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Abstract

We develop an optical classification of marine particle assemblages from an extensive dataset of particle

optical properties collected in the Chukchi and Beaufort Seas. Hierarchical cluster analysis of the spectral par-

ticulate backscattering-to-absorption ratio partitioned the dataset into seven optically-distinct clusters of par-

ticle assemblages, each associated with different characteristics of particle concentration, composition, and

phytoplankton taxonomic composition and size. Three phytoplankton-dominated clusters were identified.

One was characterized by small-sized phytoplankton that are typically associated with regenerated produc-

tion, and comprised samples from the subsurface chlorophyll-a maximum in oligotrophic waters of the Beau-

fort Sea. The other two clusters represented diatom-dominated particle assemblages in turbid shelf waters

with differing contributions of photoprotective pigments. Such situations are generally associated with signif-

icant new production. Two clusters were dominated by organic nonalgal material, one representing clear

waters off the shelf, the other representative of post-diatom bloom conditions in the Chukchi Sea. Another

distinct cluster represented mineral-dominated particle assemblages that were observed in the Colville and

Mackenzie River plumes and near the seafloor. Finally, samples in a cluster of mixed particle composition

were scattered throughout all locations. Optical classification improved performance of predictive bio-optical

relationships. These results demonstrate a capability to discriminate distinct assemblages of suspended par-

ticles associated with specific ecological conditions from hyperspectral measurements of optical properties,

and the potential for identification of ecological provinces at synoptic time and space scales from optical sen-

sors. Analogous analysis of multispectral optical data strongly reduced this capability.

Particles in seawater are a ubiquitous and important com-

ponent of the marine environment and comprise both living

organisms and nonliving material. They directly influence

optical properties of seawater that are measurable from vari-

ous in situ and remote platforms, thus enabling observations

of marine particle assemblages over a wide range of temporal

and spatial scales. Sensors measuring the inherent optical

properties (IOPs) of seawater at a given wavelength of light k
(in vacuo), such as the spectral coefficients for absorption,

a(k), scattering, b(k), backscattering, bb(k), and beam attenua-

tion, c(k) 5 a(k) 1 b(k), are now routinely deployed on various

in situ platforms including ships, moorings, profilers, and

autonomous underwater vehicles. Such data are becoming

increasingly important for ocean biogeochemical and ecosystem

studies (e.g., Johnson et al. 2009; Fennel et al. 2011). Remote

sensing of ocean color from satellites or aircraft, quantified as

the spectral remote-sensing reflectance, Rrs(k), also allow estima-

tion of seawater IOPs as Rrs(k) is, to first order, proportional to

the ratio of bb(k) to a(k) (Gordon et al. 1988; IOCCG 2006).

These two IOPs are of direct interest to this study.

Recent technological advances have enabled remote and

in situ measurements of ocean optical properties at increas-

ingly higher spectral resolution, from multispectral to hyper-

spectral acquisition systems (Chang et al. 2004). Examples

include the WETLabs ac-s instrument, which provides in situ

measurements of c(k) and a(k) at 4 nm spectral resolution,

and the Hyperspectral Imager for the Coastal Ocean satellite

sensor (HICO), for determining Rrs(k) at 5.7 nm spectral reso-

lution. Various space agencies are planning to launch hyper-

spectral ocean color sensors in the next decade, such as the

U.S. National Aeronautics and Space Administration (NASA)
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HyspIRI (Hyperspectral Infrared Imager), GEO-CAPE (GEO-

stationary Coastal and Air Pollution Events), and PACE (cur-

rent acronym stands for Pre-Aerosol, Clouds, and Ocean

Ecosystem) missions, or the German HIS (Hyperspectral

Imager) on EnMAP (Environmental Mapping and Analysis

Program) mission.

While optical technology has undergone rapid advance-

ment, there is a strong need for improved understanding of

the linkages between the magnitude and spectral shape of

IOPs and the various optically-significant constituents of sea-

water. The IOPs of seawater result from the additive contri-

butions of water molecules and the various dissolved and

particulate components of seawater, yielding the following

operational partitioning of a(k) and bb(k):

aðkÞ5awðkÞ1agðkÞ1apðkÞ; with apðkÞ5adðkÞ1aphðkÞ (1)

bbðkÞ5bbwðkÞ1bbpðkÞ (2)

where the w, p, g, ph, and d subscripts denote the respective

contributions from water, particles, colored dissolved organic

matter (CDOM), phytoplankton, and nonalgal particles. To

first order, the magnitude of the particulate absorption and

backscattering coefficient at a given wavelength varies with

the concentration of particles, with second order effects aris-

ing from variability in the composition (i.e., refractive

index), size distribution, and shape of suspended particles

(e.g., Babin et al. 2003a,2003b; Stramski et al. 2007; Neuker-

mans et al. 2012).

The spectral shape of these IOPs may also reveal informa-

tion on the characteristics of the particulate assemblage. For

instance, the spectral shape of aph(k) is primarily controlled by

the concentration of various photosynthetic and photoprotec-

tive pigments and by pigment packaging within algal cells,

which depends on cell size and intracellular pigment concen-

trations (Morel and Bricaud 1981). Analysis of the spectral

shape of aph(k) can therefore reveal information on taxonomic

composition and dominant size of the algal population (e.g.,

Ciotti et al. 2002; Bricaud et al. 2004). The wavelength

dependency of the bbp(k) coefficient is commonly modeled as

a power law (Gordon and Morel 1983), which, according to

Mie scattering theory, steepens with increasing slope of the

particle size distribution (e.g., Morel 1973; Kostadinov et al.

2009). A limited number of field observations have provided

general support for these results (Loisel et al. 2006; Slade and

Boss 2015). Lastly, the spectral shape of ad(k) is commonly

modeled as an exponentially decreasing function of wave-

length and it has been hypothesized that the slope parameter

of ad(k) depends on the composition of the nonalgal matter

(Babin and Stramski 2004; Estapa et al. 2012).

Much effort has been devoted to advancing our under-

standing of optical variability with changes in the character-

istics of the phytoplankton assemblage, such as community

composition, physiology, and size structure, which reflect

differences in biogeochemical functioning of the phytoplank-

ton community (IOCCG 2014). Retrieval of these characteris-

tics is of critical importance to studies in ecological modeling

and biogeochemical cycling, from which the concept of phyto-

plankton functional types (PFTs) emerged. The term PFT

defines a group of phytoplankton taxa that have a common

biogeochemical role (Le Qu�er�e et al. 2005; IOCCG 2014). Opti-

cal differentiation among a few PFTs has been achieved in

open ocean waters using multispectral ocean color data (Alvain

et al. 2005; Bricaud et al. 2012) and it is expected that hyper-

spectral satellite sensors will enhance the capability of PFT

identification (e.g., Lubac et al. 2008; IOCCG 2014).

Even though the PFT concept provides an important bridge

between marine optics and biogeochemistry, it does not

account for nonalgal particles, which also contribute to optical

variability and represent an essential component of marine

ecosystem and biogeochemical models (Fasham et al. 1990;

Dunne et al. 2005; Stukel et al. 2014). For example, waters

characterized by the same PFT but with increasing contribu-

tions of detrital material may reflect progressive stages of a

phytoplankton bloom. In a previous study (Neukermans et al.

2014), we demonstrated the potential for optical differentiation

of peak diatom bloom from post-diatom bloom conditions in

Arctic waters based on spectral changes in bbp(k) and ap(k).

Other particle assemblages representative of distinct ecological

conditions, such as a regime of regenerated production or

waters influenced by resuspension of mineral particles, were

also differentiated optically. These findings demonstrated that

the spectral coefficients of bbp(k) and ap(k) provide complemen-

tary information on the characteristics of the particle assem-

blage owing to their different sensitivities to particle

concentration, bulk composition, and size distribution, which

are important indicators of ecological conditions.

In the present study, we investigate the synergistic use of

bbp(k) and ap(k) for differentiation of marine particle assemb-

lages representative of distinct ecological conditions. We use

an extensive set of field data collected in the western Arctic

Ocean comprising measurements of IOPs in conjunction

with a detailed characterization of the particulate assem-

blage. We utilize a cluster analysis of the spectral shape of

the particulate backscattering-to-absorption ratio, bbp(k)/

ap(k), to partition the dataset into optical classes. The bbp(k)/

ap(k) ratio largely removes first order dependency on particle

concentration, and is thus expected to mainly reflect

changes in bulk composition and size distribution of the par-

ticle assemblage. It represents the proportion of photons

backscattered relative to photons absorbed by particles and

can be thought of as the approximate contribution of par-

ticles to the ocean color remote-sensing reflectance.

We demonstrate that each optical class represents a particle

assemblage characterized by a distinct set of indicators of par-

ticle concentration, composition, and phytoplankton taxo-

nomic composition and size, and that these optically-derived

particle assemblages (hereafter referred to as OPAs) are repre-

sentative of distinct ecological conditions. We further illustrate
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that differentiation of OPA’s allows improved performance of

bio-optical relationships. The OPA concept provides an exten-

sion to the PFT concept by accounting for the coexistence of

algal and nonalgal material in natural waters. Here, we exam-

ine an application of the OPA concept in optically-complex

waters of the western Arctic Ocean. We anticipate that this

concept can be applied to other regions as well.

Methodology

Study area

Measurements were collected during three field campaigns

in coastal and offshore waters in the western Arctic Ocean

(Fig. 1). The MALINA (MAckenzie LIght aNd cArbon) project

cruise onboard the CCGS Amundsen occurred in the southeast-

ern Beaufort Sea from 31 July 2009 through 24 August 2009

and encompassed several transects from the Mackenzie River

delta to the southernmost limit of the pack ice off the conti-

nental shelf. Two cruises associated with the NASA ICESCAPE

(Impacts of Climate on the Eco-Systems and Chemistry of the

Arctic Pacific Environment) project onboard the USCGC Healy

were performed in the Chukchi Sea and western Beaufort Sea

from 18 June 2010 through 16 July 2010 and from 28 June

2011 through 24 July 2011 (Arrigo et al. 2012, 2014). Sam-

pling on these cruises included transects from ice-free to ice-

covered waters on the Chukchi Sea shelf. For the three cruises,

a total of 106 stations were sampled, 27 for MALINA and 79

for ICESCAPE, which included measurements of backscatter-

ing and absorption and a detailed characterization of the par-

ticulate assemblage.

Measurements of particulate backscattering

At each station, a profiling instrument package with opti-

cal sensors was deployed from the sea surface to a few meters

above the seafloor, or to a maximum depth of 300 m. The

spectral backscattering coefficient, bb(k), was determined

with a combination of multispectral Hydroscat-6 and single

wavelength a-Beta sensors (HOBI Labs, Inc.). These instru-

ments provide a measurement of the spectral volume scatter-

ing function b(w) at a fixed scattering angle in the backward

direction w 5 1408 (Maffione and Dana 1997). During

MALINA, a single Hydroscat-6 and two a-Betas provided

measurements in eight spectral bands with nominal center

wavelengths of 420, 442, 470, 510, 550, 589, 620, and

671 nm. For both ICESCAPE cruises, two Hydroscat-6 instru-

ments provided measurements in 11 spectral bands with

nominal center wavelengths of 394, 420, 442, 470, 510, 532,

550, 589, 649, 730, and 852 nm. The 420 nm band on the

MALINA cruise and the 442 nm band on the 2010 ICESCAPE

cruise failed to operate correctly, and these data were

excluded from subsequent analyses.

The values of bbp(k) were calculated based on a method

described originally by Maffione and Dana (1997), and a

detailed description of the procedure is provided in Stramski

et al. (2008). Briefly, for each spectral band, measurements

of b were corrected for the attenuation of light along the

optical pathlength using the so-called r-correction (Maffione

and Dana 1997), utilizing the parameter Kbb(k) 5 ap(k) 1

ag(k) 1 0.4bp(k) (HOBI Labs Hydrosoft user manual). For

MALINA, the coefficients of ap(k), ag(k), and bp(k) were

obtained from measurements with a WETLabs ac-9 instru-

ment. For ICESCAPE, Kbb(k) was calculated from relation-

ships between the beam attenuation coefficient of particles

and CDOM at 660 nm, cpg(660), measured by a WETLabs C-

Star beam transmissometer, and measurements of ap(k),

ag(k), and bp(k) on discrete water samples.

Fig. 1. Map of the Chukchi and Beaufort Seas showing the location of stations sampled during the MALINA campaign in 2009 (diamonds) and the
ICESCAPE campaigns in 2010 (circles) and 2011 (squares). Isobaths with depth in meters.
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The spectral particulate backscattering coefficient was

obtained from the measured b(1408, k) using the relation

bbpðkÞ52p vpðbð140�; kÞ2bwð140�; kÞÞ (3)

where bw represents the volume scattering function of pure

seawater, which was calculated according to the procedure

described in Twardowski et al. (2007) using measured water

temperatures as input to the equations of Buiteveld et al.

(1994) and a depolarization ratio for water molecules of

0.039 (Jonasz and Fournier 2007). A spectrally constant value

of 1.13 was used for the parameter vp (Dana and Maffione

2002). Data of bbp(k) were filtered to remove spikes and aver-

aged into 0.5 or 1 m depth bins for analysis and correlation

with data from discrete water samples.

Measurements of the spectral particulate backscattering coef-

ficient were fit to the relationship (Gordon and Morel 1983):

bbpðkÞ5 bbpðkoÞ
k
ko

� �f

(4)

where ko is a reference wavelength and f represents the dimen-

sionless spectral slope parameter of bbp(k) which was obtained

by least squares linear regression on the log10-transformed

data. Measurements from the 442 nm band were excluded

when fitting spectral relationships for ICESCAPE to avoid pos-

sible effects associated with the anomalous dispersion of

refractive index of particles, which can occur in spectral

regions exhibiting strong pigment absorption (van de Hulst

1957; Morel and Bricaud 1981), and for consistency with ICE-

SCAPE 2010 measurements in which this channel failed to

operate. This band was included in spectral fitting of MALINA

data, however, because fewer blue wavelengths were available

for this cruise and values of both chlorophyll-a concentration

and the particulate absorption coefficient at 442 nm were gen-

erally lower compared to ICESCAPE.

Measurements of particulate absorption

Water samples were collected at discrete depths from a

CTD-Rosette equipped with Niskin bottles immediately

before or after in situ optical measurements. Samples were

taken at the surface (�1–3 m nominal depth), at additional

depths associated with features such as maxima in chloro-

phyll fluorescence, beam attenuation, or backscattering, and

within 3–5 m of the bottom for regions on the shelf. For

determinations of light absorption by suspended particulate

matter, particles were collected onto a 25 mm diameter

Whatman GF/F filter and stored in liquid nitrogen until

measurement. Filtration volume was adjusted based on parti-

cle concentration and ranged from 30 mL to 11 L.

The spectral absorption coefficient of particles, ap(k), was

determined at 1 nm intervals over the spectral range 300–

850 nm for ICESCAPE cruises and 300–800 nm for the

MALINA cruise in a dual-beam spectrophotometer (Lambda

18, Perkin Elmer) equipped with a 15 cm integrating sphere

(Labsphere). Filters were placed inside the integrating sphere

for measurement and scanned in two different orientations

to subsample different portions of the filter, whereafter

results were averaged (e.g., R€ottgers and Gehnke 2012;

Stramski et al. 2015). A correction for the pathlength ampli-

fication factor was applied to the data (Stramski et al. 2015).

Additional absorption measurements were made on the

sample filters following pigment extraction with methanol

to partition total ap(k) into the contributions of phytoplank-

ton, aph(k), and nonphytoplankton, ad(k), components

(Kishino et al. 1985). In a few cases pigment extraction was

incomplete or the partitioning method failed to provide reli-

able estimates of aph(k) when the phytoplankton contribu-

tion to particle absorption was extremely small (see, for

example, Wo�zniak et al. 2010). All other spectra of ap(k) and

ad(k) were smoothed using a moving average filter with size

ranging between 3 nm and 9 nm depending on the general

spectral shape (Stramski et al. 2015). From 305 absorption

measurements, 291 spectra of ad(k) and 269 spectra of aph(k)

were reliably determined. Spectra of absorption by nonalgal

matter were further fit to an exponential relationship adðkÞ5
adðk0Þexp ð2SNAPðk2k0ÞÞ using data between 380 nm and

730 nm, excluding the 400–480 nm and 620–710 nm ranges

to avoid residual pigment absorption effects.

Bulk measures of particle mass concentration

and composition

Measurements of the mass concentrations of particulate

matter, organic carbon, and phytoplankton pigments were

performed by filtration of collected seawater and were used

to characterize the bulk particle assemblage. All filtrations

were made with duplicate filters and results were averaged.

Determination of the mass concentration of dried suspended

particulate matter per unit volume of water, SPM, was

accomplished by filtering samples under low vacuum onto

precombusted (5 h at 4508C), prerinsed, and preweighed

25 mm diameter glass-fiber filters (Whatman GF/F). Follow-

ing filtration, filter and filter edges were rinsed multiple

times with deionized water to remove residual sea salt. Filters

were dried at 608C and stored sealed until analysis. SPM was

determined gravimetrically by weighing sample filters with a

Mettler-Toledo MT5 microbalance with 1 lg precision, sub-

tracting the blank filter weight, and dividing by the volume

of seawater filtered.

Particulate organic carbon concentration (POC) was

obtained using a method consistent with established proto-

cols (e.g., Knap et al. 1996). Water samples were filtered

onto precombusted 25 mm GF/F filters; sample filters were

then transferred to clean glass scintillation vials, dried at

608C, and stored until post cruise analysis. Following acidifi-

cation to remove inorganic carbon, a standard high tempera-

ture combustion technique was used to determine POC on

each filter. For MALINA, POC was measured from combus-

tion of the same filters used in SPM determination. Several

Neukermans et al. Optically-derived particle assemblages

1475



unused filters from each lot of precombusted filters were

used to quantify the background carbon content of filters

and subtracted from the sample measurements.

Samples for phytoplankton pigments were filtered onto

25 mm GF/F filters under low light and flash frozen in liquid

nitrogen until analysis by High Performance Liquid Chroma-

tography (HPLC). MALINA samples were analyzed using the

analytical procedure described in Ras et al. (2008) and ICE-

SCAPE samples were determined using the method of Van

Heukelem and Thomas (2001). In this study, we use the

HPLC-determined total chlorophyll-a as the measure of chlo-

rophyll-a concentration, Chla, which represents the summed

concentrations of mono- and divinyl chlorophyll-a, chloro-

phyllide-a, and the allomeric and epimeric forms of chloro-

phyll-a.

Estimation of phytoplankton community

composition and size

Phytoplankton taxa or groups are generally characterized by

specific pigments, rendering HPLC-determined phytoplankton

pigment concentrations an indicator of phytoplankton compo-

sition. However, deriving phytoplankton composition from

phytoplankton pigments is not straightforward (e.g., Jeffrey

and Vesk 1997; Roy et al. 2011). Whereas certain diagnostic pig-

ments can serve as unambiguous markers for some phytoplank-

ton classes (e.g., peridinin in dinoflagellates), many pigments are

shared by more than one algal taxon (e.g., fucoxanthin in dia-

toms, chromophytes, and nanoflagellates). Despite these limita-

tions, the ratios of the concentrations of specific pigments to

Chla provide a useful indication of contributions of certain phy-

toplankton classes to a mixed phytoplankton population because

these ratios can differ between taxonomic groups (Gieskes et al.

1988; Jeffrey and Vesk 1997; Vidussi et al. 2001). In addition to

total chlorophyll-a, the following pigments were included in our

analysis: total chlorophyll-b (Chl b5 the summed contributions

of mono- and divinyl chlorophyll-b, and the epimeric forms of

chlorophyll b), the summed contributions of chlorophyll c1 and

chlorophyll c2, chlorophyll c3, the summed contributions of a-

and b-carotenes, alloxanthin, diadinoxanthin, diatoxanthin,

fucoxanthin, 190-hexanoyloxyfucoxanthin, 190-butanoyloxyfu-

coxanthin, neoxanthin, prasinoxanthin, violaxanthin, zeaxan-

thin, peridinin, pheophorbide-a, pheophytin-a, lutein, and

prasinoxanthin.

In addition to providing information on the composition of

the algal assemblage, phytoplankton pigments may also be

used to estimate cell size characteristics of the phytoplankton

population. The approach is based on seven diagnostic pig-

ments assumed to represent biomarkers of specific taxonomic

groups, which are then assigned to different size classes, includ-

ing microphytoplankton (cell diameter D>20 lm), nanophy-

toplankton (2 lm � D � 20 lm), and picophytoplankton (0.2

lm � D<2 lm). We used the method of Uitz et al. (2006),

which utilizes the relative weighted concentrations of diagnos-

tic pigments to estimate the fractional contribution f of the

three size classes to Chla. Limitations of this method have been

noted previously, for example certain diagnostic pigments are

shared by multiple phytoplankton groups and some phyto-

plankton groups may encompass a wide size range (Vidussi

et al. 2001; Uitz et al. 2006). In this study, we incorporated the

modification of the Uitz et al. (2006) approach proposed by

Devred et al. (2011), which corrects for the potential overesti-

mation of the microphytoplankton size fraction which can

result from the presence of fucoxanthin in other taxa belong-

ing to the nanophytoplankton size class. It should be noted

that this approach has been developed and parameterized using

a large pigment dataset from nonpolar oceanic waters, and has

not been validated in the Arctic where some phytoplankon

taxa (e.g., cyanobacteria) are absent or exhibit low abundance.

The estimated fractional contributions of micro-, nano-, and

picophytoplankton were then combined to provide a single

indicator of the dominant cell size of the algal population, SI

(in units of lm), defined as (Bricaud et al. 2004):

SI 5 1 3 fpico1 5 3 fnano1 50 3 fmicro (5)

Lastly, an optical indicator of dominant phytoplankton cell

size was derived. The dimensionless size parameter, Sf, was

calculated from each normalized phytoplankton absorption

spectrum, aph(k), according to Ciotti et al. (2002). The Sf size

parameter covers a continuum from a value of 0 for a popu-

lation composed exclusively of microphytoplankton to a

value of 1 for a pure picophytoplankton assemblage.

Hierarchical cluster analysis

To obtain optical partitioning of the dataset, a hierarchi-

cal cluster analysis (HCA) of the spectral shape of the partic-

ulate backscattering-to-absorption ratio, bbp(k)/ap(k), was

performed. Prior to classification, measurements of bbp(k)

and ap(k) were quality controlled and measurements of

bbp(k) were spectrally interpolated to match the spectral reso-

lution of ap(k) measurements using Eq. 4. Spectra of bbp(k)/

ap(k) were then normalized by the mean value over the spec-

tral range 4002690 nm:�
bbpðkÞ
apðkÞ

�
5

1

291

ð690

400

bbpðkÞ
apðkÞ

dk (6)

The spectral domain was limited to 690 nm because particulate

absorption becomes very small for longer wavelengths, result-

ing in high noise in bbp(k)/ap(k). We note that with this proce-

dure, the relative magnitude of bbp(k) and ap(k) to each other

as well as the spectral shape of each component influences the

normalized spectrum. For example, the spectral shape of bbp(k)

exerts a stronger influence on the bbp(k)/ap(k) ratio in the case

of mineral-dominated particle assemblages compared to more

organic particle assemblages because of generally higher bbp(k)

relative to ap(k). Because spectra of bbp are derived from multi-

spectral measurements fitted to the power-law relationship in

Eq. 4, the bbp spectra are featureless.
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The HCA method classifies objects, i.e., normalized spec-

tra of bbp(k)/ap(k), into groups or clusters of similar objects.

We used Ward’s (1963) minimum variance method because

it minimizes the within-cluster variance and is less sensitive

to outliers than other methods such as single linkage or

complete linkage (Kamvar et al. 2002). Ward’s method uses

an agglomerative (bottom–up) hierarchical clustering algo-

rithm, proceeding sequentially by binary group fusions, at

each step creating bigger clusters until all the objects in the

original data set are linked together in a hierarchical cluster

tree or dendrogram. At each clustering step going from K to

K21 clusters, Ward’s method merges the pair of objects or

clusters whose fusion results in the smallest increase of the

“total within-cluster sum of squares” over all K clusters

formed so far. This sum is defined as the sum of the squares

of the Euclidean distances between all objects in the cluster

and the centroid of the cluster:

XK

k51

Xnk

i51

kxik2mkk2 (7)

where nk is the number of objects in cluster k and kxik2mkk2

is the squared Euclidean distance between an object xik in

cluster k and the centroid of the cluster to which it belongs,

mk5 1
nk

Pnk

i51 xik. Merging the cluster pair that minimizes the

total within-cluster sum of squares is equivalent to merging

the pair of clusters ck and cl that minimizes the following

distance measure (Legendre and Legendre 2012):

Dðck; clÞ5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2nknl

nk1nl

s
kmk2mlk (8)

where kmk2mlk is the Euclidean distance between the cent-

roids of clusters k and l, and nk and nl are the number of

objects in clusters k and l, respectively. This distance mea-

sure is commonly referred to as the linkage distance for

Ward’s method. The multiplicative factor of 2 in Eq. 8 is

used in the MATLAB implementation of Ward’s algorithm so

that the distance between two singleton clusters is the same

as the Euclidean distance between them.

Each level in the dendrogram represents a particular

grouping of the data into a certain number of distinct clus-

ters. It is up to the user to decide which level represents a

natural clustering or equivalently, which number of clusters

is optimal. To aid this decision, a plot of linkage distance as

a function of number of clusters was examined. For agglom-

erative HCA, the linkage distance between merged clusters

increases monotonically with each step in the hierarchical

procedure as increasingly dissimilar clusters are being mer-

ged. Steeper increases in the linkage distance are associated

with a stronger increase of the total within-cluster variance

and finding the appropriate number of clusters can be

thought of as locating the point of maximum curvature in

the relationship between linkage distance and number of

clusters. The L-method of Salvador and Chan (2004) was

used to identify the point of maximum curvature as the

boundary between the pair of straight lines that most closely

fit the curve of linkage distance vs. number of clusters. This

method is computationally efficient and robust to local

trends and outliers. All cluster pairs with linkage distance

below the cutoff distance were then merged.

To evaluate the assignment of an object to a cluster, we

computed the object’s silhouette value Si which is a measure

of how close object i is to objects in its own cluster k com-

pared to objects in other clusters l (Rousseeuw 1987):

Si5
min ðdilÞ2di

max ðdi; min ðdilÞÞ
(9)

where di is the average distance from object i to the other

objects in the same cluster, and dil is the average distance

from object i to objects in cluster l, which is then minimized

over all clusters l 6¼ k. Values of Si range from 21 to 1, with

negative values for objects that are more similar to objects in

other clusters than to objects in their own cluster. Con-

versely, objects with positive Si are more similar to objects in

their own cluster than to objects in other clusters. The range

of Si thus comprises a continuum representing misclassified

to well classified objects, with zero values for intermediate

cases. The distance metric in the calculation of Si used here

was the squared Euclidean distance, consistent with the

between-object distance metric utilized by Ward’s clustering

algorithm.

Different clustering algorithms may produce different

dendrograms because clustering methods impose different

models onto the data. We tested alternative distance and

clustering algorithms and compared results using various cri-

teria: the cophenetic correlation coefficient (Sokal and Rohlf

1962), a measure of how precisely a dendrogram preserves

the pairwise distance between data objects, statistics of sil-

houette values, and best professional judgment.

Differences in particle characteristics among

optical clusters

Differences in characteristics of the particulate assemblage

among the optical clusters were examined using a one-way

Analysis of Variance (ANOVA). To test which pairs of cluster

means are significantly different from each other, multiple

comparison tests were done at a significance level of 0.05.

Particle characteristics that were tested included bulk meas-

urements of particle concentration, composition, and phyto-

plankton composition and size indicators. If necessary,

values were log-transformed prior to analysis to better

approximate a normal distribution.

Statistical evaluation of bio-optical relationships among

optical clusters

We examined if a priori knowledge of optical cluster

membership improved commonly used bio-optical
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relationships, such as the relationship between SPM and the

particulate backscattering coefficient or between Chla and

the phytoplankton absorption coefficient. Ordinary least

squares regression analysis on log10-transformed data of

selected optical properties and measurements of particle con-

centration were performed for the entire dataset and for

each optical cluster separately. Prior to regression analysis,

data outliers were removed according to methods described

in the Web Appendix of Neukermans et al. (2012).

Goodness-of-fit statistics of regression models are reported

using the root-mean-square-error (RMSE),

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n22

Xn

k51

ðlog yk2log ŷkÞ
2

vuut (10)

where yk is the observed value, and ŷk is the model-derived

value. We also report the median prediction error of the

regression model, MPE, calculated as the median of the abso-

lute percent difference between model-derived and observed

values, 1003
��ŷk2yk=yk

��. For comparison between OPA-

specific models and the general model we report the median

ratio, MR, of model-derived to observed values ŷk=yk, and

the median bias, MB, calculated as the median difference

between model-derived and observed values ŷk2yk for each

OPA-specific model and the general model.

Results

For the three cruises, 216 water samples which comprised

concurrent measurements of particulate backscattering,

absorption partitioned into algal and nonalgal contributions,

phytoplankton pigments, POC, and SPM were used in our

analysis. The wide range in spectral shapes and magnitudes

of bbp(k) and ap(k) spanned by this dataset is illustrated in

Fig. 2. We first describe optical partitioning of this dataset

and then examine differences in characteristics of suspended

particles among optical clusters.

Optical classification of samples

Figure 3a depicts the dendrogram obtained from a HCA of

normalized bbp(k)/ap(k) spectra. The cophenetic correlation

coefficient for this dendrogram is 0.56, indicating good pres-

ervation of the Euclidean distances between pairs of objects.

The optimal number of clusters was derived from the “knee”

in a diagram of between-cluster distances along the dendro-

gram shown in Fig. 3b. The L-method of Salvador and Chan

(2004) finds the knee in this curve by an iterative procedure

that fits a straight line through the first m points and

another line through the remaining points. The knee is

found where the root-mean-square-error of the fit to this

curve by the pair of lines is minimal. The L-method suggests

that the knee is located at k 5 16 clusters (Fig. 3b). However,

the L-method may position the knee to the right of the

actual knee when there are too many points on the right

side of the actual knee (Salvador and Chan 2004). This is the

case for our dataset. The L-method was therefore reapplied

to a restricted range of number of clusters so that the initial

knee estimate is in the middle of this range (Fig. 3c). We

obtained a refined estimate of the knee at k 5 6 clusters. We

further refined this estimate by close examination of the

curve in Fig. 3c which exhibits a first steep increase in the

linkage distance along the dendrogram at k 5 7 clusters. This

suggests an optimal partitioning of the dataset into seven

clusters. Such a partitioning corresponds to a cutoff distance

of 8, represented by the dashed line in Fig. 3a. Clusters are

labeled TMin, TMix, COD, MOD, COP, TOP1, and TOP2.

The first character of the label refers to overall water turbid-

ity with “T” for turbid (cp(660)�0.3 m21), “M” for moder-

ately turbid (0.1 m21< cp(660)<0.3 m21), and “C” for clear

waters (cp(660)�0.1 m21). Subsequent characters refer to

Fig. 2. Spectra of (a) the backscattering coefficient of particles, bbp(k), and (b) the absorption coefficient of particles, ap(k), for MALINA (dashed

lines) and ICESCAPE (solid lines, 2010 in grey, 2011 in black) samples. Measurements of bbp(k) were made at 11 wavelengths, and subsequently fitted
to the relationship in Eq. 4.
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bulk composition of the particle assemblage and indicate the

dominance of minerals “Min,” organic material “O,” phyto-

plankton “P,” or nonalgal organic material (also referred to

as detritus) “D,” while “Mix” refers to particle assemblages of

mixed composition. These characteristics are discussed in

detail in the next section.

The resulting partitioning of 216 normalized spectra of

bbp(k)/ap(k) in seven clusters obtained from HCA is illus-

trated in Fig. 4. Some spectra exhibited negative silhouette

values indicative of poor classification (grey dashed lines in

Fig. 4a–g). These 28 spectra were removed from subsequent

analyses. Silhouette values for the majority of the remaining

spectra varied from 0.10 to 0.77, with a median value of

0.49. Strong differences in spectral shape of bbp(k)/ap(k) were

observed among clusters, especially in blue and red spectral

regions (Fig. 4h). For example, the coefficient of variation in

bbp(k)/ap(k) of the cluster means was 27% at 400 nm, 5% at

530 nm, and 30% at 675 nm. Variability in the spectral

shape of bbp(k)/ap(k) was mostly driven by absorption with

comparatively less contribution to variability from backscat-

tering (Figs. 2, 5a,b).

Spectral features associated with the presence of phyto-

plankton pigment absorption bands in blue and the red

wavelengths were easily discernible in spectra of bbp(k)/ap(k)

and ap(k) in all clusters. These features were least pro-

nounced in cluster TMin, indicating a much weaker contri-

bution of algal particles to ap(k) in this cluster (Figs. 4a, 5a).

Indeed, the ratio of nonalgal to total particulate absorption

at a wavelength of 400 nm, ad(400)/ap(400), in cluster TMin

averaged 0.86 (60.07) (mean 6 standard deviation), signifi-

cantly higher than all other cluster means (Table 1). Particu-

late absorption spectra for samples in cluster TMin were

nearly featureless with ap(k) decreasing with increasing wave-

length and with significant absorption in the near-infrared

spectral region (not shown). Such absorption features are

typically associated with mineral-dominated particle assemb-

lages (e.g., Babin and Stramski 2004; Stramski et al. 2007).

The strong optical distinction of cluster TMin was corrobo-

rated by its members’ silhouette values, which were on aver-

age highest for this cluster (Table 1).

Phytoplankton pigment absorption features were most

strongly pronounced in ap(k) spectra of clusters COP, TOP1,

and TOP2 (Fig. 5a). Correspondingly, cluster mean values of

ad(400)/ap(400) were below 0.5, suggesting a dominant con-

tribution of phytoplankton to the particulate assemblage in

these clusters (Table 1). The spectral shape of aph(k) differed

strongly among these clusters reflecting changes in phyto-

plankton communities, pigment composition, pigment pack-

aging, or some combination of these processes. The pigment

package effect describes the reduction in absorption per unit

pigment concentration when pigments are contained in cells

compared with the absorption potential for the same

amount of pigment in solution (Duysens 1956; Morel and

Bricaud 1981; Kirk 1996). An increase in pigment packaging

occurs either as cell size increases or as absorption of intra-

cellular material increases (Morel and Bricaud 1981). This

results in a flattening of the aph(k) spectrum and a reduction

in the blue-to-red absorption ratio for wavelengths corre-

sponding to chlorophyll-a absorption peaks. To first order,

the influence of pigment packaging can be assessed in the

red absorption band of chlorophyll-a, a spectral region in

which the contribution to absorption by accessory pigments

is generally small. The significantly lower mean value of

aph(676)/Chla of the TOP clusters compared to cluster COP

suggests a stronger degree of pigment packaging in turbid

phytoplankton-dominated waters (Table 1). Pigment

Fig. 3. (a) Dendrogram obtained from HCA of 216 normalized spectra

of bbp(k)/ap(k). (b) Linkage distance as function of number of clusters
obtained from the dendrogram in (a). The lines intersect at the first esti-

mate of the knee of the curve as obtained from the L-method of Salva-
dor and Chan (2004). (c) Similar to (b) but with a restricted range for
the number of clusters and a refined estimate of the location of the

knee. The dashed line corresponds to a linkage distance of 8, which
divides the dataset into seven clusters.
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packaging also resulted in a strongly reduced aph(443)/

aph(676) ratio in cluster TOP2, whereas this effect appears to

be largely offset by increased relative contribution of ancil-

lary pigments to absorption in cluster TOP1.

Cluster COP exhibited high blue-to-red phytoplankton

absorption ratio, aph(443)/aph(676), a small degree of pig-

ment packaging effect, and very steep backscattering spectra

suggesting the dominance of small-sized particles and phyto-

plankton (Table 1). Samples assigned to cluster TOP2, on the

other hand, exhibit much weaker spectral dependence of

backscattering and a cluster mean aph(443)/aph(676) value of

1.33 (60.11), significantly lower than all other clusters

(Table 1). These observations suggest that cluster TOP2 com-

prises particle assemblages dominated by large-sized

Fig. 4. (a–g) Normalized spectra of bbp(k)/ap(k) associated with each of the seven clusters obtained from HCA. n is the number of objects in each
cluster of which n0 have negative silhouette value, indicative of poor classification. Spectra with negative silhouette values are shown as grey dashed

lines and are not included in the calculation of the mean spectrum for each cluster, which is represented by the black dashed line in each panel. (h)
Mean spectrum of normalized bbp(k)/ap(k) for each cluster.
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phytoplankton. Cluster TOP1 is also characterized by weak

spectral dependence of backscattering but with higher aver-

age aph(443)/aph(676) ratio than observed for cluster TOP2.

This suggests the dominance of large-sized phytoplankton

with increased contribution of accessory pigments, which

offsets the effects of pigment packaging at blue wavelengths.

We note, however, that in contrast to clusters COP and

TOP2 the spectral shape of phytoplankton absorption varies

widely within cluster TOP1, with aph(443)/aph(676) ranging

from 1.2 to 3.0 and Sf ranging from 0 to 0.8 (Table 1).

Fig. 5. Cluster mean spectra of the normalized coefficients of (a) particle absorption, ap(k), (b) particle backscattering bbp(k), (c) phytoplankton
absorption, aph(k), and (d) nonalgal particle absorption, ad(k). The legend in panel d applies to all four panels.

Table 1. Optical and optically-derived properties associated with each cluster. n is the number of objects in each cluster of which
n0 had silhouette values, Si , that were negative and subsequently discarded from analysis. For each cluster, we tabulate the 5th, 50th,
and 95th percentiles of Si and the mean (6 standard deviation) of other quantities. The spectral slope of particle backscattering, f, is
calculated from Eq. 4. The particulate backscattering ratio, ~bbp5bbp=bp, is given at a wavelength of 660 nm. The ratio of the nonalgal
absorption coefficient, ad, to the total particle absorption coefficient, ap, is provided at a wavelength of 400 nm. SNAP represents the
spectral slope of the nonalgal absorption coefficient. Phytoplankton optical properties include the blue-to-red absorption ratio of the
phytoplankton absorption coefficient, aph, and the phytoplankton chlorophyll-a specific absorption coefficient at 676 nm. The phyto-
plankton size parameter, Sf, represents the relative contribution of picophytoplankton to absorption (Ciotti et al. 2002).

TMin TMix COD MOD COP TOP1 TOP2

Observations n 5 34, n0 5 1 n 5 47, n0 5 9 n 5 28, n0 5 2 n 5 29, n0 5 2 n 5 12, n0 5 1 n 5 40, n0 5 12 n 5 26, n0 5 1

P5-50-95(Si) 0.15, 0.68, 0.80 0.07, 0.41, 0.63 0.13, 0.49, 0.70 0.34, 0.64, 0.79 0.09, 0.48, 0.72 0.01, 0.33, 0.56 0.19, 0.53, 0.75

f(dim) 20.90(60.29) 21.06(60.38) 22.45(60.35) 21.07(60.18) 22.02(60.46) 20.97(60.49) 21.08(60.35)
~bbp (dim) 0.022(60.007) 0.015(60.006) 0.011(60.005) 0.012(60.003) 0.009(60.005) 0.011(60.005) 0.010(60.008)

ad(400)/ap

(400) (dim)

0.86(60.07) 0.72(60.06) 0.60(60.15) 0.65(60.09) 0.29(60.09) 0.45(60.11) 0.41(60.09)

SNAP(nm21) 0.0060(60.0004) 0.0066(60.0007) 0.0061(60.0009) 0.0082(60.0009) 0.0075(60.0016) 0.0081(60.0011) 0.0080(60.0008)

aph(443)/aph

(676) (dim)

1.92(60.37) 1.86(60.52) 2.32(60.50) 2.56(60.36) 2.02(60.14) 1.87(60.50) 1.33(60.11)

aph(676)/Chl a

(m2 mg21)

0.028(60.013) 0.023(60.011) 0.029(60.015) 0.025(60.009) 0.038(60.017) 0.019(60.009) 0.017(60.009)

Sf (dim) 0.31(60.20) 0.33(60.25) 0.51(60.21) 0.53(60.10) 0.40(60.06) 0.33(60.24) 0.06(60.07)
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Finally, the median silhouette value of samples assigned to

cluster TOP1 is lowest indicating strong optical similarity

with other clusters, particularly with cluster TOP2.

Clusters TMix, COD, and MOD encompass samples with

intermediate contribution of nonalgal matter to absorption

(Table 1). Cluster COD is characterized by the steepest back-

scattering spectra and high aph(443)/aph(676), suggesting the

presence of mainly small-sized algal and nonalgal particles

(Table 1). In contrast, cluster TMix exhibits much weaker

spectral dependence of backscattering and much lower

aph(443)/aph(676), as could be expected from a mixture of

large-sized algal and nonalgal particles. Cluster MOD repre-

sents samples which combine a rather flat backscattering

spectrum with a phytoplankton absorption spectrum charac-

terized by a cluster mean value of aph(443)/aph(676) 5 2.6,

significantly higher than all other cluster means.

Variations in spectral dependency of absorption by nonal-

gal particles are small, but nonetheless two groups with sig-

nificantly different spectral dependencies can be

distinguished (Table 1). Weak spectral dependency is

observed for clusters TMin, TMix, and COD (SNAP 5 0.0062 6

0.0007 nm21), while the remaining clusters exhibit stronger

exponential decreases with increasing wavelength

(SNAP 5 0.0080 6 0.0010 nm21). It has been suggested that

SNAP may correlate with organic content of the particulate

assemblage (Babin et al. 2003a), and this hypothesis is sup-

ported by limited field observations in the Louisiana coastal

environment (Estapa et al. 2012), and by our observations.

We note that our observations of SNAP are at the lower end

of observations in European coastal waters (Bowers et al.

1996; Babin et al. 2003a).

Characterization of particle assemblages associated with

each optical cluster

In this section, we investigate to what extent the

optically-classified samples with distinct spectral shape of

bbp(k)/ap(k) represent distinct assemblages of suspended par-

ticles. We investigated differences among optical clusters for

a comprehensive set of parameters characterizing concentra-

tion and composition of the particulate matter (Fig. 6), and

the pigment composition and size of the phytoplankton

population (Fig. 7).

Figure 6 illustrates variability in particle concentration and

composition among optical clusters and provides an overview

of the diversity of particle assemblages covered by our dataset.

Particle concentration, expressed in terms of SPM, spans over

two orders of magnitude from less than 0.04 g m23 typical of

oligotrophic waters to 7.06 g m23 for turbid nearshore waters

(Fig. 6a). Bulk particle composition is characterized by combi-

nations of three measured parameters. The ratios of POC and

Chla to SPM provide indicators for the respective contribu-

tions of organic and algal matter to the total particulate

assemblage. The ratio POC/SPM can be used to classify sam-

ples into composition-related groups; following Wo�zniak et al.

Fig. 6. Boxplots of (a) SPM, (b) POC/SPM, and (c) Chla/SPM for the
seven clusters obtained from HCA of bbp(k)/ap(k). Names of clusters

below cluster labels indicate which other cluster means are significantly
different from the labeled cluster mean as obtained from pairwise t-tests.

Boxes extend from the 25th to the 75th percentile with the line indicat-
ing the median. Observations further than 1.5 times the length of the
box away from the box are considered outliers and indicated by crosses.

Whiskers cover the range of values without outliers. Dashed lines indi-
cate threshold values for (a) clear water, (b) compositional groups as
defined in Wo�zniak et al. (2010), (c) phytoplankton-dominated

assemblages.
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(2010), we defined assemblages as “organic-dominated” (POC/

SPM>0.25), “mineral-dominated” (POC/SPM<0.06), and

“mixed composition” for intermediate values (0.0620.25). In

our dataset, POC/SPM varies from 0.01 to 0.62, thus covering

all compositional groups (Fig. 6b). The ratio Chla/SPM spans

three orders of magnitude, from 2.7 3 1025 for a particle

assemblage dominated by nonalgal matter to 3.0 3 1022 for a

phytoplankton dominated assemblage.

Significant differences in particle concentration and com-

position are observed among clusters. Cluster TMin is dis-

tinct from all other clusters in terms of particle composition.

The cluster mean values of Chla/SPM 5 0.37 (60.34) 3 1024

and POC/SPM 5 0.13 (60.08) are lowest and this cluster

includes all mineral-dominated samples in the dataset. These

observations suggest that the relative contribution of mineral

material for samples in this cluster is strongest, and we refer

to this cluster as the mineral-dominated particle assemblage.

At the other end of the compositional spectrum is cluster

TOP2, which is characterized by the highest mean Chla/

SPM 5 5.42 (63.19) 3 1023, indicating the dominance of

phytoplankton in samples assigned to this cluster. Cluster

TOP2 is further characterized by high particle concentration

(Fig. 6a) and a majority of the samples classified as organic-

dominated (Fig. 6b). Cluster TOP1 is similar to cluster TOP2

in terms of bulk particle concentration and composition,

but with slightly but significantly lower mean Chla/SPM 5

3.20 (62.81) 3 1023. Both clusters represent turbid waters

dominated by organic material with large contributions of

phytoplankton, hence the label “TOP.” The main difference

between both TOP clusters lies in the characteristics of the

phytoplankton community.

The phytoplankton community in samples assigned to

cluster TOP2 is almost exclusively composed of microphyto-

plankton, which accounted for at least 96% of Chla for 90%

of the samples. The dominance of microphytoplankton in

this cluster derives entirely from fucoxanthin, a pigment

indicative of the presence of diatoms, after an adjustment

correcting for its co-occurrence in some nanophytoplankton

species (Devred et al. 2011). Cluster TOP1 is also dominated

by microphytoplankton derived mainly from fucoxanthin,

resulting in a median phytoplankton cell size index similar

to the one of cluster TOP2, but with stronger variability (Fig.

7a) and with a generally higher contribution to absorption

and to Chla by picophytoplankton (Table 1). Cluster TOP1

has significantly higher proportion of pigments devoted to

photoprotection. In this cluster, we observed a factor of

three increase in the ratio of photoprotective pigments to

total chlorophyll-a which mainly originates from the pig-

ment diadinoxanthin, indicative of diatoms acclimated to

higher light levels (Fig. 7c).

A third cluster with similarly high contributions of algal

material to the total particulate assemblage was identified

(Fig. 6c). In contrast to the TOP clusters, this cluster is repre-

sentative of clear waters with particle concentrations gener-

ally below 0.1 g m23 (Fig. 6a), and is thus labeled “COP” to

denote clear waters, dominated by organic material, mainly

phytoplankton. In accordance with the high mean value of

Chla/SPM 5 2.47 (61.81) 3 1023 observed for this cluster,

a
a

Fig. 7. Boxplots of (a) the phytoplankton size index of Bricaud et al.
(2004) calculated from Eq. 5 and the concentration ratios of (b) prasi-
noxanthin and (c) photoprotective carotenoids (PPC) to chlorophyll-a

for the seven clusters obtained from HCA of bbp(k)/ap(k). PPC is the sum
of alloxanthin, diadinoxanthin, diatoxanthin, zeaxanthin, and alpha- and
beta-carotene concentrations. Names of clusters below cluster labels

indicate which other cluster means are significantly different as obtained
from pairwise t-tests.
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the average contribution of nonalgal matter to particulate

absorption was the lowest of all clusters, ad(400)/

ap(400) 5 0.29 (60.09). In contrast to the TOP clusters, the

phytoplankton assemblage in cluster COP exhibited larger

pigment diversity and was dominated by smaller-sized cells

(Fig. 7a) with average fractional contributions from nano-

and picophytoplankton to total chlorophyll-a of 0.42

(60.13) and 0.21 (60.10), respectively. The contribution by

nanophytoplankton was predominantly associated with the

pigment 190-hexanoyloxyfucoxanthin, indicative of prymne-

siophytes, while picoplankton contributions to total chloro-

phyll-a were derived almost entirely from total chlorophyll-

b, indicative of the presence of chlorophytes and prasino-

phytes. Chlorophytes also contain the pigment zeaxanthin,

but the ratio of zeaxanthin to total chlorophyll-a was small

for this cluster, in contrast to the ratio of prasinoxanthin, a

pigment unique to prasinophytes, to total chlorophyll-a (Fig.

7b). This suggests that prasinophytes had a dominant contri-

bution to the picoplankton pool in the COP cluster. The pre-

dominance of small-sized phytoplankters in this cluster is

consistent with our observations of steeper particulate back-

scattering spectra and weak influence of pigment packaging

on phytoplankton absorption (Table 1).

Clusters COD and MOD exhibit strong similarities in par-

ticle composition: they are characterized by elevated contri-

butions of POC to SPM, but contributions of Chla to SPM

are lower than in clusters TOP1, TOP2, and COP (Fig. 6b,c).

This suggests increased importance of organic nonalgal par-

ticles in clusters COD and MOD, which is corroborated by

observations of increased contribution of nonalgal matter to

total particulate absorption (Table 1). However, clusters COD

and MOD strongly differ in particle concentration. Whereas

cluster COD is representative of clear waters with particle

concentrations generally below 0.1 g m23, cluster MOD rep-

resents moderately turbid waters with an average value of

SPM that is four times higher (Fig. 6a).

The fractional contributions of the micro-, nano-, and

picophytoplankton size classes to Chla in cluster COD are

similar to those found for cluster COP. COD and COP clus-

ters are dominated by smaller-sized phytoplankton resulting

in similarly small mean SI values of 25.7 (611.9) lm and

20.8 (65.2) lm, respectively (Fig. 7a). However, differences

in phytoplankton taxonomic composition were found

between these clear water clusters. Whereas the pigment

alloxanthin, indicative of the presence of nanoplanktonic

cryptophytes, was absent in samples belonging to cluster

COP, its presence was detected in cluster COD, albeit in low

concentrations. The remaining pigments associated with

nanoplanktonic taxonomic groups (190-butanoyloxyfucoxan-

thin, 190-hexanoyloxyfucoxanthin, and fucoxanthin attrib-

uted to nanoflagellates) all had significantly lower relative

concentrations in cluster COD. This suggests an increased

contribution of cryptophytes and a decreased contribution

of chromophytes and nanoflagellates to the nanoplankton

pool in cluster COD. Also, the picophytoplankton pool in

cluster COD was less influenced by prasinophytes (Fig. 7b).

The phytoplankton population of samples in cluster MOD

is characterized by intermediate contributions of micro-

(fmicro 5 0.64 6 0.24) and picophytoplankton (fpico 5 0.22 6

0.17) to Chla, resulting in an intermediate phytoplankton

size index of 32.8 (611.5) lm (Fig. 7a). The phytoplankton

population in cluster MOD significantly differs from those in

other clusters in terms of relative amount of photoprotective

pigments, which is highest in this cluster (Fig. 7c). Major

contributions to photoprotection were derived from diadi-

noxanthin (44%), a and b carotenoids (19%), and zeaxanthin

(14%). This cluster also has the strongest contribution of

dinoflagellates to the microplankton pool of 8% on average,

derived from relative concentrations of the pigment peridi-

nin. Furthermore, the ratio of prasinoxanthin to total chlo-

rophyll-a was low (Fig. 7b) and the ratio of zeaxanthin, a

pigment found in chlorophytes but not in prasinophytes, to

total chlorophyll-a was highest of all clusters. This suggests

that chlorophytes contributed more strongly to the pico-

plankton pool than prasinophytes in this cluster. Despite

intermediate phytoplankton cell size observed for this clus-

ter, the Sf size parameter and the aph(443)/aph(676) ratio

were high due to increased absorption by photoprotective

pigments.

Finally, in cluster TMix indicators of bulk particle compo-

sition take values intermediate between phytoplankton-

dominated clusters, COP, TOP1, and TOP2, and the mineral-

dominated cluster TMin (Fig. 6b–d). This suggests that clus-

ter TMix represents particle assemblages in which neither

organic nor inorganic particles dominate, but comprise a

more balanced mixture. The phytoplankton community in

cluster TMix was dominated by diatoms, with average contri-

bution of 72 (625) % to Chla, similar to cluster TMin. Inter-

mediate relative concentrations of photoprotective pigments

result in intermediate Sf size parameter and intermediate

aph(443)/aph(676) ratios.

Improved bio-optical relationships

from optical classification

In this section we examine whether optical classification

allows improved performance of bio-optical models. We

focus on two commonly used predictive models, one for

SPM from bbp(650) and one for Chla from aph(676).

Figure 8a illustrates the relationship between SPM and

bbp(650) with observations identified by OPA membership. Sta-

tistics of prediction models set up for each OPA and for the

entire dataset are given in Table 2. The regression model for

the entire dataset predicted the majority of the data with rela-

tive errors ranging between 6% and 78%, with a median pre-

diction error, MPE, of 30% (Table 2). The MPE for the entire

dataset is up to three times larger than in other studies (Boss

et al. 2009; Neukermans et al. 2012), which may be caused by

a comparatively large number of observations in clear waters
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(SPM<0.1 g m23) where measurement uncertainties are larger,

or the larger size and particle diversity of our dataset.

Significant improvement in the prediction of SPM from

bbp(650) was achieved when OPA membership was acc-

ounted for. For example, the MPE of the TOP1-specific pre-

diction model was reduced to 17% and to 12% for TMin and

MOD-specific models. Furthermore, OPA-specific models

reduced the bias in the prediction of SPM obtained from the

general model based on the entire dataset. For example, the

general model overestimated SPM for samples in cluster

TMin by 0.21 g m23 on average, giving a median ratio of

model-derived to observed values, MR, of 1.43. These biases

were strongly reduced by the TMin-specific prediction model

(Table 2). Another example is the underestimation of SPM by

the general model for samples in cluster TOP1 by 0.33 g m23

on average, giving a median MR value of 0.654, which was

strongly reduced by the TOP1-specific prediction model. Our

findings are consistent with observations of the effect of parti-

cle composition on the mass-specific particulate backsca-

ttering coefficient, bbp/SPM, which is up to three times higher

for mineral-dominated particle assemblages compared to

phytoplankton-dominated particle assemblages (Neukermans

et al. 2012).

OPA-specific SPM prediction models showed better per-

formance for all clusters, except for the clear water clusters.

For cluster COP, which contains only 11 observations, no

significant correlation was found between bbp and SPM. For

cluster COD, the correlation was poor (r 5 0.44 6 0.38), and

regression coefficients estimates and SPM predictions exhib-

ited large uncertainties (Table 2). This illustrates the difficul-

ties of predicting SPM from bbp(650) in clear waters, which

may be partly caused by larger uncertainties in measure-

ments of particle concentration and optical properties, but

possibly also due to a higher relative contribution of

submicron-sized particles to bbp(650) which may have signifi-

cant contribution to light backscattering and are not

included in the estimation of particulate dry mass (Stramski

and Kiefer 1991; Stramski and Wo�zniak 2005).

A similar analysis was conducted for the relationship

between Chla and aph(676), illustrated in Fig. 8b. Again,

OPA-specific prediction models allowed significant improve-

ment in Chla estimation with overall lower MPE, median

ratios closer to 1, and reductions in median bias (Table 3).

For example, the general model underestimated Chla by

0.06 mg m23 and 0.48 mg m23 on average for observations

in clusters TOP1 and TOP2, giving respective median ratios

of 0.81, and 0.84. The TOP1 and TOP2-specific models

allowed for significantly improved predictions with median

ratios of 0.95 and 1.01, respectively. This is in correspon-

dence with observations of low Chla-specific phytoplankton

absorption coefficients for these clusters (Table 1). In con-

trast, Chla was overestimated by a factor 1.85 for samples in

cluster COP. Similar to the relationship between bbp(650)

and SPM for this cluster, the limited number of observations

and small dynamic range of variability precluded establish-

ment of a significant relationship between Chla and

aph(676) (Table 3).

These examples illustrate the capability of optical classifi-

cation for significant improvement in the estimation of par-

ticle mass concentrations such as SPM and Chla from IOPs.

The improvement is particularly pronounced for clusters

with significantly different mass-specific IOPs, which reflect

differences in particle composition in the case of bbp vs.

Fig. 8. Scatter plot of (a) particle dry mass concentration and particle

backscattering coefficient at 650 nm and (b) total chlorophyll-a pig-
ment concentration and phytoplankton absorption coefficient at
676 nm. Samples are color coded according to cluster membership.

White circles indicate samples with negative silhouette values, indicative
of poor classification, which are shown only for the sake of complete-

ness. Grey lines were obtained from robust linear regression on log10-
transformed data using all samples. Other colored lines represent linear
regression obtained from log10-transformed data belonging to the corre-

sponding cluster. Regression coefficients and statistics of the fits can be
found in Tables 2, 3.
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SPM, or phytoplankton composition in the case of aph(676)

vs. Chla.

Discussion

We examined an extensive in situ dataset of spectral back-

scattering and absorption properties of marine particles in

conjunction with measurements of particle concentration,

composition, and phytoplankton pigments in the Chukchi

and Beaufort Seas. Using hierarchical cluster analysis of the

spectral shape of the particulate backscattering-to-absorption

ratio, bbp(k)/ap(k), we developed an optically-based classifica-

tion of suspended particle assemblages. Seven distinct clus-

ters were identified, which we refer to as OPAs. Each OPA is

characterized by a specific set of indicators of particle con-

centration, composition, and phytoplankton taxonomic

composition and size. Here we provide a summary of optical

and particle characteristics of each OPA (Table 4), and dis-

cuss spatial distribution (Fig. 9; Table 4) and ecological con-

ditions associated with each OPA.

Three OPAs were dominated by phytoplankton. One was

representative of clear waters dominated by small-sized phy-

toplankton, cluster COP. The predominance of small-sized

phytoplankters in this cluster is consistent with our optical

observations of very steep bbp spectra, a large blue-to-red

absorption ratio of aph, and weak influence of pigment pack-

aging on phytoplankton absorption. Pigment information

indicated a diverse assemblage of phytoplankton taxonomic

groups, with a strong contribution of prasinophytes, likely

Micromonas pusilla (1–2 lm diameter) (Lovejoy et al. 2007;

Coupel et al. 2015). This species is known to persist through-

out all seasons in the Canadian Arctic and is considered to

be the major component of the photosynthetic picoeukary-

otic community in Arctic waters (Lovejoy et al. 2007; Trem-

blay et al. 2009; Balzano et al. 2012).

Samples in this OPA were uniquely found at the subsur-

face Chla maximum at the Beaufort Sea shelf break, located

at a depth of 59 6 10 m (Fig. 9b; Table 4). The Beaufort Sea

shelf break is characterized by the presence of a deep and

strong halocline, limiting nutrient replenishment in the

Table 2. Coefficient estimates and goodness-of-fit statistics of linear robust regression analysis between log10 transformed SPM and
bbp(650) for each optical cluster. n is the number of observations, nx is the number of outliers as determined by the MATLAB robust-
fit.m routine with Talwar weighting. Outliers are removed from further analysis. If significant (p<0.001), Pearson’s product moment
correlation coefficient r is shown with 95% confidence interval D. The slope and offset of the linear regression are given with their
standard error estimates, D. The median prediction error, MPE (%), and the RMSE of the regression models are given. The median
ratio of model-derived to observed values, MR (dim), and the median bias, MB (g m23), calculated as the median difference between
model-derived and observed values are given for each class-specific model (OPA subscript) as well as for the general model (GM sub-
script). ns denotes not significant.

Cluster n nx r 6 D slope 6 D offset 6 D RMSE MPE MRGM MROPA MBGM MBOPA

TMin 33 4 0.99 6 0.01 0.97 6 0.03 1.92 6 0.07 0.08 12 1.43 1.00 0.21 0.00

TMix 38 0 0.94 6 0.06 0.84 6 0.05 1.76 6 0.13 0.20 27 1.13 1.02 0.06 0.01

COD 26 0 0.44 6 0.38 0.80 6 0.33 1.69 6 1.15 0.22 40 1.10 1.15 0.01 0.01

MOD 27 0 0.93 6 0.08 0.74 6 0.06 1.52 6 0.15 0.09 12 1.08 0.99 0.03 0.00

COP 11 0 ns – – – – 1.00 – 0.00 –

TOP1 28 2 0.98 6 0.03 0.94 6 0.04 2.11 6 0.11 0.12 17 0.85 0.90 20.10 20.02

TOP2 25 0 0.85 6 0.16 0.54 6 0.07 1.32 6 0.16 0.15 21 0.65 1.05 20.33 0.05

General 188 4 0.94 6 0.02 0.84 6 0.02 1.80 6 0.06 0.19 30 1.06 – 0.01 –

Table 3. Coefficient estimates and goodness-of-fit statistics of linear robust regression analysis between log10 transformed Chla and
aph(676) for each optical cluster. Notations as in Table 2. MB in units of mg m23.

Cluster n nx r 6 D slope 6 D offset 6 D RMSE MPE MRGM MROPA MBGM MBOPA

TMin 27 2 0.94 6 0.07 1.26 6 0.10 2.11 6 0.22 0.20 24 1.02 1.00 0.01 0.00

TMix 36 0 0.91 6 0.08 1.04 6 0.08 1.71 6 0.17 0.30 37 0.95 0.98 20.01 20.01

COD 22 2 0.89 6 0.15 0.96 6 0.14 1.36 6 0.36 0.20 31 0.92 0.88 20.01 20.01

MOD 26 0 0.89 6 0.12 0.72 6 0.07 1.02 6 0.17 0.14 25 0.96 1.01 20.01 0.00

COP 11 0 ns – – – – 1.85 – 0.12 20.01

TOP1 27 2 0.99 6 0.02 1.14 6 0.04 1.97 6 0.08 0.15 23 0.81 0.95 20.06 20.02

TOP2 21 0 0.87 6 0.17 1.04 6 0.14 1.86 6 0.16 0.20 24 0.84 1.01 20.48 0.03

General 170 7 0.96 6 0.02 1.14 6 0.03 1.91 6 0.06 0.23 32 0.93 – 20.01 –
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upper water column (e.g., McLaughlin and Carmack 2010;

Coupel et al. 2015). These environmental conditions result

in low phytoplankton biomass and productivity, and favor

small flagellates such as prymnesiophytes and prasinophytes

(Li et al. 2009; Tremblay et al. 2009). Such a community

recycles energy and carbon in longer food chains with less

Fig. 9. Maps depicting cluster membership of samples collected (a) near-surface, (b) at the subsurface Chla maximum, and (c) near-bottom during
three cruises in the Beaufort and Chukchi Seas. Isobaths with depth in meters.
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efficient transfer to higher trophic levels or export to the

benthos (Tremblay et al. 2009, 2012).

The other two OPAs that were dominated by phytoplank-

ton, clusters TOP1 and TOP2, represented waters with high

phytoplankton biomass, in contrast to cluster COP. Pigment

information revealed that clusters TOP1 and TOP2 were

dominated by diatoms. The predominance of large-sized

phytoplankters in these clusters are consistent with our opti-

cal observations of the small contribution of nonalgal matter

to particulate absorption, of weaker spectral dependence of

bbp(k), and of increased influence of pigment packaging on

aph(k).

Samples in the TOP clusters were mainly found on the

Chukchi Sea shelf (Fig. 9), a shallow shelf sea supported by

high nutrient supply from the Pacific Ocean. Such physical

conditions generally result in high phytoplankton biomass

typically dominated by diatoms, which are characteristic of

new production with short food chains and an efficient

transfer of carbon to higher trophic levels and the seafloor

(e.g., Ardyna et al. 2011; Tremblay et al. 2012). Diatom com-

munities in clusters TOP1 and TOP2 differed in contribu-

tions of photoprotective pigments. Diatom communities

with increased photoprotection (cluster TOP1) were predom-

inantly found in surface waters, whereas communities with

reduced photoprotection (cluster TOP2) were found deeper

in the water column on the Chukchi Sea shelf (Fig. 9;

Table 4). Observations on the contribution of photoprotec-

tive pigments are in accordance with values of the blue-to-

red absorption ratio of aph, which were higher for the surface

diatom communities (cluster TOP1) than for the deeper

water communities (cluster TOP2). The pigment that con-

tributed most strongly to photoprotection in these diatom

communities was diadinoxanthin, a carotenoid synthesized

by diatoms to protect the cell when light levels become satu-

rating or photoinhibitory for photosynthesis (e.g., Johnsen

et al. 1994).

Two OPAs represented particle assemblages dominated by

organic nonalgal material (clusters COD and MOD), which

differed in terms of turbidity and phytoplankton community

composition and size characteristics. Cluster COD is repre-

sentative of clear waters with mainly small-sized phytoplank-

ton with strong contributions of cryptophytes to the

nanophytoplankton assemblage and chlorophytes to the

picophytoplankton assemblage. Such phytoplankton com-

munities are associated with regenerated production as

expected in the stratified oligotrophic Beaufort Sea, where

COD samples were mainly found (Hill et al. 2005; Ardyna

et al. 2011; Coupel et al. 2012, 2015).

Cluster MOD, on the other hand, is representative of

moderately turbid waters containing a diverse phytoplank-

ton community with a slight dominance of microphyto-

plankton in which diatoms and dinoflagellates coexist and

where chlorophytes contribute strongly to the pigment-

based class of picophytoplankton. Also, the contribution of

photoprotective phytoplankton pigments was highest in this

cluster, as could be expected for phytoplankton communities

in surface waters exposed to high irradiance or for commun-

ities under nutrient stress (Brunet et al. 1996; Staehr et al.

2002). The majority of samples assigned to cluster MOD

were found in the near-surface waters of the Chukchi Sea

(Table 4; Fig. 9a), a shallow nutrient-rich shelf sea, where

extensive diatom blooms were observed beneath sea ice dur-

ing both ICESCAPE cruises (Arrigo et al. 2012, 2014). Obser-

vations assigned to cluster MOD were sampled on average

28 6 10 days after sea ice break-up and may thus reflect a

postbloom situation, in correspondence with dominance of

organic nonalgal particles and a planktonic community that

is shifting toward larger contributions of dinoflagellates and

smaller taxonomic groups promoting increased recycling of

carbon and materials within the water column.

The significantly different spectral slope of absorption by

nonalgal particles, SNAP, between these two nonalgal-

dominated OPAs suggests strong differences in the character-

istics of the nonalgal material. This can be expected as the

characteristics of the algal material that is broken down also

significantly differ between these OPAs. Because small-sized

phytoplankton dominates in cluster COD, nonalgal particles

resulting from the breakdown or grazing of such phytoplank-

ton are likely also smaller than in cluster MOD, which is

consistent with observations of very steep particulate back-

scattering spectra for this cluster. Furthermore, cluster MOD

is more likely to contain nonalgal material that had previ-

ously sunk to the seafloor, brought back to the surface by

resuspension processes typical for the shallow Chukchi shelf

sea (e.g., Carmack et al. 2006). However, microbial hetero-

trophs also contribute to nonalgal particulate absorption, so

the observed differences in SNAP could indicate different

planktonic communities, namely different proportions of

bacteria or heterotrophic flagellates.

Cluster TMin, associated with turbid mineral-dominated

particle assemblages, is easiest to optically differentiate from

the other clusters owing largely to its distinct spectral shape

of absorption typically associated with mineral particles

(Babin and Stramski 2004; Stramski et al. 2007). The contri-

bution of nonalgal matter to the total particulate absorption

is highest of all clusters (Fig. 5a; Table 1), as is the particulate

backscattering ratio, ~bbp5bbp=bp. The value of ~bbp obtained

at 660 nm, 0.022 (60.007), is in good agreement with previ-

ous observations for suspensions of inorganic particles (Boss

et al. 2009; Neukermans et al. 2012). Samples belonging to

cluster TMin were mainly found in the plumes of the Col-

ville and Mackenzie Rivers and near the seafloor, as would

be expected from riverine transport of mineral-rich material

and resuspension of bottom sediments (Fig. 9a,c; Table 4).

Finally, mineral-dominated near-surface samples were also

found further offshore at the Chukchi Sea shelf in the vicin-

ity of melting sediment-laden sea ice (Fig. 9a).
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Lastly, particle assemblages of mixed composition and rela-

tively high concentration are represented by cluster TMix,

with observations scattered throughout all locations (Fig. 9;

Table 4). This cluster had intermediate values for optical prop-

erties and particle characteristics from the other clusters.

The OPAs presented in this work are derived from HCA of

the spectral shape of bbp(k)/ap(k). An analogous analysis

based on ap(k) alone partitioned the dataset in seven clusters

with stronger differences in phytoplankton characteristics,

but reduced differences in particle concentration and com-

position, compared to the partitioning based on bbp(k)/ap(k)

(not shown). We also performed an analogous analysis on

multispectral bbp(k)/ap(k) data obtained through spectral

integration of bbp(k)/ap(k) over the spectral bands of the

MODIS ocean color sensor in the 400–690 nm range with

central wavelengths at 412, 443, 488, 531, 555, 667, and

678 nm. Hierarchical cluster analysis of multispectral data

partitioned the dataset into four optical classes (not shown).

Samples from clusters TOP1 and TOP2 were merged in one

cluster. Similarly, samples from clusters COD and COP were

merged in a single cluster. The third multispectral-based

cluster comprised all TMin samples, but also samples from

clusters MOD and TMix, while the fourth cluster comprised

most of the TMix samples, and samples from clusters MOD

and a few from cluster TOP1. These results demonstrate that

the capability to optically differentiate distinct assemblages

of suspended particles was strongly reduced by sub-sampling

the high spectral resolution data of bbp(k)/ap(k) with multi-

spectral resolution.

Conclusions

Our results demonstrate a capability to optically differenti-

ate assemblages of marine particles (OPAs), representative of

distinct ecological conditions, based on hyperspectral measure-

ments of the particle absorption and backscattering coefficients

(the latter obtained from a fit to multispectral measurements).

Analogous analysis based on multispectral optical data strongly

reduced this capability. This capability has potential applica-

tion to many autonomous and remote-sensing observations.

Sensors for in situ hyperspectral measurements of ap(k) and

multispectral measurements of bbp(k) are commercially avail-

able and can be deployed from various in situ platforms includ-

ing profilers and autonomous underwater vehicles. The recent

development of improved models to partition ap(k) into phyto-

plankton and nonphytoplankton components enable estima-

tion of these component coefficients (e.g., Zheng and Stramski

2013; Zheng et al. 2015). Such a partitioning could provide par-

allel estimates of the composition of the particulate assemblage

from ad(400)/ap(400) and provide indicators of the characteris-

tics of the algal and nonalgal particle community. Furthermore,

these coefficients are obtainable from satellite measurements of

ocean color using a combination of existing inverse models

(e.g., Loisel and Stramski 2000; Lee et al. 2002; Maritorena et al.

2002), among which one has been evaluated in Arctic waters

(Zheng et al. 2014), and models that partition the absorption

coefficient of seawater a(k) into particulate and dissolved com-

ponent coefficients. A class-matching procedure would then

determine assignment of a measured spectrum of bbp(k)/ap(k)

to an optical class, in analogy with existing approaches for

ocean color remote sensing reflectance (M�elin et al. 2011; Van-

trepotte et al. 2012; Moore et al. 2014). Class-specific SPM and

Chla algorithms, such as discussed in this study, could then be

applied to improve estimates of biogeochemical stocks. Further,

identification of OPAs at synoptic spatial and temporal scales

will improve our understanding of the spatiotemporal dynam-

ics of marine particles and ecological processes in the ocean.
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