.

5.2.3 Atmospheric Blocking

Atmospheric blocking is typically associated with persistent
stationary or slowly moving high-pressure systems in the
extratropics, interrupting the prevailing westerly winds and
the usual track of eastward moving cyclones at these lati-
tudes. Blocking occurs most frequently in the exit regions of
the storm tracks in both hemispheres and is characterised by
marked seasonal variability with high frequencies during
winter and spring and low frequencies during summer and
autumn (e.g. Wiedenmann et al. 2002; Masato et al. 2013). In
the Atlantic-European sector blocking occurs more fre-
quently over the North Atlantic in winter but more frequently
over Europe in summer (e.g. Tyrlis and Hoskins 2008).
Blocking is a major contributor to intraseasonal variability in
the extratropics and can lead to seasonal climate anomalies
over large parts of Europe (e.g. Trigo et al. 2004) as well as to
climate extremes like cold spells in winter (e.g. Cattiaux et al.
2010) or heat waves in summer (e.g. Matsueda 2011). As
previously mentioned, atmospheric blocking in the Atlantic-
European sector during winter is strongly related to the NAO
(Croci-Maspoli et al. 2007).

The CMIP5 simulations for the high RCP8.5 scenario
show an overall decrease in the frequency of atmospheric
blocking in the Atlantic-European sector in both winter
(Cattiaux et al. 2013; Dunn-Sigouin and Son 2013; Masato
et al. 2013) and summer (Dunn-Sigouin and Son 2013;
Masato et al. 2013). The decrease in summer is accompanied
by an increase on its eastern flank, leading to an eastward
shift of the area with high blocking frequencies (Masato
et al. 2013). While the decrease in winter is a consistent
finding, regardless of how many different simulations from
CMIP5 are considered or which method is used to define a
blocking event, the situation is less clear in summer.

In contrast to the findings of Dunn-Sigouin and Son (2013)
and Masato et al. (2013), Cattiaux et al. (2013) found an
increase in the frequency of blocking events in the
Atlantic-European sector during summer for most of the 19
CMIP5 models considered. The other two studies considered
simulations from fewer CMIP5 models and used various
indices to define blocking, while Cattiaux et al. (2013) used
an approach based on weather regimes, with blocking being
one of them. No noticeable changes, however, were found
regarding the duration of individual blocking events
(Dunn-Sigouin and Son 2013). These results are consistent
with findings based on the CMIP3 simulations, which show
a significant decrease in blocking frequency, particularly
during winter (Barnes and Hartmann 2010; Barnes et al.
2012), but are somewhat less clear. According to Woollings
(2010) the effect of greenhouse gas forcing on blocking
might to a large extent reflect changes in the mean state of
the atmosphere rather than dynamical processes directly
associated with blocking. Barnes and Hartmann (2010)
demonstrated, for instance, that a poleward shift in the
Atlantic jet stream could lead to a decreased frequency of
atmospheric blocking in winter due to a reduction in pole-
ward Rossby-wave breaking.

5.2.4 Sea-Level Pressure

The AR5 reported an increase in mean sea-level pressure
(MSLP) over western Europe and the adjacent part of the
North Atlantic in winter, with a centre over the Mediter-
ranean region, for RCP2.6, RCP4.5 and RCP8.5 (Collins
et al. 2013). Further north the MSLP is markedly reduced. In
summer, on the other hand, MSLP is reduced over Europe
but increased over the North Atlantic, with a centre west of
the British Isles. In both cases, the magnitude of the changes
in MSLP follows the strength of the radiative forcing with
the smallest (largest) changes in MSLP associated with the
weakest (strongest) scenario. Van den Hurk et al. (2014)
obtained similar results, when regressing changes in MSLP
in the Atlantic-European region on the corresponding
changes in global mean temperature for a total of 245 cli-
mate change simulations from CMIP5, covering 37 different
global climate models, four scenarios (including RCP6.0)
and ensemble simulations for some of the models. For spring
and autumn, the authors found increases in MSLP over
much of the North Atlantic and western Europe and
decreases further north over the Arctic, but in contrast to
winter, the maximum increases are centred over the North
Atlantic during the transition seasons. The projected changes
in MSLP contribute to the positive trend in the NAO and the
NAM mentioned in Sect. 5.2.2, particularly in autumn.
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5.2.5 Jet Stream

The CMIP5 simulations show a small (about 1° for the
multi-model ensemble means) poleward shift in the position
of the Atlantic jet stream for the RCP8.5 scenario, while its
speed remains nearly constant (Barnes and Polvani 2013).
The poleward shift in the position of the Atlantic jet steam
was found to reduce its north-south wobble as well as to
enhance the variability of its speed (i.e. more of a pulsing of
the jet stream). Woollings and Blackburn (2012) obtained
consistent results based on the CMIP3 simulations, both with
regard to a poleward shift in the mean position of the
Atlantic jet stream and to considerable variations between
individual models, particularly in winter. The poleward
shifts were often small compared to the errors in the simu-
lation of the jet stream position. Moreover, Woollings and
Blackburn (2012) found that the NAO in combination with
the East Atlantic pattern (EA) of the large-scale circulation
can describe both the climatological changes and the inter-
annual variations of both the position and strength of the
Atlantic jet stream at the tropopause level. It is largely the
NAO that describes shifts in the position of the jet, whereas
the NAO and EA are both associated with changes in the
strength of the jet.

The mechanisms underlying a poleward shift in the jet
stream are still not fully understood. Changes in the activity
of large-scale planetary waves or in the characteristics of the
synoptic-scale transient wave activity have been suggested
to contribute to the poleward shift (e.g. Collins et al. 2013).
Haarsma et al. (2013) found an eastward extension to the
zonal winds at 500 hPa over the eastern Atlantic Ocean and
western Europe, primarily related to changes in the tropo-
spheric temperature profile. The temperature changes in two
regions were found to be important for forcing the changes
in mean zonal flow: the relatively strong upper-tropospheric
warming in the subtropics and the reduced surface warming
in the mid-latitudes. Inter-model differences in the projected
changes in mean zonal flow over the eastern Atlantic Ocean
and western Europe could be partly attributed to uncertain-
ties in the response of the North Atlantic Ocean to the
anthropogenic forcing in both the CMIP3 and CMIP5
models.

5.2.6 Summary

Both the CMIP3 and CMIP5 simulations project marked
future changes in various aspects of the large-scale circula-
tion over the Atlantic-European region, of which the North
Sea region is part. These changes are expected to affect the
near-surface climate of the North Sea region, particularly in
terms of weather and climate extremes. Examples include
the impact of changes in the distribution of the phases of the

NAO on the occurrence of climate extremes in Europe (e.g.
Scaife at el. 2008), and the role of atmospheric blocking over
the North Atlantic on the occurrence of cold winter tem-
peratures in Europe (Sillmann et al. 2011).

5.3 Temperature

Wilhelm May

5.3.1 Global Mean Temperature

The CMIP5 simulations project a global warming with
respect to the present day (1986–2005) of between 1.0
(RCP2.6) and 2.0 °C (RCP8.5) by the mid-21st century and
between 1.0 (RCP2.6) and 3.7 °C (RCP8.5) by the end of the
21st century for the multi-model ensemble means (see
Table 5.1). The projected changes in temperature vary con-
siderably between models, with the uncertainty ranges
depending on the magnitude of the projected multi-model
changes. For the RCP2.6 scenario 90 % of the projected
changes by the middle of the 21st century fall in the range
0.4–1.6 °C (the smallest mean change) and in the range 2.6–
4.8 °C by the end of the 21st century for RCP8.5 (the greatest
mean change). Assuming a present-day (1986–2005) global
warming of 0.61 °C with respect to the pre-industrial period
(1850–1900; see Collins et al. 2013), means that under the
RCP2.6 scenario global warming is most likely to stay below
the internationally agreed target of limiting warming to less
than 2 °C with respect to pre-industrial levels throughout the
21st century, while it is most unlikely that global warming
will stay below this threshold over the course of the 21st
century under the RCP8.5 scenario.

5.3.2 Regional Mean Temperatures

According to Knutti and Sedláček (2012), the CMIP5
multi-model ensemble projects a so-called ‘highly robust’
mean surface warming in the North Sea region during both
winter and summer. Part of this robust warming pattern is

Table 5.1 Projected change in annual global mean surface air
temperature (°C) by the mid- and end of the 21st century relative to
present day (1986–2005) for RCP2.6 (32 models), RCP4.5 (42 models)
and RCP8.5 (39 models) obtained from the CMIP5 multi-model
ensemble as well as the 5–95 % ranges from the models’ distribution

Period RCP2.6 RCP4.5 RCP8.5

2046–2065 1.0 (0.4–1.6) 1.4 (0.9–2.0) 2.0 (1.4–2.6)

2081–2100 1.0 (0.3–1.7) 1.8 (1.1–2.6) 3.7 (2.6–4.8)

Adapted from Collins et al. (2013, their Table 12.2)
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weaker warming over the North Sea than over the adjacent
land areas, particularly in winter. This tendency is also
evident in the climate change projections for northern and
central Europe based on the CMIP5 multi-model ensemble
presented in Annex I of AR5 (IPCC 2013). For the RCP4.5
scenario, the ensemble-mean future warming by the end of
the 21st century during winter is 1–2 °C over the North Sea
and 3–4 °C over eastern Scandinavia. During summer, on
the other hand, future warming is 2–3 °C for the entire
northern and central European land areas compared to 1–2 °C
over the North Sea. The regional patterns of future warming
in the North Sea region are characterised by a west-east
gradient with the strongest warming in the east during winter
and a north-south gradient with the strongest warming in the
south during summer. Averaged over northern Europe as a
whole, the annual mean warming is between 2.0 °C
(RCP4.5) and 3.4 °C (RCP8.5) by the middle of the 21st
century and between 2.7 °C (RCP4.5) and 5.0 °C (RCP8.5)
by the end of the 21st century (see Table 5.2). The strength
of future warming over northern Europe varies between
seasons with stronger warming during winter (6.1 °C) than
during summer (4.5 °C), for RCP8.5 by the end of the 21st
century (see Table 5.2).

The characteristic warming patterns over Europe are also
revealed in a multi-model ensemble based on scenario
simulations at high horizontal resolution (*12.5 km) with
11 different RCMs for the RCP4.5 and RCP8.5 scenarios
(Jacob et al. 2014). In summer (JJA), for instance, projected
warming is 1.5–2 °C adjacent to the North Sea except for
southern Norway, where the warming exceeds 2 °C
(Fig. 5.1). In winter (DJF), on the other hand, warming is
1.5–2 °C in western Europe, 2–2.5 °C in central Europe and
over 2.5 °C in northern Europe. In spring (MAM), warming
shows a very similar pattern to that for winter, but with
slightly (by *0.5 °C) weaker warming, while in autumn
(SON) warming is 2–2.5 °C over the entire area adjacent to
the North Sea. Averaged over the Atlantic region, which
comprises the North Sea region except for southern Norway
but including Ireland, France and the north-eastern part of

the Iberian Peninsula (Metzger et al. 2005), the 11 climate
scenarios give an annual mean warming of 1.7 °C (RCP4.5)
to 3.2 °C (RCP8.5) by the end of the 21st century (see
Table 5.3). These estimates of regional warming are some-
what lower than the corresponding estimates for northern
Europe (see Table 5.2), which can be explained by northern
Europe extending further north than the Atlantic region and
not including south-western Europe.

The national climate scenarios also show marked future
warming in the respective countries in response to anthro-
pogenic forcing. For Denmark, the CMIP5 multi-model
ensemble projects a future annual mean warming of 1.0
(RCP2.6), 1.8 (RCP4.5), and 3.7 °C (RCP8.5) by the end of
the 21st century (DMI 2014). These estimates are about
30 % lower than the corresponding estimates for northern
Europe (see Table 5.2). For the Netherlands, the projected
change in annual mean temperature by the end of the 21st
century varies between 1.3 °C for the scenario with mod-
erate warming and a weak influence of circulation change to
3.7 °C for the scenario with strong warming and a strong
influence of circulation change (KNMI 2014). The projected
annual mean temperature changes for the Netherlands by the
mid-21st century are markedly weaker, at 1.0–2.3 °C. Sim-
ilarly, a multi-model ensemble of climate projections for
Germany for the mid-21st century on the basis of seven
combinations of RCMs and driving GCMs, gives a warming
of 1.0–1.5 °C for northern Germany under the SRES A1B
scenario (Wagner et al. 2013).

5.3.3 Temperature Extremes

Changes in long-term averages for variables such as seasonal
or annual mean temperature provide insight into relatively
slow climatic change. However, in terms of impacts it is
changes in the variability of temperature at much shorter
time scales that are most relevant. For instance, weather and
climate extremes at daily time scales or, in the case of
extended warm spells and heat waves, at time scales of

Table 5.2 Projected changes in mean surface air temperature (°C) by the mid- and end of the 21st century relative to present day (1986–2005) for
northern Europe (see Seneviratne et al. 2012, their Fig. 3.1) for RCP4.5 (42 models) and RCP8.5 (39 models) obtained from the CMIP5
simulations, in terms of winter (December through February; DJF), summer (June through August; JJA) and annual means

Period Season RCP4.5 RCP8.5

2046–2065 DJF 2.7 (1.8–3.5) 3.4 (2.9–4.7)

JJA 1.8 (1.2–2.5) 2.5 (1.9–3.2)

ANN 2.0 (1.6–2.8) 2.9 (2.4–3.5)

2081–2100 DJF 3.4 (2.6–4.4) 6.1 (5.3–7.5)

JJA 2.2 (1.6–3.0) 4.5 (3.5–5.8)

ANN 2.7 (2.1–3.5) 5.0 (4.3–6.3)

Data represent the median of the multi-model ensemble results and the 25th and 75th percentiles of the individual model responses. Adapted from
Christensen et al. (2013a, their Table 14.1) and Christensen et al. (2013b, their Table 14.SM.1c), respectively
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Fig. 5.1 Projected seasonal changes in surface air temperature
(K) based on the RCP4.5 scenario for the end of the 21st century
(2071–2100) relative to present day (1971–2000). All changes are both

robust and statistically significant. From the supplementary material of
Jacob et al. (2014)

Table 5.3 Projected changes in selected temperature-related climate variables and indices by the end of the 21st century (2071–2100, with
respect to 1971–2000) averaged over the Atlantic region (according to Metzger et al. 2005) for RCP4.5 (eight RCM simulations) and RCP8.5
(nine RCM simulations)

Temperature-related climate indices RCP4.5 RCP8.5

Annual mean temperature (°C) 1.7 (1.4 to 2.1) 3.2 (2.7 to 3.6)

Frost days per year −28 (−30 to −15) −40 (−50 to −26)

Summer days per year 11 (6 to14) 24 (22 to 28)

Tropical nights per year 3 (1 to 5) 7 (3 to 12)

Growing season length (days per growing season) 39 (27 to 43) 58 (47 to 68)

Warm spell duration index (days per year) 21 (19 to 34) 67 (47 to 92)

Cold spell duration index (days per year) −4 (−5 to −4) −5 (−6 to −4)

Data represent the median of the multi-model ensemble results and the likely range in these changes, defined to include 66 % of all projected
changes around the ensemble median. Adapted from Kovats et al. (2014b, their Table SM23-3)
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several days to weeks. A number of indices describing cli-
mate extremes have been developed based on some of the
characteristics of the respective distributions of daily data. In
a first attempt to coordinate and standardise the definition of
such extremes, Frich et al. (2002) proposed five different
indices concerning daily temperature data. Zhang et al.
(2011) extended this list of extreme temperature indices to
15, also revising some of the definitions of Frich et al.
(2002). In particular, these indices often focus on relative
thresholds that describe the tails in the distribution rather
than on specific physically-based thresholds. The indices of
Zhang et al. (2011) capture both moderately extreme events
that typically occur several times per year and extreme
events that occur less often (once a year or less). In recog-
nition of the strong impact of weather and climate extremes
the IPCC published a special report on managing the risks of
extreme events and disasters to advance climate change
adaptation (SREX; IPCC 2012).

Kovats et al. (2014b) reported on projected changes in the
characteristics of seven different temperature-related
extremes based on the multi-model ensemble of high-
resolution RCM simulations for the RCP4.5 and RCP8.5
scenarios (Jacob et al. 2014). In Table 5.3 these changes are
presented for the end of the 21st century averaged over the
Atlantic region. The indices were defined in accordance with
Zhang et al. (2011), that is, the number of frost days were
defined as the annual count of days when the daily minimum
temperature drops below 0 °C, the number of summer days
as the annual count of days when the daily maximum tem-
perature exceeds 25 °C, the number of tropical nights as the
annual count of days when the daily minimum temperature
exceeds 20 °C, growing season length as the annual count
between the first span of at least six days with daily mean
temperatures above 5 °C and the first span after 1 July of six
days with daily mean temperatures below 5 °C, the warm
spell duration index as the annual count of days with at least
six consecutive days when the daily maximum temperature
exceeds the respective 90th percentile, and the cold spell
duration index as the annual count of days with at least six
consecutive days when the daily minimum temperature drops
below the respective 10th percentile.

The projected changes in these indices reveal the overall
tendency of a future amplification of the extremes related to
daily maximum temperature and a future reduction of the
extremes related to daily minimum temperature. The number
of summer days by the end of the 21st century, for instance,
is increased by 11 (24) for RCP4.5 (RCP8.5), while the
number of frost days is reduced by 28 (40) (see Table 5.3).
The changes are generally stronger for RCP8.5 than for
RCP4.5, and for some indices the likelihood ranges based on
individual models for the two scenarios do not show any
overlap. This is the case for the number of summer days,
growing season length and the warm spell duration index.

For the cold spell duration index, on the other hand, the
likelihood ranges are similar for the two scenarios. The
relatively large likelihood ranges for some indices indicate
strong variation between the eight (RCP4.5) and nine
(RCP8.5) projections with different RCMs that have been
considered, and hence a high degree of uncertainty in the
projected changes.

Kovats et al. (2014a) presented the geographical distri-
butions of the projected change in the number of heat waves
during May through September at the end of the 21st century
on the basis of the same set of RCM simulations for the
RCP4.5 and RCP8.5 scenarios. Heat waves were defined as
periods of more than five consecutive days with daily
maximum temperatures exceeding the mean daily maximum
temperature for the reference period (1971–2000) by at least
5 °C. For the North Sea region, the only area with notably
more frequent heat waves was in southwestern Norway for
RCP8.5, for RCP4.5 the number of heat waves does not
change in that region. Jacob et al. (2014) defined heat waves
differently, in this case as periods of more than three con-
secutive days with daily maximum temperatures exceeding
the 99th percentile of the daily maximum temperature for the
same reference period, and found markedly more heat waves
over the North Sea region under RCP8.5 at the end of the
21st century, with increases in the number of heat waves
ranging from 10 to 15 for the Netherlands, northern Ger-
many and Denmark, and exceeding 30 in southern Norway.

The CMIP5 simulations have also been used to assess the
projected change in various temperature-related extremes in
several studies, with some of these assessments being
included in AR5 (Collins et al. 2013). Sillmann et al. (2013),
for instance, presented global maps of the projected change
in annual minimum and maximum temperatures (i.e. the
minimum of the daily minimum temperatures and the
maximum of the daily maximum temperatures occurring in
the course of a year), in the number of frost days and in the
number of tropical nights, in the number of cold nights (with
daily minimum temperatures below the respective 10th
percentile) and in the number of warm nights (with daily
maximum temperatures exceeding the respective 90th per-
centile), as well as in the cold and warm spell duration
indices at the end of the 21st century for the RCP2.6,
RCP4.5 and RCP8.5 scenarios. Sillmann et al. (2013) also
found notable future increases in both the annual minimum
and maximum temperatures over western, central and
northern Europe. Strong increases in annual minimum tem-
perature of about 9–11 °C for RCP8.5 occur in northern
Europe, presumably associated with retreating snow cover in
this region. The strongest increases in annual maximum
temperature, on the other hand, occur in central and eastern
Europe, reaching about 6–8 °C for RCP8.5. Corresponding
to these increases in annual temperature extremes, the
number of frost days is markedly lower in central and
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northern Europe, while the number of tropical nights is much
higher over southern Europe. In much of the North Sea
region the number of tropical nights rises by about 10 days
under RCP4.5 and by more than 20 days under RCP8.5,
with tropical nights hardly ever occurring in this region
under the present-day climate. Similarly, cold spells are
projected to become shorter in the North Sea region, by
about 3 days for RCP4.5 and about 4–6 days for RCP8.5.
Warm spells are projected to become markedly longer in the
North Sea region, by about 30 days for RCP4.5 and by 60–
120 days for RCP8.5. The national climate change assess-
ment for the Netherlands also considers change in
temperature-related extremes (KNMI 2014). In winter, for
instance, the number of frost days is projected to decrease by
35–80 % (with respect to 38 days for the reference period
1981–2000) at the end of the 21st century, with the weakest
change for the scenario with moderate warming and weak
influence of circulation change and the strongest change for
the scenario with strong warming and strong influence of
circulation change. For the scenarios with strong warming,
the differences between a weak and strong influence of cir-
culation change account for 20 % of the projected fall in the
number of frost days. The number of summer days, on the
other hand, is projected to increase by 30–130 % (relative to
21 days for the reference period 1981–2000), again
depending on the overall strength of the scenario.

Kharin et al. (2013) used 20-year return levels to assess
future changes in annual extremes of daily temperature at the
end of the 21st century for the RCP2.6, RCP4.5 and RCP8.5
scenarios on the basis of the CMIP5 simulations for the
entire globe. In the North Sea region, the multi-model

ensemble projects increases in the 20-year return levels of
the annual minimum temperatures of 4–8 °C for RCP4.5 and
8–12 °C for RCP8.5. The projected increases in the 20-year
return levels for annual maximum temperature in the North
Sea region are somewhat weaker, at 2–4 °C for RCP4.5 and
6–8 °C for RCP8.5. Nikulin et al. (2011) used 20-year return
levels to assess future change in annual extremes of daily
temperature in Europe at the end of the 21st century on the
basis of an ensemble of six scenario simulations with one
particular RCM forced by six different GCMs applying the
SRES A1B scenario (Fig. 5.2). According to these scenario
simulations, the 20-year return levels for annual minimum
temperature increase by about 4–10 °C over most of the
North Sea region, while the respective return levels for the
annual maximum temperature increase only by about 2–4 °
C. Nevertheless, waiting times for a 20-year event of the
annual maximum temperature during the reference period
(1961–1990) are reduced to 2–5 years in the North Sea
region, meaning that at the end of the 21st century such an
event is expected to occur every two to five years.

Schoetter et al. (2014) assessed changes in the charac-
teristics of western European heat waves projected in the
CMIP5 ensemble at the end of the 21st century. In this case
heat waves were defined as periods of three consecutive
days, during which at least 30 % of western Europe is
affected by extremely high temperatures (exceeding the 98th
percentile of the daily maximum temperatures for the period
May through October). The study covers the UK, Belgium,
the Netherlands and northern Germany as parts of the North
Sea region. Heat waves in western Europe become more
frequent and of greater duration, increase in extent and

Fig. 5.2 Left-hand panels The
ensemble mean of (upper panel)
the 20-year return level of daily
maximum temperature (Tmax,20)
and (lower panel) the 20-year
return level of daily minimum
temperature (Tmin,20) for 1961–
1990 and (middle panel) the
respective changes of Tmax,20 and
Tmin,20 in 2071–2100 relative to
1961–1990 (°C). Only differences
significant at the 10 %
significance level are shown.
Right-hand Panel Waiting times
(years) of the 1961–1990 Tmax,20

in 2071–2100 (Nikulin et al.
2011)
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become more intense. Heat waves that are similar to or
stronger than the one observed across Europe in 2003 remain
rare under RCP2.6 and RCP4.5, but become the norm under
RCP8.5. For the latter, heat waves with five times the
severity of the 2003 heat wave were simulated. The severity
of heat waves is described by the so-called cumulative heat
wave severity, which is defined as the product of the number
of heat waves during a 30-year period and the mean severity
of the individual heat waves. The latter is defined as the
product of the duration, the mean extent and the mean
intensity of the respective heat wave. Most of the changes in
the temperature-related extremes during summer are partly
associated with corresponding changes in the variation in
temperature over the course of a day (diurnal cycle) as well
as variations in temperature from day to day. According to
Cattiaux et al. (2015), both diurnal variability and day-to-day
variability in summer temperature increase under the dif-
ferent RCP scenarios, with extremely strong variations over
both time scales occurring more frequently. In western
Europe, for instance, diurnal and day-to-day variability both
increase by about 10 % under the RCP8.5 scenario, with
weaker increases over northern Europe of up to 6 %. The
increases in variability are primarily linked to a future
decrease in surface evapotranspiration as a consequence of
drier European summers.

Several extremes related to daily temperature were iden-
tified in the SREX report with high confidence for northern
Europe (Seneviratne et al. 2012). For instance, the frequency
of warm days is very likely to increase, but not as much as in
central and southern Europe (Fischer and Schär 2010), there
are very likely to be fewer cold days (with daily maximum
temperatures below the respective 10th percentile) and a
likely increase in the 20-year return levels of annual maxi-
mum temperature. There are very likely to be fewer cold
nights (Kjellström et al. 2007; Sillmann and Roeckner 2008)
and more warm nights (Tebaldi et al. 2006). Heat waves and
warm spells are likely to occur more often, last for longer
and/or be more intense, but the changes in northern Europe
are smaller than in southern Europe, while Scandinavia

shows little change at all (Beniston et al. 2007; Koffi and
Koffi 2008; Fischer and Schär 2010; Orlowsky and
Seneviratne 2012).

5.4 Precipitation

Wilhelm May

5.4.1 Mean Precipitation

At a global scale, the CMIP5 simulations project increases in
precipitation in the tropics as well as at mid and high latitudes,
and a decrease in the sub-tropics (Knutti and Sedláček 2012).
For the North Sea region, the multi-model ensemble projects
an increase in winter and a decrease in summer except for
Denmark and southern Norway. This tendency is also evident
in the projected changes in precipitation for northern and
central Europe based on the CMIP5 simulations presented in
Annex I of AR5 (IPCC 2013) for the cold (October through
March) and warm (April through September) seasons. For the
cold season, the RCP4.5 scenario is characterised by
increases of up to 10 % in the North Sea region at the end of
the 21st century, and the changes projected exceed natural
variability over the entire region. For the warm season, on the
other hand, precipitation is projected to decrease by up to
10 % in England, Belgium, the Netherlands and northern
Germany and to increase by up to 10 % in Denmark and
southern Norway. However, the changes projected during the
warm season do not exceed natural climate variability any-
where across the region. Averaged over northern Europe, the
projected increase in precipitation during the cold season
ranges from 8 % (RCP4.5) to 11 % (RCP8.5) for the
mid-21st century and from 11 % (RCP4.5) to 20 % (RCP8.5)
at the end of the 21st century (see Table 5.4). Precipitation
averaged over northern Europe during the warm season is
increased, ranging from 3 to 4 % for the mid-21st century and
5–8 % at the end of the century.

Table 5.4 Projected relative changes in mean precipitation (%) by the mid- and end of the 21st century (2046–2065 and 2081–2100, with respect
to 1986–2005) for northern Europe (see Seneviratne et al. 2012, their Fig. 3.1) for RCP4.5 (42 models) and RCP8.5 (39 models) obtained from the
CMIP5 simulations, distinguishing between the cold season (October through March; ONDJFM) and warm season (April through September;
AMJJAS)

Period Season RCP4.5 RCP8.5

2046–2065 ONDJFM 8 (3–11) 11 (8–15)

AMJJAS 3 (2–8) 4 (1–10)

2081–2100 ONDJFM 11 (7–14) 20 (15–29)

AMJJAS 5 (2–8) 8 (2–12)

Data represent the median of the multi-model ensemble of changes and the 25th and 75th percentiles of the individual model responses. Adapted
from Christensen et al. (2013a, their Table 14.1) and Christensen et al. (2013b, their Table 14.SM.1c), respectively
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During winter some precipitation in the North Sea region
falls as snow. As conditions warm, the fraction falling as
snow is expected to decrease. According to Brutel-Vuilmet
et al. (2013) the CMIP5 simulations are characterised by
several snow-related changes in the mid-latitudes of the
northern hemisphere at the end of the 21st century. Between
40° and 60°N the RCP scenarios project a decrease in solid
precipitation of about 10 % (RCP2.6) to 30 % (RCP8.5),
despite a marked rise in total precipitation at these latitudes.
Consistent with this, snow depth declines by about 10 %
(RCP2.6) to 40 % (RCP8.5), and the snow season shortens
with the decrease ranging from up to a fortnight (RCP2.6) to
a month or more (RCP8.5). Räisänen and Eklund (2012)
presented consistent results for northern Europe based on an
ensemble of regional climate scenarios applying the SRES
A1B scenario from the ENSEMBLES project (e.g. van der
Linden and Mitchell 2009). They identified future decreases

in snowfall and snow depth across all low-altitude parts of
northern Europe, including Denmark and southern Norway
as part of the North Sea region.

The characteristic changes in precipitation over Europe
were also revealed in the multi-model ensemble of
high-resolution RCM simulations for Europe used by Jacob
et al. (2014). For the RCP4.5 scenario, seasonal mean pre-
cipitation in the North Sea region increases in winter and
spring by about 10–15 % at the end of the 21st century
(Fig. 5.3). In summer and autumn, on the other hand, pre-
cipitation increases (exceeding 5 %) in south-western Nor-
way, but there is little change in the rest of the North Sea
region, ranging between a slight decrease (of less than 5 %)
in the south to a slight increase (of less than 5 %) in the
north. Averaged over the Atlantic region, annual mean
precipitation increases slightly (1 %) for RCP4.5 and more
notably for RCP8.5 (see Table 5.5). For the RCP4.5

Fig. 5.3 Projected seasonal change in precipitation (%) based on the RCP4.5 scenario for the period 2071–2100 relative to 1971–2000. Hatched
areas indicate regions with robust and/or statistically significant change. From the supplementary material of Jacob et al. (2014)
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scenario, however, one sixth of the different RCM simula-
tions are actually characterised by decreasing precipitation
across the Atlantic region.

In Denmark the CMIP5 simulations project increases in
seasonal mean precipitation at the end of the 21st century in
all seasons except summer (DMI 2014). For summer, the
RCP8.5 scenario projects a decrease of about 17 % but with
an inter-model standard deviation of 21 %. This scenario
projects the strongest increase in winter (18 %), and change
in the transition seasons are 10 and 11 %, respectively. For
annual mean precipitation, the RCP8.5 scenario projects a
future increase of about 7 %, which is slightly larger than the
inter-model standard deviation. Consistent with this, the
high-resolution RCM simulations used by Wagner et al.
(2013) project future increases in annual mean precipitation
of 2–6 % in northern Germany. For the Netherlands, the
projections are characterised by an increase in annual mean
precipitation of 5–7 % with little dependence on the strength
of impact of the circulation change (KNMI 2014). This is,
however, not the case for changes in the seasonal means,
where the scenarios with a strong influence of circulation
change project stronger changes in precipitation. In winter,
the scenarios with strong warming rate project an increase of
30 % by the end of the 21st century in combination with a
strong influence of circulation change and 11 % in combi-
nation with a weak impact. In summer, on the other hand,
the scenarios with strong warming project reductions of 17
and 4.5 %, respectively.

5.4.2 Precipitation Extremes

Similar to temperature, changes in the variability of precip-
itation at time scales of up to a season are more relevant in
terms of impact than changes in seasonal or annual precip-
itation. Examples are heavy rainfall at sub-daily or daily time
scales, wet spells of several days duration and extended dry
periods lasting from one to several weeks or months. On the
basis of daily time series of precipitation, Frich et al. (2002)
proposed five different indices describing climate extremes
related to precipitation in order to coordinate and standardise
the definition of such extremes. Zhang et al. (2011) extended
this list of extreme precipitation indices to 12, also revising
some of the definitions of Frich et al. (2002). These indices

often focus on relative thresholds that describe the tails of
the distribution rather than on physically-based thresholds.

Kovats et al. (2014b) reported on projected changes in the
fraction of the annual precipitation originating from extre-
mely wet days (exceeding the 99th percentile of daily pre-
cipitation; Zhang et al. 2011). Averaged over the Atlantic
region, this is projected to increase by 21 % (RCP4.5) to
43 % (RCP8.5) at the end of the 21st century (see
Table 5.5).

Jacob et al. (2014) considered projected change in pre-
cipitation on very wet days (exceeding the 95th percentile of
daily precipitation; Zhang et al. 2011), distinguishing
between seasons. At the end of the 21st century both the
RCP4.5 (Fig. 5.4) and RCP8.5 scenarios project significant
increases in the intensity of heavy precipitation events over
the entire North Sea region and in all seasons. For RCP4.5
the projected increases are typically 5–15 %, while for
RCP8.5 the increases are 15–25 % in all seasons except
summer. Jacob et al. (2014) also considered future change in
very long lasting droughts (defined as the 95th percentile of
the length of dry spells) and found no change in the North
Sea region for RCP4.5 and a very small increase of 1–2 days
in western Europe for RCP8.5.

The CMIP5 simulations have also been used to project
change in various precipitation-related extremes, with some
referred to in AR5 (Collins et al. 2013). For instance, Sill-
mann et al. (2013) presented global maps of future change in
very high daily precipitation, defined as the 95th percentile
of precipitation on wet days. They found pronounced
increases in the intensity of heavy precipitation events over
western, central and northern Europe at the end of the 21st
century for all RCP scenarios considered, with the smallest
increases (about 20 %) for RCP2.6 and the largest (40–
70 %) for RCP8.5. The magnitude of the relative changes in
the intensity of heavy precipitation events is considerably
greater than the corresponding changes in the average
intensity of daily precipitation on all wet days. In south-
western Europe, the intensity of heavy precipitation events is
projected to increase despite a projected decrease in average
intensity. Consistent with this, Scoccimarro et al. (2013)
projected a relatively strong increase in the fraction of pre-
cipitation originating from daily precipitation events in the
range between the 90th and 99th percentile in western,
central and northern Europe. In winter, the contributions of

Table 5.5 Projected change in precipitation-related variables and indices for the end of the 21st century (2071–2100 with respect to 1971–2000)
averaged over the Atlantic region for the RCP4.5 (eight RCM simulations) and RCP8.5 (nine RCM simulations) scenarios

RCP4.5 RCP8.5

Annual total precipitation (%) 1 (−1 to 6) 4 (1 to 7)

Annual total precipitation where daily precipitation exceeds the 99th percentile in 1971–2000 (%) 21 (13 to 44) 43 (32 to 68)

The data represent the median of the multi-model ensemble of changes and the likely range of these changes, defined to include 66 % of all
projected changes around the ensemble median. Adapted from Kovats et al. (2014b, their table SM23-3)
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the heavy daily precipitation events increase by more than
20 % in these areas of Europe, in summer the increases are
typically 10–20 % for RCP8.5. It is only in summer that the
intensity of heavy precipitation events increases in those
parts of western, central and northern Europe, where average
intensity decreases. In winter, the intensity of heavy daily
precipitation events and the average intensity both increase
in western, central and northern Europe.

Another way to depict the projected changes in heavy
daily precipitation events is in terms of the number of days
for which future daily precipitation exceeds a particular high
threshold for the reference period. Applying this approach to
an ensemble of RCM simulations, Wagner et al. (2013)
found that for more than 5 % of days, the amounts of daily
precipitation exceeded the 95th percentile for the reference
period in north-western Germany in the mid-21st century.
Instead of a variable threshold, another approach is to

consider a particular amount of daily precipitation. Sillmann
et al. (2013), for instance, analysed future change in the
number of days with at least 10 mm precipitation and pro-
jected an increase in western, central and northern Europe,
ranging from about two additional days (RCP2.6) to about
six additional days (RCP8.5) at the end of the 21st century.
In contrast to Sillmann et al. (2013), who based their anal-
ysis on data covering the entire year, KNMI (2014) distin-
guished between winter and summer and used different
thresholds for the two seasons, 10 mm in winter and 20 mm
in summer. In winter, KNMI (2014) found more days with at
least 10 mm precipitation in the Netherlands, with increases
of 14–24 % for the two scenarios with moderate future
warming and 30–60 % for the two scenarios with strong
future warming. For each of the two rates of future warming
the strongest increases are associated with a strong influence
of circulation change (i.e. a more predominantly westerly

Fig. 5.4 Projected seasonal change in heavy precipitation (%) based on the RCP4.5 scenario for the period 2071–2100 compared to 1971–2000.
Hatched areas indicate regions with robust and/or statistically significant change (Jacob et al. 2014)
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flow). In summer, however, the situation is different, with
more days with at least 20 mm precipitation for the two
scenarios with a weak influence of circulation change. In the
case of a strong influence of circulation change (i.e. a more
predominantly easterly flow), the increase in the number of
days with at least 20 mm precipitation is less pronounced in
some parts of the Netherlands and the number of such days
is even reduced in others.

Over the last couple of years, change in precipitation at
sub-daily time scales has also become the subject of scien-
tific study. Lenderink and van Meijgaard (2008), for
instance, investigated the potential future change in various
extremes of hourly and daily precipitation in central Europe
during summer in a scenario simulation with a
state-of-the-art RCM. As well as identifying much stronger
relative increases in hourly precipitation extremes (19–39 %
for different percentiles) than in daily precipitation extremes
(9–20 % for different percentiles) they found that the pro-
jected increases in hourly precipitation extremes exceeded
7 % per degree of warming, which would be expected
according to the Clausius-Clapeyron equation, that is, about
14 % per °C for the 99.9th percentile of hourly precipitation.
According to KNMI (2014) the summer maximum hourly
precipitation is projected to increase by 8–19 % for the two
moderate warming scenarios and by 19–45 % for the two
strong warming scenarios by the end of the 21st century. In
this case, the difference in the influence of circulation change
had little effect. The magnitude of the projected absolute
changes in extreme hourly precipitation typically simulated
by RCMs, however, is probably smaller than what can
actually be expected in the future. Kendon et al. (2014)
demonstrated that a numerical model operated at a spatial
resolution of 1.5 km, which is typical for numerical weather
prediction, gives much stronger changes in hourly precipi-
tation extremes during summer than a model operated at a
coarser resolution of 12 km. Nevertheless, the relative
increases in extreme hourly precipitation of 45 % for the
warm scenario combined with a strong impact of the cir-
culation change are of the same order of magnitude as the
relative increases projected over the southern part of the UK
by Kendon et al. (2014).

Kharin et al. (2013) depicted future changes in extreme
daily precipitation events on the basis of the CMIP5 simu-
lations by means of the 20-year return levels for annual
maximum daily precipitation. At the end of the 21st century
they found an increase in the 20-year return levels of about
10–20 % in the North Sea region for RCP8.5. This means
that the annual maximum daily precipitation amounts with a
return period of 20 years under present-day climate condi-
tions are likely to occur about every 10–14 years in the
future. Nikulin et al. (2011) analysed future changes in
20-year return levels for maximum daily precipitation in
winter and summer, when computing the 20-year return

levels combining six RCM simulations for Europe. In
summer they found changes in the 20-year return level in the
range 10–20 % in the North Sea region at the end of the 21st
century, and in winter values of 15–30 %. As a conse-
quence, waiting times for a 20-year event under present-day
climate conditions are notably more reduced in winter (about
8–12 years) than summer (about 12–16 years).

The projected intensification of heavy daily precipitation
in the North Sea region is accompanied by an increase in the
mean duration of periods with consecutive dry days.
According to Sillmann et al. (2013), the average length of
periods with consecutive dry days increases by 1–5 days for
the North Sea region under RCP8.5. For RCP4.5, however,
there is little change in the average length of periods with
consecutive dry days. This is consistent with the findings of
Wagner et al. (2013), who identified only very small changes
in the average length of periods with consecutive dry days
(in this case lasting more than five days) in northern Germany
for the mid-21st century under the SRES A1B scenario.

The SREX report (Seneviratne et al. 2012) identified with
high confidence very likely increases in both the intensity
and frequency of heavy daily precipitation events in northern
Europe, accompanied by increases in the fraction of the days
with precipitation, for which the daily precipitation exceeds
10 mm, north of 45°N in winter (Frei et al. 2006; Beniston
et al. 2007; Kendon et al. 2008). The report also identified a
likely increase in the 20-year return levels of daily precipi-
tation in northern Europe.

5.5 Cyclones and Winds

Anette Ganske, Gregor C. Leckebusch, Wilhelm May

5.5.1 Cyclones

Zappa et al. (2013) analysed future projections of the
occurrence of extratropical cyclones in the North Atlantic-
European sector on the basis of 19 CMIP5 model simulations
for both the RCP4.5 and RCP8.5 scenarios. In this study,
cyclones were identified and tracked using the objective
feature tracking algorithm developed by Hodges (1999).
During winter (December through February) the authors
identified a tri-polar pattern over Europe with an increase in
storm track density over the eastern North Atlantic centred
over the British Isles and the North Sea and decreases centred
around Iceland and over the Mediterranean Sea (Fig. 5.5).
These changes indicate an extension of the Atlantic storm
track to the northeast in combination with a narrowing of the
storm track over western Europe. These results are in line
with the corresponding changes in storm track density on the
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basis of the CMIP3 simulations (Ulbrich et al. 2008). The
RCP8.5 scenario gives increases in the range 0.6–1.2
cyclones per month in winter at the end of the 21st century
over the British Isles, the North Sea and Denmark and only
small changes over western Europe. For the RCP4.5 scenario
the corresponding changes range between 0.3 and 0.9
cyclones per month. Considering only intense cyclones with
pressures below 980 hPa during their lifetimes, Mizuta
(2012) found increases of about 0.1 cyclones per month
centred over the British Isles for the RCP4.5 scenario on the
basis of 11 CMIP5 model simulations. During summer (June
through August), on the other hand, Zappa et al. (2013) found
an increase in storm track intensity centred between Iceland
and southern Greenland and a decrease centred west of the
British Isles extending further into the North Sea region
(Fig. 5.5). This decrease indicates a marked reduction in the
number of cyclones at the southern flank of the storm track over
western Europe. For the RCP8.5 scenario the number of
cyclones in summer is projected to decrease by 0.6–1.5 cyclones
per month over the North Sea and by 0.6–0.9 cyclones per
month over western and northern Europe. The RCP4.5 scenario
gives increases in the range 0.3–0.6 cyclones per month over the
North Sea and about 0.3 cyclones per month over western
Europe.

Harvey et al. (2012) assessed the magnitude of projected
changes in the Atlantic storm track for both the CMIP3
(SRES A1B scenario) and CMIP5 (RCP4.5 scenario) sim-
ulations relative to its typical interannual variations. The
storm track was defined via band-pass filtered (2–6 days)
variations in the daily surface pressure fields. The authors
found that the multi-model ensemble changes in the Atlantic
storm track in winter largely agree between the CMIP3 and
CMIP5 simulations, when scaling with the respective
changes in global mean temperature. The changes simulated
by individual models, however, typically have a magnitude
similar to the variability at decadal time scales and are
locally as strong as the interannual variability. In some parts
of the North Atlantic, up to 40 % of the climate models
considered were characterised by a positive change in storm
track density, exceeding half the magnitude of the interan-
nual variability. With respect to the projected changes in
cyclone track density, Ulbrich et al. (2013) noted that part of
the uncertainty regarding regional trends in cyclone activity
can be related to the choice of a particular method for
identification and tracking of cyclones. While different
methodologies gave consistent results for intense cyclones,
i.e., an increase in the number of cyclones over western
Europe in winter, they led to opposing results for weak
cyclones with either an increase or decrease in the number of
cyclones. According to Chang et al. (2012), the overall
tendency of a poleward shift of the Atlantic storm track
under future climate conditions is accompanied by an
upward extension of the storm track into the upper tropo-
sphere and lower stratosphere under the projected global
warming, again consistent for the CMIP3 and the CMIP5
simulations.

In a recent review on storminess over the North Atlantic
and north-western Europe, Feser et al. (2015) summarised
projected changes in both storm frequency and storm
intensity on the basis of numerous recent studies that
assessed potential future change in these two aspects of
storms on the basis of climate scenario simulations with
different kinds of models. For the North Sea region, the
review considered results from 16 studies published between
1997 and 2013 based on GCMs (either coupled to an ocean
model or atmosphere-only) and RCMs with different sce-
narios for anthropogenic greenhouse gas forcing prescribed.
Most of these studies (9 out of 11) showed a future increase
in storm frequency, while two found a decrease. Likewise,
10 out of 11 studies showed a future increase in storm
intensity; no trend was found in the remaining study. The
same trends were also identified over the North Atlantic
south of about 60°N, while over northern and central Europe
about the same number of studies projected either increases
or decreases in storm frequency.

Fig. 5.5 Projected change in mean track density for winter (December
through February, DJF; upper panel) and summer (June through
August, JJA; lower panel) based on the RCP8.5 scenario from 19
CMIP5 simulations. Units are number of cyclones per month per unit
area. Only responses statistically significant at the 5 % level are shown
(Zappa et al. 2013)
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5.5.2 Mean Wind Speeds

The mean winds near the surface (at 10 m height) in the
North Sea region are characterised by a clear gradient
between the North Sea and the adjacent land areas with
considerably higher wind speeds over the ocean than over
land, particularly during winter (e.g. Kjellström et al. 2011).

In contrast to other meteorological variables such as
precipitation and temperature, very few studies have asses-
sed potential future changes in near-surface winds in
response to anthropogenic climate forcing on the basis of
scenario simulations originating from GCMs. McInnes et al.
(2011) analysed future changes in mean wind speeds at 10 m
at a global scale on the basis of the CMIP3 simulations based
on the SRES A1B scenario and found an increase in mean
wind speeds over both the North Sea and the adjacent land
areas in winter at the end of the 21st century, while in
summer a notable increase was found over the North Sea
only. On an annual basis, mean wind speeds are projected to
increase over the entire North Sea region; with the projected
changes in mean wind speed typically exceeding 10 %.
Despite an overall tendency of increasing mean wind speed
in the North Sea region, McInnes et al. (2011) identified
marked variations between individual models regarding the
sign of the change, particularly in the southern North Sea
region. In a recent study, Sterl et al. (2015) analysed pro-
jected change in annual mean wind speeds at 10 m over the
southern North Sea region for the RCP4.5 and RCP8.5
scenarios using one GCM. In contrast to the overall tendency
obtained from the CMIP3 simulations, Sterl et al. (2015)
found decreases in annual mean wind speed over the entire
region, with little difference between the two scenarios.

More studies exist in which potential future changes in
near-surface winds in response to anthropogenic climate
forcing for selected regions or continents have been assessed
on the basis of scenario simulations with RCMs. The finer
spatial resolution not only adds regional detail to the simu-
lations, which is important when looking at the North Sea
region, but also affects the magnitude of the projected
changes, particularly regarding extreme wind speeds (Win-
terfeldt and Weisse 2009). This is especially the case when
RCMs are applied at very high horizontal resolution. Pryor
et al. (2012) showed, for instance, that for the RCA3 RCM
an increase in horizontal resolution from 50 to 6.25 km leads
to an overall increase in simulated mean near-surface wind
speed of 5 % averaged over southern Scandinavia, while the
50-year return level of wind speeds and wind gusts increases
by over 10 and 24 %, respectively.

Kjellström et al. (2011) analysed potential future change
in mean wind speed on the basis of an ensemble of simula-
tions with the RCA3 RCM driven by six different GCMs for
the SRES A1B scenario. These projections are characterised

by a small (up to 0.25 ms−1) increase in mean wind speed in
the North Sea region in winter but a decrease over land areas
and a small increase over the southern part of the North Sea.
In particular in winter, the regional distributions of the pro-
jected changes vary considerably, both in sign and in strength
between the RCA simulations driven by different GCMs. In a
similar type of study based on an ensemble of climate pro-
jections with the HIRHAM RCM driven by three different
GCMs for either the SRES B2 or the SRES A1B scenario,
Debernard and Røed (2008) found increases in annual mean
wind speed in the North Sea region, reaching up to 2 % over
ocean areas.

5.5.3 Wind Extremes

For extremes of near-surface winds, defined via the 99th
percentile of daily mean wind speed, the CMIP3 simulations
show an overall slight increase (up to 5 %) in the North Sea
region during winter and an overall slight decrease (up to
5 %) during summer (McInnes et al. 2011). In this, the
projected changes in extreme wind speed are markedly less
pronounced than the corresponding changes in mean wind
speed when normalised with the climatological values for
present-day climate conditions. De Winter et al. (2013)
analysed projected changes in annual maximum near-surface
wind speed based on scenario simulations with 12 GCMs
from CMIP5 for both the RCP4.5 and RCP8.5 scenarios. In
contrast to McInnes et al. (2011), they analysed the scenarios
from each GCM separately instead of the multi-model
ensemble mean. The different GCMs simulated very differ-
ent changes in the North Sea region, with some models
giving either increases or decreases in the intensity of wind
extremes over most of the North Sea region and others
giving increases over the northern part of the North Sea
region and decreases in the southern part. For the RCP8.5
scenario the projected changes typically vary in the range
−1.5 to 1.5 ms−1. The individual GCMs simulate not only
very different future changes in the intensity of extreme
winds, but also very different distributions of the intensity of
extreme winds, both with regard to the location of the peak
and with regard to the width of the respective probability
density functions aggregated over the North Sea.

Donat et al. (2011) presented the projected changes in the
intensity of wind extremes (defined via the 98th percentile of
daily maximum wind speed) for six different GCMs from
CMIP3 for the SRES A1B scenario individually, finding
very different changes in the intensity of extreme winds in
the North Sea region. The multi-model ensemble mean
showed intensified extreme winds in the range 0.25–
0.75 ms−1 in the North Sea region at the end of the 21st
century. Donat et al. (2011) also considered a number of
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scenario simulations with different RCMs driven by these
GCMs, which were part of the ENSEMBLES project (Van
der Linden and Mitchell 2009). They found that dynamical
downscaling contributed to the uncertainty of the projected
changes, as RCMs driven with identical large-scale bound-
ary conditions simulated quite different changes in the
intensity of wind extremes.

Nikulin et al. (2011), on the other hand, considered six
different scenario simulations with one particular RCM
(RCA3) driven by global scenario simulations with six dif-
ferent GCMs for the SRES A1B scenario. Consistent with
the studies above, Nikulin et al. (2011) also found very
different changes in the 20-year return levels of daily max-
imum wind speeds in the North Sea region at the end of the
21st century for the individual RCM simulations. The
multi-model ensemble means were characterised by a gen-
eral tendency of more intense wind extremes in the North
Sea region. Similarly, Gaslikova et al. (2013) analysed four
different scenario simulations with the CCLM RCM driven
by four different global scenario simulations with one par-
ticular GCM (two realisations of both the SRES B1 and the
SRES A1B scenarios). The projected changes in the inten-
sity of extreme winds (defined as the 99th percentile of
annual maximum daily wind speeds) over the North Sea
were also found to vary considerably between the four
scenarios. This was particularly the case for the scenarios
driven by the two realisations of the global simulations,
where one realisation gave weaker wind extremes over the
northern part of the North Sea. The A1B scenario resulted in
notably stronger increases in the intensity of extreme winds
than the B1 scenario. The multi-model ensemble means are

characterised by more intense wind extremes to the south of
58°N, ranging between 0.2 and 0.4 ms−1 over most of the
area at the end of the 21st century.

The differences between the two realisations over the
North Sea are also revealed in the time series of the change
in the intensity of wind extremes at different locations in the
North Sea for the four different scenario simulations
(Fig. 5.6). At the central North Sea location two of the
realisations (A1B_2 and B1_2) simulated weaker wind
extremes during the entire 21st century, while at the two
locations in the German Bight this tendency is only apparent
during the first half of the 21st century. The other two
realisations (A1B_1 and B1_1), on the other hand, simulated
stronger wind extremes during the course of the 21st cen-
tury. The time series also illustrate the marked internal
variability at multi-decadal time scales, making it difficult to
identify systematic differences between the SRES A1B and
B1 scenario simulations at these locations. For individual
30-year periods, however, marked differences between the
A1B and B1 scenarios can occur, i.e., the two realisations
A1B_1 and B1_1 at the end of the 21st century.

5.5.4 Wind Direction

McInnes et al. (2011) analysed projected changes in the
direction of the mean winds at a global scale on the basis of
the CMIP3 simulations. For the North Sea region, they
found very small changes in mean wind direction in winter
but in summer anticlockwise changes across the entire
region, exceeding 15° in the southern areas. The

Fig. 5.6 Changes in 30-year running means with respect to 1961–
1990 for four different RCM scenario simulations for the annual 99th
percentile wind speeds (upper row) and (lower row) the annual
frequencies of strong (≥17.2 ms−1) westerly winds (165–345°; solid

lines) and strong easterly winds (345–165°; dashed lines) at a site in the
central North Sea (L1) and two sites in the German Bight (L2 and L3)
(adapted from Gaslikova et al. 2013, their Fig. 8)
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anticlockwise changes in mean wind direction in the
southern North Sea region are consistent between most of
the scenario simulations considered.

De Winter et al. (2013), on the other hand, analysed
projected changes in the direction of strong winds over the
North Sea on the basis of 12 GCMs contributing to CMIP5
for both the RCP4.5 and RCP8.5 scenarios. Strong winds
were defined as the annual maxima of daily mean wind
speeds and two areas were distinguished, one in the northern
part of the North Sea and the other in the southern part. The
authors found a common tendency towards less frequent
strong winds from south-eastern directions and more fre-
quent strong winds from south-western and western direc-
tions in the latter half of the 21st century in both regions for
both scenarios. However, it should be noted that due to the
rarity of strong wind events the wind direction statistics are
characterised by a high degree of variability, which affects
the robustness of the projected changes. These changes in
the predominant wind directions are consistent with the
findings of Donat et al. (2010), who considered storm days
(based on daily maximum wind speeds) over western Europe
on the basis of six GCMs contributing to CMIP3 for the
SRES A1B scenario, and by Sterl et al. (2009) on the basis
of a multi-member ensemble of scenario simulations for the
SRES A1B scenario with one particular GCM. The projected
changes from south-easterly to more south-westerly and
westerly winds could indicate a poleward shift in the storm
track, because in the North Sea region a storm following a
northern track is associated with predominantly westerly
winds, while a storm following a more southern track mainly
produces south-easterly winds. Both the CMIP3 and CMIP5
simulations are characterised by corresponding changes in
the storm track in the North Sea region (e.g. Harvey et al.
2012; Zappa et al. 2013).

Gaslikova et al. (2013) used an ensemble of four different
scenario simulations with the CCLM RCM driven by four
different global scenario simulations with one particular
GCM (two realisations of both the SRES B1 and SRES A1B
scenarios) to analyse projected changes in the direction of
wind speeds of at least 17.2 ms−1 (corresponding to 8 Bft) at
several locations in the North Sea region. They found a
general tendency of more frequent strong westerly winds and
of less frequent easterly winds in the central North Sea as
well as in the German Bight in the course of the 21st century
(Fig. 5.6). The decreases in the frequency of strong easterly
winds are more pronounced in the German Bight than in the
central North Sea, while increases in the frequency of strong
westerly winds are similar at all locations. The time series of
the projected changes for the four scenario simulations
reveal both strong temporal variability at multi-decadal time
scales and notable differences between the individual sce-
nario simulations, illustrating the important role of internal

variability for regional assessments of future change in the
characteristics of storms.

5.6 Radiation and Clouds

Burkhardt Rockel, Wilhelm May

Few recent publications describe projected changes in radi-
ation and clouds. Also, the RCMs and GCMs used to derive
these projections, the emission scenarios used in the pro-
jections, and the time periods analysed are quite diverse. The
projected changes are presented separately for solar and
terrestrial radiation as well as for cloud cover, with simi-
larities between these changes highlighted. The numbers
presented in this section are typically estimated from the
geographical distributions that cover a much larger area than
the North Sea region, such as the globe or the entire Euro-
pean continent.

5.6.1 Solar Radiation

For annual mean net downward solar radiation at the surface,
all studies show a distinct pattern with a decrease in the
northern North Sea region and an increase in the south. This
tendency is found regardless of which climate model or sce-
nario is used or which time period is considered and so can be
considered a robust result. The magnitude of the projected
changes in the two areas varies between studies, however.

With increasing numbers of climate scenario simulations
available from different coupled climate models, estimates
based on a multi-model ensemble are often taken into
account. Henschel (2013), for instance, considered results
from 39 GCMs from CMIP5 for the RCP8.5 scenario and
found a median decrease of about 0.1 Wm−2 per year for the
southern part of the North Sea region for the multi-model
ensemble, corresponding to a decrease of about 4 Wm−2 by
the middle of the 21st century. In contrast, Henschel (2013)
did not find any significant trend for the northern North Sea
region (north of about 58°N) until the middle of the 21st
century and so did not give any estimate of the change at that
point in time.

Trenberth and Fasullo (2009) and Zhou et al. (2009) both
considered results from multi-model climate simulations for
the SRES A1B scenario to assess projected change until the
end of the 21st century. However, the two studies considered
different time periods and different parts of the atmosphere.
Trenberth and Fasullo (2009) analysed projected change in
annual mean net solar radiation at the top of the atmosphere
and found an increase in absorbed solar radiation of up to
6 Wm−2 in the southern North Sea region and a decrease of
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up to 1.5 Wm−2 in the northern region in the period 2000–
2100. Zhou et al. (2009) analysed solar radiation at the
surface and found an increase in net surface solar radiation
of up to 4 Wm−2 in the southern North Sea region and a
decrease of up to 6 Wm−2 in the north for 2080–2099 rel-
ative to 1900–1919.

Ruosteenoja and Räisänen (2013) analysed projected
changes in solar radiation from the CMIP3 multi-model
ensemble for the SRES A1B scenario by the end of the 21st
century, distinguishing between seasons. In their supple-
mental material, Ruosteenoja and Räisänen (2013) also
presented changes by the end of the 21st century for the
SRES A2 and B1 scenarios as well as changes by the middle
of the 21st century (2020–2049) for the SRES A1B scenario.
In contrast to the previously mentioned studies, Ruosteenoja
and Räisänen (2013) presented changes relative to the
present-day climate (1971–2000) rather than absolute
changes. According to their estimates, a relative reduction of
15 % at about 60°N corresponds to a decrease of less than
3 Wm−2. According to their results, the pattern of projected
changes at the middle of the 21st century varies little with
season except for winter with a decrease in solar radiation
over almost the entire North Sea region and a strongest
decrease of about 5 %. During summer, on the other hand,
solar radiation is increased almost everywhere, with a
strongest increase of about 2.5 %. The variations between

season are more pronounced at the end of the 21st century
than for the mid-century. During both summer and autumn
the characteristic north-south structure is evident with a
decrease in solar radiation in the northern part (about 5 %) of
the North Sea region and an increase in the south (about
10 %; Fig. 5.7). During winter, on the other hand, solar
radiation is reduced across the entire North Sea region,
particularly in the eastern part with reductions of about
10 %, and over 15 % in the north-eastern part. Consistent
with this seasonal variation in the projected changes in solar
radiation, KNMI (2014) reported pronounced increases in
solar radiation in the Netherlands during summer, of 5.5–
9.5 % at the end of the 21st century for the scenarios with a
strong influence of circulation change (i.e. scenarios with
more frequent high-pressure systems). The projected chan-
ges in annual mean solar radiation in the Netherlands are
small, ranging from −0.8 to 1.4 % for the different scenarios.

Ruosteenoja and Räisänen (2013) found very similar
changes for the SRES A2 scenario, for which in contrast to
the A1B scenario forcing by anthropogenic sulphate aerosol
is not reduced during the latter half of the 21st century, while
the water vapour content of the atmosphere is further
enhanced due to the stronger global warming. This led the
authors to conclude that the projected changes in solar
radiation are mainly caused by changes in meteorological
conditions, principally changes in cloudiness.

Fig. 5.7 Seasonal change in incident solar radiation (%) from 1971–
2000 to 2070–2099 under the SRES A1B scenario as an average of 18
GCMs: a summer, b autumn, c winter, and d spring. Areas where more
than 85 % of the models (at least 16 of 18 GCMs) agree on the sign of

the change are hatched. The contour interval is 5 Wm−2; negative
changes are marked by warm colours (yellow, orange and red) and
positive changes by cold colours (green, blue and purple) (Ruosteenoja
and Räisänen 2013)

5 Projected Change—Atmosphere 167



5.6.2 Terrestrial Radiation

Compared to solar radiation there are even fewer studies
assessing projected changes in terrestrial radiation. This
could be considered surprising, since terrestrial radiation
plays an important role in the greenhouse effect. Zhou et al.
(2009) found, for instance, an increase in annual mean ter-
restrial radiation across the entire North Sea region, with the
increase ranging from 14 Wm−2 in the western part to
21 Wm−2 in the eastern part by the end of the 21st century.
Wild et al. (1997) found a similar pattern with increases of
5–10 Wm−2. Trenberth and Fasullo (2009), who in contrast
to other studies considered changes in radiation at the top of
the atmosphere, found a decrease in annual mean outgoing
terrestrial radiation of about 1.5 Wm−2 over the North Sea
and about 3 Wm−2 over adjacent land areas.

5.6.3 Cloud Cover

Consistent with the projected changes in annual mean net
solar radiation at the surface, the aforementioned studies
show a distinct pattern with a projected increase in cloud
cover over the northern part of the North Sea region and a
decrease over the southern part. This can be taken as a robust
result, given the different climate models, scenarios and time
periods considered. Nevertheless, the magnitude of the
projected changes in these two areas does vary between
studies. This finding is also supported by the recent RCP
scenario simulations. As shown by Collins et al. (2013), both
the RCP4.5 and RCP8.5 scenarios give a decrease in the
annual mean cloud cover fraction, of up to 5 % in the
southern part of the North Sea region by the end of the 21st
century for RCP8.5. Moreover, the projected changes are
generally weaker (and less significant) over the North Sea
itself than over the adjacent land areas.

Zhou et al. (2009) and Trenberth and Fasullo (2009)
found a less pronounced effect on cloud cover in the
northern part of the North Sea region than in the south. They
found a slight increase of up to 0.5 and 0.75 %, respectively,
in the northern part, and a considerably stronger decrease of
up to 3 % in the southern part. Wild et al. (1997) and
Henschel (2013), on the other hand, found a similar amount
of change in both areas; about a 2 % increase (decrease) in
cloud cover over the northern (southern) part of the North
Sea region by the mid-21st century. As these changes are the
median from 39 GCMs for the RCP8.5 scenario, these
estimates may be considered robust, with two-thirds of the
climate models agreeing on a reduction in cloud cover over
the southern part of the North Sea region. Consistent with
the projected changes in solar radiation, Henschel (2013) did
not find any significant trends in cloud cover north of 58°N.

A study by Räisänen et al. (2003) permits a closer look at
the North Sea region, as it is based on a set of regional
climate simulations for Europe with the RCAO RCM, with
lateral boundary conditions originating from two different
GCMs for both the SRES A2 and B2 scenarios. By the end
of the 21st century they found an increase in annual mean
cloud cover of up to 8 % in the northern part of the North
Sea region and a decrease of up to 8 % in the southern
part. The projected changes in cloud cover are particularly
strong during summer, with a typical reduction of 12–20 %
in the southern part of the North Sea region, depending on
the driving GCM and the scenario used. In the northern part,
on the other hand, cloud cover typically increases by 4–
12 %. In this, the projected future changes during summer
are considerably stronger than during winter. Furthermore,
the general structure of the patterns of projected change
varies little between the different simulations in summer,
emphasising the robustness of these projections. In winter,
on the other hand, the patterns of simulated changes in cloud
cover are strongly affected by the choice of driving GCM.
While the simulations driven by HadAM2H project an
increase in cloud cover over all land areas with the exception
of the British Isles, the simulations driven by
ECHAM4/OPYC project a slight decrease in most of this
area. The only exception is the respective simulation for the
SRES B2 scenario with enhanced cloud cover over western
Europe. According to these results, the projected changes in
cloud cover during winter are not as robust as those during
summer, presumably owing to the greater uncertainty in the
projected changes in the large-scale circulation over Europe
due to natural climate variability.

5.6.4 Summary

Considering all the results reported here, a line of zero
change can be roughly drawn from the Firth of Forth to the
Skagerrak with a tendency for net solar radiation to decrease
(increase) in the region to the north (south) of this line.
Consistent with this the same zero-line separates areas with
an increase (decrease) in cloud cover in the northern
(southern) part of the region.

As mentioned in the introductory paragraph, the actual
numbers given here for the North Sea region have been
estimated from the corresponding geographical part pre-
sented in the respective studies, with most of them covering
the entire globe. A study on the projected changes in radi-
ation and clouds focusing on the North Sea region is still
missing. With the multi-model ensemble of regional climate
simulations for Europe, which have become available
through CORDEX (Jacob et al. 2014), such a study might be
undertaken in the future. Ruosteenoja and Räisänen (2013)
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took a first step in this direction by considering the changes
of the solar radiation for northern and southern Europe
separately. Given the importance of the projected changes in
cloud cover in the North Sea region, further investigations
on the changes in specific cloud properties, i.e. the vertical
distribution with low-, mid and high-level clouds or the
phase of the clouds (liquid and ice), might help to under-
stand the physical mechanisms behind the projected
changes.

5.7 Conclusions

Wilhelm May

The climate projections considered in this chapter reveal
changes in the state of the atmosphere in the North Sea
region, both in the free atmosphere and near the surface. The
changes mostly concern conditions at the end of the 21st
century (with the end of the 20th century or the turn of the
20th and the 21st centuries as the baseline), although some
relate to the mid-21st century. They comprise:

• Amplification and an eastward shift in the pattern of
NAO variability in autumn and winter.

• Changes in the storm track with increased cyclone den-
sity over western Europe in winter and reduced cyclone
density on the southern flank in summer.

• More frequent strong winds from westerly directions and
less frequent strong winds from south-easterly directions.

• A marked mean warming of 1.7–3.2 °C for different
scenarios, with stronger warming in winter than in
summer and relatively strong warming over southern
Norway.

• Intensified extremes related to daily maximum tempera-
ture and reduced extremes related to daily minimum
temperature, both in terms of strength and frequency.

• An increase in mean precipitation during the cold season
and a reduction during the warm season.

• A pronounced increase in the intensity of heavy daily
precipitation events, particularly in winter.

• A considerable increase in the intensity of extreme
hourly precipitation in summer.

• An increase (decrease) in cloud cover in the northern
(southern) part of the North Sea region, resulting in a
decrease (increase) in net solar radiation at the surface.

It should be noted that the uncertainty ranges of the future
changes projected by the climate scenarios vary between the
different meteorological variables. The uncertainty range is
particularly large for the projected changes in wind speed and
in wind direction, both for mean winds and for wind extremes.
Hence, the projected changes in wind characteristics are

typically within the range of natural variability and can even
have opposite signs for different scenarios either simulated by
different climate models or for different future periods.

The projected changes in future climate presented here for
the North Sea region have typically been extracted from
geographical distributions for either the entire globe, when
scenario simulations with GCMs are considered, or for
Europe, when scenario simulations with RCMs are used. In
some of the respective studies, however, different parts of
Europe were considered separately, typically distinguishing
between northern and southern Europe. With the
multi-model ensemble of regional climate simulations for
Europe, which have become available through CORDEX
(Jacob et al. 2014), such studies with a special focus on the
North Sea region could become available in the near future.
The studies considered here vary widely in the choice of
underlying scenarios for anthropogenic climate forcing,
namely the different SRES scenarios and RCP scenarios.
There is, however, a tendency to focus on the SRES A1B
scenario in previous studies and the RCP4.5 and RCP8.5
scenarios, respectively, in the most recent studies. Also, the
studies vary considerably in the time periods chosen, both
for the present-day and future climate conditions, which can
make it difficult to directly compare the magnitude of cor-
responding projected changes between studies. In particular,
some studies focus on projections to the middle of the 21st
century instead of the end of the 21st century, while some
consider projections for both periods. This chapter mostly
reports on changes projected at the end of the 21st century.
This is mainly because for most of the forcing scenarios the
projected changes are stronger at the end of the century,
which means there is a higher probability of the projected
regional changes exceeding the range of internal variability
at that point. Moreover, the differences between RCP sce-
narios, in particular between the RCP2.6 and RCP4.5 sce-
narios, develop during the latter half of the century.

Several factors contribute to the uncertainties in the
projected changes, that is, the uncertainty in the climate
forcing due to different scenarios, the model uncertainty
associated with different climate models, and the uncertainty
due to the natural variability of the climate system. By
coordinating the simulation of future climate scenarios by
different research groups in initiatives such as CMIP3,
CMIP5 or CORDEX or in the ENSEMBLES project, the
importance of some of these sources of uncertainty can be
quantified, ultimately leading to estimates of the likelihood
at which certain climatic changes can be expected to occur.
With the increase in computer power, climate models have
been improved in several respects. In particular, components
such as vegetation and marine biogeochemical cycles have
been added to coupled climate models leading to the
development of earth system models (ESMs) and the hori-
zontal and vertical resolutions of both global and regional
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climate models have been improved, allowing better repre-
sentation of certain processes in these models. Furthermore,
the ongoing development of regionally coupled model sys-
tems with an RCM interactively coupled to an ocean model
could improve the presentation of climate processes over the
North Sea and, hence, the quality of climate simulations for
the North Sea region.

Open Access This chapter is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits use, duplica-
tion, adaptation, distribution and reproduction in any medium or for-
mat, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate
if changes were made.

The images or other third party material in this chapter are included
in the work’s Creative Commons license, unless indicated otherwise in
the credit line; if such material is not included in the work’s Creative
Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder
to duplicate, adapt or reproduce the material.

References

Barnes E, Hartman DL (2010) Influence of eddy‐driven jet latitude on
North Atlantic jet persistence and blocking frequency in CMIP3
integrations. Geophys Res Lett 37:L23802. doi:10.1029/
2010GL045700

Barnes E, Polvani L (2013) Response of the midlatitude jets, and of
their variability, to increased greenhouse gases in the CMIP5
models. J Clim 26:7117–7135

Barnes E, Slingo J, Woollings T (2012) A methodology for the
comparison of blocking climatologies across indices, models and
climate scenarios. Clim Dyn 38:2467–2481

Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C,
Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Schöll
R, Semmler T, Woth K (2007) Future extreme events in European
climate: an exploration of regional climate model projections. Clim
Change 81:71–95

Brutel-Vuilmet C, Ménégoz M, Krinner G (2013) An analysis of
present and future seasonal Northern Hemisphere land snow cover
simulated by CMIP5 coupled climate models. Cryosphere 7:67–80

Cattiaux J, Vautard R, Cassou C, Yiou P, Masson-Delmotte V,
Codron F (2010) Winter 2010 in Europe: a cold extreme in a
warming climate. Geophys Res Lett 37:L20704. doi:10.1029/
2010GL044613

Cattiaux J, Douville H, Peings Y (2013) European temperatures in
CMIP5: Origins of present-day biases and future uncertainties. Clim
Dyn 41:2889–2907

Cattiaux J, Douville H, Schoetter R, Parey S, Yiou P (2015) Projected
changes in diurnal and interdiurnal variations of European summer
temperatures. Geophys Res Lett 42:899–907

Chang EKM, Guo Y, Xia X (2012) CMIP5 multimodel ensemble
projection of storm track change under global warming. GCMs.
J Geophys Res 117:D23118. doi:10.1029/2012JD018578

Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I,
Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V,
Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P
(2007) Regional climate projections. In: Solomon S, Qin D,
Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL
(eds) Climate Change 2007: The physical science basis.

Contribution of Working Group I to the Fourth Assessment Report
of the Intergovernmental Panel on Climate Change. Cambridge
University Press

Christensen JH, Krishna Kumar K, Aldrian E, An S-I, Cavalcanti IFA,
de Castro M, Dong W, Goswami P, Hall A, Kanyanga JK, Kitoh A,
Kossin J, Lau N-C, Renwick J, Stephenson DB, Xie S-P, Zhou T
(2013a) Climate phenomena and their relevance for future regional
climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M,
Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM
(eds) Climate Change 2013: The Physical Science Basis. Contri-
bution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change. Cambridge University
Press

Christensen JH, Krishna Kumar K, Aldrian E, An S-I, Cavalcanti IFA,
de Castro M, Dong W, Goswami P, Hall A, Kanyanga JK, Kitoh A,
Kossin J, Lau N-C, Renwick J, Stephenson DB, Xie S-P, Zhou T
(2013b) Climate phenomena and their relevance for future regional
climate change; Supplementary Material. In: Stocker TF, Qin D,
Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y,
Bex V, Midgley PM (eds) Climate Change 2013: The Physical
Science Basis. Available from www.climatechange2013.org and
www.ipcc.ch

Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedling-
stein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M,
Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate
change: Projections, commitments and irreversibility. In:
Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK,
Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate
Change 2013: The Physical Science Basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change. Cambridge University Press

Croci-Maspoli M, Schwierz C, Davies H (2007) Atmospheric blocking:
space-time links to the NAO and PNA. Clim Dyn 29:713–725

Davini P, Cagnazzo C (2013) On the misinterpretation of the North
Atlantic Oscillation in CMIP5 models. Clim Dyn 43:1497–1511

De Winter RC, Sterl A, Ruessink BG (2013) Wind extremes in the
North Sea basin under climate change: an ensemble study of 12
CMIP5 GCMs. J Geophys Res 118:1601–1612

Debernard JB, Røed LP (2008) Future wind, wave and storm surge
climate in the Northern Seas: a revisit. Tellus 60A:427–438

Deser C, Phillips A, Burdette V, Teng H (2012) Uncertainty in climate
change projections: The role of internal variability. Clim Dyn
38:527–546

DMI (2014) Fremtidige klimaændringer I Danmark. Dansk Klimacen-
ter rapport 14-06, DMI, Copenhagen, Denmark

Donat MG, Leckebusch GC, Pinto JG, Ulbrich U (2010) European
storminess and associated circulation weather types: future changes
deduced from a multi-model ensemble of GCM simulations. Clim
Res 42:27–43

Donat MG, Leckebusch GC, Wild S, Ulbrich U (2011) Future changes
in European winter storm losses and extreme wind speeds inferred
from GCM and RCM multi-model simulations. Nat Hazards Earth
Syst Sci 11:1351–1370

Dong B, Sutton RT, Woollings T (2011) Changes of interannual NAO
variability in response to greenhouse gases forcing. Clim Dyn
37:1621–1641

Dunn-Sigouin E, Son SW (2013) Northern Hemisphere blocking
frequency and duration in the CMIP5 models. J Geophys Res
118:1179–1188

EEA (2012) Climate change, impacts and vulnerability in Europe.
European Environment Agency (EEA) Report 12/2012

Feser F, Barcikowska M, Krueger O, Schenk F, Weisse R, Xia L C
(2015) Storminess over the North Atlantic and northwestern Europe
– A review. Q J Roy Met Soc 141:350–382

170 W. May et al.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1029/2010GL045700
http://dx.doi.org/10.1029/2010GL045700
http://dx.doi.org/10.1029/2010GL044613
http://dx.doi.org/10.1029/2010GL044613
http://dx.doi.org/10.1029/2012JD018578
http://www.climatechange2013.org
http://www.ipcc.ch


Fischer EM, Schär C (2010) Consistent geographical patterns of
changes in high-impact European heatwaves. Nat Geosci 3:398–403

Folland CK, Knight J, Linderholm HW, Fereday D, Ineson S,
Hurrell JW (2009) The summer North Atlantic Oscillation: past,
present, and future. J Clim 22:1082–1103

Frei C, Schöll R, Fukutome S, Schmidli J, Vidale PL (2006) Future
change of precipitation extremes in Europe: Intercomparison of
scenarios from regional climate models. J Geophys Res 111:
D06105. doi:10.1029/2005JD005965

Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Klein
Tank AMG, Peterson T (2002) Observed coherent changes in
climatic extremes during the second half of the twentieth century.
Clim Res 19:193–212

Gaslikova L, Grabemann I, Groll N (2013) Changes in North Sea storm
surge conditions for four transient future climate realizations. Nat
Hazards 66:1501–1518

Gillett NP, Fyfe JC (2013) Annular mode changes in the CMIP5
simulations. Geophys Res Lett 40:1189–1193

Giorgi F, Jones C, Asrar GR (2009) Addressing climate information
needs at a regional level: the CORDEX framework. Bull World Met
Org 58:175–183

Haarsma RJ, Selten F, van Oldenborgh GJ (2013) Anthropogenic
changes of the thermal and zonal flow structure over Western
Europe and Eastern North Atlantic in CMIP3 and CMIP5 models.
Clim Dyn 41:2577–2588

Harvey BJ, Shaffrey LC, Wollings TJ, Zappa G, Hodges KI (2012)
How large are projected 21st century storm track changes? Geophys
Res Lett 39:L18707. doi:10.1029/2012GL052873

Henschel F (2013) Projections of insolation changes for solar energy
power production. Master Thesis, Swiss Federal Institute for
Technology, Zurich

Hewitson B, Janetos AC, Carter TR, Giorgi F, Jones RG, Kwon W-T,
Mearns LO, Schipper ELF, van Alst M (2014a) Regional context.
In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ,
Bilir TE, Chatterjee K, Ebi KL, Estrada YO, Genova RC, Girma B,
Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL
(eds) Climate Change 2014: Impacts, Adaptation, and Vulnerabil-
ity; Part B: Regional Aspects. Contribution of Working Group II to
the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change. Cambridge University Press

Hewitson B, Janetos AC, Carter TR, Giorgi F, Jones RG, Kwon W-T,
Mearns LO, Schipper ELF, van Alst M (2014b) Regional context:
Supplementary material. In: Barros VR, Field CB, Dokken DJ,
Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee K, Ebi KL,
Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN,
MacCracken S, Mastrandrea PR, White LL (eds) Climate Change
2014: Impacts, Adaptation, and Vulnerability; Part B: Regional
Aspects. Contribution of Working Group II to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change.
Available from www.ipcc-wg2.gov/AR5 and www.ipcc.ch

Hodges KI (1999) Adaptive constraints for feature tracking. Mon Wea
Rev 127:1362–1373

Hurrell JW, Deser C (2009) North Atlantic climate variability: The role
of the North Atlantic Oscillation. J Mar Syst 78:28–41

Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of
the North Atlantic Oscillation. In: Hurrell JW, Kushnir Y, Vis-
beck M, Ottersen G (eds), The North Atlantic Oscillation: Climate
Significance and Environmental Impact. Geophysical Monograph
Series, Vol 134, American Geophysical Union, Washington, DC,
1–35, doi:10.1029/134GM01

IPCC (2012) Managing the risks of extreme events and disasters to
advance climate change adaptation. In: Field CB, Barros V,
Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD,
Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM

(eds) Special report of the Intergovernmental Panel on Climate
Change. Cambridge University Press

IPCC (2013) Annex I: Atlas of global and regional climate projections.
In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK,
Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate
Change 2013: The Physical Science Basis. Cambridge University
Press

Itoh H (2008) Reconsideration of the true versus apparent Arctic
Oscillation. J Clim 21:2047–2062

Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM,
Braun A, Colette A, Déqué M, Georgievski G, Georgopoulou E,
Gobiet A, Menut L, Nikulin G, Haensler A, Hempelmann N,
Jones C, Keuler K, Kovats S, Kröner N, Kotlarski S, Kriegsmann A,
Martin E, van Meijgaard E, Moseley C, Pfeifer S, Preuschmann S,
Radermacher C, Radtke K, Rechid D, Rounsevell M, Samuelsson P,
Somot S, Soussana J-F, Teichmann C, Valentini R, Vautard R,
Weber B, Yiou P (2014) EURO-CORDEX: new high-resolution
climate change projections for European impact research. Reg
Environ Change 14:563–578

Kendon EJ, Rowell DP, Jones RG, Buonomo E (2008) Robustness of
future changes in local precipitation extremes. J Clim 21:4280–4297

Kendon EJ, Roberts NM, Fowler HJ, Roberts MJ, Chan SC, Senior CA
(2014) Heavier summer downpours with climate change revealed by
weather forecast resolution model. Nature Clim Change 4:570–576

Kharin S, Zwiers FW, Zhang X, Wehner M (2013) Changes in
temperature and precipitation extremes in the CMIP5 ensemble.
Clim Change 119:345–357

Kjellström E, Bärring L, Jacob D, Jones R, Lenderink G, Schär C
(2007) Modelling daily temperature extremes: recent climate and
future changes over Europe. Clim Change 81:249–265

Kjellström E, Nikulin G, Hansson U, Strandberg G, Ullerstig A (2011)
21st century changes in the European climate: uncertainties derived
from an ensemble of regional climate model simulations. Tellus
63A:24–40

KNMI (2014) KNMI’14 climate scenarios for the Netherlands: a guide
for professionals in climate adaptation. KNMI, De Bilt, The
Netherlands

Knutti R, Sedláček J (2012) Robustness and uncertainties in the new
CMIP5 climate model projections. Nature Clim Change 3:369–373

Koffi B, Koffi E (2008) Heat waves across Europe by the end of the
21st century: multiregional climate simulations. Clim Res
36:153-168

Kovats RS, Valentini R, Bouwer M, Georgopoulou E, Jacob D,
Martin E, Rounsevell M, Soussana J-F (2014a) Europe. In:
Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ,
Bilir TE, Chatterjee K, Ebi KL, Estrada YO, Genova RC, Girma B,
Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL
(eds) Climate Change 2014: Impacts, Adaptation, and Vulnerabil-
ity; Part B: Regional Aspects. Contribution of Working Group II to
the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change. Cambridge University Press

Kovats RS, Valentini R, Bouwer M, Georgopoulou E, Jacob D,
Martin E, Rounsevell M, Soussana J-F (2014b) Europe; Supple-
mentary material. In: Barros VR, Field CB, Dokken DJ, Mastran-
drea MD, Mach KJ, Bilir TE, Chatterjee K, Ebi KL, Estrada YO,
Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S,
Mastrandrea PR, White LL (eds), Climate Change 2014: Impacts,
Adaptation, and Vulnerability; Part B: Regional Aspects. Contri-
bution of Working Group II to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change. Available from www.
ipcc-wg2.gov/AR5 and www.ipcc.ch

Lenderink G, van Meijgaard E (2008) Increase in hourly precipitation
extremes beyond expectations from temperature changes. Nature
Geosci 1:511–514

5 Projected Change—Atmosphere 171

http://dx.doi.org/10.1029/2005JD005965
http://dx.doi.org/10.1029/2012GL052873
http://www.ipcc-wg2.gov/AR5
http://www.ipcc.ch
http://dx.doi.org/10.1029/134GM01
http://www.ipcc-wg2.gov/AR5
http://www.ipcc-wg2.gov/AR5
http://www.ipcc.ch


Masato G, Hoskins BJ, Wollings T (2013) Winter and summer
Northern Hemisphere blocking in CMIP5 models. J Clim 26:
7044–7059

Matsueda M (2011) Predictability of Euro-Russian blocking in summer
of 2010. Geophys Res Lett 38:L06801. doi:10.1029/2010GL046557

McInnes KL, Erwin TA, Batholds JM (2011) Global climate model
projected changes in 10 m wind speed and direction due to
anthropogenic climate change. Atmos Sci Let 12:325–333

Meehl GA, Covey C, Taylor KE, Delworth T, Stouffer RJ, Latif M,
McAvaney B, Mitchell JFB (2007a) The WCRP CMIP3
multi-model dataset: a new era in climate change research. Bull
Am Met Soc 88:1383–1394

Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT,
Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB,
Watterson IG, WeaverAJ, Zhao Z-C (2007b) Global climate
projections. In: Solomon S, Qin D, Manning M, Chen Z,
Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate
Change 2007: The Physical Science Basis. Contribution of Working
Group I to the Fourth Assessment Report of the Intergovernmental
Panel on Climate Change. Cambridge University Press

Metzger MJ, Bunce RGH, Jongman RHG, Mücher CA, Watkins JW
(2005) A climatic stratification of the environment of Europe. Glob
Ecol Biogeogr 14:549–563

Miller RL, Schmidt GA, Shindell DT (2006) Forced annular changes in
the 20th century Intergovernmental Panel on Climate Change
Fourth Assessment Report models. J Geophys Res 111:D18101.
doi:10.1029/2005JD006323

Mizuta R (2012) Intensification of extratropical cyclones associated
with the polar jet change in the CMIP5 global warming projections.
Geophys Res Lett 39:L19707. doi:10.1029/2012GL053032

Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van
Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA,
Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ,
Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation
of scenarios for climate change research and assessment. Nature
463:747–756

Nakićenović NJ, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S,
Gregory K, Grübler A, Jung TY, Kram T, Lebre La Rovere E,
Michaelis L, Mori S, Morita T, PepperW, Pitcher H, Price L, Riahi K,
Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P,
Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) IPCC
Special Report on Emission Scenarios. Cambridge University Press

Nikulin G, Kjellström E, Hansson U, Strandberg G, Ullerstig A (2011)
Evaluation and future projections of temperature, precipitation and
wind extremes over Europe in an ensemble of regional climate
simulations. Tellus 63A:41–55

Noble IR, Huq S, Anokhin YA, Carmin J, Goudou D, Lansigan FP,
Osman-Elasha B, Villamizar A (2014) Adaptation needs and
options. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD,
Mach KJ, Bilir TE, Chatterjee K, Ebi KL, Estrada YO, Genova RC,
Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR,
White LL (eds) Climate Change 2014: Impacts, Adaptation, and
Vulnerability; Part A: Global and Sectoral Aspects. Contribution of
Working Group II to the Fifth Assessment Report of the Intergov-
ernmental Panel on Climate Change. Cambridge University Press

Orlowsky B, Seneviratne SI (2012) Global changes in extremes events:
Regional and seasonal dimension. Clim Change 110:669–696

Pryor SC, Nikulin G, Jones C (2012) Influence of spatial resolution on
regional model derived wind climates. J Geopsys Res 117: D03117.
doi:10.1029/2011JD016822

Räisänen J, Eklund J (2012) 21st century changes in snow climate in
Northern Europe: a high-resolution view from ENSEMBLES
regional climate models. Clim Dyn 38:2575–2591

Räisänen J, Hansson U, Ullerstig A, Döscher R, Graham LP, Jones C,
Meier M, Samuelsson P, Willén U (2003) GCM driven simulations

of recent and future climate with the Rossby Centre coupled
atmosphere – Baltic Sea regional climate model. SMHI Rep Met
Climatol 101

Ruosteenoja K, Räisänen P (2013) Seasonal changes in solar radiation
and relative humidity in Europe in response to global warming.
J Clim 26:2467–2481

Scaife A, Folland CK, Alexander LV, Moberg A, Knight JR (2008)
European climate extremes and the North Atlantic Oscillation.
J Clim 21:72–83

Schoetter R, Cattiaux J, Douville H (2014) Changes of western
European heat wave characteristics projected by the CMIP5
ensemble. Clim Dyn. doi:10.1007/s00382-014-2434-8

Scoccimarro E, Gualdi S, Bellucci A, Zampieri M, Navarra A (2013)
Heavy precipitation events in a warmer climate: Results from
CMIP5 models. J Clim 26:7902–7911

Seneviratne SI, Nicholls N, Easterling D, Goodess CM, Kanae S,
Kossin J, Luo Y, Marengo J, McInnes K, Rahimi M, Reichstein M,
Sorteberg A, Vera C, Zhan X (2012) Changes in climate extremes
and their impacts on the natural physical environment. In: Field CB,
Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastran-
drea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM
(eds), Managing the Risks of Extreme Events and Disasters to
Advance Climate Change Adaptation. A Special Report of Working
Groups I and II of the Intergovernmental Panel on Climate Change
(IPCC). Cambridge University Press

Sillmann J, Roeckner E (2008) Indices for extreme events in projections
of anthropogenic climate change. Clim Change 86:83–104

Sillmann J, Croci-Maspoli M, Kallache M, Katz RW (2011) Extreme
cold winter temperatures in Europe under the influence of North
Atlantic atmospheric blocking. J Clim 24:5899–5913

Sillmann J, Kharin S, Zwiers FW, Zhang X, Bronough D (2013)
Climate extreme indices in the CMIP5 multimodel ensemble: Part 2.
Future climate projections. J Geophys Res 118:2473–2493

Sterl A, van den Brink H, de Vries H, Haarsma R, van Meijgaard E
(2009) An ensemble study of extreme surge related water levels in
the North Sea in a changing climate. Ocean Sci 5:369–378

Sterl A, Bakker AMR, van den Brink HW, Haarsma R, Stepek A,
Wijnant IL, de Winter RC (2015) Large-scale winds in the southern
North Sea region: the wind part of the KNMI’14 climate change
scenarios. Env Res Lett 10:035004. doi:10.1088/1748-9326/10/3

Taylor K, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and
the experiment design. Bull Am Met Soc 93:485–498

Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the
extremes. An intercomparison of model-simulated historical and
future changes in extreme events. Clim Change 79:185–211

Thompson DWJ, Wallace JM (2000) Annular modes in the extratrop-
ical circulation. Part I: Month-to-month variability. J Clim 13:
1000–1016

Trenberth KE, Fasullo JT (2009) Global warming due to increasing
absorbed solar radiation. Geophys Res Lett 36:L07706. doi:10.
1019/2009GL037527

Trigo RM, Trigo IF, DaCamara CC, Osborn TJ (2004) Climate impact
of the European winter blocking episodes from the NCEP/NCAR
Reanalyses. Clim Dyn 23:17–28

Tyrlis E, Hoskins BJ (2008) Aspects of a Northern Hemisphere
atmospheric blocking climatology. J Atmos Sci 65:1638–1652

Ulbrich U, Christoph M (1999) A shift of the NAO and increasing
storm track activity over Europe due to anthropogenic greenhouse
gas forcing. Clim Dyn 15:551–559

Ulbrich U, Pinto JG, Kupfer H, Leckebusch GC, Spangehl T, Reyers M
(2008) Changing Northern Hemisphere storm tracks in an ensemble
of IPCC climate change simulations. J Clim 21:1669–1679

Ulbrich U, Leckebusch GC, Grieger J, Schuster M, Akperov M,
Bardin MY, Feng Y, Gulev S, Inatsu M, Keay K, Kew SF,
Liberato MLR, Lionello P, Mokhov II, Neu U, Pinto JG, Raible CC,

172 W. May et al.

http://dx.doi.org/10.1029/2010GL046557
http://dx.doi.org/10.1029/2005JD006323
http://dx.doi.org/10.1029/2012GL053032
http://dx.doi.org/10.1029/2011JD016822
http://dx.doi.org/10.1007/s00382-014-2434-8
http://dx.doi.org/10.1088/1748-9326/10/3
http://dx.doi.org/10.1019/2009GL037527
http://dx.doi.org/10.1019/2009GL037527


Reale M, Rudeva I, Simmonds I, Tilinina ND, Trigo IF, Ulbrich S,
Wang XL, Wernli H and The IMILAST TEAM (2013) Are
greenhouse gas signals of Northern Hemisphere winter
extra-tropical cyclone activity dependent on the identification and
tracking algorithm? Meteorol Z 22:61–68

Van den Hurk B, van Oldenborgh GJ, Lenderink G, Hazeleger W,
Haarsma R, de Vries H (2014) Drivers of mean climate change around
the Netherlands derived from CMIP5. Clim Dyn 42:1683–1697

Van der Linden P, Mitchell JFB (2009) ENSEMBLES: Climate change
and its impacts: Summary of research and results from the
ENSEMBLES project. Met Office Hadley Centre, Exeter

Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A,
Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, Masui T,
Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011)
Representative concentration pathways: an overview. Clim Change
109:5–31

Wagner S, Berg P, Schädler G, Kunstmann H (2013) High-resolution
regional climate simulations for Germany: Part II – projected
climate changes. Clim Dyn 40:415–427

Wiedenmann JM, Lupo AR, Mokhov II, Tikhonova EA (2002) The
climatology of blocking anticyclones for the Northern and Southern
Hemispheres: Block intensity as a diagnostic. J Clim 15:3459–3473

Wild M, Ohmura A, Cubasch U (1997) GCM-simulated surface energy
fluxes in climate change experiments. J Clim 10:3093–3110

Winterfeldt J, Weisse R (2009) Assessment of value added for surface
marine wind speed obtained from two regional climate models.
Mon Wea Rev 137:2955–2965

Woollings T (2010) Dynamical influences on European climate: An
uncertain future. Phil Trans Roy Soc 368A:3733–3756

Woollings T, Blackburn M (2012) The North Atlantic jet stream under
climate change and its relation to the NAO and EA patterns. J Clim
25:886–902

Zappa G, Sheffrey LC, Hodges KI, Sansom PG, Stephenson DB (2013)
A multimodel assessment of future projections of North Atlantic and
European extratropical cyclones in the CMIP5 climate models.
J Clim 26:5846–5862

Zhang X, Alexander L, Hegerl GC, Jones P, Klein Tank A,
Peterson TC, Trewin B, Zwiers FW (2011) Indices for monitoring
changes in extremes based on daily temperature and precipitation
data. WIREs Clim Change 2:851–870

Zhou L, Dickinson RE, Dirmeyer P, Dai A, Min SK (2009)
Spatiotemporal patterns of changes in maximum and minimum
temperatures in multi-model simulations. Geophys Res Lett 36:
L02702. doi:10.1019/2008GL036141

5 Projected Change—Atmosphere 173

http://dx.doi.org/10.1019/2008GL036141

	5 Projected Change—Atmosphere
	Abstract
	5.1�Introduction
	5.2�Large-Scale Circulation
	5.2.1 Prominent Climate Phenomena
	5.2.2 Modes of Interannual Variability
	5.2.3 Atmospheric Blocking
	5.2.4 Sea-Level Pressure
	5.2.5 Jet Stream
	5.2.6 Summary

	5.3�Temperature
	5.3.1 Global Mean Temperature
	5.3.2 Regional Mean Temperatures
	5.3.3 Temperature Extremes

	5.4�Precipitation
	5.4.1 Mean Precipitation
	5.4.2 Precipitation Extremes

	5.5�Cyclones and Winds
	5.5.1 Cyclones
	5.5.2 Mean Wind Speeds
	5.5.3 Wind Extremes
	5.5.4 Wind Direction

	5.6�Radiation and Clouds
	5.6.1 Solar Radiation
	5.6.2 Terrestrial Radiation
	5.6.3 Cloud Cover
	5.6.4 Summary

	5.7�Conclusions
	References


