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positively correlated with the density of Draconema and 
Euchromadora in both seaweeds, and both genera were 
exclusively found associated with seaweeds. This result 
opposes the idea that the more sediment retained by the 
seaweed, the higher the nematode overall density and the 
higher the number of nematodes originally coming from 
the sediment.

Introduction

Seaweed beds and associated fauna form a highly produc-
tive ecosystem in shallow water coastal areas (De Troch 
et al. 2001). Seaweeds harbor a variety of organisms 
belonging to almost all trophic levels of the food web and 
also serve as a shelter, reproduction and/or grazing site for 
many organisms (Brewer et al. 1994; Kenyon et al. 1998; 
Ferreira et al. 2000; NagelkerkenI et al. 2000; Da Rocha 
et al. 2006). They provide oxygen and are involved in many 
mineralization and chemical cycling processes (Vidotti and 
Rollemberg 2004).

Seaweed beds in tropical areas are frequently associ-
ated with geological formations such as sandstone or bio-
logical reefs, which provide protection by dissipating the 
wave energy (Ferreira Júnior 2005). The local hydrody-
namics can strongly affect the macrophytal and epiphytal 
biomass, abundance and density, which in turn affect the 
distribution and activity of organisms that are grazing on 
the seaweeds (Schanz et al. 2002). Seaweed beds provide 
protection from currents and desiccation and can influence 
the spatial distribution of the associated organisms (Mura-
likrishnamurty 1983). Moreover, seaweed beds also play a 
role in decreasing the current velocity and increasing the 
sedimentation rate of sediment and other particles present 
in the water column (Fonsêca and Calahan 1992). It has 
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been suggested that the accumulation of detritus by the sea-
weed correlates with the ramification and structure of the 
macrophytes and increases microhabitat complexity, which 
would allow for a higher density of small-sized metazoans 
(Taylor 1967; Hicks 1980; Da Rocha et al. 2006). Seaweed 
beds are under the influence of tides and seasonality which 
also affect the associated organisms (Toyohara et al. 1999). 
However, for some small-sized organisms, examples are 
known where seasonality does not appear to be an impor-
tant population driver, especially for those species which 
reproduce throughout the year (Coull and Vernberg 1975; 
Song et al. 2010).

Small-sized metazoans such as nematodes have a high 
capacity of colonizing seaweeds (Warwick 1977; Derycke 
et al. 2007) and play a fundamental role in the mainte-
nance of the benthic ecosystem (Rieras and Hubas 2003). 
They are involved in processes such as biomineralization, 
bacterial population regulation, serve as food source for 
higher trophic levels and predate on the same and on lower 
trophic levels (Rysgaard et al. 2000; Schmid-Araya et al. 
2002). With respect to seaweed, a very specific relationship 
with the associated fauna exists and can cause differentia-
tion between communities from different seaweed species 
(Warwick 1977; Gibbons 1991; Gee and Warwick 1994a, 
b). Epistrate feeders are the most abundant nematode feed-
ing type on seaweeds (Da Rocha et al. 2006) which may 
be related to the abundances of epiflora, and more specifi-
cally, of diatoms (Hagerman 1966; Tientjen and Lee 1973; 
Warwick 1977; Wetzel et al. 2002). Hence, nematodes may 
play an important role in controlling the densities of epi-
phytic organisms that compete for light and nutrients with 
the macroalgae (Van Donk 1998; Ghobrial et al. 2007). 
Information on temporal and spatial variation of nema-
tode communities associated with seaweeds is extremely 
limited. Such a knowledge would provide insights on the 

dynamics of small-sized organisms associated with mac-
rophytal ecosystems, allowing for a better understanding 
of physical factors that are important for structuring the 
communities.

In this study, the nematode communities associated with 
seaweed beds from the northeastern coast of Brazil were 
investigated. The seaweed species Halimeda opuntia (Lin-
naeus) Lamouroux (1816) and Sargassum polyceratium 
Montagne (1837) are abundantly present throughout the 
year. H. opuntia is a green calcareous seaweed that tends 
to make mats over hard substrate, while S. polyceratium is 
a brown seaweed which can stand up perpendicularly to the 
substrate (Fig. 1).

The specific goals of this study were fourfold. First, the 
diversity, community and feeding type structure of nema-
todes associated with H. opuntia and S. polyceratium were 
characterized and compared. Due to the different archi-
tectural structure of the two seaweed species, seaweed 
species-specific communities were expected. Moreover, a 
dominance of epistrate feeders was expected in the nema-
tode communities of both seaweeds, because diatoms and 
cyanobacteria are abundant on the seaweed surface. Sec-
ond, the temporal variability in nematode communities of 
H. opuntia and S. polyceratium was investigated by com-
paring the dry and rainy seasons and by comparing nema-
tode communities over five months. Temporal fluctuations 
in abiotic parameters (e.g., the amount of rain, salinity) in 
Cupe beach may influence nematode abundances associ-
ated with H. opuntia and S. polyceratium and may cause 
shifts in the nematode community because of different 
tolerances of nematode species to abiotic changes. Third, 
spatial variation of nematode communities associated 
with H. opuntia in two transects parallel to the coast was 
investigated. These transects differed in their distance to 
the shore and in the degree of exposure to wave action. A 

Fig. 1  a Sargassum polyceratium Montagne (1837) and b Halimeda opuntia (Linnaeus) Lamouroux (1816) (a modified after Olga Camacho 
and Jimena Samper Villareal, b courtesy Denis-Ader)
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higher variability in the nematode communities over time 
and lower nematode diversity and density were expected 
in the wave impacted zone because of the higher physical 
disturbance. Finally, the influence of sediment retention by 
the seaweeds H. opuntia and S. polyceratium on the nema-
tode communities was assessed. The different architecture 
of H. opuntia and S. polyceratium may cause different sedi-
ment retention capacity, resulting in a higher density and 
richness of nematodes in the seaweed with the highest sedi-
ment retention capacity because of an increase in habitat 
complexity. Due to the tendency to form mats over hard 
substrate, it is expected that H. opuntia would accumulate 
more sediment.

Materials and methods

Study area

Cupe beach was chosen to test the impact of spatial and tem-
poral variation and seaweed species on nematode communi-
ties. The beach is located in the northeast of the Brazilian 
coastline (coordinates 8°45′48″–8°46′22″S and 34°98′85″–
34°97′99″W) and belongs to Ipojuca city, Pernambuco State. 
The beach is characterized by arenite and stone reefs with 
natural swimming pools separating the beach from the open 
sea. Various seaweed species occur on the sandstone and its 
surrounding areas in the subtidal and intertidal zone. The 
water temperature ranges from 27.0 to 28.7 °C and the salin-
ity varies between 28.88 and 37.16 according to the season. 
The sediment is composed mainly of quartz sand and is very 
rich in bioclast, such as gastropod shells and pieces of cal-
careous algae (Dominguez et al. 1992).

Sample collection and processing

Based on their high abundance throughout the year, two 
species of seaweed were selected: Sargassum polycera-
tium and Halimeda opuntia. S. polyceratium and H. opun-
tia have architectural differences. The first one is a brown 
seaweed which can stand up perpendicularly to the sub-
strate, whereas H. opuntia is a green calcareous seaweed 
that tends to make mats over hard substrate. The sampling 
occurred during the dry season (December 2005, January 
2006) and the rainy season (May, June, July 2006) at low 
tide in the subtidal zone. Two transects of about 160 m 
length and parallel to the beach were demarcated with a 
distance between each other of about 80 m. Transect 1 (T1) 
was further from the shore compared to transect 2 (T2) 
(Fig. 2). For all five time points and for each transect, three 
equidistant sampling points were chosen, and from each 
point three samples from each seaweed species were col-
lected (Fig. 2). The coordinates of each of the three sam-
pling points are 8°45′78″S and 34°98′19″W, 8°45′86″S 
and 34°98′23″W, 8°45′94″S and 34°98′29″W for T1 and 
8°45′73″S and 34°98′30″W, 8°45′81″S and 34°98′34″W, 
8°45′87″ and 34°98′39″ for T2.

S. polyceratium only occurred in T2, while H. opuntia 
occurred in both transects. The seaweeds were collected by 
using a knife to detach the holdfast from the substrate, and 
the whole seaweed was put in a plastic bag and fixed with 
4 % formalin. The seaweeds were washed under continu-
ous water flow over a set of two sieves with mesh intervals 
for meiofauna of 500 and 44 micrometers and specimens 
retained on the latter were investigated. The volume of 
the seaweed was measured according to the methodol-
ogy of Montouchet (1979) by measuring the difference 

Fig. 2  Location of transects in Cupe beach—Ipojuca—Pernambuco 
at the northeast of the Brazilian coast. T1 represents transect 1 which 
is more exposed to the waves, and T2 represents transect 2 which is 

closer to the beach and thus less exposed to the waves (modified from 
Da Rocha et al. 2006)
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between the initial and final water volume after the inclu-
sion of seaweed in a graduated cylinder. To test the sedi-
ment retention capacity of S. polyceratium and H. opuntia, 
the sediment that was retained by the sieves for each sea-
weed sample was put in Petri dishes, dried in an oven and 
weighted (g). The nematodes were counted under a dissec-
tion microscope Olympus SZ51. When present, at least 100 
nematodes were randomly and manually picked out and 
mounted on slides for identification. In case less than 100 
specimens were present in the sample, all were mounted 
on slides. Preparation and mounting of the nematode speci-
mens occurred according to De Grisse (1969). The nema-
todes were identified under the light microscope Olympus 
CX31 to genus level by using the pictorial identification 
keys (Platt and Warwick 1983; Warwick et al. 1998) and 
dichotomous keys in Abebe et al. (2007). Additionally, the 
nematode community was classified according to the feed-
ing types proposed by Wieser (1953) based on the buccal 
cavity morphology: 1A Selective deposit feeders, 1B non-
selective deposit feeders, 2A epistrate feeders and 2B pred-
ators or omnivores.

Data analyses

The richness, densities and relative abundance of the nem-
atode community per seaweed sample were calculated. 
To compare the temporal (dry and rainy period, both sea-
weeds) and spatial variation (H. opuntia only) of the nem-
atode community associated with S. polyceratium and H. 
opuntia, the abundance of the nematode community was 
converted to density (individuals/ml), transformed to square 
roots and standardized by the total number of nematodes 
in the sample (relative abundance) before the similarity 
analysis. All multivariate analyses (nMDS, PERMANOVA 
and SIMPER) were performed based on Bray-Curtis simi-
larity matrix using the software PRIMER v. 6.1.6 (Clarke 
and Gorley 2006). The fixed factors used in PERMANOVA 
were: seaweed species, season and transect (H. opuntia 
only). The factor month was treated as random variable 
and nested within the factor season. PERMANOVA was 
used to compare 1) the nematode community between H. 
opuntia and S. polyceratium occurring in the same transect 
over time (season [months]) and 2) compare the nematode 
community in both transects over time (season [months]) 
for H. opuntia. When significant differences were found, a 
SIMPER analysis was performed to determine the taxa that 
contributed to those differences. The amount of sediment 
retained by the seaweeds was standardized to g/ml. The 
standardized amount of sediment retained by the seaweed, 
nematode densities and nematode richness were fourth-
root-transformed to fulfill the assumptions for a paramet-
ric test. Two-way ANOVAs were performed to test whether 
there were: 1) differences in nematode density and richness 

over time between the seaweeds in T2, 2) differences in 
nematode density and richness over time between transects 
for H. opuntia, 3) differences in sediment retention by H. 
opuntia over time between transect and 4) differences in 
sediment retention between the seaweeds over time in T2. 
To test whether the amount of retained sediment correlated 
with the nematode density on the seaweeds, a Spearman’s 
correlation was done. The ANOVA and correlation analyses 
were performed using the statistical software STATISTICA 
v. 7 (StatSoft, Inc. 2004).

Results

Nematode communities and feeding type structure 
of H. opuntia and S. polyceratium

In total, 96 samples were analyzed: 35 for S. polyceratium 
(T2) and 61 for H. opuntia (T1 and T2). Identification of 
the nematode communities in these samples yielded 59 
genera that were associated with both seaweeds (Table 1), 
36 genera that were found only on S. polyceratium (T2: 
mean 6.74 ± 0.48) and 55 genera that were only associated 
with H. opuntia (T1: total = 49, mean 9.19 ± 0.61; T2: 
total = 41, mean 9.25 ± 0.75). The most abundant genera 
were Euchromadora, Paracanthonchus and Halalaimus for 
H. opuntia (35, 10 and 8 %, respectively), and Euchroma-
dora, Paracanthonchus and Hypodontolaimus for S. polyc-
eratium (34, 14 and 9 %, respectively). Acanthonchus and 
Chromadora reached two to threefold higher abundances in 
June compared to the other months, but only for H. opuntia 
(Fig. 3). 

H. opuntia attained a significantly higher nematode rich-
ness (two-way, seaweed, ANOVA, F = 13.04, P = 0.003) 
compared to S. polyceratium. No significant compositional 
difference (PERMANOVA, seaweed, Pseudo-F = 2.95, 
P = 0.057) was observed between the nematode communi-
ties of both seaweeds (Table 2a).

The most frequent feeding type with more than 50 % 
of the relative abundance in both seaweeds were epistrate 
feeders (2A) (53 and 56 %), followed by predators (2B) (20 
and 28 %), selective deposit feeders (1A) (20 and 14 %) 
and non-selective deposit feeders (1B) (7 and 3 %) in H. 
opuntia and S. polyceratium, respectively.

Temporal variation of nematode communities 
associated with H. opuntia and S. polyceratium

Comparing the nematode density pattern between H. opun-
tia and S. polyceratium over time in T2, no significant 
differences were observed within each season (two-way 
ANOVA, season × seaweed, F = 0.25, P = 0.639), but sig-
nificant differences (Table 2a and Fig. 4a) were observed 
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Table 1  List of nematode 
genera relative abundance and 
feeding type associated with 
H. opuntia and S. polyceratium 
in Cupe Beach (Brazil) in 
2005–2006

Genus H. opuntia T1 H. opuntia T2 S. polyceratium T2 Feeding type

Aver. SE Aver. SE Aver. SE

Acantholaimus – – – – 0.04 0.04 2A

Acanthonchus 12.50 ±2.08 4.09 ±1.33 8.85 ±2.53 2A

Acanthopharyngoides 0.03 ±0.03 – – – – 2A

Adoncholaimus 1.27 ±0.49 0.23 ±0.17 1.05 ±0.35 2B

Camacolaimus – – 0.32 ±0.25 – – 2A

Chromadora 16.52 ±2.78 3.42 ±0.95 5.51 ±1.15 2A

Chromadorina 0.23 ±0.17 0.26 ±0.26 0.09 ±0.09 2A

Chromadorita 0.31 ±0.14 0.43 ±0.24 0.07 ±0.07 2A

Chromaspirina 0.12 ±0.12 – – 0.52 ±0.52 2B

Crenopharynx – – 0.37 ±0.37 0.59 ±0.59 1A

Cyatholaimus 2.65 ±1.13 1.51 ±0.57 1.75 ±0.79 2A

Demonema – – 0.17 ±0.17 – – 2B

Desmodora 0.88 ±0.57 – – – – 2A

Desmolaimus 0.15 ±0.15 – – – – 1B

Desmolorenzenia 0.41 ±0.37 – – – – 1A

Desmoscolex 0.35 ±0.17 1.41 ±0.96 – – 1A

Draconema 16.23 ±2.85 5.02 ±1.21 0.17 ±0.12 1A

Enoplus 0.23 ±0.23 0.09 ±0.09 – – 2B

Epsilonema 0.61 ±0.28 1.67 ±0.97 – – 1A

Euchromadora 16.35 ±2.09 35.09 ±3.13 34.33 ±3.07 2A

Eurystomina 6.34 ±1.27 2.08 ±0.58 7.44 ±1.70 2B

Gammanema 0.07 ±0.07 0.16 ±0.16 – – 2B

Gammarinema – – – – 0.09 ±0.09 2A

Graphonema 0.04 ±0.04 – – 0.33 ±0.20 2A

Halalaimus 5.63 ±1.26 7.64 ±1.36 0.98 ±0.40 1A

Halichoanolaimus 0.55 ±0.20 0.97 ±0.54 1.04 ±0.64 2B

Hypodontolaimus 0.20 ±0.16 0.28 ±0.17 14.49 ±3.76 2A

Marylynnia – – 1.65 ±1.01 0.10 ±0.10 2B

Metachromadora 0.12 ±0.12 – – 0.10 ±0.10 2A

Metepsilonema 0.18 ±0.13 0.25 ±0.19 – – 1A

Meyersia 0.05 ±0.05 0.10 ±0.10 0.35 ±0.20 2B

Micoletzkyia 0.04 ±0.04 – – – – 1A

Oncholaimus 0.45 ±0.33 – – 0.29 ±0.15 2B

Oxystomina 0.03 ±0.03 – – – – 1A

Paracanthonchus 5.56 ±1.34 9.55 ±2.39 9.19 ±2.24 2A

Paracyatholaimoides 0.04 ±0.04 – – – – 2A

Paracyatholaimus 0.15 ±0.11 0.44 ±0.33 0.09 ±0.09 2A

Pareurystomina – – – – 0.04 ±0.04 2B

Phanoderma 0.26 ±0.18 1.84 ±1.19 0.06 ±0.06 2A

Polygastrophora 1.02 ±0.64 7.17 ±3.70 2.75 ±0.88 2A

Praeacanthonchus 0.11 ±0.08 – – 0.67 ±0.53 2A

Prochromadorella – – 0.05 ±0.05 – – 2A

Prooncholaimus 1.13 ±0.38 3.39 ±1.13 1.55 ±0.64 2B

Pseudochromadora 0.80 ±0.43 1.44 ±0.56 – – 2A

Quadricoma – – – – 0.36 ±0.36 1A

Sabatieria 1.68 ±1.03 0.28 ±0.15 0.03 ±0.03 1B

Setoplectus 0.17 ±0.17 – – – – 1B

Sigmophoranema 0.17 ±0.13 – – – – 2A
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between the seaweeds within each of the five months (two-
way ANOVA, month × seaweed, F = 3.23, P = 0.029). The 
pairwise comparison revealed that the nematode density in 
the month of June for H. opuntia (Table 4) was significantly 
higher compared with the months December, January and 
also higher than the data of June for S. polyceratium (Tukey 

HSD, H. opuntia January × S. polyceratium Decem-
ber; January; June = P < 0.001; P < 0.001; P = 0.032, 
respectively). No significant temporal variation in 
richness patterns (Fig. 4b) was observed (two-way 
ANOVA, season, F = 2.58, P = 0.175 − month, 

Feeding types: 1A selective deposit feeders, 1B non-selective deposit feeders, 2A epistrate feeders, 2B pred-
ators or omnivores (Wieser 1953)

Table 1  continued Genus H. opuntia T1 H. opuntia T2 S. polyceratium T2 Feeding type

Aver. SE Aver. SE Aver. SE

Spiliphera 0.08 ±0.08 0.18 ±0.12 – – 2A

Spilophorella 1.06 ±0.36 1.21 ±0.93 0.08 ±0.08 2A

Spirinia 0.79 ±0.48 0.46 ±0.22 0.10 ±0.10 2A

Symplocostoma 0.42 ±0.18 2.94 ±1.14 4.44 ±1.02 2B

Synonchiella 0.12 ±0.12 0.63 ±0.45 – – 2B

Synonema 0.95 ±0.86 0.05 ±0.05 0.06 ±0.06 2A

Thalassomonhystera 0.38 ±0.26 0.41 ±0.26 – – 1B

Thoracostoma – – 0.12 ±0.12 0.10 ±0.10 2A

Tricoma 0.27 ±0.13 1.00 ±0.51 – – 1A

Viscosia 2.05 ±0.61 1.48 ±0.60 2.33 ±1.69 2B

Wieseria 0.25 ±0.25 – – – – 1A

Fig. 3  Densities of the most abundant genera associated with S. 
polyceratium and H. opuntia in Cupe Beach (Brazil) in 2005–2006. 
a Overall average densities per seaweed and transect; b–d average 
densities of the most abundant genera per seaweed along the months 

of December, January, May, June and July. The corresponding abbre-
viations are: Acan (Acanthonchus), Chro (Chromadora), Drac (Dra-
conema), Euch (Euchromadora), Hala (Halalaimus), Hypo (Hypo-
dontolaimus), Para (Paracanthonchus) and Poly (Polygastrophora)
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F = 4.79, P = 0.115 – season × seaweed, F = 1.32, 
P = 0.27 − month × seaweed, F = 0.39, P = 0.754).

In terms of community structure, no clear distinction 
was observed in the nMDS plot (Fig. 5). No significant 

interaction between seaweed and seasons (PERMANOVA, 
seaweed × season, Pseudo-F = 1.60, P = 0.133) or seaweed 
and months (PERMANOVA, seaweed × months Pseudo-
F = 1.54, P = 0.066) was observed, indicating that commu-
nity structure between seaweed species over time was similar. 
However, nematode community structure was significantly 
different between the dry and rainy seasons (PERMANOVA, 
season, Pseudo-F = 3.45, P = 0.002). The genera that con-
tributed the most for the differences between seasons were 
Euchromadora, Chromadora and Acanthonchus (SIMPER, 
12.78, 7.75, and 7.69 %). Moreover, nematode communities 
were also significantly different between the months (PER-
MANOVA, month, Pseudo-F = 2.62, P = 0.001). Pairwise 
comparisons revealed that the nematode community signifi-
cantly fluctuated over the months (Table 3a).

Spatial variation of the nematode community of H. 
opuntia

A total of 49 and 41 genera were found associated with H. 
opuntia in T1 and T2, respectively. The genera that pre-
sented the highest densities were Euchromadora, Chroma-
dora and Acanthonchus in T1 (1.01; 0.91; 0.88 individuals/
ml, respectively) and Euchromadora, Paracanthonchus 

Table 2  (a) ANOVA comparison of the nematode density, richness 
and seaweed retention capacity, and PERMANOVA comparison of 
the nematode community between H. opuntia and S. polyceratium in 
T2 over time; (b) ANOVA comparison of the nematode density, rich-

ness and seaweed retention capacity, and PERMANOVA comparison 
of the nematode community between the transects T1 and T2 for H. 
opuntia over time in Cupe Beach Brazil in 2005–2006

The significant differences are marked in bold

* Variable not tested because S. polyceratium only occured in T2

Dependent 
variable

Seaweed Season Month (nested in 
season)

Transect Sea-
weed × season

Sea-
weed × month 
(nested in 
season)

Tran-
sect × season

Tran-
sect × month 
(nested in 
season)

Effect (F/R) Fixed Fixed Random Fixed Fixed Random Fixed Random

(a) H. opuntia and S. polyceratium

 Density F = 0.69; 
P = 0.452

F = 11.21; 
P = 0.012

F = 0.24; 
P = 0.861

* F = 0.25; 
P = 0.639

F = 3.23; 
P = 0.029

* *

 Richness F = 13.04; 
P = 0.003

F = 2.58; 
P = 0.175

F = 4.79; 
P = 0.115

* F = 1.32; 
P = 0.272

F = 0.39; 
P = 0.754

* *

 Sediment 
retention

F = 10.53; 
P = 0.010

F = 0.05; 
P = 0.828

F = 1.41; 
P = 0.391

* F = 0.09; 
P = 0.761

F = 0.67; 
P = 0.572

* *

 Community 
structure

F = 2.954; 
P = 0.057

F = 3.45; 
P = 0.002

F = 2.62; 
P = 0.001

* F = 1.60; 
P = 0.133

F = 1.54; 
P = 0.066

* *

(b) H. opuntia

 Density * P.F = 0.88; 
P = 0.413

P.F = 13.81; 
P = 0.029

P.F = 1.72; 
P = 0.248

* * P.F = 0.37; 
P = 0.571

P.F = 1.21; 
P = 0.314

 Richness * P.F = 3.56; 
P = 0.114

P.F = 1.33; 
P = 0.408

P.F = 0.09; 
P = 0.769

* * P.F = 1.36; 
P = 0.285

P.F = 0.65; 
P = 0.584

 Sediment 
retention

* P.F < 0.001; 
P = 0.987

P.F = 2.35; 
P = 0.250

P.F = 0.40; 
P = 0.539

* * P.F = 0.73; 
P = 0.416

P.F = 0.46; 
P = 0.707

 Community 
structure

* P.F = 1.10; 
P = 0.391

P.F = 1.97; 
P = 0.004

P.F = 5.57; 
P = 0.045

* * P.F = 1.56; 
P = 0.263

P.F = 0.75; 
P = 0.82

Table 3  (a) PERMANOVA pairwise comparison of the H. opun-
tia and S. polyceratium nematode community between the studied 
months; (b) ANOVA pairwise comparison of the nematode densities 
between the months of T1 and T2 for H. opuntia in Cupe Beach, Bra-
zil, in 2005–2006

The significant differences are marked in bold

December January May June July

(a)

 December

  January 0.004

  May 0.001 0.032

  June 0.012 0.001 0.001

  July 0.055 0.115 0.006 0.438

(b)

 December

  January 0.005

  May 0.036 1.000

  June <0.001 <0.001 <0.001

  July 0.700 0.805 0.800 <0.001
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and Halalaimus in T2 (2.07; 0.80; 0.44 individuals/ml, 
respectively). The genera that reached the highest relative 
abundance in each transect (Fig. 6) were Chromadora, 
Euchromadora and Draconema in T1 (17, 16, and 16 %, 
respectively), and Euchromadora, Paracanthonchus and 
Halalaimus in T2 (35, 10, and 8 %, respectively).

No significant differences in nematode den-
sity (two-way ANOVA, season × transect, 
F = 0.37, P = 0.571 − month × transect, F = 1.21, 
P = 0.314) or richness (season × transect, F = 1.36, 
P = 0.285 − month × transect, F = 0.65, P = 0.584) 
between both transects over time were observed, indicat-
ing that the observed pattern in density and richness was 
very similar over time in both transects (Table 2b). No sig-
nificant difference in nematode density (two-way ANOVA, 
transect, F = 1.72, P = 0.248) or richness (two-way 
ANOVA, transect, F = 0.09, P = 0.769) between the T1 
and T2 was found. For the factor time, only a significant 
difference in nematode density between the months was 
observed (two-way ANOVA, month, F = 13.81, P = 0.029, 
Table 3b). The nMDS plot did not show a clear separation 
between transects (Fig. 7), and the interaction between 
the transects and season or transects and months did not 
show a significant difference over time (PERMANOVA, 
transect × season, Pseudo-F = 1.56, P = 0.263; tran-
sect × month, Pseudo-F = 0.75, P = 0.820). However, the 
main effects were significantly different (Table 2b), reveal-
ing a difference in community structure between the two 
transects. (PERMANOVA, transect, Pseudo-F = 5.57, 
P = 0.045) and months (PERMANOVA, month, Pseudo-
F = 1.97, P = 0.004). The taxa that contributed the most 
for the differences between transects were Euchromadora, 
Chromadora and Draconema (SIMPER: 8.13, 8.06, and 

7.57 %, respectively), with the last two being more abun-
dant in T1, while Euchromadora was more abundant in 
T2. The pairwise analysis revealed that the differences in 
months for both transects were between May and June 
(PERMANOVA, pairwise, P = 0.001). The genera that 
contributed the most for the differences were Paracan-
thonchus, Euchromadora and Acanthonchus (SIMPER: 
9.03 %; 8.09 %; 8.01 %, respectively), with the two first 
more abundant on May.

Comparison on sediment retention between seaweeds 
and for H. opuntia between transects

In total, 90 samples for H. opuntia (9 replicates per transect 
over 5 months) and 35 samples for S. polyceratium were 
analyzed. There were no differences in sediment reten-
tion over time between H. opuntia and S. polyceratium 
in T2 (two-way ANOVA, seaweed × season, F = 0.09, 
P = 0.761 − seaweed × month, F = 0.67, P = 0.572). Yet, 
the difference in architecture of the two seaweeds yielded 
differences in overall sediment retention capacities in T2 
(Table 2a) where H. opuntia retained significantly more 
sediment than S. polyceratium (two-way ANOVA, sea-
weed, F = 10.53, P = 0.010). No significant differences 
between season (two-way ANOVA, season, F = 0.05, 
P = 0.828) or between months (two-way ANOVA, month, 
F = 0.41, P = 0.391) were observed. For H. opuntia, no 
spatial pattern (Table 2b) was observed in sediment reten-
tion between transects over time (two-way ANOVA, tran-
sect × season, F = 0.73, P = 0.416 – transect × month, 
F = 0.46, P = 0.707) or between the transects (two-way 
ANOVA, F = 0.40, P = 0.539). Performing the Spear-
man’s correlation, no correlation was found between the 

Fig. 4  Temporal and spatial average a densities and b richness of the nematode community associated with H. opuntia (T1 and T2) and S. 
polyceratium (T2) in Cupe Beach (Brazil) in 2005–2006
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nematode density and the amount of sediment retained for 
H. opuntia or S. polyceratium. However, a positive corre-
lation was observed between the amount of retained sedi-
ment and nematode richness for both seaweeds (H. opun-
tia: R = 0.32, P = 0.011—S. polyceratium: R = 0.40, 
P = 0.014). Three of the most abundant genera showed a 
positive correlation between the amount of retained sedi-
ment and genus density in both seaweeds: Draconema 
(H. opuntia, R = 0.26, P = 0.03—S. polyceratium, 
R = 0.34, P = 0.04), Euchromadora (H. opuntia, R = 0.41, 
P < 0.001—S. polyceratium, R = 0.37, P = 0.02) and Par-
acanthonchus only in H. opuntia (R = 0.28, P = 0.026). 
No correlation was found for Acanthonchus, Chromadora, 
Eurystomina or Hypodontolaimus.

Discussion and conclusions

Co‑occurring seaweed species harbor similar nematode 
communities and similar trophic composition

Overall nematode densities, community structures and 
community compositions were similar on both seaweeds, 
which is in agreement with the observations described 
in a study involving four different macrophyte species 
(Da Rocha et al. 2006). Despite the similarity in den-
sity and community structure (P value = 0.057 fairly in 
the limit), the genera richness was significantly differ-
ent between H. opuntia and S. polyceratium. In terms of 
average relative abundance, some nematodes appeared to 
prefer one seaweed species over the other as illustrated 
by Hypodontolaimus for S. polyceratium. In contrast, on 
H. opuntia a higher average relative abundance of the Ta
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Fig. 5  Non-metric MDS comparing the nematode communities 
between the dry and rainy season for both seaweeds H. opuntia and S. 
polyceratium in Cupe Beach (Brazil) in 2005–2006
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family Draconematidae was observed, also the occurrence 
of Epsilonematidae, which were not associated with S. 
polyceratium. Both families are typically found associated 
with corals and other hard substrate (Raes and Vanreusel 
2006; Raes et al. 2008; Armenteros et al. 2012); their 
occurrence on H. opuntia is most likely related to the cal-
careous nature of H. opuntia. This kind of preference was 
already mentioned by other authors (Hopper and Meyers 
1967a, b; Warwick 1977). In epiphytic amphipods, no 
correlation has been found between seaweed morphology 
or complexity (ratio between surface area and biomass) 
and their abundance or species richness (Russo 1990). 
In contrast, ostracod species from California did show a 
strong correlation with complexity levels of the seaweed 
they were associated with (Frame et al. 2007). Therefore, 
it seems that different organisms have a different relation-
ship with the macroalgal substrate. Regarding the feeding 
types, in this study, the epistrate feeders (2A) were the 
most dominant in both seaweeds, as has been previously 
observed for seaweeds (Ólafsson et al. 1995; Da Rocha 
et al. 2006; Jaya et al. 2012). However, this is in contrast 
with the nematode community associated with the sea-
grass Zostera in which 1B was the most dominant feed-
ing type (Alves et al. 2015) and with Caulerpa taxifolia 
which was dominated by the genus Halichoanolaimus, a 
predator/omnivore or 2B (Soetaert and Heip 1995; Pape 
et al. 2013).

Seasonal variation reveals higher nematode abundances 
during the rainy season, but the community 
composition was very similar

Overall nematode density was significantly higher during 
the rainy season and varied differently among months on 
both seaweeds. In June, H. opuntia presented a signifi-
cantly higher nematode density compared with S. polycer-
atium in the same month. Although the same general trend 
was observed for both seaweeds (increase of nematode 

density toward June), the magnitude of this increase 
appeared to be seaweed species specific. Temporal vari-
ation in density of nematodes associated with seaweeds 
peaking in certain periods of the year has already been 
observed (Kito 1982). However, comparisons between 
nematode communities from different seaweeds species 
over time are extremely rare. In the current work, no varia-
tion in richness was observed between seasons and months 
for both seaweeds and for H. opuntia in both transects, 
showing a fairly stable composition throughout the year. 
In contrast, a significant difference in nematode commu-
nity structure has been found between the rainy and the 
dry seasons. Although the composition was very similar 
between the dry and rainy seasons, some abundant genera 
reached significantly higher relative abundances during 
the rainy season (e.g., Euchromadora). Temporal varia-
tion of the epifauna living on macrophytes can be related 
to seasonal change of the thallus (Travizi et al. 2004) or 

Fig. 6  Average relative abundance of the five most abundant genera associated with H. opuntia in both transects in Cupe Beach (Brazil) in 
2005–2006

Fig. 7  Non-metric MDS comparing the nematode communities 
between the two transects for H. opuntia in Cupe Beach (Brazil) in 
2005–2006
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to preferences for different structures of the seaweed 
(Venekey et al. 2008). Microarthropod species associated 
with the macrophyte Ascophyllum nodosum have also 
shown temporal variation (Jarvis and Seed 1996), with 
some species showing an increased density at a particular 
time point while the density decreased for other species. 
Meiofauna associated with the seagrass Posidonia ocean-
ica showed higher temporal variability in density present 
on the leaf region than on the stem region, where the den-
sities were higher with little variation throughout the year 
(Novak 1982). These differences were correlated with the 
seasonal development of the seagrass. Seaweeds, as Sar-
gassum muticum, also show seasonal developmental varia-
tion which in turn may affect the associated fauna (Taylor 
1997; Baer and Stengel 2010). However, it is important to 
emphasize that the mentioned studies were performed in 
temperate higher latitudes (>42°N or >35°S) where there 
is a marked seasonal variation affecting the organism’s 
life cycle. In contrast, the current work was performed in 
a tropical low latitude (8°S) region with fairly stable tem-
peratures averaging at 26.5 °C during the rainy season and 
at 27.9 °C during the dry season (Machado 2015).

The nematode community structure differed 
between transects, but no differences in the density or 
richness were observed

Although there were no significant differences in nema-
tode density or richness, for H. opuntia between transects, 
there was a significant difference in nematode community 
structure. Spatial variation on epiphytic meiobenthic com-
munities has been attributed to food source availability and 
environmental complexity (Novak 1982; Bell et al. 1984). 
The level of shelter from wave action appears to be a fac-
tor influencing nematode communities associated with the 
seaweed Sargassum in Brazil (Venekey et al. 2008) and 
with Gelidium pristoides in South Africa (Gibbons 1988). 
However, such effect of wave exposure was not observed 
by Arroyo et al. (2004) studying the meiofauna and nema-
tode community associated with the seaweed genus Lami-
naria in Spain. In the present investigation, Euchromadora 
was the genus that contributed most to spatial differences; 
it preferred areas closer to the beach and thus more shel-
tered (T2), where it could reach twice the density of the 
area further away from the beach line (T1). This may indi-
cate that the changes in community structure were mostly 
resulting from a higher degree of exposure rather than 
from temporal fluctuation. The community associated with 
macrophytes reached a higher average density in more 
sheltered areas, although the data were not always statisti-
cally significant.

Sediment retention capacity differed between seaweeds, 
affecting the density of some specific genera but not the 
density of the whole community

There was no significant difference in sediment accumu-
lation between the two transects over time. The sediment 
retention capacity related more to the seaweed species rather 
than to degree of exposure and appears to be also related to 
the level of architectural complexity of the seaweed. Despite 
a significant difference in sediment retention capacity of the 
two seaweeds studied, the overall nematode density on the 
seaweeds was not affected. However, the retained sediment 
showed a positive correlation with the nematode richness 
for both seaweeds (H. opuntia: R = 0.32; P = 0.011—S. 
polyceratium: R = 0.40; P = 0.014). For some genera, a 
positive correlation was observed between nematode den-
sity and seaweed species, for example in Draconema and 
Euchromadora. This may suggest that the effect of the 
amount of retained sediment is species specific, affecting 
the community structure and richness, but not the overall 
nematode density. Interestingly, Draconema and Euchroma-
dora did not occur in the bottom sediment (de Oliveira et al. 
2014), maybe due to morphological and locomotion adapta-
tions of the former (Raes et al., 2008), while Hypodontolai-
mus occurred in the bottom sediment and on the seaweed 
but did not show any correlation with the retained sediment. 
This suggests that the retained sediment by the seaweed was 
a more important factor affecting the nematode genera that 
were restricted to seaweeds rather than the genera occur-
ring in seaweed and sediment. This result contrasts with two 
general paradigms described in a number of articles (Wieser 
1951, 1952; Ott 1967; Hopper and Meyers 1967a, b; Moore 
1971; Warwick 1977; Da Rocha et al. 2006): (1) the more 
sediment on the seaweed, the higher the density of nema-
todes and (2) the more sediment, the more nematodes orig-
inating from the sediment are also found on the seaweed. 
However, none of the above mentioned studies quantified 
the amount of retained sediment and tested its correlation 
with the nematode community density or structure on sea-
weeds. Nematodes choose actively the substrate on which 
they settle (Ullberg and Ólafsson 2003; Arroyo et al. 2006) 
and are rather not just passively transported along with the 
sediment through currents and retained by the seaweed. 
Experiments on colonization of macrophytes by nema-
todes have demonstrated that through time, the community 
is dominated by species that are typically found associated 
with macrophytes (Arroyo et al. 2006; Derycke et al. 2007). 
This result opposes the idea that the more sediment retained 
by the seaweed, the higher the nematode overall density and 
the higher the number of nematodes originally coming from 
the sediment.
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