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Summary 

The Persian Gulf is a semi-enclosed marginal sea, connected to the Gulf of Oman through the 

Strait of Hormuz. About one third of the world’s oil is produced in this region. It is an 

important military, economic and political region due to its oil and gas resources and it is one 

of the most important waterways in the world. Moreover, the Persian Gulf is located in a 

subtropical, hyper-arid region with often extreme air temperatures, a high evaporation rate 

and hence a high water salinity. The Persian Gulf hosts a variety of marine habitats such as 

rocky shores, estuarine ecosystems, mangrove habitats, salt marshes, sandy beaches, mud flats 

and coral reefs. Intertidal mud flats and sandy beaches are among the most widespread coastal 

habitats in the area. Because of the intensive human exploitation, the Persian Gulf is 

considered as one of the world's most polluted bodies of water. In addition to often wide-

ranging pollution from oil-related activities, industrialization, urbanization, local sewage 

discharges and the building of numerous piers and docks all pose potentially serious threats to 

the marine life in this strategic location.  

In this PhD study, focus is on the northeastern part of the Persian Gulf, specifically the area of 

Bandar Abbas, the capital city of the Hormuzgan province, which is situated in the southeast 

of Iran. In the Iranian part of the Persian Gulf, only biodiversity and distribution of 

macrobenthos taxa or assemblages in intertidal marine habitats have hitherto received some 

attention. The meiobenthos has remained a completely neglected component of the benthos. 

This PhD therefore provides the very first study on the free-living marine nematode 

assemblages in coastal habitats of the Persian Gulf. It thus contributes substantially to the 

knowledge of the coastal marine biodiversity in the Iranian part of the Persian Gulf.    

Since this is a pioneering study, we first investigate biodiversity of nematode assemblages 

with a focus on spatial patterns in relation to local (so non-overarching) point sources of 

pollution, asking the question whether in such a broadly stressed environment, local pollution 

sources would still have a measurable impact on nematode assemblages. For this purpose, we 

focus on four beaches, and within each beach location, we assign three stations at different 

distances from local point sources of pollution. We then repeat the same sampling design 

almost exactly one year later to get a first impression of the consistency of the obtained spatial 

patterns over time, more specifically year-to-year variability. Finally, we look into the 

population-genetic structure of the two most abundant nematode species across a somewhat 

broader stretch (52 km) of coastline with the aim of studying connectivity and gene flow 

between populations from beach locations at a scale at which in other population-genetic 
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studies of coastal nematodes, significant structuring has regularly been observed. Since both 

nematode species studied here tend to occupy different depth layers of the sediment, we also 

tested the hypothesis that the surface-dwelling species would show a lesser population-genetic 

structuring compared to the real endobenthic species.  

More specifically, in chapter 2, we assess the structure and biodiversity of the nematofauna 

in intertidal soft sediment habitats along the coast near Bandar Abbas. In addition, we also 

assess effects of local pollution sources (mostly sewage and garbage disposal) on the 

nematode assemblages. A total of 39 genera from 17 families was recorded. This diversity is 

low but comparable to several other anthropogenically impacted beaches. Five genera 

(Daptonema, Ptycholaimellus, Paramonhystera, Terschellingia and Promonhystera) together 

comprised 75 % of nematode abundance. There were significant differences in abundance as 

well as genus diversity between locations, but these did not unequivocally correlate with 

known drivers of benthic assemblage structure like sediment granulometry and 

hydrodynamics/beach morphodynamics. The location exposed to the strongest pollution input 

had the lowest nematode diversity and a very low abundance, the latter, however, only at the 

station nearest the local pollution source. Distance from local pollution sources also 

significantly impacted genus diversity. Our data demonstrate that local sources of 

anthropogenic disturbance are a major driver of assemblage diversity and structure in this 

area; even though the overall low diversity of nematodes indicates that the entire area 

experiences substantial stress, the local sources of disturbance still have measurable impacts 

on benthic assemblage diversity.  

The next chapter (chapter 3) demonstrates that the spatial pattern documented in the first 

manuscript is subject to substantial year-to-year variability. We repeated the sampling design 

of the previous study, i.e. four beaches, with three stations each along a distance gradient of 

50, 100 and 150 m from a pollution point source, exactly one year later. We found strong 

changes in spatial patterns of nematode assemblages, where many of the between-location and 

between-distance differences observed in 2008 disappeared. Haghani remained the least 

diverse beach, consistent with the presence of the largest urban drainage of Bandar Abbas. 

Suro and Dolat Park exhibited decreased abundance and diversity, whereas Terminal showed 

the opposite pattern. Distance-to-pollution gradients found in 2008 were largely absent in 

2009. We hypothesize that the nearly threefold higher precipitation in the weeks preceding the 

2009 sampling compared to 2008 caused a larger sewage discharge rate, enhancing the local 

impacts at Suro and Dolat Park and spreading them over a larger beach area. The opposite 

pattern at Terminal is difficult to explain, although a sampling performed four years later 
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demonstrated a substantial coarsening of the sediments at this location. If this had already 

initiated in 2009, it might explain the increase in diversity and abundance. The overall number 

of genera encountered in our samples was equally high in both years. Four out of the five 

dominant genera of 2008 together made up 80 % of nematode abundances in 2009, while 22 

‘unique’ genera, encountered only in 2009, together contributed only 6.5 %. Two thirds of the 

62 genera in the total two-year dataset were only found in one year and were all rare. This 

demonstrates that a correct estimate of genus richness requires a large and repeated sampling 

effort specifically aiming at the tail of rare genera. 

In chapter 4, particular attention is devoted to the population-genetic patterns of the two most 

abundant nematode species, Terschellingia longicaudata and Ptycholaimellus 

pandispiculatus. Based upon a mitochondrial COI gene fragment, 17 and 2 haplotypes were 

found for P. pandispiculatus and T. longicaudata, respectively. Analysis of molecular 

variance (AMOVA) did not reveal a significant population-genetic structure for either species. 

The absence of genetic structuring may indicate substantial dispersal and gene flow in our 

study area. In another part of this chapter, to assess the species structure of T. longicaudata at 

a larger geographic scale, we compare 18S rDNA and COI sequences from Iran and the 

Scheldt Estuary in The Netherlands in order to ascertain whether they truly belong to the same 

species. Our data confirm previous studies that T. longicaudata likely constitutes a complex 

of multiple cryptic species, with one of these species having a cosmopolitan distribution. 

In the general discussion (chapter 5), we integrate and elaborate on some of the aspects from 

the different chapters, and present perspectives for future research on meiobenthos in Persian 

Gulf intertidal habitats. Despite differences in degree and type of local pollution and in 

sediment granulometry and beach morphodynamics, the nematode assemblages of beaches in 

the vicinity of Bandar Abbas all shared similar main features: they were characterized by a 

low point (= sample) and local genus richness and a very pronounced dominance of only four 

or five opportunistic and stress-tolerant genera. Local differences were significant in 2008 and 

appeared largely linked to local pollution sources; however, most of this spatial structure was 

erased in 2009, perhaps in relation to changes in environmental conditions. What remains 

when data from both years were analysed together, is a relatively homogeneous beach area 

where a combination of natural and anthropogenic stressors cause a low local diversity and 

high dominance of few genera, and where hydrodynamics and currents homogenize 

assemblages at a regional scale. The latter point (i.e. hydrodynamics and currents) is further 

supported by a complete lack of population genetic structure in two of the most dominant 

species, whilst the former (natural and anthropogenic stressors) is partly supported by the 
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extremely low population genetic diversity in one of these two species. The overarching 

effects of broader-scale stressors and of homogenization of beach communities due to 

hydrodynamics, hampers to some extent the use of nematode assemblages as bio-indicators of 

local pollution effects in this area, as evidenced by the inconsistent spatial structuring of the 

assemblages in two subsequent years.   
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Samenvatting 
 

De Perzische golf is een half-gesloten ‘marginal’ zee, verbonden met de Golf van Oman via 

de Straat van Hormuz. Ongeveer één derde van de globale olie productie wordt in deze regio 

geproduceerd. Het is een belangrijke militaire, economische en politieke regio dankzij haar 

olie- en gasbronnen en het is één van de belangrijkste waterwegen ter wereld. De Perzische 

Golf is gelegen in een suptropisch, hyper-aried klimaat met vaak extreem hoge temperaturen, 

sterke evaporatie en bijgevolg hoge watersaliniteiten. De Perzische Golf herbergt een 

verscheidenheid aan mariene habitats zoals rotskusten, estuaria, mangrove habitat, 

zoutmoerassen, zandstranden, wadden en koraalriffen. Intertidale zand- en modderplaten zijn 

de meest voorkomende kust habitats in de regio. Als gevolg van intensieve menselijke 

exploitatie, wordt de Perzische Golf beschouwd als één van 's werelds meest vervuilde 

wateren. Naast de vaak uiteenlopende verontreiniging door oliegerelateerde activiteiten, 

vormen industrialisatie, verstedelijking, de lozing van afvalwater en de bouw van talloze 

pieren en dokken, allen potentieel ernstige bedreigingen voor het mariene leven in deze 

strategische locatie. 

De focus van dit doctoraat ligt op het noordoostelijk deel van de Perzische Golf, in het 

bijzonder op het gebied van Bandar Abbas, de hoofdstad van de provincie Hormuzgan in het 

zuidoosten van Iran. Tot noch toe kregen de biodiversiteit en de verspreiding van 

macrobenthos taxa en gemeenschappen in intertidal mariene habitats in het Iraanse deel van 

de Perzische Golf al enige aandacht. De meiobenthos gemeenschap werd daarentegen tot voor 

kort nog niet onderzocht. Dit doctoraat bevat de allereerste studie van de vrijlevende mariene 

nematodegemeenschap in kusthabitats van de Perzische Golf en draagt bijgevolg in grote 

mate bij aan de kennis van de mariene biodiversiteit in de kustgebieden van deze regio.  

Vooreerst werd de biodiversiteit van de nematodengemeenschap onderzocht, met een focus 

op ruimtelijke patronen in relatie tot de lokale (niet-overkoepelende) puntbronnen van 

verontreiniging. We vroegen ons af of lokale verontreinigingsbronnen een meetbare impact 

hebben in een regio die reeds door verschillende factoren sterke stress ondervindt. Hiervoor 

richten we ons op vier stranden, en binnen elk strand werden drie stations op verschillende 

afstanden van lokale vervuilingsbronnen bemonsterd. Vervolgens hebben we hetzelfde 

bemonsteringsplan precies een jaar later herhaald om een eerste indruk te krijgen van de 

consistentie van de verkregen ruimtelijke patronen na verloop van tijd. Tot slot kijken we naar 

de populatiegenetische structuur van de twee meest voorkomende nematodensoorten, op een 
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schaal waar in vergelijkbare studies significante verschillen werden waargenomen. Over een 

iets bredere strook (52 km) van de kust onderzochten we de genetische structuur om de 

connectiviteit en genetische uitwisseling te bestuderen. Aangezien beide nematodensoorten 

zich vaak op verschillende dieptes in het sediment bevinden, testten we de hypothese dat de 

aan het oppervlak levende soorten mindere populatiegenetische structuur zouden vertonen in 

vergelijking met de echte endobenthische soorten. 

Concreet beoordelen we in hoofdstuk 2 de structuur en de biodiversiteit van de nematofauna 

in intertidale zachte sedimenthabitats langs de kust in de regio van Bandar Abbas. Daarnaast 

evalueren we ook het effect van lokale bronnen van verontreiniging (voornamelijk afvalwater 

en afvalphaling) op de nematode gemeeschap. Een totaal van 39 geslachten van 17 families 

werden geregistreerd. Dit is een lage diversiteit, hoewel deze vergelijkbaar is met andere, 

door de mens beïnvloede stranden. Vijf dominante genera (Daptonema, Ptycholaimellus, 

Paramonhystera, Terschellingia en Promonhystera) beslaan samen 75% van de nematode 

abundanties. De totale aantallen, alsook de gemeenschapssamenstelling waren significant 

verschillend tussen locaties, hoewel deze verschillen niet eenduidig correleren met gangbare 

factoren die benthische gemeenschappen structureren zoals sedimentkorrelgrootte en 

hydrodynamieken/strand morfodynamieken. Op de sterk verontreinigde stranden vonden we 

de laagste nematodendiversiteit- en zeer geringe abundanties. Dit laatste geldt echter alleen 

voor het station dichtst bij de plaatselijke verontreiniging. Onze gegevens tonen aan dat de 

lokale bronnen van antropogene verstoring belangrijke drijfveren zijn achter de diversiteit en 

structuur van de nematodengemeenschap in dit gebied. Hoewel de algemeen lage diversiteit 

van nematoden aangeeft dat het hele gebied aanzienlijke stress ervaart, hebben de lokale 

bronnen van vervuiling nog aanzienlijke gevolgen voor de benthische diversiteit. 

Het volgende hoofdstuk (hoofdstuk 3) toont aan dat het ruimtelijke patroon gedocumenteerd 

in het eerste manuscript onderhevig is aan aanzienlijke jaar-op-jaarvariabiliteit. We 

herhaalden daarom de staalname van het vorige onderzoek; wat betekent dat we dezelfde vier 

stranden, met elk drie stations bemonsterden op een afstand van respectievelijk 50, 100 en 

150m van een vervuilde puntbron, precies een jaar later. We vonden dat de ruimtelijke 

patronen van nematode samenstellingen sterk varieerden tussen beide staalnames. Heel wat 

van de verschillen tussen locaties en stations waargenomen in 2008, verdwenen in 2009. 

Haghani bleef het minst diverse strand, ingevolge de aanwezigheid van de grootste rioleringen 

van Bandar Abbas. Suro en Dolat Park vertoonden lagere abundanties en diversiteit, terwijl 

we voor Terminal het tegenovergestelde patroon vaststelden. Veranderingen in 

gemeenschapssamenstelling in correlatie met de afstand tot de vervuiling die in 2008 werden 
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waargenomen, waren grotendeels afwezig in 2009. We veronderstellen dat dit een gevolg is 

van een nagenoeg verdrievoudiging van de neerslag in de weken die voorafgingen aan de 

staalname van 2009 in vergelijking met de neerslag in 2008. Het sterk verhoogde afvoerdebiet 

van de riolering heeft mogelijks een positieve invloed op de lokale impact voor Suro en Dolat 

Park, maar deze impact verspreidt zich over een grotere oppervlakte en afstand tot de 

verontreinigingsbron. Het tegenovergestelde patroon op Terminal is moeilijk te verklaren, 

hoewel een staalname vier jaar later aantoonde dat er een substantiële verhoging is in de 

mediane korrelgrootte van de sedimenten op deze locatie. Indien deze veranderingen in 

sedimenteigenschappen in 2009 reeds aanvingen, kan dit mogelijks de stijging van de 

diversiteit en abundanties verklaren. Het totale aantal genera aangetroffen in onze stalen was 

even hoog in beide jaren. Vier van de vijf dominante genera van 2008 beslaan in 2009 80% 

van de totale abundanties, terwijl 22 unieke genera, enkel in 2009 waargenomen, voor 6,5% 

bijdragen. Twee derden van de 62 genera die gedurende beide staalnames werden 

waargenomen, werd slechts in één jaar geobserveerd en alle waren zeldzaam. Dit toont aan 

dat een goede schatting van genusrijkdom en aanwezigheid van zeldzame soorten grote en 

herhaalde staalnames vereist. 

In hoofdstuk 4 gaat de aandacht naar patronen binnen de populatiegenetica van de twee meest 

abundante nematodesoorten, Terschellingia longicaudata en Ptycholaimellus pandispiculatus. 

Op basis van een mitochondriaal CO-gen fragment, werden respectievelijk 2 en 17 haplotypes 

waargenomen. Analyse van de moleculaire variantie (ANOVA) toonde geen significante 

verschillen in de populatiegenetische structuur van beide soorten. De afwezigheid van 

genetische structurering is mogelijks een indicatie voor aanzienlijke geografische dispersie en 

de genetische uitwisseling in ons studiegebied. In een ander deel van dit hoofdstuk 

vergelijken we 18S rDNA en COI-equenties van T. longicaudata uit Iran en het Schelde-

estuarium in Nederland om hun structuur te beoordeelen op een grotere geografische schaal 

en om zo ook na te gaan of ze echt behoren tot dezelfde soort. Onze gegevens bevestigen 

eerdere studies dat T. longicaudata waarschijnlijk een complex is van verschillende 

cryptische soorten, en dat één van deze soorten een kosmopolitische distributie heeft. 

In de algemene discussie (hoofdstuk 5) integreren we een aantal aspecten van de verschillende 

hoofdstukken en gaan we hier verder op in. We doen hier ook een aantal suggesties voor 

toekomstig onderzoek naar het meiobenthos van intertidale habitats in de Perzische Golf. 

Ondanks duidelijke verschillen in de aard en mate van lokale vervuiling en in de 

granulometrie en morfodynamiek van de onderzochte stranden, vertoonden de 

nematodengemeenschappen van de stranden in de nabijheid van Bandar Abbas allemaal 



  

xi 
 

enkele zeer gelijkaardige hoofdeigenschappen: ze werden alle gekarakteriseerd door een lage 

genusdiversiteit op het niveau van individuele stalen en van stranden (= lokale diversiteit), en 

hadden ook alle een zeer uitgesproken dominantie van slechts vier of vijf opportunistische 

genera die tolerant zijn tegen allerhande omgevingsstress. Lokale verschillen (= tussen 

stranden) waren significant in 2008, in relatie tot lokale vervuilingsbronnen. Deze lokale 

structuur was evenwel grotendeels afwezig in 2009, mogelijk als gevolg van andere 

klimatologische omstandigheden. Wanneer de data van beide jaren samen worden 

geanalyseerd, komt een beeld naar voor van een relatief homogene strandgemeenschap, waar 

een combinatie van natuurlijke en anthropogene stressoren een lage diversiteit veroorzaken op 

het niveau van individuele stalen en stranden, en waar hydrodynamiek en stromingen de 

gemeenschappen op een regionale schaal homogeniseren. Dit wordt verder bevestigd door het 

complete gebrek aan enige populatiegenetische structuur bij twee van de meest dominante 

soorten in het gebied. Het overwegende effect van natuurlijke en anthropogene stressoren 

wordt deels ondersteund door de extreme lage populatiegenetische diversiteit van één van 

beide soorten. Dit effect, en het homogeniserende effect van de hydrodynamiek en stromingen 

in de regio, bemoeilijkt het gebruik van nematodengemeenschappen als indicatoren van lokale 

vervuilingseffecten, zoals moge blijken uit de inconsistente ruimtelijke structuur van de 

nematodengemeenschappen in twee opeenvolgende jaren.  
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General introduction 

This PhD research provides, at least to our knowledge, the very first study on free-living 

marine nematode communities in coastal habitats of the Iranian part of the Persian Gulf. In 

this introduction, four main topics are dealt with. First, a brief general overview of the study 

area is given, including 1) geographical and physical features, 2) geo-political and industrial 

importance, 3) different marine ecosystems and 4) environmental threats to the Persian Gulf 

marine environment. Secondly, we narrow down our focus to sandy beaches, and hence 

provide a definition, information on characteristics, and classification of sandy beaches. In the 

third part, we introduce the benthic organisms and their ecological significances with 

emphasis on the meiobenthic fauna and specifically marine nematodes. At the end, the 

specific objectives of the PhD study and their rationale will be addressed.    

 

1. Study area: the Persian Gulf  

1.1 Geographical, physical and climatological features   

The Persian Gulf (henceforth abbreviated as PG), located in the Southwest Asian region, 

formed by rising sea levels from the Indian Ocean (Kassler 1973; Lambeck 1996). Earth 

history indicates that it has been subject to various periods of glaciation. At the end of the last 

ice age, the sea level rose gradually and about 6,000 years ago it reached its current depth. 

Consequently, the present shape of the PG formed during the last glacial period (Lambeck 

1996; Taghizade et al. 2012) (Fig. 1-1). 

The PG covers an area of 239,000 km2 and spans a length of 990 km; it has a volume of 8780 

km3. It is a semi-enclosed and young marginal epicontinental sea, connected to the deep (1000 

m) Oman Sea through the 56 km wide Strait of Hormuz (Chao et al. 1992). As such, it forms 

an extension of the Indian Ocean (Oman Sea) through the Strait of Hormuz.    

 

 

 

http://en.wikipedia.org/wiki/Indian_Ocean
http://en.wikipedia.org/wiki/Gulf_of_Oman
http://en.wikipedia.org/wiki/Strait_of_Hormuz
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Fig. 1-1. A history of the Persian Gulf over the period from 74,000-24,000 years ago (stage Ι), 

24,000-14,000 years ago (stage ΙΙ), 14,000-8,500 years ago (stage IIΙ), until the present 

situation, which formed 8,500- 6,000 years ago (stage ΙV). Adapted from (Rose 2010). 
 

 

The PG is surrounded by several countries including Saudi Arabia, the United Arab Emirates 

(UAE), Qatar, Bahrain, Kuwait and Iraq on the southwestern side and Iran on the northeast 

(Fig. 1-2). As its coastline dominates the whole northern shore of the PG, Iran is a very 

important country in the PG region. Its western end (northwestern shoreline) is marked by the 

major river delta of Arvand Rud, which carries the freshwaters of the Euphrates and the Tigris 

(Fig. 1-2). This is the major freshwater input into the PG and has its origins in both Iraq and 

Iran. Tigris, Euphrates and Karun river which together form the Arvand Rud have a 

seasonally variable discharge, with an annual mean of 1400 m3/s (18 cm/year) (Pous et al. 

2015).  

http://en.wikipedia.org/wiki/United_Arab_Emirates
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Fig. 1-2. Map of the Persian Gulf region with surrounding countries. 

The PG has an average water depth of only 36 m, comprising a broad shallow southern 

margin (< 20 m deep) along the coasts of Qatar, Bahrain and the UAE, and a relatively 

narrow and deep north-eastern margin along the coasts of Iran (Kämpf and Sadrinasab 2006). 

The deepest areas are in front of the Iranian coast, reaching from 60 m to about 100 m at the 

entrance to the Strait of Hormuz (Sheppard et al. 1992).  

Highest carbonate concentrations are found in the shallow waters of the western and 

southern Gulf. Sediments of terrestrial origin are limited to the northwest, where the waterway 

of the Arvand Rud discharges into the PG, and the eastern Iranian shoreline where terrestrial 

fluvial sediments from the Zagros mountains are occasionally accumulated in the nearshore 

region (Barth and Khan 2008).  

The PG is located between 24-30°N latitude and 48-57°E longitude. In those latitudes, 

descending dry air produces arid conditions. The largest continuous sand desert on Earth, 

namely the Rub’al-Khali desert (Mughal 2013), which covers 650,000 km2 including parts of 

Saudi Arabia, Oman, the UAE and Yemen (the Empty Quarter), surrounds the PG. It is one of 

the largest continuous bodies of sand on Earth and has one of the largest oil reserves in the 

world. The hyper-arid climate causes a high evaporation rate and, as a consequence, a high 

salinity, as evaporation is greater than the combined rainfall and river discharge within the 

Gulf (Reynolds 1993). More specifically, evaporation rate is 1.4–2.1 m/year (per unit surface 

area), whereas total river runoff is 0.15–0.46 m/year and precipitation is very limited (0.07–

0.1 m/year) (Sugden 1963; Reynolds 1993; Johns et al. 2003). Water exchange with the Oman 

http://en.wikipedia.org/wiki/Saudi_Arabia
http://en.wikipedia.org/wiki/Oman
http://en.wikipedia.org/wiki/Yemen
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Sea through the Strait of Hormuz is the main source of the water balance for the PG. Owing to 

the high evaporation and small precipitation, the PG exhibits an inverse estuary-like 

circulation (Fig. 1-3) in which surface water flows into the PG in the northern part of the 

Strait of Hormuz as a wedge of less saline water that penetrates deep into the PG along the 

Iranian coasts, increasing in salinity and exiting at depth through the Strait of Hormuz into the 

Oman Sea (Kampf and Sadrinasab 2006). The effect of the high evaporation rate is further 

enforced by the rather narrow connection to the open ocean, together leading to the formation 

of the saline, dense water mass known as the "Persian Gulf Water" (PGW). Generally, salinity 

is minimal (39.3) in summer and maximal (40.8) in winter; in tidal pools and lagoons it may 

reach 70-80 (Fig. 1-4). However, salinity gradients can result either from river fluxes, 

precipitation and evaporation or from exchanges between the PG and the Oman Sea (John et 

al. 1990).  

 

Fig. 1-3. Diagramatic representation of water circulation in the Persian Gulf (PG). The arrows 

show inflow of marine water from the Oman Sea to the PG at the sea surface. As a result of 

evaporation, this water becomes gradually more saline and therefore also more dense as it is 

moving further inward. Near the head of the Gulf, the now very dense surface seawater sinks 

down and outwells back to the Oman Sea near the bottom. Adapted from (Yao 2008).  
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During summer, regional air temperatures are among the hottest in the world and 

maximum air temperature can frequently reach in excess of 49 °C. Summer sea water 

temperature (SST) averages 33 °C, but can reach > 35 °C in shallow waters (Chao et al. 

1992). Winter SSTs average 22 °C near the Strait of Hormuz and decrease to 16 °C near the 

head of the Gulf, resulting in an annual temperature range of ca. 20 °C across the PG, which 

is one of the largest annual fluctuations of seawater temperature in the world (see Fig. 1-5) 

(Chao et al. 1992). Due to its location near the tropical zone, the difference between SST and 

land temperature in the PG does not vary much throughout the year, allowing for the sea 

breeze to occur in all months (Eager et al. 2008). The winds in the PG are predominantly 

northwesterly throughout the year. Indeed, the Shamal wind is the best known weather 

phenomenon in the PG. It is a northwesterly wind which occurs year round (Thoppil and 

Hogan 2010). During winter (November-February), the winds are slightly stronger (5 m/s) 

than those during summer (June-September) (3 m/s).   

 

Fig. 1-4: Sea-surface salinity in the Persian Gulf in different times of the year, averaged over 

the period 2005-2012. Adapted from (Yan 2015).  
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The tidal range varies from about 1 m at Dubai and 1.2-1.5 m around Qatar to 3.0-3.4 m in 

the northwest (Kuwait), and to a maximum of 5 m in the Clarence Strait1 between Qeshm 

island and the mainland (Schwartz 2005). Tidal currents are strong (up to 8 km/h) at the 

entrance of the gulf, but elsewhere rarely exceed 1 to 3 km/h, except between islands or in 

estuaries and lagoon entrances.  

The southern part of Iran (north of the PG) is bounded with around 1000 km of subtropical 

coastal area. Along this rather long coastline, three coastal provinces are located (Fig. 1-2), 

Khuzestan in the northwest, Hormuzgan in the northeast (largest province), and Bushehr in 

the central. In this PhD study, focus will mainly be on the northeastern part of the PG, 

specifically the area of Bandar Abbas, the capital city of the Hormuzgan province, situated 

in the southeast of Iran, at ca. 1335 km from Tehran. Due to its geographical location, the 

Hormuzgan province plays a vital role in fisheries, petroleum and industrial activities, 

international trade and marine transportation in southern Iran. During 2003-2013, Hormuzgan 

province accounted for 60 % of total landings in Iranian waters of the PG and was the biggest 

fishery area of the region (IFO 2014). The human population of Bandar Abbas has increased 

from 87,000 in 1977 to around 500,000 in 2010; it is now considered the biggest city in the 

south of Iran. Since 1980, Bandar Abbas has been rapidly developed as an oil export pole of 

Iran. This city is located in a hot and humid region. The city possesses some small creeks, 

known as Khoor, which function as drainage systems for flash floods as well as sewages of 

residential districts.  

                                                           
1 The Clarence Strait is a narrow strait between Qeshm island and the mainland. The native 

name for the strait is Khuran (http://en.wikipedia.org).   

 

 

http://www.britannica.com/EBchecked/topic/595148/tide
http://en.wikipedia.org/wiki/Qeshm
http://en.wikipedia.org/
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Fig. 1-5. Sea-surface temperature from the central part of the Persian Gulf. 1×1° lat/long 

block whose top left corner is 57°N, 52°E. The central black line is the running mean 

temperature per year, while the blue line depicts yearly maxima and minima. Figure from 

(Sheppard et al. 2010).  

 

 

1.2 Geo-political and industrial importance  

The name "Persian Gulf" dates back to about 500 years BC when the first Persian Empire (the 

Achaemenids) ruled over most of central and western Asia (Potter 2009). Some Arab 

governments refer to it as the "Arabian Gulf" or "The Gulf", but neither term is accepted 

internationally. The official name "Persian Gulf" is used by the International Hydrographic 

Organization.  

The Middle East and its subregion, the PG region, have long been among the economically 

most important regions of the world and among the major centers of world affairs; they are 

strategically, economically, politically, culturally and even religiously sensitive areas. The PG 

and its coastal areas are the world’s largest source of crude oil/gas; consequently, related 

industries dominate the region. Due to their huge oil and gas resources, the regional states 

play a significant role in global economy. Their natural wealth and geographical location have 

made the region very important from a geostrategic point of view. Nearly 50 % of the world's 

total oil reserves are estimated to be in the PG. Also, the PG is the richest area in gas 

worldwide, holding 40 % of global gas reserves. Iran and Qatar hold nearly 30 % of global 

gas deposits or 75 % of Middle East reserves (Moussavi and Aghaei 2013). For example, the 
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South Pars gasfield (offshore southern Iran) and its extension within Qatari territorial waters 

(North field) comprise the world’s largest offshore gas accumulation. As energy has always 

been regarded as a matter of security (Bahgat 2011; McGowan 2011), the oil and gas reserves 

present in the PG have been taking an increasingly critical role in the economies of the 

developed and industrialized countries.  

The PG has always been a key international trade route connecting the Middle East to India, 

East Africa, Southeast Asia and China. The Strait of Hormuz is considered one of the world’s 

strategic passages for oil and its by-products which, if disrupted, would negatively affect the 

global economy. According to the U.S. Energy Information Administration, in the year 2011, 

an average of 14 tankers per day passed out of the PG through the Strait of Hormuz, carrying 

17 million barrels (2,700,000 m3) of crude oil. This represents 35 % of the world's seaborne 

oil shipments and 20 % of oil traded worldwide. The report stated that more than 85 % of 

these crude oil exports went to Asian markets, with Japan, India, South Korea and China 

being the most important destinations (Houshialsadat 2013).  

Fisheries represent the second most important natural resource after oil/gas in the PG, and the 

most important renewable natural resource (Carpenter 1997). Accordingly, fisheries make a 

significant contribution to food provision in PG countries and play an important role in their 

economies (Sheppard et al. 2010). In the past, the PG has also been famous for its precious 

pearl oyster fisheries.  

 

1.3 Marine Ecosystems of the Persian Gulf 

Several papers have recently been published about fisheries, biodiversity, ecosystem health 

and sustainability of PG ecosystems (Khan and Al-Ajmi 1998; Nadim et al. 2008; Hamza and 

Munawar 2009; Sheppard et al. 2010; Feary et al. 2011; Sale et al. 2011; Burt 2013). 

Generally, the natural environment of the PG is very rich and a wide variety of marine 

habitats exists in the region (Fig. 1-6).  

Despite the harsh environmental conditions resulting from a high salinity, high summer 

temperatures and large yearly temperature fluctuations, the PG supports a range of coastal and 

marine ecosystems which contribute to the biological and habitat diversity in the marine 

environment and provide valuable ecological sites for a variety of commercially and/or 

biologically important marine organisms. For example, Portonus segnis is the most 
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commercially important of all true crabs2 in the coastal habitat of Hormuzgan province 

(Safaie et al. 2013). The coasts also provide the main nesting habitats of species of sea turtles, 

i.e. the hawksbill turtle (Eretmochelys imbricata) and the green turtle (Chelonia mydas) 

(Mobaraki 2004). Several marine protected areas in the Iranian part of the PG, such as the 

Hara Biosphere Reserve, are among the most visible management steps taken to conserve 

specific habitats and/or species. In addition, the Strait of Khuran is a Ramsar site, providing 

habitat to two globally threatened species: a wintering habitat for the Dalmatian pelican 

Pelecanus crispus, and a regular feeding place for the green turtle Chelonia mydas.  

The main marine coastal ecosystems of PG include rocky shores, coral reefs, seagrasses, 

mangrove habitats, estuaries, salt marshes, sandy beaches and mud flats (Sheppard et al. 

2010) (see Fig. 1-6). In the following sections, we will briefly introduce those important 

coastal ecosystems of the PG.  

- Rocky shores: Because of bed stability, presence of cracks and fissures in rocks and spaces 

available under stone fragments, rocky shores are considered as one of the most biologically 

rich environments in the PG (Sheppard et al. 2010). Rocky shores occur mostly in the north 

and have largely been formed as extensions of the Zagros mountains near the coastal areas. 

They are present mainly in the Oman Sea and the Strait of Hormuz (Nouri et al. 2010).  

- Coral reefs: Although over the past two decades, research on coral reefs in the PG has 

grown exponentially, the PG’s reefs are in fast decline. Over 70 % of regional reefs have by 

now been effectively lost (Wilkinson 2008), and the prognosis for the future of the remaining 

PG reefs is not bright. Generally, due to the extreme temperature and salinity, diversity of 

corals in the PG is low and comprises only ca. 55-60 species or about 10 % of the coral 

species that occur in the wider Indo-Pacific region (Sheppard et al. 2010). According to Riegl 

and Purkis (2009), coral communities in the PG also experience bleaching and frequent 

temperature-related mass mortality events. For a recent comprehensive study of coral 

communities in PG, we refer to (Bauman et al. 2013; Burt 2013).  

                                                           
2 Among decapod crustaceans, true crabs (Brachyura) are by far represent the most species-

rich distinct decapod morphotype (with approximately 7,000 extant species). Because of their 

high nutritional value (proteins and minerals), they are used as a valuable food for livestock 

and poultry in the world (Naderlo et al. 2011)  
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- Estuaries: There are many definitions for estuaries (Mitra and Zaman 2016); one of the 

more commonly used states that an estuary is "a semi-enclosed coastal body of water which 

has a free connection with the open sea at least intermittently and within which salinity of the 

water is measurably different from the salinity in the open ocean" (Pritchard 1967; Dyer 

1997). In the Iranian part of the PG, most of the estuaries are riverine. The largest and the 

most important riverine estuarine system is the Arvand Rud delta located in Khuzestan 

province, where the Tigris and Euphrates enter the northern PG. Bahmanshir is another 

important estuary in the southwest of Iran (Khuzestan province), which supplies the 

agricultural, irrigation and drinking waters for the large cities of Abadan and Khorramshahr 

(Etemad-Shahidi et al. 2015).  

- Seagrasses: Seagrasses perform a variety of functions within ecosystems and have both 

economic and ecological value (Costanza et al. 1997). As a habitat, seagrasses offer food, 

shelter and essential nursery areas to fish species and to the invertebrates that live within, or 

migrate to seagrasses. Seagrasses also play important roles in water flow, nutrient cycling, 

and food web structure. Only three species of seagrass occur in the PG, namely Halodule 

uninervis, Halophila stipulacea and Halophila ovalis (Sheppard et al. 2010). These species 

are generally tolerant to salinity and temperature extremes. They are particularly prevalent 

along southern and western shores (Price and Coles 1992). According to (Erftemeijer and 

Shuail 2012), around 7000 km2 of seagrass habitat have been mapped in the PG to date. 

However, seagrass habitats in the PG, like in other places in the world (Orth et al. 2006), are 

suffering a significant threat as a consequence of increasing anthropogenic stresses 

(Erftemeijer and Shuail 2012).  

- Mangroves: Mangroves are coastal vegetations composed of shurbs and trees that grow 

mostly in saline or brackish water in tropical or subtropical areas. Mangrove habitats are 

ecologically important coastal ecosystems that provide food, shelter and nursery areas for a 

variety of terrestrial and marine fauna. The PG coastlines are mostly dominated by only one 

species of mangrove, Avicennia marina (13,000 ha). A second species, Rhizophora 

mucronata, is also found at Sirik in the Strait of Hormuz. They occur principally in lagoons 

and on leeward sides, islands and shoals along the Iranian coast as well as in Saudi Arabia, 

Bahrain, Oman, Qatar and the U.A.E. (Spalding et al. 2010). High salinity is believed to be 

responsible for the generally small stature of mangrove trees in the PG. Mangrove forests in 

Iran cover more than 15,000 ha distributed from the Oman Sea to the Mond protected area in 

the western part of the PG (Mehrabian et al. 2009).  



 GENERAL INTRODUCTION 

15 
 

- Sandy beaches: Sandy beaches are one of the dominant coastal habitats in the Iranian part 

of the PG. According to one estimate, the length of sandy shores in the Iranian part of the PG 

is about 577 km, 65 % of which are located in Hormuzgan province and the rest in Bushehr 

province (Naser 2014). Since we chose intertidal areas of sandy beaches in the northern part 

of the PG as the study area for this thesis, we will comprehensively introduce general features 

and more detailed information on sandy beach habitats in the following pages (§2 Intertidal 

areas and sandy beaches).  

- Mudflats: due to the sedimentary nature of the PG, sandy and muddy substrata are the most 

widespread habitats. Mudflats are especially dominant intertidal habitats along the coastline 

of the western Gulf, where water movements are less turbulent. For example, as a result of the 

discharge of silt from the Tigris and Euphrates rivers, 57 % of the Kuwait coastline is 

characterized by mudflats (Al-Zaidan et al. 2003). The total area of mudflats in the Iranian 

part of the PG is estimated to be about 7345 km2, 76 % of which in Khuzestan Province, 9.7 

% in Bushehr province and the rest in Hormuzgan province (Etemad-Shahidi et al. 2015). In 

the Strait of Hormuz, three sites with a portion of intertidal mudflats occur, all being protected 

by the Ramsar convention (Matthews 1993).  
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Fig. 1-6. Habitat diversity along the Iranian coast of the Persian Gulf. a) "artificial" mangrove 

in Qeshm Island; b) pneumatophore zone of Avicennia mangroves in Mahshahr in Khuzestan; 

c) mangrove of Tiab Protected Area in Hormuzgan; d) a reflective sandy beach in 

Hormuzgan; e) mudflat in Khuzestan; f) a shore between Bandar Kangan and Asaluyeh in 

Bushehr; g) rocky/cobble shore between Bandar-Lengeh and Bandar Khamir in Hormuzgan; 

h) and j) rocky cliffs at the border of Hormuzgan and Bushehr. Adapted from (Naderloo and 

Tuerkay 2012). 

 

 

1.4 Environmental threats to the Persian Gulf marine environment 

General information 

As mentioned before, the PG is a semi-enclosed sea with a high-latitude geographical position 

and is characterized by naturally extreme environmental conditions. Despite these harsh 

environmental conditions, the PG supports a range of coastal and marine ecosystems. On the 

other hand, this area is a major route for oil exploitation and export (Emmerson and Stevens 

2012). This is one of the main reasons why the PG represents a stressed ecosystem and is 

considered one of the most polluted water bodies in the world (Elshorbagy 2005; Khan 2007).  

In April 1978, eight governments, i.e. Bahrain, Iran, Iraq, Kuwait, Oman, Qatar, Saudi Arabia 

and the UAE, developed the Regional Organization for the Protection of the Marine 

Environment (ROPME). The objective of the ROPME is to coordinate the member states’ 
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efforts towards protection of the marine water quality, the environmental systems as well as 

marine life, and to diminish the pollution caused by the economical development activities of 

the member states. In addition, ROPME requested the members to exert their maximum 

efforts to protect the marine environment. There are four main components in the scope of the 

ROPME: environmental assessment, environmental management, legal component, and 

institutional and financial arrangements (Abuzinada et al. 2008). During the past years, 

ROPME has made significant contributions to the environmental health of the PG region 

(Nadim et al. 2008). 

Environmental stressors 

Marine organisms are subject to many stressors. Environmental threats to marine ecosystems 

can be generally attributed to multiple natural and anthropogenic stressors and the interactions 

between them (Halpern et al. 2008). It is sometimes difficult to clarify exactly whether the 

stressor is natural or anthropogenic in origin, as anthropogenic stressors are indeed 

superimposed on stress caused by natural environmental factors (Raffaelli and Hawkins 

2012).  

Natural stressors in marine environments can come in a number of forms and from a variety 

of sources. Environmental extremes represent stressors that interfere with normal functioning 

of marine ecosystems (Breitburg and Riedel 2005; Khan 2007). This is clearly the case for the 

PG where naturally extreme environmental conditions occur (high salinity, variation in SST > 

20 °C). Predictions of the long-term salinity balance in the PG using a 3D numerical model  

actually indicate that the salinity will increase continually if no mitigation measures are taken 

(Yan, 2015) (Fig. 1-7). Consequently, these environmental variables, and the interaction 

between them, can have pronounced effects on the physiology of marine organisms in the PG, 

as well as on their overall abundance, community composition, biodiversity, and spatio-

temporal distribution (Sheppard 1993; Sale et al. 2011; Erftemeijer and Shuail 2012). An 

increasing body of literature  indicates that some animal and plant communities are 

substantially affected by the climatic extremes in the PG (Abuzinada et al. 2008; Sheppard et 

al. 2010; Bauman et al. 2013; Burt 2013; Al Shehhi et al. 2014). This is for instance the case 

for fish assemblages (Feary et al. 2010) and coral reefs (Coles 1997; Riegl and Purkis 2009). 
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Fig. 1-7: Results of a numerical simulation of the long-term balance of salinity in the Persian 

Gulf, from January 2014 to December 2060. Adapted from Yan (2015). 

 

Anthropogenic stressors can originate from different sources (Fig. 1-8) including, among 

others, pollution from oil-related activities (oil exploration and production, oil spills), sewage 

treatment plants, power and desalination plants, chemically contaminated effluents from 

agricultural and industrial activities, coastal reclamation and destructive fishing practices 

(over-fishing) (Khan 2007). All these anthropogenic activities result in a number of marine 

pollution problems and a wide range of adverse effects that cause significant damages to the 

ecosystem.  

In the last decades, the PG has experienced coastal development associated with the 

discovery and exploitation of oil. Coastal development in the area is often not properly 

planned and has caused environmental stress such as habitat fragmentation and destruction 

(Sale et al. 2011). PG has suffered from frequent oil spills. Serious spills have, for instance, 

occurred in 1983 (during the Iraq-Iran war) when 38 million gallons of crude oil were 

released from the Nowruz Field (Nadim et al. 2003). In 1991, the PG faced the First Gulf 

War. During this event, Kuwait oil fields were set on fire, resulting in a catastrophic risk to 

the marine environment of the PG region. Moreover, 500 tonnes of light crude oil were 

released in the Strait of Hormuz in 2005. In 2007, an area of 800 km2 was contaminated near 



 GENERAL INTRODUCTION 

19 
 

Bandar Abbas as a result of oil spills along the Strait of Hormuz (Subanthore 2011). In the 

Iranian part of the PG, the pollution impact of these activities has been evaluated in several 

studies, all indicating that crude oil accumulated and remained for a long time in the coastal 

area (Emtiazi et al. 2009; Hassanshahian et al. 2010; Aein Jamshid et al. 2011; Hassanshahian 

2014). In those studies, only biodiversity and distribution of macrobenthos communities in the 

marine habitat have been evaluated (see section 3-10); meiofauna have not been part of any 

monitoring approaches so far. Overall, there are persistently high levels of hydrocarbon 

pollution throughout the waters of the PG (see Table 1-1) (Gawad et al., 2008; Gevao et al., 

2006 (Tehrani et al. 2012; Mohebbi Nozar et al. 2014).  

Table 1-1: Concentrations of total petroleum hydrocarbons (TPH) and polycyclic aromatic 

hydrocarbons (PAHs) in sediment samples in the Iranian domain of the Persian Gulf and in 

other coastal areas worldwide. For references see Table 3 in page 47 of “Aein Jamshid et al. 

(2011)”.   

 

Area Compounds Concentration (µg/g 

sediment dry weight) 

Year 

Iranian domain of the 

Persian Gulf 

TPH 

 

0.85-114.92 

 

2001-2002 

Iranian domain of the 

Persian Gulf 

PAHs 0.00143 - 1.2677 2001-2002 

Persian  Gulf TPH 50-1448 1992 

Persian Gulf (Qatar & 

Saudi Arabia area) 

PAHs 0.1-0.5 1992-93 

Australia area PAHs Nd-4.50 1992-93 

Mexico area  PAHs 0.01-3.208 1995-96 

Coast of California TPH 0.77-70.64 1996 

Black Sea PAHs 0.012- 2.4 1988 
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Various other pollution sources, including urban waste, agricultural and industrial discharges, 

hot and saline wastewaters from desalination plants, and discharge of ballast water from ships 

have been reported as pollution sources in the PG (Abuzinada et al. 2008; Khan 2007). 

Contamination of the marine environment by trace metals is another and rather critical form 

of pollution and usually associated with multipoint industrial effluents (see Table 1-2) 

(Khoshnood et al. 2010; Astani et al. 2012; Monikh et al. 2013; Rahmanpour et al. 2014; 

Sarhadizadeh et al. 2014). In addition, pesticides and other persistent organic pollutants 

(POPs) are among the most critical agrochemicals threatening the marine environment 

(Mohebbi Nozar et al. 2014).  

Table 1-2. Range of heavy metals concentrations in sediments of the Persian Gulf and some 

other marine areas in the world (data are in µg/g sediment dry weight). N.d.: is not 

determined. For references see Table 6 in page 48 of “Aein Jamshid et al. (2011)”.  

 

Area / Guidelines Cd Pb Ni V 

Iranian domain of the Persian Gulf 2.89 90.48 64.90 52.0 

Global baseline values 0.30 19.0 52.0  

NOAA marine sediment guideline 1.20 46.70 20.90  

RSA guideline 1.20-2.0 15.0-30.0 70.0-80.0 20.0-

30.0 

Continental shelf of Pakistan 0.31 10.41 77.90 n.d. 

Caspian Sea, Iran 0.10-

0.24 

11.30-

24.60 

29.40-

67.80 

76.50-

145.0 

USA, Snake River Basin 0.69 23.75 23.45 77.60 

Cd: Cadmium; Pb: lead; Ni: Nickle; V: Vanadium 

One further important problem related to marine ecosystems including the PG is 

eutrophication, defined as "the process of organic matter and nutrient enrichment (mainly 

nitrogen and phosphorus) of water leading to increased growth, primary production and 

biomass of algae; changes in the balance of organisms; and water quality degradation" (Smith 

et al. 1999). In developing countries, on average more than 90 % of wastewater and 70 % of 

industrial wastes are discharged into coastal waters (Creel 2003). Agricultural runoff and 
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domestic sewage are rich in various nutrients and organics. All these pollutants may cause 

localized eutrophication and are considered another important threat to the sustainability of 

the PG ecosystems (Gawad et al., 2008). Studies have shown that this specific type of urban 

pollution can have potential influence in coastal marine environments and can change 

structural and functional attributes of biodiversity (Pearson and Rosenberg 1978; Balestri et 

al. 2004; Terlizzi et al. 2005).  

Moreover, throughout the past decades, climate change and global warming have caused 

considerable shifts in marine ecosystems (Thomas et al. 2004; Barange et al. 2010). In terms 

of global climate change, environmental factors that affect the structure and functioning of 

marine systems are temperature (both increasing mean temperatures and a higher frequency of 

episodic extremes), sea-level rise, availability of water from precipitation and runoff, wind 

patterns, ocean acidification and storminess (Abuzinada et al. 2008; Bauman et al. 2013). As 

an extreme example, cyclone Gonu (in June 2007) was the strongest tropical cyclone hitherto 

recorded in the Strait of Hormuz and Oman Sea. It caused landfall in Oman and in southern 

Iran. The total amount of rainfall (> 600 mm) exceeded the average yearly rainfall by as much 

as tenfold, resulting in storm run-off and flash-floods in the ephemeral river beds. Because of 

strong surge and wave, Gonu caused severe coastal damage in the area. The effects of this 

disturbance event on the marine environment of the PG have been studied in several 

publications such as (Fritz et al. 2010; Abdalla and bin Yahya Al-Abri 2011; Amini Yekta et 

al. 2012). For example, phytoplankton blooms in the PG after Gonu have been attributed to 

strong storm-induced mixing and upwelling (Wang and Zhao 2008).  
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Fig. 1-8. A schematic drawing showing different sources of anthropogenic impacts on marine 

environments. Adapted from (Zeppilli et al. 2015). 

 

The introduction of aquatic invasive species is another major threat facing the marine 

environment (Stachowicz et al. 2002; Pyšek and Richardson 2010). Hamza (2006) reported 

several exotic phytoplankton and zooplankton species in water samples collected from ballast 

water tanks of a gas tanker stopped along the UAE coastal area. The last decade has seen a 

noticeable increase in the frequency of harmful algae blooms (commonly referred to as "red 

tides" caused by the marine ichthyotoxic dinoflagellate Cochlodinium polykrikoides in the PG 

(Al Shehhi et al. 2014). For instance, massive blooms affected the PG from August 2008 to 

May 2009 (in which period our sampling campaign of 2008 (chapter 2) took place) causing 

widespread fish kills, damaged coral reefs, restricted fishing activities, impacted tourism and 

interrupted desalination operations (Richlen et al. 2010). Fig. 1-9 illustrates the progression of 

the 2008–2009 harmful algal bloom in the PG, which started in the south of the Strait of 

Hormuz in August 2008 (Hamzehei et al., 2012), then rapidly spread westward along a large 

part of the Iranian coast. Such blooms are obviously facilitated by the above-mentioned 

coastal eutrophication and episodic climate extremes.  

Invasive species remain a major environmental problem in the world's oceans. Managing the 

vectors of introduction is the most effective means of mitigating this problem. Maritime 
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vectors are diverse. The major vectors include ballast water. Other vectors are the biofouling 

of vessels by a community of sessile and associated mobile organisms that colonize and grow 

on any wetted surface of a vessel, such as hulls, anchors, storage lockers, and other 

colonizable locations; aquaculture; live seafood; live bait; the ornamental species trade and 

marine debris.  

 

 

Fig. 1-9. Distribution of chlorophyll a concentration in October and November 2008, and 

January 2009, illustrating the initiation and progression of a massive toxic dinoflagellate 

bloom (Hamzehei et al., 2012).  

 

Tourism and recreational activities are another important source of anthropogenic stress in 

the PG (Gladstone et al. 2013). In one study in Bandar Abbas city, it was found that tourism 

and recreational activities were responsible for more than 90 % of litter production on beaches 

(Sarafraz et al. 2016).  

 

2 Intertidal areas and sandy beaches 

2.1 Intertidal areas 

In this study, we will focus on intertidal habitats and more specifically on sandy beaches. 

Here we briefly introduce some general features of intertidal areas and then elaborate more on 

sandy beaches.  

The intertidal zone, also called littoral, is the area between low and high water marks and 

forms part of many landscapes that appeal to humans, allowing the formation of important 
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recreational and tourist economies. This is an area of a foreshore and seabed which is exposed 

to air at low tide and submerged at high tide. Throughout the intertidal area, prominent 

zonation occurs. Zonation is evident from the occurrence of specific organisms in distinct 

bands. These distinct bands result from many complex physical and biological factors that 

affect marine organisms. In other words, the zonation of organisms is the reflection of their 

response to both physical and biological factors (McLachlan and Jaramillo 1996).   

Based on the duration of submergence, the intertidal zone can be subdivided into three 

subzones: 1) the high tide zone (upper mid-littoral) is covered by water during spring high tide 

only, so it experiences dry periods daily; it is a highly saline environment and spends much of 

its time as a semi-terrestrial habitat; 2) the middle tide zone (lower mid-littoral) is regularly 

covered and uncovered (twice a day when tides are semidiurnal) by tides; 3) the low tide zone 

(lower littoral) which borders on the shallow subtidal zone and is mostly submerged and is 

dry only at the lowest tides (Doty 1946). This zone often harbours the highest biodiversity of 

macrobenthos (Armonies and Reise 2000). Intertidal animals experience physiological stress 

during low tide and species inhabiting the upper intertidal zone are often more tolerant to 

thermal and desiccation stress than those found in other zones (McMahon 1990; Short 1999).  

Climatic factors (temperature, humidity and wind) and also other factors (such as desiccation 

and light penetration) all affect community structure in the intertidal zone. Consequently, the 

only animals to be found in areas regularly emerged by the tide, are those that have adapted to 

these more variable and extreme conditions. The adaptations may be behavioural (i.e. 

movements or actions), morphological (i.e. characteristics of external body structure), and/or 

physiological (i.e. internal functions of cells and organs) (Giere 2009). 

 

2.2 Sandy beaches: Definition, characteristics and classification 

Beaches form the border areas between the land and water bodies such as oceans and seas. 

This strip of nature formed by a deposit of sediment between land and sea represents one of 

the world’s most dynamic natural environments (Schwartz 2005; Pilkey et al. 2011). Beaches 

in many places of the world are of substantial touristic value, drawing millions of visitors 

worldwide. There is no single, agreed-upon definition of a beach. The term "sandy beach" can 

be used to describe a wide range of environments, from high-energy open-ocean beaches to 

sheltered estuarine sand flats (McLachlan 1983). One fairly broad definition refers to a beach 

as an "accumulation of wave-washed, loose sediment that extends between the outermost 

breakers and the landward limit of wave and swash action" (Leatherman 1988). Our use of the 

term (sandy) beaches roughly corresponds to this definition.  



 GENERAL INTRODUCTION 

25 
 

In comparison to other coastal ecosystems such as rocky shores and seagrass beds, sandy 

beaches (also called sandy shores) are among the most simple systems in terms of habitat 

complexity (Reise 2001). They are distributed worldwide in many temperate and tropical 

areas, where they constitute an important habitat for a variety of fauna. Due to their ecosystem 

services and economic benefits to mankind (e.g. harvestable natural resources, storm buffers, 

recreation and tourism), sandy beaches are considered an important element of the coastal 

ecosystems with economic, social and cultural importance to humans (Costanza et al. 1997; 

Costanza 1999; Pilkey et al. 2011). Besides, beaches function as natural filters responsible for 

the re-mineralization of substances, which then return to the sea as nutrients (Coull and 

Chandler 2001; McLachlan and Brown 2006).  

Sandy beaches are commonly found in association with coastal dunes and occur along 

approximately 20 % of the world’s coast. Marine sandy beaches are composed of a mixture of 

quartz and carbonate sands from terrestrial and marine origin, respectively (Masselink and 

Pattiaratchi 2001).  

The beach is often divided into the following zones (Fig. 1-10): 1) upper beach or back shore: 

area between high tide line and primary dune; 2) swash zone: area where waves rush up the 

face of the beach and retreat seaward (usually remains saturated), and 3) surf zone: area 

between the low water line and the point where breakers form.  
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Fig. 1-10. Cross-section of an idealized beach showing the common beach zones and some 

other features at both high and low tide, adapted from: 

(http://www.marine.tmd.go.th/marinemet_html/lect20.html)  

 

 

Sandy beaches are shaped principally by the interacting physical forces of waves, tides and 

sediment movements. In fact, the physical structure of sandy beaches can be defined in terms 

of sediment, waves and tides. The interaction of breaking waves, tides, slope and sediment 

texture determines the morphology of the beach as well as the circulation patterns of the surf 

zone (Wright and Short 1984; Masselink and Short 1993), collectively resulting in the so-

called "morphodynamic state of a beach" (Carter 2013). Wright and Short (1984) proposed 

a morphodynamic continuum of beaches with two endpoint-type beaches and several 

intermediate types between them. These endpoints are dissipative and reflective beaches. 

The factors that determine the morphodynamic beach state or type include mainly the wave 

height, wave period and particle size of the beach sediment. Accordingly, beach state can be 

estimated by an index called Dean’s dimensionless fall velocity (also called parameter Ω). Ω 

reflects the interaction between wave height, wave period and sediment fall velocity of sand 

particles (Wright and Short 1984). 

Ω = Hb/Ws.T 

where Hb is the average height of a wave (in cm) at the point where the wave starts to break, 

Ws is sediment fall velocity in cm/s, and T is wave period in seconds. When Ω < 1, beaches 

are considered reflective, when Ω > 6 they are dissipative, while in between (1 < Ω < 6) they 

http://www.marine.tmd.go.th/marinemet_html/lect20.html
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are intermediate beaches. Thus, coarser sediments (larger particles sink faster) and long 

wave periods contribute to low values of Ω and hence to more reflective beaches, whereas 

high waves with shorter periods, running over finer-grained sediments typically result in a 

dissipative morphodynamic beach state (Kaiser and Attrill 2011).  

Dissipative beaches are a product of large waves moving over fine sands, resulting in a flat or 

low gradient beach face and wide surf zone. Waves start to break far from the shore in a series 

of spilling breakers that dissipate their energy along the broad surf zones. Dissipative beaches 

usually have rather stable morphologies, and exhibit minimal shoreline change with only a 

gentle slope (Short and Hesp 1982) (Fig. 1-11). Wave pressure on interstitial water is limited, 

hence organic matter can partly accumulate, leading to high microbial activity and steep 

geochemical profiles.  

Intermediate beaches are located between the high energy dissipative and the lower energy 

reflective beaches. The two most distinguishing characteristics of intermediate beaches are 1) 

a surf zone and 2) a cellular rip circulation (rip currents) commonly associated with rhythmic 

bar and beach topography (Schwartz 2005). They are produced by moderate to high waves 

(0.5 - 2.5 m), fine to medium sands and longer wave periods (Short and Wright 1983) (Fig. 1-

11).   

Reflective sandy beaches lie at the lower energy end of the beach spectrum. These beaches 

are a product of lower waves and coarser sand. Their morphology consists of a steeper and 

narrower surf zone which is sometimes absent. Waves surge or break straight on the shore 

generating fast swashes with short periods. During the breaking process, part of the wave 

energy is "reflected" back to the sea by the very steep beach face (Fig. 1-11). Wave pressure 

on interstitial water is large, resulting in strong pore water flushing and very limited or no 

retention of organic matter. Geochemical profiles are therefore more homogeneous.  

 Sandy beaches have also been divided into three categories based on tidal range: microtidal, 

mesotidal and macrotidal. Areas with high tidal ranges (> 4 m) are referred to macrotidal, 

where waves reach further up the shore, while areas with lower tidal ranges are considered 

mesotidal (range = 2 – 4 m) or microtidal (range < 2 m) (Davies 1964). However, depending 

on wave energy and sediment particle size, even microtidal beaches can belong to any 

morphodynamic beach state (Wright and Short 1984; Masselink and Short 1993), illustrating 

nicely that tidal range is a poor criterion to properly classify beaches and reflect their true 

morphodynamic diversity.  
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Figure 1-11 A schematic drawing showing the main beach morphodynamic types, Adapted 

from Short and Wright (1983). 

 

 

3 Benthic communities of beaches 

3.1 Definition, classification and ecological significance 

Compared to other marine habitats such as mangroves, rocky shores or seagrasses, beaches 

may look like deserts without any life at first glance. However, a wide variety of organisms 

inhabit the interstitial spaces between the sediment particles in sandy beaches. The name 

"benthos" is derived from the Greek (βενθος), meaning "depth of the sea". The benthos is 

normally divided into three functional groups: the infauna or endobenthos, the epibenthos and 

hyperbenthos, i.e. those organisms living within the substratum, on the surface of the 

substratum and just above it, respectively (Coull and Chandler 2001). The term benthos thus 

refers to the community of organisms that live in, on, or near the seafloor. Generally, benthic 

communities are much more diverse in terms of species richness than those of the surface and 

mid-water layers. Almost 98 % of all marine species belong to the benthos (Peres 1982).  

The benthos is further divided in subgroups, primarily defined by organism size, or more 

precisely by the pore size of sieves used to separate these size groups. Microbenthos pass 

through a sieve with mesh size ≤ 38 µm and include mostly unicellular organisms like 

flagellates, ciliates and diatoms, which are usually limited to the upper sediment layers in 
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sheltered conditions, but can be mixed to deeper layers of sediment when subject to wave 

action (Giere, 2009). Macrobenthos are retained on sieves with a mesh size of 1 mm and are 

mainly represented by invertebrate animals such as crustaceans, molluscs, echinoderms and 

polychaetes. The term meiobenthos (or meiofauna), derived from the Greek word μειος 

meaning smaller, was introduced by Mare (1942) to define those benthic metazoans of 

intermediate size between macro- and microbenthos, i.e. they pass through a 1-mm sieve but 

are retained on a mesh with pore size of ~38 µm (small variations on the precise mesh size are 

common in the literature). As such, the distinction between micro-, meio- and macrobenthos 

is based on operational criteria and does not always follow clear taxonomic boundaries.  

 

3.2 Intertidal meiobenthos: abundance and diversity 

Meiobenthos are highly diverse and include organisms from a wide variety of higher taxa 

such as Nematoda, Copepoda, Turbellaria, Gastrotricha, Rotifera, Tardigrada, Kinorhyncha 

and several others (McLachlan, 1983; Giere, 2009). Importantly, more than 80 % of the 

meiobenthos in soft substrata is usually represented by nematodes. Harpacticoid copepods 

often constitute the second most abundant group. So, many studies on meiobenthic 

communities focus on one or both of these two taxa. Meiofauna are found in virtually all 

aquatic sediments and often abound in very large numbers, with densities of 106 ind./m2 being 

typical of many marine soft sediments (Giere, 2009). Biomass varies between 0.1-10 g dry 

wt/m2, with the highest values in muddy brackish-water sediments (Heip et al., 1985). 

Meiofaunal abundances also vary greatly according to the habitat. Highest abundances are 

typically measured in intertidal muddy estuarine habitats, whereas the lowest are typically 

encountered in the deep sea (Coull, 1988; 1999).   

Densities and diversities of meiobenthos assemblages have been related to several abiotic 

environmental factors, such as sediment grain size, organic content, substratum porosity and 

water percolation, degree of exposure to wave action, oxygenation of the sediment, 

temperature, salinity and water depth (Gheskiere et al. 2005; Nozais et al. 2005), as well as to 

biological factors such as food quality and quantity, predator impacts and competition 

(Montagna et al. 1983; Rudnick et al. 1985; Gallucci et al. 2005).  
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3.3 Marine nematodes 

In this section, we present a brief background and introduction to several aspects of marine 

nematode populations and assemblages which are key to our own work. These aspects 

include: 1) general characteristics, 2) biodiversity, 3) temporal and spatial patterns, including 

horizontal and vertical distribution patterns on beaches, 4) dispersal and population genetics, 

5) feeding strategies, 6) functional roles in ecosystems, and finally 7) their role as bio-

indicators.  

 

3.3.1 General characteristics  

The phylum Nematoda is an evolutionarily successful group of organisms and they are 

considered among the most ubiquitous, abundant and diverse animals of terrestrial and marine 

ecosystems (Giere, 2009). The phylum belongs to the major protostome "supertaxon" 

Ecdysozoa, the clade of molting invertebrates (Aguinaldo et al. 1997). Throughout the past 

years, the taxon Ecdysozoa has been an important group for understanding the basal 

phylogeny of animals and has become well-established in metazoan systematics (Edgecombe 

et al. 2011).  

Nematodes most likely arose slightly prior to or during the Cambrian explosion (Poinar 

2011). A trace fossil from the Hubei Province of China resembling the burrows of nematodes 

may well represent the oldest record of activity by marine nematodes, preceding known 

nematode fossils by 70 million years. This study indicates that marine nematodes originated 

no earlier than the mid Early Cambrian, around 470 million years ago (Baliński et al. 2013). 

However, because of the absence of hard structures, the fossil record of nematodes is very 

limited, and may not provide a very accurate estimate of the timing of the origin of the 

phylum Nematoda. Evolutionary studies have shown that marine nematodes of the order 

Enoplida or Dorylaimida represent the earliest lineages of nematodes (Meldal et al. 2007; 

Blaxter 2011; Smythe 2015).  

The phylum Nematoda are amazing for their adaptation to a wide variety of habitats, 

including virtually all terrestrial, freshwater and marine soils and sediments as well as plant 

and animal hosts. Nematodes can even abound in more extreme marine environments such as 

deep-sea hydrothermal vents, cold seeps and sea mounts (Vanreusel et al. 2010). 

Hydrothermal vents are enriched with toxic chemicals such as hydrogen sulfide and heavy 

metals and harbor a limited number of taxa which can survive under these conditions.  
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The field of marine nematology in some countries remains underdeveloped. This is also the 

case for Iran, where until recently, virtually all nematologists work(ed) on plant parasitic 

nematodes. Requirement of taxonomic expertise, along with the time-consuming nature of 

morphological identification, have been a major challenge for assemblage studies of 

nematodes at genus or species-level resolution.  

 

3.3.2 Nematode biodiversity 

Estimates of the total number of nematode species vary from 100,000 (Coomans 2002) to 

100,000,000 (Lambshead 1993). Approximately 30,000 species have been described for the 

phylum as a whole (Baldwin et al. 2000; Hugot et al. 2001). Overall estimates for the phylum 

thus suggest that no more than 0.3 % to 5.3 % of the world’s nematode fauna has been 

described (Hugot et al. 2001). Free-living nematodes are one of the most diverse groups of 

metazoans in most marine sediments, with a wide distribution from pristine to extremely 

polluted habitats (Heip et al. 1985; Boucher and Lambshead 1995; Moreno et al. 2011).  

Estimates of the global species diversity of marine nematodes also span a broad range. 

According to a recent conservative estimate, the number of free-living marine nematode 

species could be up to 50,000, with 86 % of the existing species remaining to be discovered 

(approximately 6,900 species of free-living marine nematodes have been described) 

(Appeltans et al. 2012), while previous studies have estimated marine nematode species 

number at 10,000-20,000 (Mokievsky and Azovsky 2002) at the lower extreme and in excess 

of 1×106 at the higher end (Lambshead 1993; Snelgrove et al. 1997; Lambshead and Boucher 

2003). Such large discrepancies to a significant extent depend on how extrapolations are made 

from already inventoried to non-inventoried areas of the seafloor, particularly in the deep sea, 

where nematode assemblages can exhibit a very high local species diversity (Danovaro et al. 

2010; Vanreusel et al. 2010). This, in large part, depends on estimates of species turnover, 

which are poorly supported in many marine habitats, particularly across larger geographical 

areas. 

In any case, the described diversity of nematodes is only a small part of the true species 

diversity, and this is further aggravated by the potentially high cryptic species diversity, 

ignored in all the above estimates. Cryptic species are morphologically very similar but 

genetically distinct species. Indeed, recent genetic studies have revealed the presence of 

substantial cryptic diversity in marine nematodes belonging to different orders (Bhadury et al. 

2008; Derycke et al. 2010a; De Oliveira et al. 2012; Palomares-Rius et al. 2014).  



 GENERAL INTRODUCTION 

32 
 

3.3.3 Temporal and spatial patterns in marine nematode 

assemblages 

Understanding the spatial and temporal variations in communities is important to determine 

the pattern of distribution, abundance, maintenance of species diversity, and stability of 

communities (Koenig 1999; Ellingsen 2002; Thrush et al. 2010; Moens et al. 2013).  

 

3.3.3.1. Temporal patterns  

Marine nematodes exhibit temporal fluctuations on the scale of days to years (Alongi 1990b; 

Gourbault et al. 1998; Nicholas 2001; Riera et al. 2011b; Maria et al. 2013a; Ramalho et al. 

2014), even though some studies have observed a lack of any temporal pattern (Warwick and 

Buchanan 1971; Juario 1975; Liu et al. 2007). Information on temporal variation in marine 

nematode assemblages has mostly focused on seasonal variations (Boaden and Platt 1971; 

McIntyre and Murison 1973; Platt 1977; McLachlan 1978; Blome 1982; Sharma and Webster 

1983; Gourbault et al. 1998; Nicholas and Hodda 1999; Nicholas 2001; Albuquerque et al. 

2007; Liu et al. 2008; Venekey et al. 2014a), whereas longer-term variation has received only 

limited attention (Coull 1985, 1986; Eskin and Coull 1987; Li et al. 1996; Riera et al. 2011a). 

Below, we mention the main causes for temporal fluctuations of marine nematodes. 

Temperature is an important abiotic factor in marine environments. Even slight temperature 

changes can impact reproductive and metabolic activity (Moens and Vincx 2000). It can 

affect nematode abundances directly, e.g. via dehydration and/or effects on reproduction, and 

indirectly as well, e.g. by controlling the growth of food items such as bacteria and diatoms 

(Harris 1972a) and/or by affecting the depth of the redox discontinuity layer in sediments  

(Dye 1983). Temperature regime can also have a substantial effect on the interspecific 

interactions and life-history characteristics of marine nematodes (De Meester et al. 2015b; De 

Meester et al. 2015c).  

Other climatic factors such as precipitation can also cause seasonal fluctuations in nematode 

assemblages. Some studies in tropical regions have, for instance, indicated that nematode 

density changes are affected by rain cycles (Pattnaik and Lakshmana Rao 1990; Ingole and 

Parulekar 1998; Venekey et al. 2014b). On a much shorter temporal scale, short episodes of 

rainfall, such as a heavy shower on an exposed intertidal flat, may cause vertical migrations of 

nematodes in sediments (Steyaert et al., 2001).  
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Salinity is another important factor affecting both the temporal and spatial distribution of 

marine nematodes. From a temporal perspective, salinity fluctuations are linked with seasonal 

cycles in precipitation (Paranhos and Mayr 1993). Within sandy beach habitats, there can also 

be considerable short-term variability in salinity, both in direct relation to the tides and 

indirectly through episodic events such as the above-mentioned episodes of heavy rainfall 

during low-tide exposure (Steyaert et al., 2001).  

Food availability is another driver of temporal as well as spatial variation in nematode 

assemblages (Heip et al. 1985; Moens et al. 2013). For instance, the densities of certain 

nematode feeding guilds have been shown to be related to variations in the abundances of the 

food sources of those groups (Austen and Warwick 1995; Kendall et al. 1995; Ólafsson and 

Elmgren 1997).  

 

3.3.3.2. Spatial patterns  

Spatial distribution of marine nematodes can be viewed at large and small scales. Several 

factors have been proposed to explain these distributions, including physico-chemical (e.g. 

temperature, salinity, mean grain size of sediment and dissolved oxygen concentration) 

(Steyaert et al. 2003; Hourston et al. 2005; Nozais et al. 2005; Adão et al. 2009) as well as 

biological factors such as food quality and quantity, predator/competition impacts and 

reproductive behaviour (Montagna et al. 1983; Rudnick et al. 1985; Moens et al. 1999; 

Gallucci et al. 2005; dos Santos and Moens 2011; Maria et al. 2012; Urban-Malinga et al. 

2016). It is often suggested that physico-chemical factors typically determine macro-scale 

(e.g. kilometre scale) patterns, whilst biological factors cause micro-scale (e.g. (sub)metre 

scale) heterogeneity (Heip et al. 1985; Moens et al. 2013). Marine nematodes are generally 

influenced by these complex and interacting physical and biological processes, leading to 

variation in their distribution at different spatial and temporal scales.  

Salinity is a key factor with strong significance on nematode distribution, especially in 

estuarine habitats (Adão et al. 2009; Chen et al. 2012). A strong relationship between salinity 

gradients and meiofaunal/nematode assemblage structure has been reported (Austen and 

Warwick 1989; Barnes et al. 2008). Salinity has also been correlated with the distribution of 

particular nematode feeding types in estuarine habitats (Austen 1989). At high salinities, 

selective deposit feeders and epigrowth feeders tend to dominate, while at lower salinities, 

omnivores and non-selective deposit feeders often do so. These trends perhaps relate to the 
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availability of organic matter in different reaches of an estuary. In addition to gradients in 

average salinity, the local range of salinity fluctuations varies along estuaries but also, for 

instance, across the intertidal zone; ranges of daily salinity fluctuations may have yet more 

pronounced effects on marine/estuarine organisms than average values per se (Kaiser and 

Attrill 2011). To what extent elevated mean salinity, as in the PG area, affects nematode 

abundance, diversity and assemblage composition is not properly documented.  

As marine nematodes live constantly in the sediment, any changes in sediment 

characteristics (grain size, grain shape, sorting and sediment pore space) may have an effect 

on their assemblage structure (Giere 2009). Herman (1982) and Boyd et al.  (2000b) reported 

that nematodes are more sensitive to shifts in sediment structure than macrofauna. For 

example, it has been frequently reported that coarser sediments have higher nematode species 

richness and diversity than finer sediments (Heip and Decraemer 1974; Steyaert et al. 1999; 

Vanaverbeke et al. 2002; Semprucci et al. 2010; Vanaverbeke et al. 2011). Similarly, 

nematode assemblage composition also changes according to the granulometric properties of 

the sediment (Wieser 1959; Heip et al. 1985; Vincx et al. 1990; Vanaverbeke et al. 2002; 

Vanaverbeke et al. 2011; Fonseca et al. 2014). In addition, nematodes from sandy habitats are 

often more slender as they have to move through the sediment, whereas nematodes from 

muddy habitats are generally more robust for burrowing through the sediment (Moens et al., 

(2013). Gheskiere et al. (2004) also found that grain size explained the horizontal nematode 

distribution at a Belgian beach (De Panne) (see 3.4.1).  

Sediment characteristics also determine other aspects of the environment of the sediment, 

such as organic matter availability (Coull 1985; Danovaro and Gambi 2002). Generally, 

clay and silt substrata retain more organic matter than sand. It has been reported that the 

content of organic matter can partly explain the spatial patterns of distribution of free-living 

nematodes in some marine habitats (Ólafsson and Elmgren 1997; Schratzberger et al. 2006). 

(Sajan et al. 2010) reported that average biomass and density of nematodes were higher in 

silt/clay substrata than in sandy and mixed sand. The authors stated that fine particles may 

hold more labile organic matter and this may cause higher biomass and density of nematodes, 

supporting the general trend of higher nematode abundances found in finer sands (Adão et al. 

2009). Comparison of sheltered versus exposed sandy beaches further indicates that 

meiofauna densities at the sheltered beaches are usually higher compared with exposed 

beaches (Ólafsson 1991; Gheskiere et al. 2002; Corgosinho et al. 2003; Urban-Malinga et al. 

2004; Gheskiere et al. 2005; Hourston et al. 2005). In sheltered beaches, the sediment stability 

increases organic matter accumulation. However, some studies (Calles Procel et al. 2005) 
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have reported contrasting trends, namely highest meiofauna densities in exposed beaches and 

lower densities in sheltered beaches, but these results were probably related more to 

anthropogenic impacts than to real granulometric effects. Organic matter availability, in turn, 

is an important determinant of sediment oxygenation because it stimulates microbial growth, 

which consumes most of the oxygen (Bickford 1996; Kristensen 2000; Steyaert et al. 2007). 

In addition, organic matter can bind pollutants, thus affecting their retention in sediments and 

availability to consumers (Philippe and Schaumann 2014; Mazzei and Piccolo 2015).  

Pollution is indeed another important abiotic factor affecting the distribution pattern of 

marine nematodes; effects depend on pollutant type, exposure level and field conditions. 

Pollutants influence marine nematodes by changes in abundance and diversity, trophic group 

composition, reproductive ability etc. (Nanajkar and Ingole 2010; Balsamo et al. 2012; Kang 

et al. 2014).  

Furthermore, marine nematode distribution patterns can result from biological interactions. 

Biological interactions between nematodes and macrofauna can occur and influence 

nematode distribution (Van Colen et al. 2009; Braeckman et al. 2011; Maria et al. 2011b; Van 

Colen et al. 2012; Urban-Malinga et al. 2016). According to Mirto et al. (2000), for instance, 

mussels induce changes in sediment characteristics, organic matter quantity and quality, and 

depth of oxygen penetration in the sediment.  

Moreover, competition, both among individuals within a species and among species, can also 

play a major role in limiting faunal abundances and distribution (Gray and Elliott 2009; 

Moens et al. 2013). Predation among nematodes can also be responsible for controlling 

nematode densities and perhaps also diversity (Gallucci et al. 2005; dos Santos and Moens 

2011).  

Aggregative small-scale horizontal distribution (at scales of meters or less) of meiofauna is 

a well documented phenomenon (Ólafsson 1992; Blome et al. 1999; Giere 2009; Maria et al. 

2013b; Urban-Malinga 2014). The causative factors for patchiness are multifactorial: 

biological factors, such as reproductive activities, predation and availability of, and 

competition for food have been reported as main drivers (Giere 2009). Nematodes are highly 

influenced by small-scale patches of food and by disturbance, both of which create 

microhabitats in space and time. The resulting spatial patchiness may be defined at the scales 

of cms (Findlay 1981; Blanchard 1990; Ólafsson 1992; Sandulli and Pinckney 1999), and due 

to such patchy distribution pattern, meiofauna density and assemblage composition may 

fluctuate over distances of a few centimeters. The spatial autocorrelation between patches and 
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patch sizes of meiofauna and of microphytobenthos suggests that at least in intertidal 

sediments, variations in food resources may be the principal determinant of meiofauna small-

scale patchiness (Findlay, 1981; Blanchard, 1990).  

 

3.4 Zonation patterns of intertidal meiofauna/nematodes 

Intertidal meiobenthic species inhabit specific zones according to their ecological 

requirements, life cycle, feeding habits and interactions with other organisms (Giere, 2009). 

Generally, the zonation pattern of meiofauna is a reflection of their responses to both physical 

and biological factors. More specifically, distribution patterns of meiofauna in sandy beach 

habitats can be divided into vertical and horizontal zonation (McLachlan and Turner 1994; 

McLachlan and Jaramillo 1995; Giere 2009; Moens et al. 2013; Urban-Malinga 2014). Below 

we briefly describe horizontal and vertical patterns of meiofauna distribution.  

 

3.4.1 Horizontal zonation patterns  

McLachlan and Jaramillo (1995) have described four different types of horizontal zonation of 

fauna on sandy beaches, namely: 1) no clear zonation; 2) two zones delimited by the driftline; 

3) three zones of supralittoral, littoral and sublittoral, according to Dahl’s (1952)  

classification; and 4) four physical zones, a dry zone, a zone of water retention, a zone of 

resurgence, and a zone of saturation based on sediment moisture. These horizontal zonations 

are reflected in the distribution patterns of both macrofauna and meiofauna and can be 

important in planning of biodiversity surveys.  

It has been reported that in sandy beaches, benthic zonation is predominantly controlled by 

physical forces related to wave exposure, which in turn influence other habitat parameters, 

including granulometry (sediment grain size and sediment structure) (McLachlan and Brown 

2006; Schlacher et al. 2008). They also influence the fluctuations of other environmental 

variables such as water table level, temperature and salinity (Hinton 2000; Li et al. 2000; 

Urish and McKenna 2004).  

As part of the physical forces mentioned above, the tidal level has been identified as one of 

the major factors influencing the horizontal patterns of meiofauna. Indeed, the concept that 

meiofauna assemblages change along a gradient perpendicular to the waterline has been well 
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recognized (Warwick 1971; Hodda and Nicholas 1985). Several reports have found 

significant differences in meiofaunal densities among intertidal positions, showing that 

densities increase from the upper towards the lower littoral zone (Hodda and Nicholas 1985; 

Ólafsson 1991; Gheskiere et al. 2002; Kotwicki et al. 2005). In fact, nematode assemblages at 

the lower intertidal are often considered an extension of, and not fundamentally different 

from, subtidal nematode assemblages (Gheskiere et al. 2004; Maria et al. 2013b). However, 

some exceptions with highest densities in the upper beach zone exist (Rodriguez et al. 2001). 

The density pattern of marine nematodes resembles the usual pattern for macrofauna, but the 

diversity pattern does not: in macrofauna, density and diversity both tend to increase towards 

the lower intertidal, whereas in meiofauna diversity more commonly peaks at the mid-tidal 

level (see below) (Fig. 1-12). 

Regarding the beach type, McLachlan and Turner (1994) have stated that optimum conditions 

for the existence of a diverse and abundant meiofauna occur in intermediate beaches. Their 

prediction was based upon the fact that beaches with intermediate morphodynamic 

characteristics represent an equilibrium state between organic inputs (which increase towards 

the dissipative beach state) and oxygenation conditions (which increase towards the reflective 

beach state) (McIntyre 1969; Ott 1972). On the scale of a single beach, essentially the same 

equilibria may explain the occurrence of diversity peaks of meiofauna around the mid-

intertidal (Armonies and Reise 2000; Gheskiere et al. 2004; Gingold et al. 2010; Maria et al. 

2013b) (see below for more info).  
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Fig. 1-12. Conceptual diagram of typical across shore gradient in meiofauna and macrofauna 

abundance and diversity.   

 

Regarding the effect of tidal level on the horizontal diversity pattern of marine nematodes, 

it has been demonstrated that nematode species diversity often increases from lowest values at 

the upper littoral to a maximum around the mid-tidal level and then again decreasing – albeit 

not drastically – towards the low-water line (Armonies and Reise 2000; Gheskiere et al. 2004; 

Gingold et al. 2010). This is in contrast with macrobenthos diversity, which generally 

increases almost linearly from the upper to the lower intertidal. This trend may be explained 

by a direct dependence of feeding activity in many macrofaunal species on tidal submergence 

(Armonies and Reise 2000). The unimodal diversity pattern of meiofauna  is why in the 

present study, we sampled from this mid-intertidal zone. Higher diversity at the middle beach 

can be attributed to the fact that an optimal balance among desiccation/temperature/salinity 

stress, hydrodynamic disturbance and sediment stability, food availability and oxygen 

concentration is usually reached somewhere in the mid-intertidal. As such, nematode diversity 

gradients across beaches may provide a good illustration of both the intermediate disturbance 

hypothesis (IDH) (Connell 1978) and the dynamic equilibrium hypothesis (DEM) (Huston 

1979). The IDH predicts that species diversity will be highest at intermediate levels of 

disturbance (here the combination of hydrodynamic disturbance and physiological stress 

following from low-tide exposure), whereas the DEM predicts that the effect of disturbance or 
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stress on diversity depends on productivity (here the availability of organic matter). Another 

point is that the middle beach is a transitional area, with a mixture of swash and surf zone 

processes, which allows the co-occurrence of species from both the upper beach and the 

subtidal (McLachlan and Brown 2006; Maria et al. 2013b). In the study of Maria et al. 

(2013b), 63 % of the nematode species occurring in the middle beach were also found in the 

upper beach and/or in the subtidal. Furthermore, biological factors, such as predation and 

competition for food, are also known to play a key role for the establishment and maintenance 

of meiofauna zonation on sandy beaches (Snelgrove and Butman 1995; Giere 2009; Maria et 

al. 2011b; Maria et al. 2012). 

In addition, the presence of particular ‘microhabitats’ on beach can interfere with the above-

discussed horizontal diversity and density patterns of nematodes on sandy beaches. Gingold et 

al. (2010) demonstrated that beach microhabitats (runnels and sandbars) differed in 

environmental conditions and possessed significantly distinct nematofaunal assemblages. 

Runnels featured higher levels of taxonomic and functional diversity, while sandbars 

possessed a more homogeneous nematode community. In contrast with sandbars, in which 

food (organic matter and microbenthic algae) is scarcer, runnels remain submerged over a 

longer period of time and accumulate organic matter. Consequently, the runnel community 

with relatively calm conditions exhibited a higher degree of patchiness around food sources 

resulting in small-scale aggregations and clumped distributions, presumably owing to a 

predominance of active displacement under calmer conditions and sediment cohesion by algal 

films (Gingold et al. 2011). Maria et al. (2013b) also reported that nematode communities 

from runnel and sandbar habitats are significantly different at macrotidal ridge-and-runnels 

beaches in the North Sea. 

 

3.4.2 Vertical patterns  

Vertical zonation of the meiobenthos is generally controlled by oxygen and the position of the 

redox discontinuity layer, RPD (McLachlan and Jaramillo 1996; Steyaert and Vincx 1996; 

Steyaert et al. 2003). The RPD is a distinct redox-cline which marks the transition between 

oxidized and reduced conditions in the sediment (Gray 1981). The position of this layer is 

controlled by hydrodynamic forces, sediment properties (such as grain size) and organic 

content of the sediment. These abiotic factors are in fact variable in the different habitats and 
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this is reflected in different vertical distribution patterns of meiofauna, which in turn exhibit 

"taxon" (e.g. Nematoda tend to be more tolerant to hypoxia than harpacticoid copepods 

(Modig and Ólafsson 1998; Moodley et al. 2000) and species-specific (see e.g. Steyaert et al., 

2007) tolerances to reduced oxygen concentrations.  

Both long and short-term effects of oxygen on vertical distribution of meiofauna can be 

important. Reports have indicated that long oxygen stress (longer than 2 months) can cause 

changes in meiofaunal community structure and vertical distribution patterns (Moodley et al. 

1997; Wetzel et al. 2002). Yet, short-term exposure to hypoxia and/or anoxia can also 

profoundly affect nematode abundances and decimate populations of common species, 

including some which are generally considered fairly tolerant to reduced oxygen conditions 

(Steyaert et al., 2007). It is not always clear whether such impacts are the direct consequence 

of hypoxia or rather an indirect result through increased concentrations of toxic sulfides under 

low-oxygen concentrations (Wetzel et al. 2001; Wetzel et al. 2002; Steyaert et al. 2007).  

Coarser (permeable) sediments are generally more oxygenated with a deeper RPD, whereas in 

finer sediments or in non-permeable sediments, meiofauna can be largely restricted to the 

upper first cms or mms of the sediment (Coull, 1988). Numerous studies (McLachlan 1978; 

Ólafsson and Elmgren 1997; de Jesús-Navarrete and Herrera-Gómez 2002; Kotwicki et al. 

2005) have reported highest meiofauna densities in the top 10 cm of beach sediments, while 

Martins et al. (2015) reported the highest meiofauna densities in the 10-30 cm strata in 

southeast/southern Brazilian reflective beaches. In the latter study, the higher abundance of 

meiofauna in intermediate strata (10-30 cm) was potentially caused by the migration of 

organisms in an attempt to escape the physical stress caused by the wave impact and the 

desiccation characteristic of the intertidal zone (Urban-Malinga et al. 2004). In addition, it has 

been reported that in well-oxygenated sandy beaches, meiofauna occasionally can be 

distributed to  depths of 50 cm or deeper (McLachlan and Brown 2006). For example, Munro 

et al. (1978) recorded nematodes down to 105 cm at such well-oxygenated beaches. Such 

distances are too large to be explained by active downward migration alone. They could, 

however, partly relate to passive up- and downward migration of nematodes with the 

sediment water table during incoming and outgoing tides, a phenomenon which can be very 

pronounced particularly in coarser sediments near the upper littoral (McLachlan et al. 1977; 

Urish and McKenna 2004). Another factor which also affects the depth of the RPD zone is 

seasonal temperature variations. With increasing summer temperatures, the RPD layer will 
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move upwards, resulting in change in meiofaunal assemblages. This factor can be particularly 

important on exposed sandy beaches, where seasonal temperature fluctuations can be 

considerable (Harris 1972b). 

 

3.5. Nematode feeding strategies  

For a more functional analysis of nematode assemblages, as well as a better understanding of 

the importance of resource availability for assemblage composition, nematodes are often 

classified according to feeding types (Wieser 1953; Jensen 1987; Moens and Vincx 1997). 

Several feeding-type or guild classifications for marine nematodes have been proposed, but 

only two are commonly used: the one by Wieser (1953) and the one by Moens and Vincx 

(1997).  

Free-living marine nematodes utilize a broad range of resources, including bacteria, organic 

detritus, microalgae, fungi, protozoa and other meiofauna. Based on the morphology of their 

buccal cavity, marine nematodes have been classified into four feeding groups, two each with 

and without buccal armature (such as teeth, jaws, denticles or other cuticularized stoma 

structures) (Wieser 1953) (Figs. 1-13; 1-14).  

1) Selective deposit feeders (1A-group): nematodes with a small buccal cavity that can only 

ingest small particles, mainly in the size range of bacteria.  

2) Non-selective deposit feeders (1B-group): nematodes with a more spacious buccal cavity 

than 1A but still without teeth, being able to ingest bigger particles, including for instance 

certain diatoms and other protists.  

3) Epigrowth feeders (2A-group); nematodes with one or more (relatively small) tooth or 

teeth in the buccal cavity that allow them to break or pierce cells and suck their content, or to 

scrape off particles from surfaces.  

4) Predators or omnivores (2B group); often large nematodes with large teeth and/or 

mandibles that allow them to capture prey and ingest them, pierce them or tear them to pieces.  
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Fig. 1-13: Marine nematode trophic groups in relation with the ecological status of sediments 

and grain size. Adapted from Semprucci and Balsamo (2012).  

 

This feeding type classification by Wieser (1953) suffers some shortcomings, when compared 

with empirical evidence. While the morphology of the stoma puts obvious constraints to the 

range of prey types that can be handled as well as to the way of obtaining prey, it can be 

thoroughly misleading (Moens et al. 2004). Moreover, nematodes may have flexible feeding 

strategies, being able to shift between different feeding modes and hence also feeding 

types/guilds. In this sense, Moens and Vincx (1997) proposed a modified classification based 

on observations of the feeding behavior of a variety of estuarine nematodes, establishing six 

trophic groups (Fig. 1-14): 1) microvores, feeding exclusively on bacteria and/or dissolved 

organic matter; 2) ciliate feeders, feeding mainly on ciliates but also on bacteria; 3) deposit 

feeders, feeding mostly on bacteria, diatoms and/or other microalgae, but occasionally also 

capable of predation on other meiofauna; 4) epigrowth feeders, that mainly feed on diatoms 

and other microalgae in the same way as explained above under epigrowth feeders; 5) 

facultative predators, that feed on several items, including detritus, but are all capable of 

predation on other nematodes and protists; and 6) predators, that feed mainly or strictly on 

other benthic invertebrates such as nematodes. Moens and Vincx (1997) also emphasize that 

many marine nematodes may have fairly flexible feeding strategies and may thus shift prey 

depending on their availability.  
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Fig. 1-14: Feeding type classification of Moens and Vincx (1997). Figure modified from 

Moens and Vincx (1997) and from Du et al. (2014). 1A, 1B, 2A and 2B refer to the feeding 

types from Wieser (1953). 1 = prokaryotes, 2 = ciliates and flagellated protozoans, 3 = 

filamentous cyanobacteria and microalgae, 4 and 5 = photoautotrophic unicellular protists, 

like diatoms and (some) chlorophytes, 6 = sediment and/or detrital particles, 7 = nematodes, 8 

= other invertebrate metazoans like oligochaetes. 

 

The study of nematode feeding ecology has recently gained momentum by the development 

and application of novel techniques. The use of bulk stable isotope measurements to pinpoint 

carbon sources and trophic level in particular has become well-established (Moens et al. 2002; 

Moens et al. 2005a), whereas the use of next generation sequencing to characterize gut 

contents of bacterivorous nematodes has only just been pioneered (Derycke et al. 2016). 

Stable isotope data and observations of living nematodes have shown that stoma-morphology 

based guild classifications do not always provide good predictions of nematode resource 

utilization and even trophic level (Moens et al. 2005a; Vafeiadou et al. 2014), and dedicated 

experiments have highlighted that even closely related species can have differential resource 

utilization (Derycke et al. 2016; Vafeiadou et al. 2014).  

 

3.6. Functional roles of nematodes in ecosystems  

The high abundances of nematodes in nearly all soft marine sediments can substantially affect 

many ecological processes such as regeneration of nutrients, transfer of energy to higher 

trophic levels in benthic food webs, and bioturbation of sediments. Our aim is not to review 
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all those functions here; however some important roles in ecosystems will be touched upon in 

the next sections of this introduction.  

 

3.6.1. Roles in benthic food chains  

Meiofauna have been regarded as an important component in benthic ecosystems due to their 

high abundance and fast turnover rates compared to macrofauna (Heip et al. 1985; Coull 

1999). Despite having a lower biomass, the meiofaunal biomass turnover rate is typically five 

times higher than that of macrofauna (Giere 2009) and as such may exceed the production of 

macrofaunal assemblages. Within the benthic food web, many nematodes and harpacticoid 

copepods take an intermediate trophic position between primary producers (microalgae) and 

primary decomposers (bacteria) on the one hand, and higher trophic levels on the other (Gee 

1989). Meiofauna can thus establish an important link between smaller and larger organisms 

in marine sediments mainly through trophic interactions (Piot et al. 2014). Indeed, many 

meiofauna are food for the juvenile stages of many commercially important marine species at 

higher trophic levels, including fish and crustaceans (Warwick 1987; Coull 1999; Menn 2002; 

Schückel et al. 2013) (Gee 1989; Coull 1990; Feller and Coull 1995; Colombini et al. 1996). 

In a case study at the surf zone of a sandy shore habitat in Southern Korea, juveniles of the 

amphipod species Synchelidium lenorostralum fed mainly on copepod nauplii and nematodes 

(Yu et al. 2003). The importance of nematodes to higher trophic levels has been somewhat 

better studied in freshwater compared to marine systems. Among the more common predators 

of freshwater nematodes are other nematodes (Majdi and Traunspurger 2015). Besides, the 

importance of many flatworms of the Turbellaria class, as predators of freshwater nematodes 

has also been reported (Martens and Schockaert 1986; Majdi et al. 2014). However, their lack 

of hard structures results in a fast digestion once inside the gut of a predator, which hampers 

correct estimates of the true predation pressure by higher organisms on nematodes (Hofsten et 

al. 1983). Nevertheless, some studies have tried to model the energy flow through the benthic 

food web. For example, (Gontikaki et al. 2011) showed that at Faroe-Shetland Channel (UK), 

sub-surface deposit-feeding polychaetes obtained 35 % of their energy requirements from 

ingestion of nematodes. Together, these reports highlight the significant and important energy 

transfer in the benthic food chain through nematodes.  
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3.6.2. Roles in microbial decomposition and nutrient cycling 

Marine nematodes have catalytic functions in organic matter decomposition and nutrient 

cycling (e. g. mineralization of nutrients) and organic matter decomposition. Decomposition 

is mainly a microbial process and in this regard, both stimulatory (Findlay and Tenore 1982; 

Alkemade et al. 1992) or inhibitory (De Mesel et al. 2003) effects of marine nematodes on 

bacterial activity have been reported.  

A stimulatory effect of nematodes on microbial abundance may result from locomotory 

activity and microbioturbation by marine nematodes which can enhance fluxes of oxygen and 

nutrients, which is essential for microbially driven decomposition processes (Alkemade et al. 

1992; Aller and Aller 1992). A recent study reported increased bacterial denitrification in 

marine sediments by meiofauna through  stimulation of nitrifiers and denitrifiers (Bonaglia et 

al. 2014). 

The effects of bacterivorous nematodes on the decomposition process (De Mesel et al., 2003) 

were shown to be species-specific and dependent on interactions between nematode species 

(De Mesel et al. 2006). Even at relatively low densities, nematodes can significantly impact 

bacterial community composition in a very species-specific way. This may result from 

differential food preferences and hence a differential grazing (De Mesel et al. 2004).  

Another function of marine nematodes is their impact on the secretion of extracellular 

polymeric substances (EPS) by diatoms and/or bacteria (Hubas et al., 2010). In intertidal areas 

in which the ecosystem is subject to hydrodynamic forces, the sediment stability is very 

important. In this context, microbial and diatom secretion of EPS has been recognized as a 

major sediment-stabilizing force (Stal 2010). Hubas et al. (2010) showed that the presence of 

bacterivore nematodes had a positive impact on the abundance of bacteria and diatoms and on 

their EPS production.  

However, nematodes also produce mucus of their own, mostly during locomotion. This mucus 

may have several important roles in stimulating or affecting microbial communities. First, this 

mucus agglutinates sediment particles and may serve as an energy source for microbes 

(Gerlach 1977; Riemann and Schrage 1978). Specific direct and indirect trophic roles of this 

mucus have been demonstrated. Warwick (1981) demonstrated that cells of the green alga 

Tetraselmis settled onto mucus tracks of the nematode Praeacanthonchus punctatus and 

formed round resting cells, which were readily grazed upon by this nematode, whereas it was 

unable to feed on the active cells. Moens et al. (2005b) demonstrated that the bacteria able to 

successfully colonize nematode mucus tracks were a highly specific subset of bacteria present 
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in the environment. And Riemann and Helmke (2002) proposed the enzyme sharing concept, 

in which they hypothesize that nematodes secrete enzymes along with mucus. These enzymes 

would contribute to the decomposition of complex macromolecules and would thus facilitate 

the growth of microbes, which then continue the decomposition process. The nematodes 

would benefit mostly from the dissolved organic compounds released by the microbes during 

their organic matter digestion. 

 

3.7. Marine nematode dispersal and population genetics  

3.7.1. Dispersal 

Movement and dispersal are fundamental to many ecological processes (Ronce 2007). 

Understanding dispersal rates can shed light on distribution patterns of organisms, as dispersal 

extends the range of a species and enables recolonization of sites following perturbations. 

Dispersal also enhances the genetic diversity of populations and is, amongst others, an 

important determinant of population genetic structure of species (see the next part of this 

section). Moreover, differential dispersal abilities can be a strong driver of the coexistence of 

closely related marine nematode species (De Meester et al. 2015a).  

Marine nematodes are generally considered poor swimmers (Barstead and Waterston 1991). 

Moreover, they have an endobenthic life style and lack pelagic larvae or any other dispersal 

stages (Giere 2009). Considering these presumed dispersal limitations, cosmopolitan 

distribution of marine nematodes has previously been considered a paradox (Giere 2009), as 

is the case for other marine organisms without a pelagic larval phase (Winston 2012). 

However, nematodes can be dispersed through sediment, water and perhaps even air (Derycke 

et al. 2013).  

Thus, there are several passive dispersal modes of marine nematodes. For instance, marine 

nematodes can be suspended in the water column by hydrodynamic forces such as currents 

and waves (Eskin and Palmer 1985; Fegley 1987; Palmer 1988; Commito and Tita 2002; 

Wetzel et al. 2002; Boeckner et al. 2009). Species living close to the sediment surface are 

more susceptible to erosion than deeper dwelling species. Passive transport, for instance with 

the ballast water of ships (Radziejewska et al. 2006) or on drifting algal mats (Arroyo et al. 

2006) can occasionally lead to long-distance dispersal (Thiel and Gutow 2005; Derycke et al. 

2008b).  
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Besides passive transport in the water column, there is also a possibility for active dispersal of 

marine nematodes, but only over small distances. Nematodes move through sediments in 

response to cues emanating from, among others, food sources (Schratzberger et al., 2004b; 

Gallucci et al., 2008). In addition, some nematode species actively emerge into the water 

column and swim over short distances (Jensen 1981), and they may partly select the locations 

where they will re-settle (Jensen 1981; Ullberg and Ólafsson 2003; Schratzberger et al. 

2004b; Gallucci et al. 2008). As such, they may enhance intermediate-distance dispersal, by 

actively emerging into the water and subsequently being passively carried over larger 

distances with the water currents. Thomas and Lana (2011) demonstrated that nematode 

transport over scales of centimeters to tens of meters is directly influenced by their body 

morphology and swimming ability, and indirectly by their feeding strategies, which ultimately 

define their position in the sediment column (see also Committo and Tita 2002).   

  

3.7.2. Population Genetics 

Population genetics is the study of genetic variation within populations and provides valuable 

information on distribution patterns and connectivity between populations (Kartavtsev 2015). 

Indeed, population genetic data reflect a combination of historical, ecological, behavioural 

and environmental processes that determine rates and patterns of dispersal amongst 

populations (Grosberg and Cunningham 2001). Population genetics data can also be used to 

understand the ecological and evolutionary dynamics of species and to assess the evolutionary 

forces such as migration, mutation, genetic drift and natural selection (Avise 2000). 

Published information about population structure and gene flow of marine nematodes 

worldwide is largely limited to intertidal species with high colonizer ability, which may not be 

fully representative of endobenthic species (Derycke et al. 2013; Kumar et al. 2015). These 

authors found significant population-genetic structuring at scales of (a few tens of) kms, 

despite many opportunities for passive dispersal linking the different subpopulations. A 

similar pattern was found for a species that, like the previous ones, lives in association with 

macroalgae, but contrary to the previous species has a very different, k-selected life strategy 

(Derycke et al., 2010). While we might intuitively expect endobenthic species to have more 

pronounced population genetic structuring, because they are less prone to passive dispersal, 

first data on endobenthic nematode species show both similar and lesser population genetic 

structure, depending on the species studied (Derycke et al. 2013; Kujundzic 2014). The effect 

of life history, habitat type and environment on population genetic structure of marine 
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nematodes are not yet properly understood, and require information from different habitats 

(Hauquier et al. 2016) as well as from species with different life histories and colonizer 

abilities (Kujundzic 2014). Therefore, it is clearly necessary to perform research on the topic 

to get more information on the population genetic structure and cryptic variation of marine 

nematodes. One chapter of this thesis will be devoted to this topic.  

 

 

3.8. Nematodes as bio-indicators 

The term “bio-indicator” is used to refer to a species or assemblage of species that depicts the 

occurrence of pollutants on the basis of specific symptoms, reactions, morphological changes 

or concentrations (Markert et al. 2003). Many bio-indicator approaches have been developed 

to assess spatial and temporal patterns of coastal marine contamination. These include 

macrobenthos, such as mussels, clams and barnacles (Lee and Chin 2003; Bebianno et al. 

2004), but also seabirds (Kushlan 1993; Furness and Camphuysen 1997) and fish (De 

Andrade et al. 2004). Within the benthic fauna, most investigations have used macro-infauna 

to monitor the effects of environmental change in the marine ecosystem, whereas the smaller 

meiofauna have been studied somewhat less in monitoring programmes because of the time-

consuming analysis of their assemblages (Kennedy and Jacoby 1999). However, one of the 

most important and interesting features of marine nematode assemblages is their potential for 

environmental monitoring and assessment as bio-indicators of environmental stress (Boyd et 

al. 2000b; Schratzberger and Jennings 2002; Moreno et al. 2011; Semprucci et al. 2013; 

Semprucci et al. 2015b).   

The theoretical and practical advantages and disadvantages of using nematodes as bio-

indicators have been summarized in (Bongers and Ferris 1999; Schratzberger et al. 2000). 

One of the main reasons which make them potentially good indicators is that they are 

restricted to the sediments throughout their life and have a limited mobility, hence they cannot 

escape from stressful events or impacts. As a result, they are more consistently and intimately 

exposed to stressors in their environment. Due to their wide diversity and range of 

adaptations, they occur nearly everywhere in very high numbers. There is a high diversity in 

tolerances to various kinds of disturbance. Thus, alterations in their assemblage structure can 

often be related to environmental perturbations (Platt and Warwick 1980). 

Both bio-indicator species and bio-indicator communities can be applied in environmental 

impact assessment studies, although community structure data is most frequently used, rather 
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than single species as bio-indicators (Wilson and Khakouli-Duarte 2009). This is partly due to 

the fact that most marine nematode species are hard to culture under controlled conditions in 

the laboratory, and those species which are more amenable to culturing and dedicated 

pollution testing are often not the most representative taxa of real benthic nematode 

assemblages (Moens and Vincx 1998).  

There are many examples of bio-indicator species or genera, such as Chromaspirina, 

Hypodontolaimus, Onchalaimellus, Paracanthonchus, (Seto)sabatieria and Xyala which have 

been used as bio-indicator of petroleum pollution (Semprucci and Balsamo 2012). 

Terschellingia, Molgolaimus and Ptycholaimellus are tolerant to metal contamination 

(Somerfield et al. 1994), while Eleutherolaimus is sensitive to heavy metals (Millward and 

Grant 1995). However, whereas the information on species or genus level often remains rather 

anecdotal, studies of marine nematode assemblages have increasingly been used to determine 

the health of the coastal environment (Kennedy and Jacoby 1999; Danovaro et al. 2009; 

Semprucci and Balsamo 2012).  

Nematodes are often the only remaining taxon in extremely (organically) polluted conditions, 

because they are more tolerant to anoxic conditions than macro- and other meiofauna 

(Moodley et al. 1997). For example, high loads of organic matter can lead temporarily to 

anoxic and sulfidic conditions. Certain marine nematode species can survive and even thrive 

in these conditions (Wilson and Khakouli-Duarte 2009). Moreover, they have comparatively 

short life cycles. Their short generation times enable them to respond more quickly than 

macrofauna to changes in environmental conditions and alterations in food supply (Heip et al. 

1985). Another advantage of using nematodes as an ecological indicator is the existence of 

readily identifiable functional guilds (Bongers and Ferris 1999), although empirical evidence 

to properly classify species or genera into these guilds is often lacking (Moens et al., 2013). 

All together, these characteristics make nematode assemblages a potential tool for detecting a 

more rapid and unequivocal reaction to environmental changes than macrofauna (Balsamo et 

al. 2010). Platt and Warwick (1980) concluded that any general assessment of the ecology of 

intertidal habitats is incomplete if the nematode fauna is not taken into consideration. 

Nevertheless, an argument against the use of nematodes as ecological indicators is that their 

morphological identification at species level is really difficult and time-consuming and is hard 

for non-specialists. However, it has been suggested that for bio-monitoring purposes, 

nematode identification to genus level is usually sufficient and a more detailed taxonomic 

resolution did not necessarily improve the final outcome of environmental quality assessments 

(Warwick 1988; Moreno et al. 2008b; Moreno et al. 2011). Still, recent research highlights 
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that even closely related species can substantially differ in their tolerance to various kinds of 

pollution (Hoss et al. 2011; Monteiro et al. sub.), so species-level identification is still 

warranted.  

 

3.9. Diversity measures to monitor impact 

As described under section 3.8, nematode assemblages potentially hold important information 

based upon which the recent disturbance history of a habitat can be assessed. In addition to 

analyses of differences in genus or species composition, a variety of indicator indices have 

been developed to capture assemblage-level information in a number, the change of which 

can indicate a disturbance or, the opposite, a recovery from disturbance. In terrestrial soils, the 

maturity index (MI) is the most frequently used nematode-based indicator of environmental 

status. It is based on a division of nematodes in five categories defined along a gradient of 

extreme colonizers or opportunists to “persisters”, species which reproduce slowly, produce 

few progeny, have a long generation time and hence cannot easily re-establish after having 

been perturbed (Bongers 1990; Bongers et al., 1991; Bongers and Ferris, 1999). Colonizer 

potential (cp) is in turn linked to life history and to pollution tolerance. Hence, various kinds 

of disturbances favour species with a high colonizer ability and cause decrease or loss of 

persister species, resulting in a decrease in MI. A number of other, related indices have later 

been proposed (Bongers and Bongers 1998; Bongers and Ferris 1999; Ferris et al. 2001), 

some of which merge cp with feeding-type information. These indices have become very 

successful in soil nematology, but much less so in aquatic nematology, among other reasons 

because of the all-too-limited information on nematode life histories and feeding ecology, and 

because of the sometimes weak link between cp and disturbance tolerance (Wilson & 

Kakouli-Duarte, 2009).   

In addition to these specific nematode-based indices of soil condition, measures of 

biodiversity may be very useful to indicate changes in assemblages resulting from pollution 

or other disturbances (Moreno et al. 2008a; Moreno et al. 2008b; Moreno et al. 2011). 

Biodiversity indices are many, however some of them are widely used. Here we briefly 

introduce those biodiversity measures which were used in this PhD study. They can be 

subdivided into the following categories: richness measures, evenness and dominance 

measures, and measures of phylogenetic relatedness.  

Richness measures provide an estimate of the mere number of taxa present in a 

sample/habitat/community. We have used N0, (Hill index) (Hill 1973) which is merely the 
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number of taxa (in our case genera) identified from each sample, Margalef’s d and expected 

number of genera. N0, like most diversity measures, is heavily dependent on sampling 

size/effort, an issue which can greatly impact on the reliability of richness comparisons 

among samples, habitats, studies.  

Margalef’s d is calculated as: 

(S – 1) / lnN 

where S and N are the number of taxa and of individuals in a sample, respectively, and is 

supposed to lower the impact of the actual sample size on richness estimates, but it is actually 

very poor at doing so. Hence we also used the rarefaction index “expected number of genera” 

in a hypothetical sample of 50 individuals (EG(50)). Rarefaction is a permutation technique 

which allows to interpolate from a richness measure of a larger sample to a richness measure 

of a smaller (sub)sample. It thus yields the number of taxa one would have expected to find if 

a smaller set of individuals had been identified. That expected number of taxa is the ET(x) 

(expected number of taxa in a sample of x individuals) and is fully independent of the actual 

sample size.  

In addition to richness, we estimated evenness and dominance, two mutually linked properties 

of an assemblage. Evenness determines the spread of the individuals in an assemblage over 

the taxa, whereas dominance does essentially the same, but with a prime focus on the most 

dominant taxon or taxa of an assemblage. We calculated “Pielou’s J” as an evenness index 

(Pielou 1977): 

J’ = H’/ ln S  

where S is the number of species in each location or station. 

We also calculated Simpson’s index, which measures the probability that any two randomly 

sampled individuals belong to the same species. This index varies between 0 (infinite 

diversity) and 1 (assemblage composed of a single species), and provides a measure of the 

dominance structure in an assemblage.  

λ = ∑ (Ni/N)2 

where N is the total number of individuals, and Ni is the number of individuals of the i genus 

(i from 1 to S).  

The Shannon–Wiener diversity index (H’) is another index that is commonly used to 

characterize species diversity in a community (Shannon and Weaver 1949).  

H’= −∑(Ni=N) ln(Ni=N) 

This index integrates aspects of species richness and evenness. 
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Indices of phylogenetic relatedness (Clarke & Warwick, 1994) estimate the phylogenetic 

relatedness of taxa in an assemblage. The rationale is that disturbance will select for tolerant 

taxa, and that tolerance or sensitivity is related to physiological and other characteristics of 

organisms which have an evolutionary basis. Hence, closely related taxa are on average 

expected to have more similar sensitivities than more distantly related taxa. Two assemblages 

with the same richness and evenness may still differ in their diversity, whereby a 

phylogenetically more distinct assemblage is considered more diverse than an assemblage 

with phylogenetically more related taxa. We calculated taxonomic distinctness (Δ∗) as a 

measure of the average taxonomic distance among all pairs of genera in an assemblage, and 

taxonomic diversity (Δ) as the average weighted path length between every pair of individuals 

in a phylogenetic tree. 

Besides, biodiversity can be measured and monitored at several spatial scales. For example, 

alpha diversity is local diversity, which can be defined at the level of a sample or a station, 

but is sometimes also reported at the level of a site or a habitat. Site would correspond to a 

beach location in thus PhD, but each beach location comprises different stations, each with 

their own local diversity. Beta diversity reflects the differences in community composition 

between sites and gamma diversity is the diversity of entire landscape. Indeed, the gamma 

diversity is a product of both beta- and alpha-diversity (diversity at a single site) (Gray 2000).  

 

3.10. Benthic fauna of the PG 

Generally, the meiofauna of the Iranian part of the PG is poorly studied. Indeed, no 

comprehensive data from any marine habitat are available on meiofauna in this important 

area. Studies of benthic assemblages in the Iranian part of the PG have hitherto focused on 

macrobenthos. Macrofauna have traditionally and routinely been the most used group for 

biological assessment of marine environmental health worldwide (Rosenberg and Resh 1993; 

Ogbeibu and Oribhabor 2002; Parr and Mason 2003; Ogleni and Topal 2011). This has also 

been the case in the northern part of the PG.  

Published data on the macrobenthos of the Iranian part of the PG can be divided thematically 

into two main subjects, "Biodiversity and community structure" and "pollution monitoring". 

However, studies are very diverse in terms of areas, habitats, taxa, contexts… studied. An 

overview and integrated discussion of the most important results is therefore not 

straightforward to make, and falls beyond the scope of this work.  



 GENERAL INTRODUCTION 

53 
 

4. Research aims and objectives 
As outlined in the previous sections, the Persian Gulf provides both a wealth of resources to 

humans (oil as well as fisheries) and a large diversity of marine habitats. However, while a 

substantial number of studies have been performed on the benthic macroinvertebrates in this 

region, the meiobenthos has so far been largely neglected. Accordingly, the main objective of 

this thesis was to study, for the first time, the free-living marine nematode communities in a 

coastal habitat of the Iranian part of the Strait of Hormuz. This will not only provide critical 

baseline information, but will also contribute substantially to the knowledge of marine 

biodiversity and ecology in the area, and of the impacts of anthropogenic pollution on coastal 

benthos biodiversity. This main objective is extended by studying different aspects of marine 

nematode assemblages such as spatial and temporal variability and population genetic 

structure of two selected species.  

After the current introductory chapter, in chapter 2 we assess the structure and biodiversity of 

the nematofauna in intertidal soft sediment habitats. Since this is a pioneering study, we first 

investigate the biodiversity of nematode assemblages and compare the observed diversity with 

that of other beaches across the world. In doing so, we try to assess to what extent the 

naturally (high salinity, large temperature fluctuations with often extreme maxima) and 

anthropogenically (for instance hydrocarbon pollution related to the role of the Persian Gulf 

as the world’s largest transportation route of crude oil) stressful conditions translate into a low 

biodiversity in the area. At the same time, however, we focus on spatial patterns in relation to 

local (so non-overarching) point sources of pollution, asking the question whether in such a 

broadly stressed environment, local pollution sources still have a measurable impact on 

nematode assemblages. For this purpose, we focus on four beaches, and within each beach 

location, we assign three stations at different distances from local point sources of pollution. 

This chapter has recently been conditionally accepted (‘minor revision’) for publication in 

Hydrobiologia as Sahraean et al. (2017a) “Nematode assemblage structure and diversity in 

intertidal beaches of the northern Persian Gulf”. 

In chapter 3, we then repeat the same sampling design almost exactly one year later to get a 

first impression of the consistency of the obtained biodiversity estimates and spatial patterns 

over time, more specifically year-to-year variability. Given the often substantial between-year 

variability in climatological conditions, we want to see to what extent the biodiversity and the 

between and within-beach location differences observed in 2008 and linked there in large part 

to the effect of local pollution sources, would be consistent or be overruled by broader-scale 
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phenomena such as differences in precipitation and related environmental conditions. This 

chapter is in preparation for later publication as Sahraean et al. “Year-to-year variability in 

beach nematode assemblage structure and biodiversity in the northern part of the Strait of 

Hormuz”.  

In chapter 4, we investigate the connectivity and gene flow between populations from beach 

locations at a scale at which in other population-genetic studies of coastal nematodes, 

significant structuring has regularly been observed. Given our conclusion from chapter 2 that 

local pollution point sources can substantially impact diversity and structure of nematode 

assemblages, and given the temporal variability observed in chapter 3, we wanted to assess to 

what extent we can expect recolonization after a major local disturbance event by individuals 

from nearby habitats. To this end, we looked into the population-genetic structure of the two 

most abundant nematode species from our study area across 52 km of coastline. Moreover, 

since both nematode species studied here occupy different depth layers of the sediment, we 

also tested the hypothesis that the surface-dwelling species would show more gene flow and a 

lesser population-genetic structuring compared to the real endobenthic species. In another part 

of this chapter, we compare 18S rDNA and COI sequences of one of these species, 

Terschellingia longicaudata, from Iran and the Scheldt Estuary in The Netherlands in order to 

ascertain whether they truly belong to the same species. This chapter has been accepted for 

publication in the journal Marine Ecology as Sahraean et al. (2017b) “Lack of population 

genetic structure in the marine nematodes Ptycholaimellus pandispiculatus and Terschellingia 

longicaudata in beaches of the Persian Gulf, Iran”.  

Finally, in chapter 5, an overview and integration of the results from the different chapters is 

provided, and perspectives for future research on meiobenthos in Persian Gulf intertidal 

habitats are presented.  
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This chapter is adapted from: 

 

Sahraean, N., T. Nara Bezerra, K. Ejlali Khanaghah, H. Mosallanejad, E. Van Ranst & T. 

Moens, 2017a. Nematode assemblage structure and diversity in intertidal soft shores 

of the northern Persian Gulf. Hydrobiologia accepted. (pending minor revisions)  
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Abstract 

This study is the first to present data on local and regional diversity of beach nematode 

assemblages from the Persian Gulf. We investigated four beaches near the city of Bandar 

Abbas, Iran. On each beach, we sampled three stations with increasing distance (50, 100 and 

150 m) from a local pollution source, mostly domestic sewage. A total of 39 genera from 17 

families was recorded. This diversity is low and suggests that the entire area experiences 

substantial stress. Five genera together comprised 75 % of nematode abundance. There were 

significant differences in abundance as well as genus diversity between locations, but these 

did not unequivocally correlate with known drivers of benthic assemblage structure like 

sediment granulometry and hydrodynamics. The location exposed to the strongest local 

pollution input had the lowest nematode diversity and a very low abundance at the nearest 

distance to the pollution source (50 m). Distance from local pollution sources also 

significantly impacted genus diversity, but this pattern was only pronounced in two of the four 

beaches. Our data demonstrate that local sources of anthropogenic disturbance are a major 

driver of assemblage diversity and structure in this area, despite an overarching effect of 

natural (salinity, temperature) and anthropogenic stressors in the area. 

 

Keywords: marine; benthic assemblages; local diversity; regional diversity; anthropogenic 

impact; sewage discharge 
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1 Introduction 
 

The Persian Gulf is one of the most important waterways in the world in view of its role in oil 

and gas transport and of its geostrategic position (Mojtahed-Zadeh 1999). It is an extension of 

the Indian Ocean, connected to the Oman Sea through the narrow Strait of Hormuz. The 

Persian Gulf is a subtropical, hyper-arid region, located between Iran and several Arabian 

countries. The Gulf's marine environment is of special interest because of its shallowness, 

high salinity and limited interaction with oceanic waters (Reynolds 1993; Kämpf and 

Sadrinasab 2006). The PG has an average water depth of ca 36 m; there is a broad shallow 

southern margin (< 20 m deep) along the coasts of Qatar, Bahrain and the UAE, and a 

relatively narrow and deep north-eastern margin along the coasts of Iran (Kämpf and 

Sadrinasab 2006). The deepest areas are in front of the Iranian coast, reaching from 60 m to 

about 100 m at the entrance to the Strait of Hormuz (Sheppard et al. 1992). Salinity generally 

ranges from ≥ 39 in summer to ≤ 41 in winter; however, in tidal pools and lagoons it may 

reach much higher values, up to 70-80 (John et al. 1990). Among the most important coastal 

habitats of the Persian Gulf are intertidal areas and estuaries (Sheppard et al. 2010). Major 

human impacts on these habitats include oil pollution, solid and liquid waste disposal, coastal 

development and recreational activities, which can synergistically affect the biodiversity and 

abundance of the benthos.  

As a result of its high salinity and sea-surface temperature (Chao et al. 1992), accompanied by 

low primary productivity resulting from high turbidity (Nezlin et al. 2010), and of its 

intensive human exploitation, the Persian Gulf area may be expected to harbor comparatively 

low local and habitat-specific biodiversity. There are, for instance, persistently high levels of 

hydrocarbon pollution throughout the waters of the Persian Gulf (Gevao et al. 2006; Gawad et 

al. 2008), while agricultural runoff and domestic sewage may cause localized eutrophication 

(Gawad et al. 2008).  

Free-living nematodes are the most numerous and diverse group of marine benthic metazoans, 

and usually by far the most abundant meiofaunal taxon in soft sediments. They play important 

roles in benthic ecosystems (De Mesel et al. 2003, 2006; Bonaglia et al. 2014). Within the 

benthic food web, nematodes take an intermediate trophic position between primary 

producers (microalgae) and primary decomposers (bacteria) on the one hand, and higher 

trophic levels on the other (Gee 1989; Schuckel et al. 2013). Nematodes are also useful tools 
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for environmental monitoring and assessment as bio-indicators of environmental stress 

(Lambshead 1986; Bongers and Ferris 1999; Balsamo et al. 2010; Moreno et al. 2011; Losi et 

al. 2013; Semprucci et al. 2015a).  

In sandy beaches, nematodes typically show a pronounced horizontal zonation, with 

increasing abundances from high to low-water line (Hodda & Nicholas, 1985; Gheskiere et 

al., 2002, 2005; Kotwicki et al., 2005), and with an often unimodal diversity pattern, with 

highest diversity in the middle part of the beach (Armonies and Reise 2000; Gheskiere et al. 

2004; Gingold et al. 2010; Maria et al. 2013b). Higher diversity at the middle beach has been 

attributed to the fact that an optimal balance among desiccation/temperature/salinity stress, 

hydrodynamic disturbance and sediment stability, food availability and oxygen concentration 

is usually reached somewhere in the mid-intertidal. 

Hitherto, most research on the benthic assemblages in the northern part of the Persian Gulf 

has focused on macrobenthos and has generally found relatively low diversity and abundance 

of macrofauna in intertidal sediments, which has mainly been attributed to a combination of 

natural and anthropogenic stressors (see above) (Ejlali Khanaghah et al. 2010; Naderloo and 

Tuerkay 2012; Safahieh et al. 2012; Pourjomeh et al. 2014). Here, we present the first study 

on free-living marine nematode assemblages in intertidal soft sediment habitats of the 

northern part of the Persian Gulf. The main aim of our study is to assess the structure and 

diversity of the nematofauna on beaches in the Persian Gulf and compare it to those from 

beaches elsewhere in the world. Our study was designed to assess impacts of local pollution 

sources, mostly in the form of sewage and garbage disposal, on the nematode assemblages. 

We focused on four intertidal locations in the northern part of the Persian Gulf. In each 

location, we sampled three stations along a gradient of increasing distance to an 

anthropogenic point source of pollution. We tested the null hypotheses that the genus 

diversity of the nematofauna and the dominance of stress-tolerant genera would not differ 

among beach locations nor depend on distance towards local pollution sources. Additionally, 

we tested the hypothesis that nematode diversity at these Persian Gulf sandy beaches would 

not profoundly differ from that of beaches in other geographical areas.  
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2 Materials and Methods 

2.1 Sampling sites and design 

Focus in this study was on the northern part of the Persian Gulf, particularly the coast near 

Bandar Abbas, the capital of the Hormuzgan Province of Iran. Four intertidal locations were 

selected based on the presence of local point sources of pollution (Fig. 2-1). Haghani is 

situated next to the largest sewage drainage canal of the city, and visually appears by far the 

most impacted location. The second location, Suro, is an isolated site receiving untreated 

sanitary sewage of a residential complex through a small estuary. The types of input are 

similar to those in Haghani, but the amounts are considerably smaller. The third station, 

Terminal, is located next to a canal of urban sewage effluents constituting mainly of urban 

run-offs; however, there is little information on the amounts of sewage that are discharged 

here and it is therefore difficult to assess its pollution status relative to, e.g., Suro. Data on 

macrobenthic assemblage structure indicate only moderate to low levels of pollution impact at 

Terminal (Negarestan et al. 2007). Finally, Dolat Park is considered a comparatively less 

impacted site, receiving only small amounts of litter from people using the coastal park for 

recreation, but no local sewage inputs. Both quantitative and qualitative information on the 

actual (amounts of) inputs and hence on the degree of pollution at these locations is, however, 

lacking. 

All sampling stations were located in the mid intertidal zone, on ridges (in any case, runnels 

were not prominently present). Tidal amplitude in the area ranges from 1.5 to 4 m; the width 

of the intertidal zone is typically in between 500 and 600 m, except at Haghani, where it is on 

average just less than 30 m. The intertidal zones vary from a moderately reflective beach at 

Haghani to more sheltered tidal flats at the other three locations (Mohebi 2007; Salehi 2007; 

Samadi 2007; Alimomohammadi 2009). 

Our sampling was designed to assess local and regional diversity of the nematofauna in 

beaches at Bandar Abbas, while at the same time evaluating effects of anthropogenic 

pollution point sources. For this purpose, at each location, we sampled three stations at 50-m 

intervals with increasing distance from the pollution point source. Given that there was no 

visible sewage input at Dolat Park, the most impacted station at this site was taken as the 

station nearest the Park, which is the zone most affected by recreation and with visibly more 

garbage on the beach. Thus, the stations at each location are labeled as 1, 2 and 3, station 1 

being closest (50 m) to the pollution and station 3 most distant (150 m) from the pollution 
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point source. At each distance to pollution, we collected three replicate samples for nematode 

assemblage analysis at ca. 1-m distances from each other. Admittedly, the close proximity of 

the replicate samples within a station entails the risk of pseudo-replication. At the same time, 

substantially increasing the distances between replicates would have increased the risk of 

significant variability in relation to beach (micro)profile. Given that patchiness in intertidal 

nematode assemblages tends to be very pronounced already at scales of centimeters 

(Blanchard 1990; Hodda 1990), we consider replication at the station level as sufficiently 

independent. 

 

Fig. 2-1. Map of the study area with indication of the four beaches sampled. A: map of Iran 

showing the Persian Gulf in the south; B: map of Strait of Hormuz showing Bandar Abbas 

location; C: our four sampling locations along the coast of Bandar Abbas.  

 

2.2 Sample collection, elutriation and analysis 

Sampling was performed in December 2008. Three replicate samples were collected using 

3.5-cm diameter PVC cores that were pushed in the sediment down to a depth of 5 cm. One 

additional sample was taken to determine the sediment granulometry using a Malvern Hydro 

2000G Particle Size Analyzer. Sediment fractions in the particle size range of 38 to 1000 µm 

were defined according to the Wentworth scale (Buchanan 1984) and expressed as volume 

percentages. The fraction < 38 µm was negligible in all locations, and the measured silt 
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fraction was hence composed of particles with sizes in between 38 and 63 µm. At the time of 

this sampling, several logistical constraints prohibited the collection of more samples for the 

measurement of additional environmental parameters. At a later sampling occasion in August 

2013, we collected sediment samples with proper replication for every distance to pollution, 

for total organic carbon and total nitrogen and for total element analysis, all of which could 

potentially inform on the relative importance of sewage inputs. It is, however, important to 

remember that these data do not stem from the same moment as the nematode assemblage 

data.  

Total organic carbon (TOC) and nitrogen (TN) were thus analysed on sediment samples 

collected in the same way as in 2008, but in August 2013, with three replicates per distance to 

pollution. TOC and TN analysis was performed using a FLASH 2000 CHN elemental 

analyser on dried sediment aliquots after prior removal of inorganic carbon through the use of 

dilute HCl (Nieuwenhuize et al. 1994). 

The dried beach sediment samples from 2013 were further characterized by total element 

analysis of bulk samples following fusion with 2 g lithium metaborate powder in a platinum 

crucible for 15 min at 950 °C in a preheated muffle furnace. The flux that is thus formed is 

allowed to cool and then dissolved in 100 ml of 4 % HNO3 (ISO 14869). Contents of major 

and trace elements were measured with a Varian 720-ES Inductively Coupled Plasma Atomic 

Emission Spectrometer (ICP-AES) at the Laboratory of Soil Science of Ghent University. 

Loss upon ignition (LOI) was determined by heating the samples at 1000 °C. 

Samples for nematode analysis were preserved immediately with 4 % buffered formaldehyde 

and transferred to the laboratory. There, they were rinsed thoroughly with tap water and 

decanted over a 38-µm sieve. The fraction retained on that sieve was then elutriated by 

centrifugation with the colloidal silica gel Ludox HS40 (density = 1.18) (Heip et al., 1985). 

The supernatant was again passed through a sieve of 38 μm. This procedure was repeated 

three times, and the fractions retained on the sieve were then pooled. 

For each sample, all meiobenthic animals were counted after staining with Rose Bengal. 

Subsequently, at least 100 nematodes were picked up randomly from each sample and 

gradually transferred to glycerol through a series of ethanol-glycerol solutions. This procedure 

renders the nematodes more transparent, facilitating examination of both external and internal 

structures; the gradual transfer prevents the animals from collapsing (Seinhorst 1959). When 

samples contained less than 100 nematodes, all available specimens were transferred to 
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glycerol. Then, nematodes were mounted on permanent slides with anhydrous glycerin for 

identification to genus level. Genus identification was done using pictorial keys (Platt and 

Warwick 1983; Warwick et al. 1998) and the NeMys online identification 

key (Vanaverbeke et al. 2015). 

 

2.3 Data analysis 

Nematode assemblage structure was described by a number of univariate descriptors, 

including abundance and different diversity measures such as number of genera (N0), 

Margalef’s genus richness, expected number of genera in a sample of 50 individuals (EG50), 

Shannon-Weaver’s diversity (H’), Simpson’s diversity index (Si), Pielou’s evenness (J), and 

taxonomic diversity (Δ) and distinctness (Δ∗). N0 is merely the number of genera identified 

from each sample, whereas Margalef’s richness lowers the impact of the actual sample size on 

richness estimates. Nevertheless, even the latter index is not independent of sample size; 

hence we also used the rarefaction index ‘expected number of genera’ in a hypothetical 

sample of 50 individuals (EG50). Shannon-Weaver’s diversity combines aspects of richness 

with evenness, whereas Pielou’s J is a specific evenness index. Finally, Simpson’s index 

measures the probability that any two randomly sampled individuals belong to the same 

species. This index varies between 0 (infinite diversity) and 1 (assemblage composed of a 

single species), and provides a measure of the dominance structure in an assemblage. 

Taxonomic distinctness (Δ∗) provides a measure of the averaged taxonomic distance among 

all pairs of genera in an assemblage, whereas taxonomic diversity (Δ) is the average weighted 

path length between every pair of individuals in a phylogenetic tree (Warwick and Clarke 

1998, 2001). All these diversity indices were calculated in PRIMER 6.0 (Clark and Gorley 

2006).  

We further calculated the frequency of occurrence of nematode genera according to Arasaki et 

al. (2004). Genera were classified as constant if they occurred in at least half of the samples (F 

≥ 50 %), common (25 % ≤ F ≤ 50 %) or rare (F ≤ 25 %). Nematodes were also grouped into 

feeding types according to the feeding type classification of (Moens and Vincx 1997), which 

is based on a combination of observations and on the assumption that nematode stoma 

morphology is an important determinant of food selection. This classification recognizes six 

feeding types: microvores, deposit feeders, ciliate feeders, epigrowth feeders, facultative 

predators and predators.  
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Differences in each of these univariate assemblage descriptors between different locations and 

distances to pollution were assessed by analysis of variance (ANOVA) in the software 

Statistica 7 (Statsoft). Prior to analysis, data were tested for normality by means of the 

Kolmogorov-Smirnov test, and homogeneity of variances using Levene’s test. If the data did 

not conform to these assumptions, they were log(x+1) transformed; if this data transformation 

did not solve the issue of normality and/or homoscedasticity, data were analyzed using 

permutational multivariate analysis of variance (PERMANOVA) (Anderson et al. 2008) with 

location and distance to pollution as fixed factors (with four and three levels, respectively) 

using 999 permutations. A Euclidian distance based resemblance matrix was used for 

PERMANOVA on univariate (i.e. total number of nematode, diversity indices….) data. 

Homogeneity of multivariate dispersion was assessed using PERMDISP.  

ANOVA followed the same two-way factorial design as for PERMANOVA. Tukey’s HSD 

test was used for pairwise a posteriori comparisons between locations, distances to pollution 

and their interaction in case of a significant factor or interaction effect in ANOVA. Pairwise 

comparisons following a significant PERMANOVA result used Monte Carlo permutations of 

residuals under a full model (if the number of permutations was lower than 150, the Monte 

Carlo permutation p was used). The same statistical approach was used to test for differences 

in heavy metal or TOC and TN concentrations among locations and distances to pollution for 

the 2013 dataset. Sediment granulometry data of 2008 were analysed for differences between 

locations only using one-way ANOVA. 

Non-metric multidimensional scaling (nMDS) based on Bray-Curtis similarities was applied 

to visually explore differences in nematode assemblage structure between locations and 

distances to pollution. Nematode assemblage composition was further compared between 

locations, distances to pollution and their interaction using the same PERMANOVA design as 

for the univariate assemblage descriptors, but using Bray-Curtis similarities. Genera 

abundances were square root transformed prior to analysis for a better weighting of the 

contributions of dominant and rare genera. In addition, the genera contributing most to the 

dissimilarities between distances to pollution and locations were investigated using the 

similarity percentages procedure (SIMPER) in PRIMER 6.0, again on square root transformed 

nematode abundance data. 
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3 Results 

3.1 Sediment granulometry and total element analysis  

Table 2-1. Sediment granulometry (measured on samples from December 2008), total organic 

carbon (TOC) and total nitrogen (TN) (measured on samples from August 2013) and genus 

richness (number of genera, N0, determined on samples from December 2008) of the four 

beaches studied. Data on granulometry are means ± 1 standard deviation of three stations per 

beach, with one sample per station. Data on TOC and TN are means ± 1 standard deviation of  

three stations per beach, with three samples per station. All statistically significant differences 

indicated by different letters.                             

 Suro Haghani Dolat Park Terminal 

median grain size (µm) 155±8.9 b 175±18.6 b 177±17.5 b 119±9.4 a 

mean grain size (µm) 185.6±28.3 b 194.9±23.4 b 198.1±11.1 b 175.0±2.6 a 

% silt   0.4±0.1 b 1.0±1.0 b 5.9±3.9 b 17.8±3.0 a 

%very fine sand 31.4±2.8 23.9±7.0 19.6±5.5 34.8±1.2 

%fine sand 53.6±4.0 b 53.2±2.1 b 48.2±8.3 ab 29.5±4.2 a 

%medium sand 11.4±3.4 20.3±7.1 25.0±3.5 12.61±1.3 

%coarse sand 1.9±1.9 1.6±1.2 1.2±0.8 3.4±0.8 

%very coarse sand 0.6±0.6 0.0±0.0 0.0±0.0 0.9±0.3 

%TOC    0.1±0.0 b 0.2±0.1 ab 0.1±0.0 b 0.3±0.1 a 

%TN 0.03±0.0 0.02±0.0 0.03±0.01 0.03±0.0 

genus richness 10.44±1.59 a 5.6±0.28 bc 9±0.78 ad 8.1±0.9 cd 

 

The sediment of the four locations was mainly composed of very fine sand and fine sand 

throughout. Significant differences in median grain size between locations were observed (df 

= 3, pseudo-F = 3.57, p = 0.05), Terminal having a lower median grain size and higher silt 

fraction than the three other locations (Table 2-1 and  Table S2-3 ).  

Total nitrogen (TN) concentrations were always < 0.1 % and did not differ depending on the 

location-by-distance interaction (df = 6, pseudo-F = 0.99, p = 0.50), nor between locations (df 

= 3, pseudo-F = 1.04, p = 0.7) or with distance from pollution (df = 2, pseudo-F = 0.61,  p = 

0.57). Total organic carbon (TOC) concentrations varied from 0.1 to 0.7 % and were not 
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affected by the interaction of location and distance (df = 6, pseudo-F = 1.68, p = 0.16); 

however, they differed significantly between locations (df = 3, pseudo-F = 4.2, p < 0.02) as 

well as between distances from pollution (df = 2, pseudo-F = 4.46, p < 0.02). Terminal 

showed a significantly higher TOC concentration than Suro (p = 0.01) and Dolat Park (p = 

0.02) (Table 1), and stations nearest pollution sources and at 100 m away both had 

significantly higher % TOC than the most distant station (both p < 0.05). The significant 

distance-to-pollution effect was largely due to Haghani and Terminal, where the station 

nearest the pollution point source had, respectively, more than and nearly threefold higher 

TOC concentrations than the two more distant stations.  

The elements As, Be, Bi, Cd, Co, Hg, Ni and Pb were present at concentrations < 10 ppm 

throughout our study area (data not shown). Ba, Cr, Cu, Sr, Zn, Y and S were obtained in 

higher concentrations and varied among locations, distances to pollution and/or their 

interaction (supplemental material – Table S2-1), except Cu. However, no single location or 

distance to pollution had clearly higher or lower levels of multiple elements. Haghani had 

significantly higher concentrations of Cr than all other locations, while both Haghani and 

Suro had significantly higher concentrations of Sr, which could be considered in line with the 

expected higher pollution at Haghani and to a lesser extent Suro, but other metals did not 

always follow those trends. Likewise, elemental concentrations did not exhibit clear trends 

with distance to a pollution source (Table S2-1). Cu, which is often linked to sewage and 

other anthropogenic pollution sources, did not vary significantly between locations and 

distances to pollution. 

 

3.2 Nematode abundance and dominant genera 

The abundance of nematodes at the four locations ranged between 13 and 1371 ind. per 10 

cm² (lowest and highest values, respectively, in single replicates). It was significantly affected 

by the interaction between location and distance to pollution (df = 6, F = 14.07, p = 

0.000001). This interaction mainly reflected differences in nematode abundance in the 

stations nearest and furthest away from pollution point sources between different beach 

locations (Fig. 2-2). The station nearest the local pollution input at Haghani had significantly 

lower nematode abundances than any other station at any beach (Fig. 2-2). At Suro, by 

contrast, the station nearest the pollution point source had the highest nematode abundance. 

Dolat Park and Terminal exhibited less pronounced differences between stations (Fig. 2-2). 
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Table 2-2. Genus composition and relative abundances (%) of nematodes at the four sampling 

locations and average over all sampling locations. Data are means of 3 stations per location, with 3 

replicates per station. Feeding types (FT) according to Moens & Vincx (1997) and  Wieser (1953) are 

also listed. MV = microvore, DF = deposit feeder, CF = ciliate feeder, EF = epistrate feeder, FP = 

facultative predator, PR = predator; 1A = selective deposit feeder, 1B = non-selective deposit feeder, 

2A = epigrowth feeder, 2B = predator or omnivore. 

. Suro Haghani Dolat park Terminal  Average FT 

Daptonema 32.2 13.2 28.1 7.0 20.13 DF/1B 

Ptycholaimellus 9.2 2.8 23.9 44.3 20.06 EF/2A 

Terschellingia 1.1 1.7 23.0 30.6 14.10 MV/1A 

Promonhystera 0.8 38.2 2.7 0.1 10.46 DF/1B 

Paramonohystera 3.0 35.1 2.8 0.7 10.41 DF/1B 

Paraethmolaimus 13.2 2.0 0.1 1.8 4.30 EF/2A 

Eumorpholaimus 1.4 0.0 4.5 5.3 2.78 DF/1B 

Oncholaimus 7.4 1.7 0.2 0.3 2.39 FP/2B 

Theristus 3.6 2.5 2.7 0.5 2.32 DF/1B 

Viscosia 6.5 1.8 0.0 0.0 2.09 FP/2B 

Metoncholaimus 7.0 0.4 0.1 0.0 1.88 FP/2B 

Eleutherolaimus 1.2 0.0 0.6 4.1 1.46 MV/1A 

Metalinhomoeus 0.0 0.0 2.4 1.4 0.96 MV/1A 

Rhynchonema 3.7 0.0 0.0 0.1 0.94 DF/1B 

Prochromadora 0.9 0.0 1.5 1.4 0.92 EF/2A 

Bathylaimus 0.7 0.0 2.7 0.2 0.89 CF/1B  

Spilophorella 0.1 0.0 2.0 0.8 0.75 EF/2A 

Onyx 1.7 0.0 0.4 0.1 0.57 FP/2B 

Paracanthonchus 1.4 0.0 0.0 0.0 0.34 EF/2A 

Synonchium 1.3 0.0 0.0 0.0 0.33 FP/2B 

Cyatholaimidae sp. 1.2 0.0 0.0 0.0 0.30 EF/2A 

Metachromadora 0.6 0.0 0.5 0.0 0.28 EF/2A 

Nygmatonchus 0.5 0.1 0.0 0.1 0.18 EF/2A 

Sabatieria 0.0 0.0 0.3 0.4 0.16 DF/1B 

Chromadorina 0.4 0.1 0.1 0.0 0.16 EF/2A 

Thalassomonhystera 0.0 0.0 0.5 0.0 0.12 DF/1B 

Xyalidae sp. 0.0 0.3 0.0 0.2 0.12 DF/1B 

Enoploides 0.0 0.1 0.2 0.0 0.09 PR/2B 

Polysigma 0.0 0.0 0.0 0.2 0.06 EF/2A 

Tripyloides 0.0 0.0 0.2 0.0 0.06 CF/1B 

Chromadorita 0.2 0.0 0.0 0.0 0.06 EF/2A 

Leptolaimidae sp. 0.2 0.0 0.0 0.0 0.06 MV/1A 

Odontophora 0.23 0.0 0.0 0.0 0.05 FP/2B 

Chromadorella 0.0 0.0 0.2 0.0 0.05 EF/2A 

Chromadora 0.0 0.0 0.1 0.0 0.04 EF/2A 

Phanoderma 0.1 0.0 0.0 0.0 0.03 PR/2B 

Doliolaimus 0.0 0.0 0.0 0.1 0.03 FP/2B 

Hypodontolaimus 0.1 0.0 0.0 0.0 0.03 EF/2A 

Oxystomina 0.0 0.0 0.0 0.1 0.03 MV/1A 
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A total of 39 genera of free-living marine nematodes, belonging to 17 families and five 

orders, were identified. Only five genera occurred in 50 % or more of all samples (these 

genera are considered as ‘constant’), and only Daptonema and Ptycholaimellus occurred in 

more than 80 % of samples (Fig. 2-3a). Terschellingia, Promonhystera and Paramonhystera 

were the other constant genera. Daptonema and Ptycholaimellus also had the highest overall 

abundance (ca 20 % for both), followed by Terschellingia, Promonhystera and 

Paramonhystera (Table 2-2). These five genera together on average accounted for 75 % of the 

nematode abundance in the sampling area (Fig. 2-3b). Only six other genera occurred in 

relative abundances of more than 2 % (Table 2-2). 

 

 

Fig. 2-2. Total nematode abundance per location and distance to pollution. Data are means 

±1SE of three replicates for each station (50 m = closest distance to pollution source, 150 m = 

largest distance). 

Fig. 2-3. A. Frequency of occurrence of the five most abundant genera at four intertidal 

sampling locations near Bandar Abbas; B. relative abundance of the five most abundant 

genera at the four sampling locations, and C. relative abundance of these same five genera as 

a function of station distance to local pollution sources (50 m = closest distance to pollution 

source, 150 m  = most distant). Data are means ± 1SE of three stations, each with three 

replicate samples, per location.  
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3.3 Nematode diversity 

The interaction of location by distance to pollution significantly affected genus richness, and 

this for all three richness indices used: N0 (i.e. number of genera per 10 cm²) (df = 6, F = 7.94, 

p < 0.0001); EG50 (Fig. 4C, df = 6, F = 0.00001) and Margalef’s richness (df = 6, pseudo-F = 

7.36, p = 0.001; but Permdisp indicated significantly heterogeneous variation for the factor 

location, p = 0.01). The number of constant genera per location was more or less a constant 

proportion of genus richness, with 9, 7, 6 and 4 constant genera at Suro, Dolat Park, Terminal 

and Haghani, respectively. Averaged across distances to pollution, richness was highest at 

Suro and lowest at Haghani (Fig. 4A). Averaged across all four beaches, the station most 

distant from a pollution point source had a significantly higher EG50 than stations closer to 

that point source (factor station, df = 2, F = 16.34, p < 0.00005) (Fig. 2-4B), but this 

difference was largely driven by Suro and to a lesser extent Dolat Park and was absent from 

the other beaches (Fig. 2-4C).  

The interaction between the factors beach and distance to pollution also significantly affected 

Shannon-Weaver’s diversity (df = 6, F = 3.49, p < 0.05) and Pielou’s evenness (df = 6, F = 

2.71, p < 0.05), but not Simpson’s index (df = 6, F = 1.39, p = 0.26) (Fig. 2-5). Averaged 

across distances to pollution, Shannon-Weaver’s diversity was significantly higher at Suro 

than at Haghani (p < 0.001) and Terminal (p = 0.01), and at Dolat Park compared to Haghani 

(p < 0.05). However, while the highest Shannon-Weaver diversity at Suro was found furthest 

away from the local pollution source (distance 50m vs distance 150m, p < 0.05), no such 

differences between stations were found for Haghani, Terminal or Dolat Park. No significant 

pairwise location-by-distance differences were found for Pielou’s evenness, despite the 

significant overall interaction effect. The Simpson index differed significantly between 

locations (df = 3, F = 4.05, p < 0.02), Haghani having a significantly lower Simpson diversity 

than Suro (p < 0.03). Evenness did not significantly differ between locations and distances to 

pollution, nor did dominance differ between distances. 

Fig. 2-4. A. Genus diversity (expressed as expected number of genera in a sample of 50 inds.) 

for the four sampling locations. Data shown are means ±1 SE of three distances to pollution, 

each with three replicate samples, per location. Different letters indicate statistically 

significant differences at p < 0.05. B. Genus diversity per 10 cm² as a function of distance to 

pollution sources (50 m = closest to pollution source, 150 m = most distant). Data shown are 

means of four locations each with three replicates per distance. C. Genus diversity per 

location and distance. Data are means ±1SE of three replicates for each distance. 
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Fig. 2-5. Nematode diversity expressed as Margalef’s index (richness), Pielou’s evenness, 

Shannon-Weaver’s index (H’) and Simpson’s dominance index, at four sampling locations. 

Data shown are means ± 1SE of three distances to pollution, each with three replicate 

samples, per location. 

  

Taxonomic distinctness was significantly affected by the interaction between locations and 

distances to pollution (df = 6, pseudo-F = 4.42, p = 0.002; Permdisp: p > 0.05 for both factors) 

as well as by the separate effect of location (df = 3, pseudo-F = 17.87, p = 0.001). Suro had 

significantly higher taxonomic distinctness than Terminal (Fig. 2-6), except at the smallest 

distance to pollution. Suro also had a higher taxonomic distinctness than Haghani, except at 

the intermediate distance. Dolat Park had a higher taxonomic distinctness than Terminal and 

Suro, but only at the intermediate distance to pollution (100 m). Taxonomic diversity only 

differed significantly between locations (df = 3, F = 7.67, p < 0.001). Much like for 

taxonomic distinctness, Suro had significantly higher taxonomic diversity than Haghani (p < 

0.001) and Terminal (p < 0.002) (Fig. 2-6). 
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Fig. 2-6. Nematode taxonomic distinctness and taxonomic diversity at four sampling 

locations. Data are means ± 1SE of three distances to pollution, each with three replicate 

samples, per location. 

 

3.4 Nematode assemblage structure 

 

Fig. 2-7. Non-metric multidimensional scaling (nMDS) of nematode assemblages based on 

square-root transformed genus abundance data. Sample codes are as follows: first (capital) 

letter indicates location (S=Suro, H=Haghani, D=Dolat Park, T=Terminal), numbers indicate 

different stations (1 = closest to pollution source (50 m), 3 = most distant (150 m)), letters (A, 

B, C) indicate different replicates. Locations are indicated by different shapes (▲= Suro,●= 

Haghani, ■ = Dolat Park, ▼ = Terminal), and distances to pollution by different colours 
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(green= closest to pollution source (50 m), blue= intermediate distance(100m) and red= most 

distant (150 m)) . 

 

The nMDS analysis separated stations at the intermediate and largest distance to pollution at 

Haghani, as well as at the intermediate and largest distance to pollution at Suro, into two 

distinct groups (Fig. 2-7). All other samples formed a loosely defined cluster where some 

further structuring was visible (e.g. station nearest pollution of Haghani, station nearest 

pollution of Suro) but not pronounced. The results of this nMDS are reflected in a highly 

significant location x distance-to-pollution effect on the nematode assemblage composition 

(df = 6, pseudo-F = 3.72, p = 0.001). This effect demonstrates that differences in nematode 

assemblage composition did not merely follow location or distance boundaries, but ran across 

locations and distances to pollution. Hence, significant differences existed within locations: at 

Haghani, Terminal and Dolat Park, significant differences were found between the smallest 

and largest distance to the local pollution source (all p ≤ 0.05), while at Suro, all distances to 

pollution differed significantly from each other (all p < 0.05). Vice versa, with a single 

exception (150 m at Dolat Park and Terminal, p = 0.072), all pairwise comparisons of 

nematode assemblage composition between locations for a given distance to pollution yielded 

significant differences (all p < 0.05). Nevertheless, the location x distance effect on 

assemblage composition should be interpreted with caution, because Permdisp indicated 

significantly heterogeneous variances for the factor distance to pollution (p = 0.002).  

SIMPER analysis comparing locations and distances to pollution indicated that the strongest 

dissimilarity between locations (81 %) was between Haghani and Terminal. This was largely 

due to much higher relative abundances of Ptycholaimellus and Terschellingia at Terminal 

and of Pro- and Paramonhystera at Haghani (Fig. 2-3 and Table 2-3). The lowest 

dissimilarity between locations (55 %) was found between Dolat Park and Terminal. 

Ptycholaimellus and Terschellingia contributed to this dissimilarity with higher relative 

abundances in Terminal, whereas Daptonema was more abundant in Dolat Park (Fig. 2-3 and 

Table 2-3). In addition, some low-abundant genera like Eumorpholaimus and 

Metalinhomoeus also contributed to the dissimilarity between Dolat Park and Terminal (Table 

2-3). Differences between different distances from a pollution point source indicated the 

strongest dissimilarity (73 %) between the smallest (50 m) and largest (150 m) distance. 

Daptonema and Ptycholaimellus were on average more abundant nearest the pollution source, 

whereas Promonhystera and to a lesser extent Terschellingia reached their highest 
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abundances furthest away from local pollution sources (Fig. 2-3 and Table 2-4). However, 

these distance-to-pollution trends were not consistent at all locations. For instance, 

Daptonema and Ptycholaimellus did not exhibit higher relative abundances near pollution 

point sources at the least disturbed beach, i.e. Dolat Park, and Promonhystera had a 

considerably higher abundance at the most distant station only at Haghani, not at the other 

beaches.  

 

Table 2-3. Results of pairwise SIMPER (Similarity Percentages) analysis showing percentage 

dissimilarity between nematode assemblages of the four beach locations, as well as the genera 

contributing most to the observed dissimilarity. Average abundances have been square-root 

transformed. 

Genera   Av. 

 

abundance Contrib% Cum.% 

Suro & Haghani Average dissimilarity =63.36  

Paramonhystera 1.11 5.40 15.37 15.37 

Promonhystera 0.51 4.80 13.90 29.27 

Daptonema 5.23 2.63 10.91 40.17 

Viscosia 2.00 0.83 5.63 45.81 

Paraethmolaimus 2.08 0.89 5.56 51.37 

Suro & Dolat Park Average dissimilarity =65.01  

Terschellingia 0.59 4.34 11.14 11.14 

Ptycholaimellus 2.44 4.42 8.41 19.56 

Daptonema 5.23 4.81 8.36 27.92 

Paraethmolaimus 2.08 0.13 7.75 35.67 

Viscosia 2.00 0.00 5.35 41.02 

Odontophora 2.10 0.15 5.15 46.17 

Oncholaimus 2.10 0.15 5.15 51.32 

Suro & Terminal Average dissimilarity =72.30  

Ptycholaimellus 2.44 6.24 11.52 11.52 

Terschellingia 0.59 4.83 11.29 22.82 

Daptonema 5.23 2.23 9.38 32.19 
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Paraethmolaimus 2.08 1.05 8.49 40.68 

Viscosia 2.00 0.00 5.34 46.02 

Odontophora 2.10 0.24 5.26 51.28 

Haghani & Dolat Park Average dissimilarity =71.83       

Paramonhystera 5.40 1.17 14.00 14.00 

Promonhystera 4.80 1.14 13.18 27.18 

Terschellingia 0.44 4.34 12.96 40.14 

Ptycholaimellus 1.06 4.42 10.88 51.02 

Haghani & Terrminal Average dissimilarity =81.37  

Ptycholaimellus 1.06 6.24 15.89 15.89 

Paramonhystera 5.40 0.40 14.91 30.80 

Promonhystera 4.80 0.11 14.73 45.53 

Terschellingia 0.44            4.83   14.59 60.12 

Dolat Park & Terminal Average dissimilarity =54.64  

Ptycholaimellus 4.42 6.24 14.45 14.45 

Terschellingia 4.34 4.83 11.58 26.02 

Daptonema 4.81 2.23 10.87 36.90 

Eumorpholaimus 1.32 1.64 8.18 45.08 

Metalinhomoeus 0.86 0.54 5.41 50.48 
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Table 2-4. Results of pairwise SIMPER (Similarity Percentages) analysis showing percentage 

dissimilarity between nematode assemblages of the three distance to local pollution sources 

(50 m = closest distance to pollution source, 150 m  = most distant), as well as the genera 

contributing most to the observed dissimilarity. Data of all four beach locations have been 

grouped per distance.  

Genera Av.Abund Av.Abund Contrib% 

 

Cum.% 

50m & 100m Average dissimilarity =61.58  

Daptonema     5.46     3.63    12.63 12.63 

Ptycholaimellus     4.63     2.99    10.91 23.53 

Terschellingia     2.19     2.72     8.98 32.51 

Paraethmolaimus     2.19     0.38     8.70 41.21 

Promonhystera     0.39     1.65     6.90 48.11 

Paramonhysrera     1.66     2.17     6.57 54.68 

50m  & 150m Average dissimilarity =72.64  

Daptonema     5.46     2.09    11.15 11.15 

Ptycholaimellus     4.63     3.01     9.55 20.70 

Promonhystera     0.39     2.88     9.13 29.83 

Paraethmolaimus     2.19     0.54     7.50 37.33 

Terschellingia     2.19     2.74     7.38 44.70 

Paramonhysrera     1.66     2.23     5.91 50.61 

100m &  150m Average dissimilarity =57.08  

Daptonema 3.63 2.09 8.95 8.95 

Promonhystera 1.65 2.88 8.33 17.28 

Paramonhysrera 2.17 2.23 8.15 25.43 

Ptycholaimellus 2.99 3.01 8.06 33.49 

Terschellingia 2.72 2.74 6.73 40.22 

Theristus 1.35 0.80 5.35 45.57 

Metoncholaimus 0.23 1.31 4.61 50.17 
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4 Discussion 

Free-living nematodes may play an important role in the functioning of marine benthic 

ecosystems, among other things because of their high abundance and generally fast turnover, 

their role as a food source for higher trophic levels, and their interactions with microbiota 

through which they can affect decomposition processes (Snelgrove et al. 1997; Coull 1999; 

De Mesel et al. 2006; Gray and Elliott 2009), and constitute a major component of the 

meiobenthos in soft bottoms (Heip et al. 1985; Higgins and Thiel 1988; Moens et al. 2013). 

Despite their importance, we are unaware of published data on marine nematodes of the 

Persian Gulf. The present study is therefore the first on nematofauna of this area, and a 

comparison of both diversity, abundance and assemblage composition with beaches elsewhere 

in the world is thus important. Moreover, effects of local (point) sources of pollution in a 

generally stressed environment (high salinity, large temperature fluctuations, anthropogenic 

pollution) on nematode assemblage structure and diversity have hitherto received little 

attention, rendering the present study relevant beyond the focal study area.  

4.1. The study area 

Intertidal areas in the Persian Gulf are particularly harsh environments given the large daily 

variations in temperature and interstitial salinity which occur in the area. They are also subject 

to many of the above-mentioned anthropogenic impacts. We could therefore expect an overall 

low diversity of beach interstitial fauna, including nematodes, in our study area. This was 

indeed the case, with low values of local and regional beach nematode richness and 

assemblages characterized by a pronounced dominance of a few (very) abundant genera (see 

below). Despite the fact that the harsh environmental conditions and considerable region-wide 

anthropogenic disturbance may largely account for the observed low diversity, the spatial 

patterns demonstrated in this study reveal substantial local effects, which at least in part 

appear linked to very localized pollution sources, mostly in the form of sewage outflows 

which discard on, or immediately in front of, the beach, supporting the claim of Gawad et al. 

(2008) about the significant threat of such localized pollution sources to the sustainability of 

Persian Gulf coastal ecosystems. While Haghani was visibly the most sewage-impacted 

location, which was reflected in both abiotic (e.g., % organic carbon) and biotic (lowest 

nematode diversity overall and lowest nematode abundance at the station nearest the sewage 

drainage) variables, our organic matter and heavy metal concentration data did not support 

Suro but rather Terminal as the second most impacted location (cf. highest % organic carbon, 
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low diversity, no effect of distance to local pollution on nematode diversity and abundance at 

Terminal in contrast to Suro). Terminal is the most sheltered location and accumulates more 

inputs, as evidenced by its significantly smaller grain size and higher silt and organic matter 

content compared to all other locations.   

4.2. Nematode diversity and abundance 

In this study 39 genera belonging to 17 families were found in a single inventory of four 

beaches. All these genera have been reported from elsewhere in the world, so endemism, if at 

all present, will be restricted to the species level. Although we have not identified to species 

level, we have no indications that endemism would be prominent.  

 

4.2.1. Comparing diversity patterns of beach nematofauna across studies  

When looking within the same latitudinal zone, beach studies with low(er) local nematode 

genus richness tend to be impacted by anthropogenic disturbance. Anthropogenic disturbance 

and pollution may thus be important causes of low nematode diversity on sandy beaches. Our 

nematode data appear to support the conclusion of local studies in the Persian Gulf performed 

on macrobenthos: a generally low biodiversity and abundance, probably as a consequence of 

both natural stressors and anthropogenic impacts (Ejlali Khanaghah et al. 2010; Naderloo and 

Tuerkay 2012; Safahieh et al. 2012; Pourjomeh et al. 2014). A comparison of our data with 

those of other beach studies worldwide does not, however, support a clear latitudinal diversity 

pattern, in line with the general conclusion of Mokievsky and Azovsky (2002) for marine 

nematode assemblages. 

Caution is, however, due when comparing diversity estimates from different studies because 

of differences in sampling strategies (number of replicates, position on the beach, sediment 

depth stratum etc…), sample sizes and numbers of stations and beaches between studies. We 

should ideally be able to compare average diversity per sample in each station at each beach 

as a measure of local or sample diversity for each of the four beaches in our study. We should 

then also look at aspects of richness, evenness and dominance. However, several of the 

studies with which we compare do not allow calculation of such an average sample diversity 

and/or of evenness and dominance components. So here, we have opted to consider beach 

locations (i.e. individual beaches) as the scale on which to determine local diversity, and 

restrict this part of our discussion to taxon richness, mostly expressed as the number of genera 

(N0). It is important to note that sampling effort differs tremendously between studies and 

therefore greatly impacts comparisons. The cumulative diversity over different beaches can be 
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referred to as gamma diversity. Comparison of gamma diversity, then, is mostly affected by 

the number of beaches studied and perhaps by the distance between them, but also by habitat 

diversity when different beach types are being considered (Barnes et al. 2011; Lee and 

Riveros 2012; Maria et al. 2016).  

Local as well as gamma diversity in our study were within the wide range of values reported 

for other beaches worldwide, but nevertheless in the lower part of that range. Several factors 

such as climate, sediment granulometry, beach morphodynamics and pollution are all 

potential drivers of variations in abundance, diversity and taxonomic composition of beach 

nematode assemblages, but there is no comprehensive understanding of what driver(s) have a 

predominant impact.  

 

4.2.2. Effects of climate and latitude on beach nematode diversity 

The overall low genus richness in our study area may in part relate to the climatic conditions 

and relatively high salinity of the Persian Gulf and to broad-scale anthropogenic impacts (see 

above; Kämpf and Sadrinasab, 2006; Reynolds 1993). Nevertheless, published literature on 

the nematofauna of beaches from very different geographical areas does not yield clear 

patterns of diversity with climatic region/latitude, with the notable exception of beaches along 

the Chilean and Australian coastlines, where diversity decreased with increasing latitude 

(Nicholas and Trueman 2005; Lee and Riveros 2012). Within a similar latitude, for instance, 

considerably higher local diversity than in our study was obtained in the Gulf of California, 

with up to 96 genera per beach (Mundo-Ocampo et al. 2007; Gingold et al. 2010), and at 

Guanabara Bay, Rio De Janeiro, with 62 genera (Maria et al. 2008b). However, sampling 

effort considerably exceeded that in our study, since both aforementioned studies sampled 

transects across the entire high-to-low water gradient. In addition, Gingold et al. (2010) 

specifically incorporated ridges and runnels (the latter holding a higher diversity), whereas a 

majority of other studies, including ours, have focused solely on ridges. Ridges and runnels 

harbor partly different nematode assemblages and the horizontal zonation of nematodes across 

the beach intertidal differs between ridges and runnels (Gingold et al., 2010; Maria et al., 

2013b). The beaches we studied do not exhibit a clear ridge-and-runnel morphology and we 

did not incorporate horizontal zonation. A better comparison between these studies and ours is 

therefore possible when looking at sample diversity rather than beach diversity. Average 

sample diversity in the studies of Maria et al. (2008b) and Gingold et al. (2010) ranged from 9 

to 43 genera in the former and from 6 to 27 in the latter, compared to 5 to 16 in our study. The 
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lowest genus diversity in the study by Gingold et al. (2010) was found at the upper beach and 

highest diversity in the lower and middle parts of the beach. Our samples were taken from the 

mid intertidal, hence the average genus richness per sample in our study can be considered 

comparatively low. Local (28-29 genera) and gamma diversity (40 genera) at two Ecuadorian 

beaches were more similar to those in our study (Calles Procel et al. 2005). These beaches 

were more influenced by human activity, i.e. high recreational use on one, and fishing 

activities on the other. While impacts of tourism per se can be significant, they are mostly 

restricted to the upper beach (Gheskiere et al. 2005). Only 21 genera were found at a beach 

along the central west coast of India, encompassing five stations along a gradient of sewage 

pollution (Nanajkar and Ingole 2010). It therefore appears that within the same latitudinal 

zone, local nematode genus richness is affected by anthropogenic disturbance.  

 

4.2.3. Effects of pollution on beach nematode diversity 

The degree and type of environmental pollution are well known to affect nematode 

assemblages (Heip et al. 1985; Somerfield et al. 2003). Sewage discharges influence 

nematode assemblage structure through changes in several environmental parameters, 

especially organic matter enrichment and associated pollutants (Pinto and Bemvenuti 2006). 

Total organic carbon concentration showed a clear distance effect in Terminal and Haghani, 

but much less so in the other two beaches. The low genus richness at Haghani, combined with 

the extremely low nematode abundance at the station nearest the sewage canal at this beach, 

support a prominent local pollution impact. Haghani was situated next to the largest sewage 

drainage canal of the city, and we assume that the influence of the sewage inputs on nematode 

diversity extended over all stations on this beach, thus resulting in an overall lower genus 

richness. In addition, there was also a significantly higher richness in the beach station 

furthest from the local pollution source at Suro. The latter is concordant with Pinto and 

Bemvenuti (2006), who also reported the highest diversity away from the sewage discharge 

point. At the other beaches, a clear gradient of nematode richness with distance was not 

detected. Dolat Park does not receive sewage inputs and pollution is mainly restricted to 

limited amounts of local deposition of garbage from recreational beach use, the influence of 

which is unlikely to extend much into the surrounding sediments. Terminal, however, had the 

finest sediments and highest % TOC, suggesting prominent deposition of organic detritus, but 

this probably results more from its sheltered position rather than from local sewage inputs, 

and was not clearly reflected in the nematode assemblage.   
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4.2.4. Influence of granulometry and beach morphodynamics on nematode 

diversity 

Sediment granulometry is well known as one of the most, if not the most important factor in 

determining meiobenthic assemblage abundance, structure and diversity (Heip et al. 1985; 

Coull 1988; Vanaverbeke et al. 2000). Marine nematode diversity often tends to increase with 

an increasing sand fraction (Tietjen 1984; Moens et al. 2013). In our study, however, the 

differences in granulometry between beaches were limited and there was no clear relationship 

between nematode abundance and diversity on the one hand and sediment granulometry on 

the other. The location with the highest nematode diversity and abundance (Suro) had the 

second lowest median grain size of all beaches investigated, while the location with the lowest 

nematode densities and diversity (Haghani) had slightly coarser sediment.  

Sediment granulometry relates to beach hydro- and morphodynamics. In our study, Haghani 

had a moderately reflective profile and slightly coarser sediments (except when compared to 

Dolat Park), whilst the other beaches were more sheltered and characterized by very gentle 

slopes. Nematode abundances did not consistently differ between beaches, but rather between 

stations across beaches. Nematode genus richness did differ between locations. The low genus 

richness at Haghani, combined with an extremely low abundance at the station nearest the 

pollution source, suggest that local pollution sources rather than morphodynamics, physical 

disturbance or related factors contribute to this pattern, which contrasts with expectations 

based on literature: higher meiofauna density and/or diversity at more reflective beaches 

compared to on dissipative beaches (McLachlan et al. 1977; McLachlan and Jaramillo 1996; 

Rodriguez et al. 2003). Reflective beaches typically have coarser sediments with a high 

permeability, low organic matter concentrations, and deep penetration of oxygen and 

nutrients, a combination of factors which may benefit a higher diversity (Moens et al. 2013). 

The somewhat higher permeability of sediments at Haghani may in part explain why this most 

polluted location did not accumulate higher concentrations of most heavy metals than the 

other three locations, and why the visibly strong sewage inputs yielded organic carbon 

concentrations which did not exceed those at Terminal.  

 

4.2.5. Different diversity indices yield similar patterns 

The genus richness trends were generally well reflected in other diversity measures. Most 

indices showed similar trends, confirming the conclusions of Simboura et al. (1995). On the 

other hand, our data do not confirm the contention that taxonomic distinctness or diversity 
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outperform richness and evenness in detecting impacts of disturbance (Warwick and Clarke 

1995, 1998, 2001; Salas et al. 2006), perhaps even the contrary: richness indices revealed 

more significant differences among locations and distances to pollution than taxonomic 

distinctness or diversity, in line with findings of Nicholas and Trueman (2005) for Australian 

beach nematofauna. Taxonomic distinctness at the most polluted location, Haghani, was only 

surpassed by that at Suro and exceeded that at Terminal. Taxonomic diversity only revealed 

significant differences between locations but not distances to pollution. 

 

4.3 Nematode assemblage composition 

In our whole study area, five genera (Daptonema, Ptycholaimellus, Terschellingia, 

Promonhystera and Paramonhystera) together comprised 75 % of the overall nematode 

abundances. Hence, all significant differences in nematode assemblage structure could be 

largely attributed to differences in the relative abundances of these dominant genera (Table 2-

2). Daptonema, Paramonhystera and Promonhystera are (non-selective) deposit feeders 

(Moens and Vincx, 1997), a feeding type which in intertidal habitats probably derives most of 

its nutritional requirements from diatoms and other microalgae and from bacteria. Daptonema 

is widely distributed in organically enriched marine sediments and has a high tolerance to a 

variety of pollution types (Vanreusel and Vincx 1989; Boyd et al. 2000a; Schratzberger et al. 

2006). Nanajkar and Ingole (2010) reported it as dominant in anoxic, degraded and polluted 

habitats, even though dedicated lab experiments have shown its tolerance to hypoxia/anoxia to 

be much weaker than expected (Steyaert et al. 2007). Such contradictory outcomes may in 

part relate to species-specific differences within a genus, but may also reflect behavioural 

strategies such as vertical migrations in sediments which limit the duration of exposure to the 

actual anoxia under field conditions and/or serve to avoid predation (Steyaert et al., 2001; 

(Maria et al. 2012). While Daptonema and Ptycholaimellus were abundant throughout our 

study locations and in most cases had their highest abundances nearest sewage inputs,  

Promonhystera and Paramonhystera had their highest relative abundances at the most 

polluted beach (Haghani), but Promonhystera had lower abundance in the stations nearest 

sewage inputs, rendering interpretation of distribution patterns far from straightforward. The 

high abundances of Daptonema, Promonhystera, Paramonhystera and, to a lesser extent, 

Theristus, at our sampling locations do corroborate previous reports that beaches composed of 

fine to medium sands tend to show a high abundance of Xyalidae (Gheskiere et al. 2004; 

Calles Procel et al. 2005; Hourston et al. 2005; Moreno et al. 2006; Moens et al. 2013). 
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Beaches with medium to very coarse sands, in contrast, are often more dominated by 

Chromadoridae (Sharma and Webster 1983; Urban-Malinga et al. 2004; de Jesus-Navarrete 

2007; Maria et al. 2013a).  

The most abundant chromadorid nematode on Persian Gulf beaches was Ptycholaimellus. 

Ptycholaimellus is an epigrowth feeder (2A) which uses a tooth to pierce or crack diatoms, 

other microalgae and filamentous cyanobacteria (Moens and Vincx, 1997). Members of this 

genus are often particularly prominent in the surface layer (upper 1cm) of intertidal muds and 

sands covered with microphytobenthic biofilms (Commito and Tita 2002; Steyaert et al. 2003; 

Van Colen et al. 2009). They appear to respond rapidly to microphytobenthos blooms (Van 

Colen et al. 2009), and we therefore tentatively attribute their higher relative abundance in the 

stations nearest sewage inputs to a stimulatory effect of the concomitant nutrient inputs on 

microphytobenthos. The same may hold for Daptonema.  

Terschellingia is a microvore with a tiny buccal cavity, suggesting it feeds mainly or 

exclusively on bacteria-sized particles (Moens and Vincx, 1997). Recent stable isotope 

evidence demonstrates that T. longicaudata obtains most of its nutrition from 

chemoautotrophic bacteria which utilize methane as a carbon source (Moens et al. 2011; 

Vafeiadou et al. 2014). This genus, and particularly the species present in our samples (T. 

longicaudata), has been reported worldwide from often organically enriched or otherwise 

polluted sediments (Heip et al. 1985; Somerfield et al. 2003; Pinto and Bemvenuti 2006; 

Schratzberger et al. 2006; Moreno et al. 2008a). It has a remarkable tolerance to hypoxic and 

anoxic conditions (Hendelberg and Jensen 1993; Modig and Olafsson 1998; Steyaert et al. 

2007), but in our study, Terschellingia had its highest abundance at the least organically 

polluted beach, Dolat Park, and at Terminal. Terminal, and to a lesser extent Dolat Park, are 

the two least exposed beaches and have higher silt content than the other two locations. In the 

absence of data on redox profiles and other relevant sediment characteristics, we can only 

speculate that its preference for physically little disturbed, fine sediments is a more prominent 

driver of its occurrence than organic matter availability.  

 Because the same few nematode genera dominated all beaches, but exhibited different spatial 

patterns between beaches as well as between stations within a beach, it is not surprising that 

the nematode assemblage structure differed significantly as a function of the interaction 

between beaches and distance to local pollution sources. 
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5 Conclusions 

Nematode assemblages at four beaches in the Persian Gulf near Bandar Abbas showed 

abundances and a genus composition that are fairly typical of fine-grained beaches elsewhere 

in the world. Genus richness was overall low, probably in relation to the harsh environmental 

conditions and broad-scale pollution effects in the Persian Gulf, but also appeared 

substantially affected by local anthropogenic inputs rather than by beach morphodynamics 

and sediment composition. Hence, local anthropogenic impacts have pronounced effects on 

assemblages, even in habitats which naturally experience strong environmental fluctuations 

and broad-scale anthropogenic disturbance.   
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Supplementary Table S2-1. Heavy metal concentrations (in mg/kg) at the four beaches, with 

three distance to local pollution sources (50 m = closest distance to pollution source, 150 m  = 

most distant). Data are means ±1SE of three replicates per distance x beach combination. 

 Distance Ba Cr Cu Sr Zn Y S 

 50m 85.1±6.3 646.7±82.1 25.5±8.6 1815.4±59.8 31.9±5.7 12.7±1.8 768.4±41.5 

Suro 100m 113.7±5.8 559.1±124.1 17.6±1.9 1695.1±54.6 23.9±1.2 10.0±0.1 783.9±70.1 

 150m 128.1±15.9 703.0±139.5 18.9±1.6 1655.7±22.8 27.7±0.3 10.2±0.3 708.1±20.3 

         

 50m 121.2±10.7 755.7±167.9 17.9±1.7 1406.9±164.1 27.2±2.0 10.8±0.5 785.2±27.6 

Haghani 100m 109.0±15.8 779.1±43.7 20.8±1.0 1636.2±173.3 27.7±1.7 10.7±0.3 760.1±14.6 

 150m 103.8±2.6 1295.2±102.7 28.4±1.0 1579.1±50.4 30.1±1.4 12.2±0.2 723.6±9.6 

         

 50m 144.2±4.6 413.9±28.7 21±1.9 731.9±37.8 24.4±0.4 11.6±0.6 962.2±57.3 

Dolat Park 100m 143.9±1.3 492.1±18.1 19.5±2.6 706.9±13.7 24.3±0.7 11.1±0.08 907.7±7.7 

 150m 142.0±6.6 413.0±20.1 18.8±1.1 810.6±72.0 34.5±1.6 13.4±0.6 910.6±19.2 

         

 50m 179.8±9.0 533.3±86.1 15.4±1.2 639.6±47.7 30.0±2.3 10,7±0.1 758.3±78.4 

Terminal 100m 150.4±3.6 660.2±105.2 19.9±1 1141.5±83.1 27.9±1.8 12.1±0.5 990.3±139.7 

 150m 168.5±2.8 758.7±75.1 22.3±0.8 1077.3±19.4 51.4±6.2 12.7±0.3 1016.8±122.3 
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Supplementary Table S2-2. PERMANOVA results for different heavy metals at different 

locations  and distances to pollution. Results are showing differences of each heavy metal 

with location, distance to pollution and their interaction. Significant pseudo-P-values obtained 

by Monte Carlo permutation are indicated in the last column. 

 Source df SS MS Pseudo-F Pseudo-P 

 Location 3 23.49 7.83 30.86 0.001 

 Station 2 0.28 0.14 0.55 0.59 

Ba Lo x Sta 6 5.13 0.85 3.37 0.017 

 Total 35 35    

 Location 3 16.35 5.44 14.35 0.002 

 Station 2 4.05 2.02 5.34 0.014 

Cr Lo x Sta 6 5.482 0.91 2.40 0.061 

 Total 35 35    

 Location 3 1.75 0.58 0.67 0.608 

 Station 2 1.60 0.80 0.92 0.428 

Cu Lo x Sta 6 10.85 1.80 2.08 0.064 

 Total 35 35    

 Location 3 29.47 9.82 93.34 0.001 

 Station 2 0.79 0.39 3.77 0.032 

Sr Lo x Sta 6 2.20 0.36 3.49 0.016 

 Total 35 35    

 Location 3 7.15 2.38 6.84 0.005 

 Station 2 9.45 4.72 13.56 0.001 

Zn Lo x Sta 6 10.02 1.67 4.79 0.005 

 Total 35 35    

 Location 3 3.45 1.15 1.79 0.18 

 Station 2 3.88 1.94 3.02 0.06 

Y Lo x Sta 6 12.25 2.04 3.17 0.011 

 Total 35 35    

 Location 3 12.64 4.21 6.56 0.001 
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 Station 2 0.51 0.25 0.40 0.66 

S Lo x Sta 6 6.44 1.07 1.67 0.16 

 Total 35 35    
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Supplementary Table S2-3. Sediment granulometry (measured on samples from December 2008) of three distance to local pollution sources (50 

m = closest distance to pollution source, 150 m  = most distant) of each of four beaches studied. Data on granulometry are with one sample per 

distance to a local pollution source.  

 Location Distance 

Median 

grain size(µm) 

Mean 

grain size(µm) %Silt 

%Very fine 

sand 

%Fine 

sand 

%Medium 

sand 

%Coarse 

sand 

%Very coarse 

sand 

 

50m 172.53 242.07 0.63 26.14 45.78 18.03 5.63 1.75 

Suro 100m 149.32 160.65 0.16 32.26 58.59 8.98 0 0 

 

150m 143.27 153.96 0.54 35.87 56.41 7.16 0 0 

 

50m 204.53 232.04 1.98 14.09 49.09 30.86 3.95 0 

Haghani 100m 180.85 201.02 0 20.05 55.88 23.13 0.92 0 

 

150m 140.73 151.52 1.05 37.39 54.62 6.91 0 0 

 

50m 193.90 205.49 0 11.51 63.66 24.81 0 0 

Dolat park 100m 195.53 212.48 4.82 17.29 45.77 31.03 1.07 0 

 

150m 142.37 176.36 13.02 30.08 35.26 19 2.62 0 

 

50m 134.11 170.47 13.39 32.53 36.33 14.81 2.17 0.26 

Terminal 100m 121.09 176.80 16.40 35.32 30.51 12.60 3.18 0.95 

 

150m 101.81 177.61 23.55 36.60 21.67 10.40 4.87 1.30 
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Supplementary Fig.  S2-1. Our sampling locations in an aerial photograph taken from Google 

Earth (http://earth.google.com). S=Suro; H= Haghani; D= Dolat Park; T= Terminal 
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Sahraean et al. “Year-to-year variability in beach nematode assemblage structure and 

biodiversity in the northern part of the Strait of Hormuz”. In preparation.  
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Abstract 

Intertidal areas in the Persian Gulf, particularly in the Strait of Hormuz, experience a 

combination of natural and anthropogenic stressors, resulting in overall moderate to low 

diversity of meio- and macrobenthic assemblages. Despite the overarching salinity, climate 

and hydrocarbon-pollution effects on benthic biodiversity, impacts of local, small-scale 

anthropogenic pollution sources are significant. We recently demonstrated that local pollution 

sources, mainly sewage discharge points, determine spatial differences in nematode 

assemblages between and within beaches along the coast near Bandar Abbas, the capital of 

the Hormuzgan province. Here we assess whether the spatial patterns obtained in that study 

were consistent over time. We repeated the sampling design of the previous study, i.e. four 

beaches, with three stations each along a distance gradient of 50, 100 and 150 m from a 

pollution point source, exactly one year later. We found strong changes in spatial patterns of 

nematode assemblages, where many of the between-location and between-station differences 

observed in 2008 disappeared. Haghani remained the least diverse beach, consistent with the 

presence of the largest urban drainage of Bandar Abbas. Suro and Dolat Park exhibited 

decreased abundance and diversity, whereas Terminal showed the opposite pattern. Distance-

to-pollution gradients found in 2008 were largely absent in 2009. We hypothesize that the 

nearly threefold higher precipitation in the weeks preceding the 2009 sampling compared to 

2008 caused a larger sewage discharge rate, enhancing the local impacts at Suro and Dolat 

Park and spreading them over a larger beach area. The opposite pattern at Terminal is difficult 

to explain, although a sampling performed four years later demonstrated a substantial 

coarsening of the sediments at this location. If this had already initiated in 2009, it might 

explain the increase in diversity and abundance. The overall number of genera encountered in 

our samples was equally high in both years. Four out of the five dominant genera of 2008 

together made up 80 % of nematode abundances in 2009, while 22 ‘unique’ genera, 

encountered only in 2009, together contributed only 6.5 %. Two thirds of the 62 genera in the 

total dataset were only found in one year and were all rare. This demonstrates that a correct 

estimate of genus richness requires a large and repeated sampling effort specifically aiming at 

the tail of rare genera. 

Keywords: meiobenthos, intertidal, biodiversity, assemblage structure, spatial variability, 

temporal variability. 
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1 Introduction 

Free-living marine nematodes are the most abundant and diverse metazoan fauna in marine 

benthic systems (Heip et al. 1985; Moens et al. 2013). Their activity may affect ecosystem 

processes such as organic matter decomposition, nutrient recycling and biofilm formation (De 

Mesel et al. 2003; Chinnadurai and Fernando 2007; Hubas et al. 2010), and their biomass may 

serve as food for benthic and hyperbenthic macrofauna and fish (Gee 1989; Coull 1990; 

Schuckel et al. 2013). Nematode assemblages are also potentially very well suited for 

environmental impact studies, due to, among others, their limited mobility and lack of larval 

dispersion, their high abundance, their relatively short generation times, differential and 

species-specific sensitivity to different types of disturbance, and the presence of different 

feeding modes and trophic levels (Sandulli and De Nicola 1991; Bongers and Ferris 1999; 

Moreno et al. 2011; Patrício et al. 2012).        

The Persian Gulf is an important military, economic and political region due to its strategic 

position and its oil and gas resources. It is intensively utilized by men, mainly as a transport 

route. Its environment has been subject to rapid changes and diverse pressures such as oil 

pollution, solid and liquid waste disposal (including sewage), coastal development and 

recreational activities, many of which may act profoundly on benthic systems (Doustshenas et 

al. 2009; Dehghan Madiseh et al. 2012; Ejlali Khanaghah et al. 2015; Farsi et al. 2015). 

However, studies on the benthos in the northern part of the Gulf are scanty and have mostly 

been restricted to macrofauna (Samadi et al. 2010; Saledhoust et al. 2011). We know of only 

one study on meiofauna in this area, which dealt with the abundance, diversity and genus 

composition of nematodes at four sandy beaches near Bandar Abbas, the capital of the 

Hormuzgan province in Iran (Sahraean et al. 2017a , chapter 2 of this PhD). That study found 

an overall low to moderate genus diversity, but also substantial effects of local sewage inputs. 

However, it was based on a single sampling event in December 2008, and nematode 

assemblages can be highly variable in both space and time. Such variability depends on 

several climatological, physical and chemical (e.g. temperature, salinity, mean grain size of 

sediment and dissolved oxygen) (Hourston et al. 2005; Nozais et al. 2005; Moens et al. 

2013) as well as on biological factors such as food quality and quantity, macrobenthic 

infaunal activity and predator impacts (Gallucci et al. 2005; Braeckman et al. 2011; dos 

Santos and Moens 2011; Maria et al. 2011b).   
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A majority of studies which have assessed temporal variability of coastal intertidal nematode 

assemblages have looked at seasonal variability (Boaden and Platt 1971; McIntyre and 

Murison 1973; Platt 1977; McLachlan 1978; Blome 1982; Sharma and Webster 1983; 

Gourbault et al. 1998; Nicholas and Hodda 1999; Nicholas 2001; Albuquerque et al. 2007; 

Liu et al. 2008; Venekey et al. 2014a). Fewer studies have considered longer-term (i.e. across 

years) variability (Coull 1985, 1986; Eskin and Coull 1987; Li et al. 1996; Riera et al. 2011a; 

Riera et al. 2011b). Moreover, a majority of studies have only considered total abundances of 

nematodes and other higher meiofauna taxa. Coull (1985, 1986) reported variability of 

meiofauna abundance at higher-taxon level from two Southern Californian estuarine sites (one 

muddy and one sandy) over an eleven-year study period. Year-to-year variability in 

meiofauna abundance exceeded seasonal variability in both sites, but no recurrent patterns 

other than seasonal ones were found. Predation by juvenile spot was suggested as a significant 

factor controlling meiofauna abundances in the muddy sediment (Smith and Coull 1987). Li 

et al.  (1996) in turn concluded that variability in nematode biomass over a one-year cycle 

with monthly or fortnightly samplings was strongly impacted by macrobenthos, albeit that 

this mostly affected predatory and omnivorous nematodes, whereas biomass of primary 

consumers was more dependent on food availability. Riera et al.,  (2011a) reported seasonal 

and long-term (six years) variability of a meiofaunal community under the influence of a fish 

farm (Canary Islands, NE Atlantic Ocean). These authors observed a lack of any seasonal 

pattern in all meiofaunal taxa except harpacticoid copepods. Year-to-year variability of 

meiofauna abundance was similar throughout the study period except the last year, which 

showed a significant increase in overall meiofauna abundance. Riera et al. (2011b) 

investigated the meiofauna at an intertidal beach on a monthly basis for one year. Temporal 

fluctuations were species-specific, but only a very small portion of this temporal variability 

could be assigned to sediment granulometry, organic matter content or nitrogen concentration. 

Finally, Materatski et al. (2015) studied nematode assemblages pre and post collapse of 

seagrass (Zostera noltii) meadows in the Mira estuary, Portugal; despite significant changes in 

overall abundance and diversity, they also found a surprisingly high resilience of nematode 

assemblages, particularly in terms of diversity and trophic composition.    

The main objective of the present study was to investigate year-to-year variability of 

nematode assemblage structure and its spatial patterns on beaches of the northern part of the 

Strait of Hormuz, Persian Gulf. For this purpose, we repeated the sampling design used in 

2008 (Sahraean et al. 2017a, chapter 2 of this PhD) in December 2009, at the same four 
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locations and using the same stations at each location. In view of substantial differences in 

climatological conditions (mainly a threefold higher precipitation in the weeks preceding the 

2008 and 2009 sampling events, as well as higher temperatures in 2009 compared to 2008), 

we assessed whether the spatial patterns in nematode assemblage structure and diversity 

would also differ between both years.  

 

2 Materials and Methods 

 

2.1. Sampling sites and design  

Nematode samples were collected at four intertidal beaches, characterized by different 

degrees of local anthropogenic pollution, in the northern part of the Strait of Hormuz, Persian 

Gulf, near Bandar Abbas, Iran. These beaches are: Haghani (most polluted), Suro and 

Terminal (intermediate pollution), and Dolat Park (least polluted). Sewage inputs are the main 

source of pollution at the first three locations, whereas Dolat Park is relatively ‘pristine’, with 

garbage spills from recreational tourism as the main local source of anthropogenic 

disturbance. However, it is important to note that this area of the Persian Gulf is overall 

impacted by anthropogenic effects such as elevated hydrocarbon levels (Gevao et al. 2006; 

Gawad et al. 2008), and in addition offers a naturally stressful environment (for instance high 

salinity and very large seasonal differences in surface-water temperatures (Chao et al. 1992)). 

These four beaches also differ in morphodynamics, from a narrow (ca 30 m) and moderately 

reflective beach at Haghani to more sheltered and much wider (500 – 600 m) tidal flats at the 

other three locations. Nevertheless, sediment granulometry exhibited only moderate 

differences, Terminal presenting finer sediments and a higher silt fraction than the other three 

beaches. More detailed information on the study sites is provided in (Sahraean et al. 2017a, 

chapter 2), and a summary of the most important sediment characteristics and nematode 

abundance and diversity data from that study in 2008 is provided in table 3-1.    

At each beach, a transect parallel to the water line was established with three stations at 50-m 

intervals along a gradient of increasing distance from a local sewage input (Sahraean et al., 

2017a, chapter 2). Given the absence of sewage inputs at Dolat Park, the gradient at this site 

started at the side of the beach which receives most garbage left behind by tourists. At each 

station at each beach, three replicate sediment cores, with interdistances of ca 1 m along a line 

perpendicular to the water line, were taken using PVC hand corers with an inner diameter of 
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3.5 cm down to a depth of 5 cm. Samples were immediately preserved in 4 % buffered 

formaldehyde. This sampling design, using the same sampling locations and distances to 

pollution, was exactly the same as in 2008 (Sahraean et al. 2017a., chapter 2).  

2.2. Nematode quantification and identification 

In the laboratory, nematodes were extracted using centrifugation with Ludox© HS40 at a 

specific density of 1.18 (Vincx 1996) and collected over a 38-µm mesh. The nematodes 

retained on the 38-µm sieve were counted, and 100 nematodes were picked out randomly, 

transferred through a graded series of ethanol-glycerol solutions, and mounted on glass slides 

prior to identification to genus level  using  the pictorial  keys  of  (Platt and Warwick 1980; 

Platt and Warwick 1983) and Warwick  et  al.  (1998), as well as the Nemys online 

identification key (Vanaverbeke et al. 2015). When less than 100 nematodes were found, all 

specimens were mounted on slides. This is again exactly the same procedure as for the 2008 

sampling. 

 Suro Haghani Dolat Park Terminal 

median grain size (µm) 155±8.9 175±18.6 177±17.5 119±9.4 

mean grain size (µm) 186±28.3 195±23.4 198±11.1 1756±2.3 

% silt 0.4±0.1 1.0±1.0 5.9±3.9 17.8±3.0 

nematode abundance 

(ind. 10 cm-2) 

674.6±81.5 373.7±100.6 688.1±125.6 700.4±99.7 

nematode genus 

richness 

10.4±1.6 5.6 ± 0.3 9.0±0.8 8.1±0.9 

Shannon-Weaver 

diversity 

1.7±0.2 1.0±0.1 1.5±0.1 1.2±0.1 

Table 3.1. Sediment granulometry (mean and median grain size and % silt) and nematode 

abundance, nematode genus richness and Shannon-Weaver diversity of the four beaches 

studied, based on the data collected in 2008. Data are means ± 1 SE of three (nematode data) 

and one (sediment data; values are thus the mean of the values for each distance) replicates 

taken from each of three distances to pollution per beach. Diversity data thus represent sample 

diversity (α diversity).  
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2.3. Data analysis 

We calculated nematode genus richness in terms of rarefied (expected number of genera in a 

sample of 50 nematodes, EG50) and absolute richness. In addition, we calculated Shannon-

Weaver’s diversity (H’), Simpson’s diversity index (Si) as a measure of dominance, and 

taxonomic diversity (Δ) and distinctness (Δ*), using the DIVERSE routine in PRIMER 6.0 

(Clarke and Gorley 2006). Taxonomic distinctness is the average taxonomic distance between 

any two specimens in the assemblage, whereas taxonomic diversity is the average taxonomic 

distance between pairs of taxa, in this case genera (Warwick and Clarke 1998). The 

nematodes were classified into six feeding categories according to Moens and Vincx (1997): 

microvores, deposit feeders, ciliate feeders, epigrowth feeders, facultative predators and 

predators. 

Differences in total nematode abundances and all diversity indices between different locations 

and stations and between years, as well as their interactions were tested. Prior to analysis, data 

were tested in the software Statistica 7 for normality by means of the Kolmogorov-Smirnov 

test, and homogeneity of variances using Levene’s test. If the data did not conform to these 

assumptions, they were log(x+1) transformed. In many cases, this data transformation did not 

solve the issue of normality and/or homoscedasticity; hence for reasons of consistency, we 

decided to analyze all data using permutational multivariate analysis of variance 

(PERMANOVA) (Anderson et al. 2008), Location, distance to pollution and year were 

included as independent fixed factors. A pairwise test was applied to assess the significance of 

main and interaction effects under a full model. If the number of permutations was lower than 

150, the Monte Carlo permutation p was used. Since a PERMANOVA test can show 

differences between groups, but not distinguish between a difference due to the factor effect 

or to data dispersion, homogeneity of variances was tested with PERMDISP, using the 

distance among centroids. A Euclidian distance based resemblance matrix was used for 

univariate (i.e. total number of nematode and diversity indices) measurements. 

Nematode assemblage composition for both years was visualized using non-metric 

Multidimensional Scaling (nMDS) on fourth-root transformed data using Bray-Curtis 

similarity. The assemblage composition data were further analysed using PERMANOVA with 

the same three-way design as for the abundance and diversity data. The genera contributing 

most to the dissimilarities between different locations, distances to pollution and years were 
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identified by two-way crossed SIMPER analyses with factors location x year or distance x 

year.  

 

3 Results     

3.1 Nematode abundance 

Nematode abundance varied greatly, with a minimum of 13 and a maximum of 2909 ind. per 

10 cm2 in single replicate cores. A highly significant location x distance x year interaction 

(Table 3.2; df = 6, F = 3.86, p = 0.004) demonstrates that the spatial pattern of nematode 

abundances differed between years (Fig 3.1). Although lower-order effects need to be 

interpreted with caution, only location x year (df = 3, F = 3.42, p < 0.02) and location (df = 3, 

F = 7.84, p = 0.001) had significant effects on nematode abundances. Haghani harboured 

significantly lower nematode abundances than all other beaches except Suro in 2009 (all p < 

0.005) (Fig. 3-1A). Nevertheless, all these effects need to carefully interpreted, since 

Permdisp demonstrated significant dispersion effects for all factors (all p < 0.05), even after 

log transformation of the data. 

 

 Source df       SS       MS F-value Pseudo-

p-value 
 Lo  3 3.5589E6 1.1863E6   7.8424 0.001 

Total Dis  2 7.3581E5 3.6791E5   2.4322 0.102 

nematode Ye  1    40565    40565  0.26817 0.599 

abundance LoxDis  6 1.6351E6 2.7251E5   1.8015 0.114 

 Lo x Ye  3 1.5517E6 5.1723E5   3.4193 0.017 
 Dis xYe  2 2.8604E5 1.4302E5  0.94549 0.422 
 Lo x Dis x Ye  6 3.5106E6 5.8509E5   3.8679 0.004 
 Res 48 7.2608E6 1.5127E5   
 Total 71 1.8579E7    

 

Table 3-2. Results of a three-way PERMANOVA on total nematode abundances with factors 

location, distance to pollution, year and their interactions. Significant interactions and factors 

are highlighted in bold. 

 

 



YEAR-TO-YEAR VARIABILITY 

108 
 

The location x year interaction largely reflects the opposite temporal trends in Suro and 

Terminal (Fig. 3.1A). Much of this was, however, restricted to opposing trends in the station 

closest to the local pollution source (Fig. 3-1C), hence the significant three-way interaction 

and the absence of a significant distance x year effect (Fig. 3-1B). Indeed, nematode 

abundances at a distance of 50 m from local pollution at Suro were dramatically lower in 

2009 than in 2008 (p < 0.001), whereas the opposite was true for the same distance at 

Terminal (p < 0.02) (Fig. 3-1C).  
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Fig. 3-1 Total nematode abundance across four beach locations (A), three distances to 

pollution (B) and four locations x three distances (C) in December 2008 vs 2009. Data are 

means ±1SE of three replicates for each distance x beach x year combination. 50 m = closest 

distance to pollution source, 150 m = largest distance. 

 

3.2 Nematode diversity and dominant genera 

A total of 62 genera belonging to 24 families were identified over the two years (Table 3-3 

and S3-1): 39 genera belonging to 17 families in 2008 vs 41 genera from 21 families in 2009. 

The turnover between both years was substantial. In 2008, there were 20 unique genera 

accounting for 9.4 % of total nematode abundance. In 2009, only 6.5 % of total nematode 

abundance was made up by no less than 22 unique genera. 20 genera were found in both 

years. In 2008 and 2009, only five and four genera, respectively, occurred in 50 % or more of 

all samples. These were Terschellingia, Daptonema, Ptycholaimellus and Promonhystera in 

both years and Paramonhystera in 2008 only. Together, these dominant genera accounted on 

average for 75 and 80 % of the total nematode abundance in 2008 and 2009, respectively (Fig. 

3-2A,B). Over the whole study period, only one other genus (Paraethmolaimus) occurred in a 

relative abundance of more than 2 % (Table 3-3 and S3-1). General trends in abundance 

between years were usually not very pronounced, but Terschellingia generally increased 

while Paramonhystera decreased in 2009 compared to 2008 (Fig. 3-2). 
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Table 3-3. Genus composition and relative abundances (%) of nematodes at the four sampling 

locations and averaged over all sampling locations. All data are means of 2008 and 2009, and of 3 

stations (i.e. distances to local pollution) per location per year, with 3 replicates per distance. Feeding 

types (FT) according to Moens & Vincx (1997) and Wieser (1953) are also listed. MV = microvore, 

DF = deposit feeder, CF = ciliate feeder, EF = epistrate feeder, FP = facultative predator, PR = 

predator; 1A= selective deposit feeder, 1B= non-selective deposit feeder, 2A= epigrowth feeder, 2B= 

predators or omnivore. 

 Suro Haghani Dolat Park Terminal Average FT 

Terschellingia 22.3 9.1 30.9 28.1 22.6 MV/1A 

Ptycholaimellus 15.7 9.7 16.3 36.0 19.4 EF/2A 

Daptonema 19.1 13.2 24.6 11.1 17.0 DF/1B 

Promonhystera 4.2 40.1 6.9 1.8 13.3 DF/1B 

Paramonohystera 1.9 20.3 5.7 0.4 7.0 DF/1B 

Paraethmolaimus 7.7 1.1 0.1 2.5 2.8 EF/2A 

Eumorpholaimus 0.8 0.7 2.3 3.5 1.8 DF/1B 

Oncholaimus 4.3 0.9 1.2 0.5 1.7 FP/2B 

Sabatieria 3.5 1.7 0.1 1.0 1.6 DF/1B 

Viscosia 3.9 1.0 0.6 0.2 1.4 FP/2B 

Bathylaimus 0.4 0.0 4.7 0.5 1.4 CF /1B 

Monhystrella 0.0 0.0 0.0 5.2 1.3 DF/1B 

Odontophora 3.7 0.8 0.1 0.1 1.2 FP/2B 

Theristus 1.8 1.2 1.4 0.3 1.2 DF/1B 

Metoncholaimus 3.5 0.2 0.4 0.0 1.0 FP/2B 

Eleutherolaimus 0.6 0.2 0.4 2.1 0.8 MV/1A 

Desmodora 2.2 0.0 0.0 0.0 0.6 EF/2A 

Metalinhomoeus 0.0 0.0 1.2 0.7 0.5 MV/1A 

Rhynchonema 1.8 0.0 0.0 0.1 0.5 DF/1B 

Spilophorella 0.1 0.0 1.0 0.7 0.5 EF/2A 

Prochromadora 0.4 0.0 0.7 0.7 0.5 EF/2A 

Onyx 0.9 0.0 0.2 0.1 0.3 FP/2B 

Oxystomina 0.2 0.0 0.0 0.8 0.3 DF/1B 

Dichromadora 0.0 0.0 0.0 0.9 0.2 EF/2A 

Sphaerolaimus 0.4 0.0 0.0 0.3 0.2 FP/2B 

Paracanthonchus 0.7 0.0 0.0 0.0 0.2 EF/2A 

Synonchium 0.7 0.0 0.0 0.0 0.2 FP/2B 
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Calyptronema 0.3 0.0 0.0 0.3 0.2 PR/2B 

Cyatholaimidae sp. 0.6 0.0 0.0 0.0 0.2 EF/2A 

Metachromadora 0.3 0.0 0.3 0.0 0.1 EF/2A 

Deontolaimus 0.0 0.0 0.0 0.6 0.1 DF/1B 

Symplocostoma 0.6 0.0 0.0 0.0 0.1 FP/2B 

Camacolaimus 0.0 0.0 0.0 0.4 0.1 EF/2A 

Haliplectus 0.0 0.0 0.0 0.4 0.1 MV/1A 

Nygmatonchus 0.3 0.1 0.0 0.1 0.1 DF/1B 

Chromadorina 0.2 0.1 0.1 0.0 0.1 EF/2A 

Axonolaimus 0.0 0.0 0.0 0.3 0.1 DF/1B 

Thalassomonhystera 0.0 0.0 0.2 0.0 0.1 DF/1B 

Xyalidae sp. 0.0 0.2 0.0 0.1 0.1 DF/1B 

Pomponema 0.0 0.0 0.2 0.0 0.1 FP/2B 

Tripyloides 0.0 0.0 0.2 0.0 0.1 CF/1B 

Enoploides 0.0 0.1 0.1 0.0 0.0 PR/2B 

Phanoderma 0.1 0.0 0.0 0.1 0.0 EF/2A 

Chromadorella 0.0 0.0 0.2 0.0 0.0 EF/2A 

Marylynnia 0.2 0.0 0.0 0.0 0.0 EF/2A 

Prochromadorella 0.0 0.1 0.0 0.0 0.0 EF/2A 

Spirinia 0.0 0.1 0.0 0.0 0.0 EF/2A 

Tubolaimoides 0.0 0.1 0.0 0.0 0.0 MV/1A 

Polysigma 0.0 0.0 0.0 0.1 0.0 DF/1B 

Pseudolella 0.1 0.0 0.0 0.0 0.0 FP/2B 

Chromadorita 0.1 0.0 0.0 0.0 0.0 EF/2A 

Leptolaimidae sp. 0.1 0.0 0.0 0.0 0.0 MV/1A 

Longicyatholaimus 0.0 0.0 0.0 0.1 0.0 EF/2A 

Cyatholaimus 0.1 0.0 0.0 0.0 0.0 EF/2A 

Hopperia 0.1 0.0 0.0 0.0 0.0 DF/1B 

Araeolaimus 0.0 0.0 0.0 0.1 0.0 MV/1A 

Camacolaimus 0.0 0.0 0.0 0.1 0.0 EF/2A 

Halichoanolaimus 0.0 0.0 0.0 0.1 0.0 FP/2B 

Chromadora 0.0 0.0 0.1 0.0 0.0 EF/2A 

Doliolaimus 0.0 0.0 0.0 0.1 0.0 FP/2B 
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Hypodontolaimus 0.1 0.0 0.0 0.0 0.0 EF/2A 

 

 

Expected number of genera (genus richness) was significantly affected by the interaction of 

location x distance x year and by all lower-order effects (Table 3-5). However, Permdisp 

demonstrated significantly heterogeneous variances for the factors location (p = 0.01 after log 

transformation) and distance (p = 0.029 after log transformation), but not for year (p = 0.33 

after log transformation). Richness in Suro (p < 0.03) and Dolat Park ( p = 0.002) was 

significantly lower in 2009 than in 2008, but only at the largest distance to pollution, while 

the opposite trend was observed at 50 and 100 m away from local pollution at Terminal (both 

p < 0.01) (Fig. 3-3A). Overall, genus richness was significantly highest in the station most 

distant from pollution, but only so in 2008 (all p < 0.001) (Fig. 3-3B). Fig. 3-3C shows that 

the absence of such a distance effect in 2009 was largely attributable to a lower richness in the 

stations at 150 m from a local pollution source at Suro and Dolat Park in 2009 compared to 

2008 (p = 0.025 and 0.002, respectively). No other pairwise differences in richness between 

distance x year combinations were observed (Table 3-5, all p > 0.05). 
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Fig. 3-2. A. Relative abundances of the five most abundant genera at the four sampling 

locations, and B. relative abundance of these same five genera as a function of distance to a 

local pollution source (50 m = closest distance to pollution source, 150 m = largest distance) 
in two subsequent years. Data are means ± 1SE of three distances, each with three replicate 

samples, per location. 
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Fig. 3-3. Nematode genus richness (expressed as expected number of genera in a sample of 50 

inds.) across four beach locations (A), three distances to local pollution (B) and four locations 

x three distances (C) in December 2008 vs 2009. Data are means ±1SE of three replicates for 

each beach x distance x year combination. 50 m = closest distance to a local pollution source, 

150 m = largest distance. 

 

 Source df  SS  MS F-value Pseudo-

p-value 

 Location 3 44.81 14.937 5.0462 0.005 

 Distance 2 29.326 14.663 4.9539 0.009 

 Year 1 42.895 42.895 14.492 0.001 

Expected Lo x Dis 6 93.516 15.586 5.2657 0.002 

number of genera Lo x Ye 3 59.996 19.999 6.7564 0.001 

 Dis x Ye 2 43.877 21.939 7.4119 0.002 

 Lo x Dis x Ye 6 100.05 16.675 5.6335 0.001 

 Res 48 142.08 2.9599   

 Total 71 1.5504E5    

 Location  3 1.7114E7 5.7047E6 0.96944 0.402 

 Distance  2 1.8256E7 9.1281E6 1.5512 0.215 

Shannon-Weaver  Year  1 1.3527E8 1.3527E8 22.987 0.001 

index Lo x Dis  6 6.4736E7 1.0789E7 1.8335 0.112 

 Lo x Ye  3 1.7124E7 5.7078E6 0.96997 0.418 

 Dis x Ye  2 1.8257E7 9.1285E6 1.5513 0.249 

 Lo x Dis x Ye  6 6.4755E7 1.0792E7 1.834 0.125 

 Res 48 2.8246E8 5.8845E6   

 Total 71 6.1797E8    

 Location  3 4232.1 1410.7 2.0088 0.026 

 Distance  2 1274.8 637.42 0.90766 0.499 

 Year  1 1.5054E5 1.5054E5 214.37 0.001 

Simpson index Lo x Dis  6 4930.6 821.76 1.1702 0.256 

 Lo x Ye  3 3558.1 1186 1.6889 0.071 

 Dis x Ye  2 1611.4 805.72 1.1473 0.307 

 Lo x Dis x Ye  6 4980.4 830.07 1.182 0.289 

 Res 48 33709 702.27   

 Total 71 2.0484E5    

 Location  3 12.825 4.2749 7.4056 0.001 

 Distance  2 1.4928 0.7464 1.293 0.282 

Taxonomic Year  1 3.1928 3.1928 5.531 0.025 

diversity Lo x Dis  6 11.575 1.9291 3.3419 0.008 

 Lo x Ye  3 10.883 3.6278 6.2846 0.002 

 Dis x Ye  2 0.47385 0.23692 0.41044 0.674 

 Lo x Dis x Ye  6 6.6325 1.1054 1.915 0.094 

 Res 48 27.708 0.57725   

 Total 71 74.782    

 Location  3 7.823 2.6077   6.3907 0.001 

 Distance  2 0.30405 0.15203 0.37258 0.656 

Taxonomic Year  1 8.5619 8.5619 20.983 0.001 

distinctness Lo x Dis  6 5.6321 0.93868 2.3004 0.056 

 Lo x Ye  3 16.823 5.6076 13.743 0.001 

 Dis x Ye  2 1.1719 0.58597 1.4361 0.267 

 Lo x Dis x Ye  6 8.3226 1.3871 3.3994 0.006 

 Res 48 19.586 0.40804   

 Total 71 68.224    
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Table 3-5. Results of three-way PERMANOVA’s on five different nematode diversity indices 

at four beaches, with factors location, distance to pollution, year and their interactions. 

Significant interactions and factors are highlighted in bold. 

 

Taxonomic distinctness was the only other diversity measure with a significant location x 

distance x year interaction effect. Significant lower-order effects included location x year and 

the separate factors location and year (Table 3-5). However, Permdisp demonstrated 

significant dispersion effects for the factors location and year (both p < 0.04), calling for a 

cautionary interpretation of the observed effects. Taxonomic distinctness was generally higher 

in 2008 than in 2009, except at Terminal where the opposite effect was observed (Fig. 3-4A). 

A significantly lower taxonomic distinctness at Terminal compared to the other three beach 

locations was observed in 2008 (Fig. 3-4A; all p ≤ 0.003). In that same year, Suro also had a 

significantly higher taxonomic distinctness than both Haghani (p = 0.03) and Dolat Park (p = 

0.006). In 2009, Haghani harboured a significantly lower taxonomic distinctness than the 

three other beaches (all three p < 0.04), while Terminal had the highest (Terminal vs Dolat 

Park, p < 0.05), albeit not significantly higher than Suro (p = 0.438). In 2008, the only 

significant distance effect on taxonomic distinctness was at Suro, where the 50-m station had 

a significantly lower taxonomic distinctness than the 100-m and 150-m stations (both p ≤ 

0.002). By contrast, no significant distance effect was observed at Suro and Dolat Park in 

2009, whereas such an effect was now visible at Haghani and Terminal (between the 50-m 

and 150-m station, p = 0.021 and 0.006, respectively). 

Taxonomic diversity differed significantly between location x year and location x distance, as 

well as between locations and years (Table 3-5). Permdisp values were non-significant for all 

factors (all p > 0.08). In 2008, Suro harboured a significantly higher taxonomic diversity than 

Haghani and Terminal (both p < 0.002, Fig. 3-4A). In 2009, taxonomic diversity had 

significantly decreased at Suro (p = 0.004) and Haghani (p = 0.035) and increased at Terminal 

(p < 0.025) (Fig. 3-4A). Both Suro and Terminal now had significantly higher taxonomic 

diversity than Haghani (both p < 0.004).  

Only the factor year had a significant effect on the Shannon-Weaver index (Table 3-5). 

Unfortunately, this was also the only factor for which Permdisp indicated significantly 

heterogeneous variation (p = 0.001). Fig. 3-4B suggests that a higher Shannon-Weaver 

diversity was present in 2008, but that this effect was largely driven by Suro and Dolat Park, 

even though the interaction term location x year was not significant (Table 3-5). The Simpson 
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index was significantly affected by the factors year and location (with non-significant 

Permdisp values for all factors (all p > 0.07)), while the interaction of these two factors 

yielded a borderline non-significant effect (Table 3-5). Still, fig. 3.4B indicates no consistent 

differences between years across all stations. Simpson diversity rather followed the trend of 

abundance, richness and taxonomic diversity, where Suro and to a lesser extent Dolat Park 

decreased in 2009 and Terminal increased. 

 

 
Fig. 3-4. Taxonomic distinctness and taxonomic diversity (panel A) and Shannon-Weaver and 

Simpson index (panel B) of nematodes across four beach locations in December 2008 vs 

2009. Data are means ±1SE of three replicates of three stations at different distances to 

pollution per beach and per year.  
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3.3 Nematode assemblage structure 

nMDS illustrates that nematode assemblage structure differed between both years. Samples of 

2008 clustered in three main groups: stations 2 and 3 of Haghani formed a first group, stations 

2 and 3 at Suro formed a second group, and all remaining samples formed a loosely clustered 

third group (Fig. 3-5A). In 2009, no clear structure was evident from the nMDS (Fig. 3-5B). 

The nMDS of both years together also yielded no clear structure (Fig. 3-5C). 

Nematode assemblage composition was significantly affected by the interaction of location x 

distance x year and by all lower-order effects (Table 3-6), showing that differences between 

years were not consistent across locations and distances, and making it difficult to make 

strong statements about patterns between years. This is further aggravated by borderline 

significant Permdisp values for the factors year and distance (both p = 0.05) and a highly 

significant dispersion effect for the factor location (p = 0.003). Nevertheless, clear between-

year differences could be observed from the pairwise comparisons of the three-way 

interaction factor. At Suro, for instance, assemblages differed significantly between years for 

all three distances to pollution (all p ≤ 0.035), indicating a clear shift in assemblage structure 

accompanying the above-described differences in abundance and diversity at this beach. The 

same was true for the smallest and largest distance to pollution at Dolat Park (both p < 0.04, 

but only when running the pairwise comparisons under a reduced model; when using a full 

model, the differences between years were borderline non-significant, i.e. p = 0.055 for a 

distance of 50 m and 0.061 for 150 m), whereas at Haghani, only the station nearest to 

pollution had a significantly different assemblage composition between both years (p = 0.04). 

In contrast to Suro, the shifts in nematode abundance and diversity observed between years at 

Terminal were not reflected in significant differences in assemblage structure (all p > 0.17). 
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 Source df       SS MS F-value Pseudo-

p-value 
 Location  3 28727 9575.7    9.404   0.001 
 Distance  2 6496.9 3248.5   3.1902   0.001 

Nematode Year  1 12060 12060   11.844   0.001 

composition Lo x Dis  6 20804 3467.3   3.4051   0.001 
 Lo x Ye  3 15197 5065.5   4.9747   0.001 
 Dis x Ye  2 5441.5 2720.7    2.672   0.001 
 Lo x Dis xYe  6 17442 2907   2.8549   0.001 
 Residuals 48 48876 1018.3   
 Total 71 1.5504E5    

 

Table 3-6. Results of three-way PERMANOVA on the nematode assemblage composition in 

four beaches, with factors location, distance to pollution, year and their interactions. 

Significant interactions and factors are highlighted in bold. 

 

 

 

 

 

 

 

 

 

Fig. 3-5 Non-metric multidimensional scaling (nMDS) of nematode assemblages of four 

beach locations with three distances to a local pollution source each in two consecutive years 

(A = 2008, B = 2008, C =2008 and 2009 together) based on square-root transformed genus 

abundance data. Sample codes are as follows: first (capital) letter indicates location (S = Suro, 

H = Haghani, D = Dolat Park, T = Terminal), numbers indicate different distances to pollution 

(1 = closest to pollution source (50m), 3 = most distant (150m)), and letters (a, b, c) indicate 

different replicates. Locations are indicated by different shapes (▲= Suro,●= Haghani, ■ = 

Dolat Park, ▼ = Terminal), and distances to pollution by different colours (green= closest to 

pollution source (50 m), blue= intermediate distance(100m) and red= most distant (150 m)) . 

“filled symbols refer to 2008, open symbols to 2009.” 
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SIMPER analysis indicated that dissimilarity in nematode assemblage composition between 

both years was high (66 %). This was mainly due to shifts in the relative abundances of the 

six most abundant genera, i.e. Terschellingia, Ptycholaimellus, Promonhystera, Daptonema, 

Paramonohystera and Paraethmolaimus between years.  

The dissimilarity between locations across years ranged between 55 % (Dolat Park vs 

Terminal) and 72 % (Haghani vs Terminal) (Table 3-7). The dissimilarity between Haghani 

and Terminal was largely due to much higher relative abundances of Promonhystera at 

Haghani and of Ptycholaimellus and Terschellingia at Terminal (Table 3-7, fig. 3-2). 

Ptycholaimellus contributed to the dissimilarity between Terminal and Dolat Park with higher 

relative abundances in Terminal, whereas Daptonema, Promonhystera and Terschellingia 

were more abundant at Dolat Park (Table 3-7, fig. 3-2).  

Clearly, most of the dissimilarities between locations could be attributed to combinations of 

genera belonging to the top-5 of most abundant genera overall. Other genera contributed 

occasionally. Paraethmolaimus, for instance, contributed to the dissimilarity between Suro 

and Terminal and to the dissimilarity between years, a fact which could be attributed to a 

more than fivefold higher abundance of this genus at the station furthest from pollution at 

Suro in 2008 compared to any other location or distance to pollution in 2008 and 2009, 

including the station furthest from pollution at Suro in 2009. Bathylaimus and 

Eumorpholaimus contributed to the dissimilarity between Dolat Park and Terminal, while 

Oncholaimus and Viscosia contributed both to the dissimilarity between Suro and Terminal 

and between Suro and Dolat Park (Table 3-7).  

The dissimilarity between distances from a pollution point source was of a very similar 

magnitude in all pairwise comparisons (Table 3-7), indicating no clear gradient with distance. 

If such a gradient would have been prominent, we would have expected the largest 

dissimilarity to occur between the smallest (50 m) and largest (150 m) distance, but this was 

not the case. The higher abundances of Ptycholaimellus and Daptonema nearest the pollution 

sources, and of Terschellingia and Promonhystera away from pollution, were the most 

important contributors to the observed dissimilarities (Table 3-7).  

Each of the five most abundant genera contributed to the 66 % overall dissimilarity between 

both years. Terschellingia, which was clearly more abundant in 2009 than in 2008, 

contributed slightly more than the other genera (Table 3-7). 
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Table 3-7. Results of pairwise SIMPER (Similarity Percentages) analysis showing percentage 

dissimilarity between nematode assemblages between the four beach locations across both years 

(location effect in a two-way SIMPER analysis with factors location and year), as well as between 

both years across locations (year effect in a two-way SIMPER analysis with factors location and year), 

and between distances to pollution across years (distance effect in a two-way SIMPER analysis with 

factors distance to pollution and year). The genera contributing most (in all cases, we list genera which 

together account for ≥ 50 % of the observed dissimilarity) to the observed dissimilarities are also 

listed. S = Suro, H = Haghani, D = Dolat Park and T = Terminal. 50 m = closest distance to 

pollution source, 150 m = largest distance). Average abundances have been square-root 

transformed. 

Genera 

 

  Av. Abund Contrib% Cum.% 

Suro & Haghani Average dissimilarity =66.75  

Promonhystera 0.95 4.99 17.47 17.47 

Daptonema 3.46 2.89 10.83 28.30 

Ptycholaimellus 3.08 1.99 10.29 38.59 

Paramonhystera 0.70 3.44 10.16 48.74 

Terschellingia 3.49 1.83 9.09 57.83 

Suro & Dolat Park 

 

Average Dissimilarity =60.20  

Terschellingia 3.49 4.89 11.94 11.94 

Ptycholaimellus 3.08 3.42 10.73 22.66 

Daptonema 3.46 4.54 10.43 33.09 

Promonhystera 0.95 1.67 7.16 40.25 

Paramonhystera 0.70 1.37 5.26 45.52 

Oncholaimus 1.30 0.56 5.12 50.64 

Viscosia 1.25 0.40 4.94 55.57 

Haghani & Dolat Park Average Dissimilarity =65.35  

Promonhystera 4.99 1.67 17.29 17.29 

Terschellingia 1.83 4.89 14.81 32.10 

Paramonhystera 3.44 1.37 11.75 43.85 

Ptycholaimellus 1.99 3.42 11.11 54.96 

Suro & Terminal Average dissimilarity =63.70  

Ptycholaimellus 3.08 5.34 12.93 12.93 

Terschellingia 3.49 4.78 11.62 24.55 

Daptonema 3.46 2.79 10.54 35.09 

Paraethmolaimus 1.28 1.14 6.85 41.94 

Promonhystera 0.95 0.63 4.33 46.27 

Oncholaimus 1.30 0.32 4.12 50.39 

Viscosia 1.25 0.14 4.10 54.50 

Haghani & Terminal Average Dissimilarity =72.06  

Promonhystera 4.99 0.63 16.78 16.78 

Ptycholaimellus 1.99 5.34 15.31 32.09 

Terschellingia 1.83 4.78 12.79 44.87 

Paramonhystera 3.44 0.20 10.92 55.80 

Dolat Park & Terminal Average Dissimilarity 54.92  
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Ptycholaimellus 3.42 5.34 13.30 13.30 

Terschellingia 4.89 4.78 12.49 25.80 

Daptonema 4.54 2.79 11.21 37.00 

Promonhystera 1.67 0.63 6.77 43.78 

Bathylaimus 1.34 0.30 5.30 49.07 

Eumorpholaimus 0.71 1.22 5.25 54.32 

2008  &  2009 

 

Average dissimilarity =65.56  

Terschellingia 2.55 4.95 13.21 13.21 

Ptycholaimellus 3.54 3.37 10.93 24.14 

Promonhystera 1.64 2.48 10.86 35.00 

Daptonema 3.73 3.12 9.60 44.60 

Paramonhystera 

 

2.02 0.83 7.79 52.39 

50m & 100m Average dissimilarity =60.30  

Ptycholaimellus     4.32     2.84    13.22 13.22 

Terschellingia     3.33     3.80    11.50 24.71 

Promonhystera     1.18     2.49    11.12 35.83 

Daptonema     4.25     3.44    11.01 46.84 

Paramonhystera     1.57     1.27     8.55 55.39 

50m  & 150m Average Dissimilarity 

 

=62.27  

Ptycholaimellus     4.32     3.21    12.08 12.08 

Promonhystera     1.18     2.50    11.10 23.18 

Terschellingia     3.33     4.12    10.98 34.17 

Daptonema     4.25     2.58    10.84 45.00 

Paramonhystera     1.57     1.44     7.85 52.85 

100m &  150m Average Dissimilarity 

 

= 62.76  

Promonhystera     2.49     2.50    13.30 13.30 

Terschellingia     3.80     4.12    12.33 25.64 

Ptycholaimellus     2.84     3.21    11.55 37.18 

Daptonema     3.44     2.58     9.55 46.73 

Paramonhystera     1.27     1.44     6.12 52.85 
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4 Discussion 

The between-year differences in total nematode abundances in our study ranged from 19 % at 

Dolat Park to 62 % at Terminal, which is in the same range as inter-annual variabilities in 

abundances of higher meiofaunal taxa in a muddy intertidal sediment in South Carolina over 

an 11-year study period (Coull 1985, 1986), where nematode abundances varied by 0 to 60 % 

and by 7 to 47 % in a nearby sandy sediment. In three of the four beaches at Bandar Abbas, 

nematode abundance decreased in 2009, but at Terminal, an increase by 62 % was noted in 

2009 compared to 2008, hence the variability observed in our study was not consistent across 

even nearby locations. Changes in salinity, temperature, granulometry and presence and 

abundance of predators, as well as the occurrence of episodic extreme events are all potential 

causes for year-to-year variability in total nematode abundance (Coull 1985; Eskin and Coull 

1987; Olafsson et al. 2000; Vanaverbeke et al. 2000; Schratzberger et al. 2004a; Riera et al. 

2011a) and could have played a role here.   

 

4.1 Sediment granulometry and inter-annual variation in 

nematode assemblages 

Starting with granulometry, it is noteworthy that – like in the papers on the two above-

mentioned Southern Carolina estuarine locations – temporal variability in nematode 

abundance was considerably larger in the site with the finest sediment. Terminal had a 

significantly lower mean grain size and higher mud fraction than the three other beach 

sediments, which all had a very comparable granulometry to the sandy Californian site (Coull 

1985; Coull and Dudley 1985; Coull 1986; Eskin and Coull 1987). The aforementioned 

studies contend that assemblages in finer sediments are largely controlled by biological 

interactions, whereas those in sandier sediments are more constant because of a predominant 

hydrodynamic control. With few exceptions (e.g. Sphaerolaimus, Calyptronema), 

predatory/omnivorous nematodes had low abundances at Terminal compared to the other 

beach locations, whereas the herbivorous epistrate-feeding Ptycholaimellus reached its 

highest abundance at Terminal. Xyalidae, which are believed to ingest food particles, among 

which microalgae, in a rather non-selective way (Wieser 1953; Moens and Vincx 1997), had 

their lowest proportional abundance at Terminal. These results are not necessarily consistent 

with other studies, where, for instance, Daptonema and Viscosia have been shown to also 

abound in muddy sediments (Li and Vincx 1993). This indicates specific ‘local’ effects, but 
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with the available data, it is not possible to ascertain whether these are caused by the abiotic 

environment or by biological interactions.  

Terminal was the only beach which did not follow the overall trend of lesser abundances and 

diversity in 2009 compared to 2008. In fact, Terminal showed an opposite behaviour, with 

increases in abundance, richness, Simpson diversity, taxonomic distinctness and taxonomic 

diversity in 2009, most of these being the result of increases in the stations nearest (50 and 

100 m) the local sewage outlet. In the absence of measurements of environmental factors, it is 

difficult to explain this contrasting trend between Terminal and the other three locations. At a 

later sampling in August 2013, Terminal had a substantially higher mean and median grain 

size and lower silt and very fine sand fractions, putting it amidst the other beaches in terms of 

granulometry. This might either reflect a long-term change or short-term fluctuations (see e.g. 

(Herman et al. 2001). In either case, if such a shift would have occurred between the 2008 and 

2009 samplings, even if only partly, it could explain the observed ‘positive’ change in 

diversity and abundance of nematode assemblages (Gheskiere et al. 2005; Moens et al. 2013). 

Unfortunately, we have no sediment granulometry data from the 2009 sampling.  

 

4.2 Climatological effects on inter-annual variation in nematode 

assemblages 

Different climatological conditions in the weeks preceding the 2008 and 2009 sampling 

events could have caused differences in environmental factors which might in turn have 

interfered with biological interactions. Dominant genera such as Ptycholaimellus and 

Daptonema may benefit from the nutrient-rich inputs from the local sewage outlets (Sahraean 

et al. 2017a, chapter 2 of this PhD thesis). In 2009, the precipitation during the month of our 

sampling was 2.6 times higher than in 2008, whereas in the three months prior to sampling, 

rainfall was essentially zero in both years (supplementary table, S3-2, source: meteorological 

data from the official weather station in Bandar Abbas city, http://www.hormozganmet.ir). 

Increased precipitation could increase runoff from small rivers as well as sewage outlets into 

the beach and adjacent coastal area, and as such may lead to substantial increases in nutrient 

and organic matter availability, which in turn can stimulate more microphytobenthos and 

microbial productivity, leading to a higher food availability for algal- and bacterial-feeding 

nematodes (Somerfield et al. 2003; Pinto and Bemvenuti, 2006; Van Colen et al., 2009). If 

sewage runoff increased with the increased precipitation, we may expect (1) that sewage 
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effects were more spread out over a larger beach area, thus overruling differences between 

stations at increasing distances from local sewage inputs; and (2) that differences between 

differently impacted beaches may have become smaller when higher amounts of sewage 

entered coastal waters and spread out over nearby beaches. Although this explanation cannot 

be unambiguously tested, it is thought-provoking that this was exactly the pattern we 

observed: spatial differences in nematode assemblages between beach locations and between 

stations within a beach were generally more pronounced in 2008 than in 2009 (Fig. 3-5).  

More specifically, Haghani and to a lesser extent Suro and Terminal are beaches with 

pronounced local inputs of domestic sewage. Haghani not only harboured the lowest 

nematode abundances in the station nearest pollution in both years, it was also the least 

diverse location in terms of taxonomic diversity and distinctness and of Simpson diversity in 

both years. These data point at Haghani as a consistently impacted location in both years, 

whereas Suro became visibly impacted only in 2009. The dominant currents in the Strait of 

Hormuz run from south (in front of the northernmost tip of the United Arab Emirates) to north 

and then from east to west along this stretch of the Iranian coastline (Reynolds 1993). Given 

the small distances (< 5 km) between the beaches in this study (see fig. 1 in Sahraean et al. 

2017a., chapter 2 of this PhD thesis), an impact of Haghani on its western ‘neighbour’ 

location Suro may also play a role. Such neighbor effects may also explain the trend of 

decreasing abundance and diversity in 2009 at Dolat Park, the westernmost of our sampling 

locations, and potentially under the influence of the sewage outlets of the three other beach 

locations. 

Substantial differences in precipitation in the weeks preceding the two sampling events would 

likely have caused more pronounced fluctuations in salinity on intertidal beaches. Such 

episodic fluctuations may, for instance, trigger temporary downward migration of nematodes 

(Steyaert et al. 2001) or overall reductions in nematode abundance (Govindankutty and Nair 

1966). The magnitude and frequency of such fluctuations likely vary as a function of 

precipitation frequency and intensity. Given that our faunal analysis was restricted to the 

upper 5 cm of the sediment, such downward shifts of nematode distribution in beach 

sediments could cause an ‘apparent’ decrease in abundance and/or diversity.  

Short-term and longer-term vertical migrations of nematodes in sediments may also be caused 

by other climatological factors. Meteorological data from the official weather station in 

Bandar Abbas (http://www.hormozganmet.ir) indicate some differences in temperature 
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between the two years of sampling. Although the average temperature of the 5 upper cm of 

the sediment during the month of sampling was identical in both years (23 °C), the average 

temperatures of the last, beforelast and third last month before our sampling in 2008 were 

higher in 2009 than in 2008 (S3-2). With average temperatures well in excess of 30 and even 

35 °C, peak temperatures at the sediment surface during daytime low tides will have been 

even higher, and would likely have exceeded the upper tolerance limits of many nematode 

genera for at least several short episodes (Heip et al. 1985). Upper lethal temperatures of 

beach meiofauna may exceed the maximal temperatures experienced in their habitats by only 

a fraction (Wieser et al. 1974). Hence, even a relatively small difference in maximal average 

temperatures of 2 °C and accompanying higher peak temperatures may challenge the 

physiological tolerance limits of many species (Wieser et al. 1974; Wieser and Schiemer 

1977), causing significant reductions in population abundance and/or shifts in, or contractions 

of their natural distribution. Wieser & Schiemer (1977) give the example of Theristus 

floridanus on a Bermudan beach which is found subtidally in summer but extends its range 

well into the intertidal in winter. Moens et al. (2006) demonstrated that even moderate peak 

temperatures at the sediment surface during low-tide exposure would force nematodes with a 

low tolerance for elevated temperatures to move deeper down in the sediment. Such 

phenomena may have contributed to the generally lower diversity in the top-5 cm of sediment 

in 2009. On the other hand, the total number of genera recorded in 2009 was not lower than in 

2008, and nematode diversity decreases in 2009 were not consistent across all locations and 

stations, which contradicts the idea of temperature as a main driver of the observed 

differences in nematode assemblage patterns between 2008 and 2009.  

 

4.3 Nematode genus composition and biological interactions 

The observed shifts in nematode assemblages obviously reflect changes in genus composition. 

Resampling the same locations in 2009 yielded 22 additional genera which had not been 

encountered in 2008, but these 22 genera together comprised no more than 6.5 % of the total 

nematode abundance. This strengthens the picture of beach nematode assemblages 

characterized by a high dominance of a few (4 to 5) genera and a substantial ‘tail’ of rare 

genera, a pattern which may reflect the combined effects of natural and anthropogenic 

stressors (Vezzulli et al. 2008; Moreno et al. 2009; Sahraean et al. 2017a). Similar dominance 

patterns are not uncommon for the swash/breakers zone and have been explained in relation to 

the hydrodynamic disturbance in this zone of beaches (Gheskiere et al. 2005). However, none 
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of the dominant genera in our beaches exhibit prominent morphological adaptations to 

hydrodynamic disturbance.  

The same few genera strongly dominated assemblages in both years, but their relative 

abundances changed across locations, distances to local pollution and years. The most 

consistent pattern was obtained for Terschellingia, which generally increased in abundance in 

2009 compared to 2008. Terschellingia is widely distributed in organically enriched 

sediments, showing high tolerance to a variety of pollution types as well as to hypoxic and 

anoxic conditions (Heip et al. 1985; Somerfield et al. 2003; Pinto and Bemvenuti 2006; 

Schratzberger et al. 2006; Moreno et al. 2008a). Its higher abundance in 2009 is consistent 

with the hypothesis of increased nutrient and organic matter inputs as a result of enhanced 

sewage discharge, and accompanying impacts on sediment oxygenation. In this context, the 

decrease of Paramonohystera in 2009 was unexpected, because at least the species P. wieseri 

is also very tolerant of hypoxic conditions (Wieser and Schiemer 1977). The other three 

dominant nematode genera exhibited rather inconsistent trends across locations, stations 

and/or years, although Ptycholaimellus generally displayed highest abundances in stations 

closest to local pollution sources. This could be explained by a stimulatory effect of nutrient 

inputs on the productivity of microphytobenthos, the prime food source of this genus (Moens 

and Vincx 1997; Van Colen et al. 2009). However, the same distance-to-pollution effect was 

not consistently observed for Daptonema, a genus which is also known to feed at least in part 

on microphytobenthos (Nehring 1992; Moens and Vincx 1997; Moens et al. 2014).  

Microphytobenthos can be an important carbon source to sandy beach nematodes (Maria et al. 

2011a; Maria et al. 2012). Different primary consumer species may occupy partly different 

vertical or horizontal niches to minimize competition and to escape from predatory nematodes 

living in the upper sediment layers (Maria et al. 2012). Hence, in addition to classical bottom-

up effects determined by food availability, horizontal interactions among consumers may also 

contribute to the observed assemblage composition. Biological interactions of particular 

interest for intertidal nematode assemblages are, however, more top-down. Seasonal 

fluctuations in meiobenthic abundance at the muddy South Carolina tidal flat were explained 

at least in part by the yearly influx of juvenile spot which feed to a significant extent on 

meiofauna (Coull 1985; Eskin and Coull 1987; Smith and Coull 1987). Li et al. (1996) 

correlated nematode biomass fluctuations, particularly for larger-bodied species, to variations 

in the abundance of macrobenthos. Some studies on the macrobenthos from the beaches used 

in our work are available, but most are either non-quantitative or only focus on a specific 
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group of macrobenthos at one or a few of our beach locations. Among the macrofauna which 

may affect meiobenthos through predation or physical interference are Glyceridae, 

Nephtyidae and Nereididae (Salehi Farsani 2007; Alimomohammadi 2009; Ejlali Khanaghah 

et al. 2015). Nephtyidae in particular were prominently present in Dolat Park and Terminal. 

Nephthys feed on smaller invertebrates and therefore this predation might be of importance to 

the observed nematode abundances and genus composition (Caron et al. 2004; Tue et al. 

2012). In 2008, Glyceridae were most prominent in Terminal but absent from other beaches. 

Yet, data from 2009 are lacking. It is therefore currently not possible to determine a potential 

impact of macrobenthos on the variations in nematode abundance and assemblage structure.  

 

4.4 Episodic extremes as a possible cause for inter-annual 

variability in nematode assemblages 

Finally, episodic extremes or catastrophic events may be important drivers of short-term 

benthic assemblage structure (Thrush et al. 2003; Balthis et al. 2006; Negrello Filho and Lana 

2013). Examples of extreme events with potential relevance to our results include oil spills, a 

major storm event, and the largest and longest-lasting dinoflagellate bloom ever recorded in 

the area. In 2007, an area of 800 km2 was contaminated near Bandar Abbas as a result of oil 

spills along the Strait of Hormuz (Subanthore 2011). Whether this affected our sampling 

locations, and whether any such effects persisted into 2008 is unclear. However, levels of 

hydrocarbon pollution throughout the waters of the Persian Gulf are constantly high (Tehrani 

et al. 2012; Mohebbi Nozar et al. 2014) and may well contribute to the overall moderate to 

low meio- and macrobenthos diversity in the area. Phytoplankton blooms in the PG in the 

period of our research have been attributed to strong storm-induced water mixing (Wang and 

Zhao 2008). In addition, a massive bloom of the dinoflagellate Cochlodinium polykrikoides 

started in the south of the Strait of Hormuz in August 2008; by end of September, it had 

reached the coasts of Bandar Abbas, extending further and increasing in abundance for a 

period of over nine months (Hamzehei et al. 2012). Such blooms are mainly driven by 

industrial and urban sewage discharges into the coastal water (Hamzehei et al. 2012). As a 

consequence, highest chl a concentrations are typically recorded in front of the crowded 

industrial cities along the Strait of Hormuz such as Bandar Abbas, which is exactly at the 

heart of our sampling area. Whether, when and to what extent such events influenced the 

patterns we observed remains unclear. 
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4.5 Nematodes as environmental indicators in intertidal areas in 

the Strait of Hormuz 

Whereas in terrestrial systems, the bio-indicator potential of nematode assemblages has been 

optimally exploited with the development of an array of indices (Bongers 1990; Bongers and 

Ferris 1999; Ferris et al. 2001) and indicator groups (e.g. the cp-1 nematodes as indicators of 

organic or nutrient enrichment), this is much less the case for aquatic and marine nematodes. 

This arguably has to do in part with a lesser knowledge, on average, of life-history 

information, feeding ecology and other aspects relevant to nematode responses to disturbance 

(Moens et al., 2013). Moreover, we should not overestimate the success of nematodes as bio-

indicators in terrestrial soils, particularly when exiting agricultural soils: quite a few studies 

have published data which go against index-based expectations (Yeates et al. 1994; Heininger 

et al. 2007), and a detailed analysis of nematode assemblage composition may still provide 

the best information on environmental impacts, better than both the ‘ecological indices’ and 

diversity indices (Martinez et al. submitted ). 

Many marine studies using nematodes as indicators of environmental impacts have indeed 

provided detailed analysis of assemblage composition and in some cases compared these to, 

and found them superior to for instance the maturity index (e.g. Materatski et al. 2015). Based 

on the 2008 data of the present study, assemblage composition data allowed to discriminate 

the most and least impacted beach location, and at some locations also allowed to identify a 

distance effect from local pollution sources. Complementary information from total 

abundances and from diversity indices pointed to essentially the same structure in the dataset, 

and different diversity indices mostly pointed in the same direction, suggesting that 

abundance, diversity and assemblage composition data could all be successfully used to 

pinpoint local pollution effects.  

However, the major differences between the spatial structure observed in 2008 and in 2009 

casts serious doubts on the usefulness of nematode assemblages to pinpoint local pollution 

effects in beaches of the Strait of Hormuz. Haghani still came out as probably the most 

affected location in 2009, but other locations exhibited contrasting trends between 2008 and 

2009. As a result, it is mainly the combination of a moderate local diversity with a (very) high 

dominance of a limited number of tolerant taxa which can be taken as a kind of bio-indicator. 

However, these features did not discriminate much among locations and distances to 

pollution, suggesting they are more informative about the overall stressful environment of 

beaches in the Strait of Hormuz than about specific local disturbances. The ecology and 
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indicator value of these few dominant genera is discussed further in the general discussion 

(chapter 5). 

5 Conclusion 

The overall low diversity of nematodes indicates that the entire area experiences substantial 

stress, either from natural factors, anthropogenic influences or both. The spatial structure 

(between locations and between stations within locations) observed in 2008 largely 

disappeared in 2009. The large between-year turnover in rare genera has important 

repercussions for proper estimates of benthic biodiversity. At the same time, knowledge 

about temporal variability in assemblage abundance and structure is important for a proper 

use of (changes in) nematode community structure for bio-indicator purposes 

(discriminating natural from pollution-induced variability).  
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Supplementary tale S3-1. Genus composition and relative abundances (%) of nematodes at the four sampling locations of two different year 

(2008 and 2009). data are means ±1SE of 3 stations per location, with 3 replicates per station for each year separately. 

 

Suro 
2008 

Suro 
2009 

Haghani 
2008 

Haghani 
2009 

Dolat Park              
2008 

Dolat Park    
2009 

Terminal 
2008 

Terminal 
2009 

Terschellingia 1.08±0.5 43.5±6.6 1.7±1.7 16.4±6.6 23.01±7 38.8±10.8 30.6±9.5 25.5±7.7 
Ptycholaimellus 9.2±4 22.2±7.6 2.8±1.3 16.5±8.7 23.9±7.9 8.6±3.5 44.3±9.5 27.7±8.1 
Daptonema 32.2±7.7 6±2.6 13,2±6.1 13.1±4 28.05±7.2 21.1±5.6 7±3.1 15.2±5.2 
Promonhystera 0.8±0.4 7.6±5.6 38.1±13 42±12.1 2.7±1.3 11±7 0.1±0.1 3.5±2.1 
Paramonohystera 3.02±2 0.7±0.7 35.08±8.4 5.4±3.5 2.7±1.2 8.5±5.3 0.7±0.5 0±0 
Paraethmolaimus 13.1±6.9 2.1±2.1 1.1 0.1±0.1 0.1±0.1 0.1±0.1 1.8±0.6 3±1.3 
Eumorpholaimus 1.4±0.5 0.1±0.1 0±0 1.3±1.2 4.4±2.6 0.1±0.1 5.2±2.6 1.6±0.9 
Oncholaimus 7.4±3.2 1.2±0.8 1,6±1 0.1±0.1 0.2±0.2 2.2±1.4 0.2±0.1 0.7±0.5 
Sabatieria 0±0 7±3.6 0±0 3.4±1.9 0.2±0.1 0±0 0.4±0.1 1.6±1 
Viscosia 6.5±2.3 1.3±1.1 1.8±1 0.2±0.2 0±0 1.2±0.4 0±0 0.3±0.2 
Bathylaimus 0.65±0.3 0.2±0.1 0±0 0±0 2.66±1.5 6.7±4.4 0.2±0.1 0.7±0.5 
Monhystrella 0±0 0±0 0±0 0±0 0±0 0±0 0±0 10.3±7.2 
Odontophora 7.4±3.2 0±0 1.6±1 0±0 0.2±0.2 0± 0.2±0.1 0±0 
Theristus 3.5±1.4 0±0 2.46±1 0±0 2.7±1.2 0±0 0.5±0.2 0±0 
Metoncholaimus 6.9±3.7 0±0 0,4±0.2 0±0 0.1±0.1 0.6±0.4 0±0 0±0 
Eleutherolaimus 1.1±0.7 0±0 0±0 0.5±0.4 0.6±0.6 0.1±0.1 4.07±1.8 0.2±0.2 
Desmodora 0±0 4.4±4.4 0±0 0±0 0±0 0±0 0±0 0±0 
Metalinhomoeus 0±0 0±0 0±0 0±0 2.4±1.8 0±0 1.4±1 0±0 
Rhynchonema 3.6±2.2 0±0 0±0 0±0 0±0 0±0 0.1±0.1 0± 
Spilophorella 0.1±0.1 0.1±0.1 0±0 0±0 2.04±1.3 0±0 0.8±0.5 0.6±0.6 
Prochromadora 0,8±0.7 0±0 0±0 0±0 1.4±0.6 0±0 1.3±0.8 0±0 
Onyx 1.7±0.8 0±0 0±0 0±0 0.4±0.2 0±0 0.1±0.1 0±0 
Oxystomina 0±0 0.3±0.3 0±0 0±0 0±0 0±0 0.1±0.1 1.5±1.5 
Dichromadora 0±0 0±0 0±0 0±0 0±0 0±0 0±0 1.8±1.8 
Sphaerolaimus 0±0 0.8±0.8 0±0 0±0 0±0 0±0 0±0 0.6±0.4 
Paracanthonchus 1.3±0.8 0±0 0±0 0±0 0±0 0±0 0±0 0±0 
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Synonchium 1.3±0.7 0±0 0±0 0±0 0±0 0±0 0±0 0±0 
Calyptronema 0±0 0.3±0.3 0±0 0±0 0±0 0±0 0±0 0.3±0.2 

Cyatholaimidae sp. 1.2±1.2 0±0 0±0 0±0 0±0 0±0 0±0 0±0 
Metachromadora 0.6±0.4 0±0 0±0 0±0 0.5±0.3 0±0 0±0 0±0 
Deontolaimus 0±0 0±0 0±0 0±0 0±0 0±0 0±0 1.1±0.7 
Symplocostoma 0±0 1.1±1.1 0±0 0±0 0±0 0±0 0±0 0±0 
Camacolaimus 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0.8±0.8 
Haliplectus 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0.8±0.6 
Nygmatonchus 0.5±0.3 0±0 0,1±0.1 0±0 0±0 0±0 0.1±0.1 0±0 
Chromadorina 0.35±0.2 0±0 0,1±0.1 0±0 0.1±0.1 0±0 0±0 0±0 
Axonolaimus 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0.5±0.5 

Thalassomonhystera 0±0 0±0 0±0 0±0 0.4±0.2 0±0 0±0 0±0 
Xyalidae sp. 0±0 0±0 0.3±0.2 0±0 0±0 0±0 0.1±0.1 0±0 

Pomponema 0±0 0±0 0±0 0±0 0±0 0.4±0.3 0±0 0±0 
Tripyloides 0±0 0±0 0±0 0±0 0.2±0.1 0.1±0.1 0±0 0±0 
Enoploides 0±0 0±0 0,1±0.1 0±0 0.2±0.2 0±0 0±0 0±0 
Phanoderma 0.1±0.1 0±0 0±0 0±0 0±0 0±0 0±0 0.2±0.2 
Chromadorella 0±0 0±0 0±0 0±0 0.2±0.2 0.1±0.1 0±0 0±0 
Marylynnia 0±0 0.3±0.2 0±0 0±0 0±0 0±0 0±0 0±0 
Prochromadorella 0±0 0±0 0±0 0.2±0.2 0±0 0±0 0±0 0±0 
Spirinia 0±0 0±0 0±0 0.2±0.2 0±0 0±0 0±0 0±0 
Tubolaimoides 0±0 0±0 0±0 0.2±0.2 0±0 0±0 0±0 0±0 
Polysigma 0±0 0±0 0±0 0±0 0±0 0±0 0.2±0.2 0±0 
Pseudolella 0±0 0.2±0.2 0±0 0±0 0±0 0±0 0±0 0±0 
Chromadorita 0.23±0.2 0±0 0±0 0±0 0±0 0±0 0±0 0±0 
Leptolaimidae sp. 0.2±0.2 0±0 0±0 0±0 0±0 0±0 0±0 0±0 
Longicyatholaimus 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0.2±0.2 
Cyatholaimus 0±0 0.1±0.1 0±0 0±0 0±0 0±0 0±0 0±0 

Hopperia 0±0 0.2±0.1 0±0 0±0 0±0 0±0 0±0 0±0 
Araeolaimus 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0.1±0.1 
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Camacolaimus 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0.2±0.1 
Halichoanolaimus 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0.1±0.1 
Chromadora 0±0 0±0 0±0 0±0 0.1±0.1 0±0 0±0 0±0 
Doliolaimus 0±0 0±0 0±0 0±0 0±0 0±0 0.1±0.1 0±0 
Hypodontolaimus 0.1±0.1 0±0 0±0 0±0 0±0 0±0 0±0 0±0 
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Supplementary tale S3-2 monthly amount of precipitation and mean temprature of 5 upper cm of the 

sediment measured at Bandar abbas of two different year (2008 and 2009) 

 
Precipitation (mm) 

Mean temp. of 5 upper cm of 

the sediment (°C) 

 
2008 2009 2008 2009 

January  23.6 1.6 20.9 21.6 

February  13.8 4.1 21 23.9 

March  0 15.8 25.9 28 

April  0 135.7 28.4 25.1 

May  0 0 32.2 33.2 

June  0 0 34.9 36.9 

July  0 0 36.2 39.1 

August  2.8 0 37.7 39 

September  0 0 36.6 38.1 

October  0 0 33.7 34.3 

November  0 0 28.3 29.9 

December 10.9 28.7 23.1 23.1 
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Abstract  

We investigated genetic diversity and population genetic structure of two common benthic 

nematode species, Ptycholaimellus pandispiculatus and Terschellingia longicaudata, from 

sandy beaches in the area of Bandar Abbas (Iran), Persian Gulf. Based upon partial 

mitochondrial COI gene data, 17 and 2 haplotypes were found for P. pandispiculatus and T. 

longicaudata, respectively. Analysis of molecular variance (AMOVA) did not reveal a 

significant population-genetic structure for either species. The absence of genetic structuring 

indicates substantial dispersal and gene flow in our study area. To assess the species structure 

of T. longicaudata at a larger geographic scale, we compared 18S rDNA and COI sequences 

from Iran and the Scheldt Estuary in The Netherlands to ascertain whether they truly belong 

to the same species. Our data confirmed previous studies that T. longicaudata likely 

constitutes a complex of multiple cryptic species, with one of these species having a (near) 

cosmopolitan distribution.  

 

Keywords: cosmopolitanism; cryptic species; dispersal; gene flow; marine nematodes; 

population genetics. 
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1 Introduction 

Connectivity among marine populations is determined by the dispersal capacities of adults 

and/or larvae, as well as by the ‘permeability’ of the environment. Dispersal is important for 

persistence of species because it allows organisms to escape from unsuitable environmental 

conditions, avoid competition and increase their distribution range. Dispersal distances and 

directions have a profound effect on gene flow and genetic differentiation within species 

(Froukh and Kochzius 2007). Species with low dispersal capacities are expected to have a 

stronger population genetic structure than species with high dispersal abilities (Avise 2004). 

Both physical (e.g. ocean currents and habitat characteristics) and biological (e.g. spawning 

season, predation, larval and adult behavior) factors affect dispersal, and consequently also 

population genetic structure, of species in marine environments (Hohenlohe 2004; Derycke et 

al. 2013). Sandy beaches are dynamic and physically stressful environments, principally 

driven by the forces of waves, tides and sediment movements (McLachlan 1983; Short 1999; 

Rodil and Lastra 2004). These factors are important in shaping population structure, dynamics 

and connectivity of their inhabitants.  

Free-living marine nematodes are the most abundant and species-rich metazoan fauna in 

sandy beaches and most other marine soft sediments, and are characterised by a wide variety 

of morphologies, life histories and feeding strategies (Heip et al. 1985; Giere 2009). Because 

most marine nematodes have endobenthic life styles, and because they lack planktonic or 

pelagic dispersal stages, marine nematodes are generally assumed to have limited dispersal 

capacity. On the other hand, they may be able to disperse passively through movement of 

sediments, currents, and ballast water of ships (Palmer 1988; Radziejewska et al. 2006; 

Boeckner et al. 2009). In addition, some nematode species may actively emerge into the water 

column and swim over short distances (Jensen 1981; Schratzberger et al. 2004b).  

Many genera of marine nematodes have cosmopolitan or nearly cosmopolitan distributions. 

To some extent, this was also believed to hold at the species level (Bhadury et al. 2008), at 

least based on morphological criteria for species identification. More recently, however, 

considerable cryptic diversity has been uncovered in a number of coastal nematode species 

(Derycke et al. 2005; Derycke et al. 2007a; Derycke et al. 2010a; Armenteros et al. 2014), 

raising the question as to whether alleged cosmopolitan morphospecies in fact represent 

multiple cryptic species with more restricted geographical ranges. For example, a population-

genetic study based on the mitochondrial COI locus of the nematode species complex 
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Litoditis marina revealed that only one out of ten cryptic species had a transatlantic 

distribution, whilst the remaining species had narrower geographical ranges (Derycke et al. 

2008b). Since L. marina usually lives in association with macroalgae and has been shown to 

raft on drifting algae, its chances of long-distance transport are expected to exceed those of 

most benthic marine nematodes (Derycke et al. 2008). 

Cryptic species diversity was also uncovered in the endobenthic nematode Terschellingia 

longicaudata based on nuclear 18S rDNA sequence data (Bhadury et al. 2008), with one 

species clade showing a very broad geographical distribution (including samples from 

Europe, the Atlantic coast of Mexico, and Malaysia). These results were not anticipated 

because T. longicaudata typically frequents hypoxic or anoxic (and hence deeper) layers of 

sediment and would, therefore, not be expected to rapidly emerge from sediments and 

passively disperse over larger distances. Since 18S rDNA sequences do not always show 

sufficient differentiation between closely related nematode species, the conclusion of Bhadury 

et al., (2008) should be confirmed using more variable marker genes. Nevertheless, the 

alleged cosmopolitan distribution of an endobenthic species with limited dispersal capacity is 

thought-provoking. Indeed, several recent studies on population-genetic structure in coastal 

and estuarine nematodes have invariably highlighted a significant population-genetic structure 

at local scales of 100 km and less in species which are considered more prone to passive 

dispersal (Litoditis marina, Halomonhystera disjuncta and Thoracostoma trachygaster) 

because of their association with macroalgae (Derycke et al. 2005; Derycke et al. 2007b; 

Derycke et al. 2010a; Derycke et al. 2013). The vast majority of marine nematode species are, 

however, (endo)benthic and may, depending on their habitat and position in the sediment, be 

more or less prone to erosion and thus passive dispersal.  

In this study, we investigated the population genetic structure of two abundant benthic 

nematode species from sandy beaches in the area of Bandar Abbas (Iran), Persian Gulf: 

Ptycholaimellus pandispiculatus Hopper, 1961, and Terschellingia longicaudata de Man, 

1907. Terschellingia longicaudata (Linhomoeidae) is common in intertidal and shallow 

subtidal sediments that are rich in organic matter and have sharp chemoclines (Heip et al. 

1990; Schratzberger et al. 2006). Its peak abundances are typically reached below the top 2 

cm of sediment, and the nematode can withstand hypoxia/anoxia (Steyaert et al. 2007). 

Carbon stable isotope ratios of T. longicaudata from seagrass, mangrove and estuarine tidal 

flat sediments have demonstrated a clear trophic link with chemoautotrophic bacteria 

(Vafeiadou et al. 2014). In contrast, species in the genus Ptycholaimellus (Chromadoridae) are 
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epigrowth feeders that probably derive most of their nutrition from microalgae such as 

diatoms (Moens and Vincx, 1997). Members of this genus are particularly common in the 

surface layer (upper 1 cm) of intertidal sediments (Commito and Tita, 2002; Steyaert et al. 

2003; Van Colen et al. 2009), where microphytobenthos tends to concentrate. Because of their 

nearly epibenthic life style, they can be expected to be more susceptible to resuspension and 

passive transport compared to the endobenthic Terschellingia (Commito and Tita 2002).  

Here, we used the mitochondrial cytochrome oxidase c subunit 1 (COI) gene to tested if the 

following assumptions would hold: 1) population-genetic structure of both species would be 

limited on a scale of tens of kilometres because of the ‘homogeneity’ of the study area, lack of 

clear dispersal barriers, and strong hydrodynamics of the beaches, which may lead to regular 

erosion and passive transport, thus facilitating gene flow; 2) Ptycholaimellus, living at the 

surface of the sediment, would show less population genetic structure compared to the deeper-

living species Terschellingia. In addition, 3) we compared 18S rDNA and COI gene 

sequences from T. longicaudata  populations from the Persian Gulf and from an estuarine 

tidal flat of the Scheldt Estuary, The Netherlands, to ascertain whether they truly belong to the 

same species or, alternatively, their morphology is hiding cryptic diversity. Phylogenetic 

affinities of T. longicaudata from the Persian Gulf were assessed based on 18S phylogenetic 

analysis of published sequences sampled from a broad geographical range. 
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2 Materials and methods 

2.1 Study area 

Samples were collected at low tide in September 2012 from the mid-tidal level at 10 beach 

locations along the Strait of Hormuz, Persian Gulf, spanning 52 km of Iranian coastline (Fig. 

4-1). Stations 1 to 4 are located immediately in front of the city of Bandar Abbas and are 

subject to variable types and degrees of anthropogenic disturbance (sewage inputs, tourism); 

they correspond to the beaches of Suro, Haghani, Dolat Park and Terminal, respectively (pers. 

obs.). The other beaches are located eastward of Bandar Abbas and – at least at first glance – 

are less subject to anthropogenic impacts.  

For T. longicaudata, we also sampled the Paulina intertidal mudflat in the polyhaline reach of 

the Scheldt Estuary, The Netherlands, in July 2014. Details on the Paulina tidal flat are given 

in Gallucci et al. (2005); the sampling station corresponded to station H4 in (Cnudde et al. 

2015). 

 

Fig 4-1. Map showing the sampling locations of Terschellingia longicaudata (six locations, 

indicated with “T”) and Ptycholaimellus pandispiculatus (four locations, indicated with “P”). 

Insufficient individuals for population genetic analysis (less than 15 per species) were 

obtained from the other beach localities. Location 1=Suro, 2=Haghani, 3=Dolat Park and 

4=Terminal as in chapters 2 and 3 of this PhD. 
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2.2 Sampling  

From each sampling location, five samples were collected using 3.5-cm diameter PVC cores 

pushed into the sediment down to a depth of 5 cm. These samples were pooled into a single 

sample per location, preserved in DESS (Yoder et al. 2006). Nematodes were extracted from 

the sediments by vigorous washing of the samples with a jet of tap water, followed by 

decantation over a sieve with a mesh size of 38 µm. This procedure was repeated at least eight 

times, and the fraction collected on the sieve was subsequently centrifuged (3000 rpm, 12 

min) in the colloidal silicagel Ludox™ at a specific gravity of 1.18. Supernatant was decanted 

over a 38 µm sieve and collected in a small amount of DESS. This procedure was repeated 

three times and the three supernatants of a sample were pooled. Sufficient individuals of T. 

longicaudata and P. pandispiculatus (at least 12 per species and sampling location) were 

obtained from six and four beaches, respectively (Fig. 4-1). 50 T. longicaudata were collected 

from the Paulina mudflat. 

2.3 Morphological identification and vouchering of specimens  

P. pandispiculatus and T. longicaudata were handpicked from each sample using a fine 

needle under a stereomicroscope. They were rinsed three times with sterile distilled water to 

remove DESS. Each specimen was mounted individually on a temporary slide and identified 

using diagnostic morphological characters (Armenteros et al. 2009b) under a LEICA DMR 

research microscope at high magnification. Diagnostic features of P. pandispiculatus and T. 

longicaudata specimens were photographed using LEICA Application software (Leica 

DLMB; objective 100X). Vouchered specimens were carefully removed from microscopic 

slides and then transferred individually into an Eppendorf tube containing 20 µL worm lysis 

buffer (WLB) (50 mM KCl, 10 mM Tris–HCl pH 8.3, 2.5 mM MgCl2, 0.45% NP40, 0.45% 

Tween 20) and frozen (-20 °C) till further processing. 

 

2.4 Choice of marker sequences 

The mitochondrial cytochrome oxidase c subunit 1 (COI) gene is one of the most widely used 

markers for species diversity assessment and population genetic analysis in animals, and for 

nematodes, it has proven useful for discriminating closely related species (Derycke et al. 

2010b). It has also been well documented that species delimitation based on single gene data 

often falls short due to gene tree–species tree incongruence, and that multiple markers 

increase the accuracy of species delimitation (Dupuis et al. 2012; Leliaert et al. 2014), hence 
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the inclusion of a second marker, the 18S rRNA gene, in our analyses of the phylogenetic 

relationships of T. longicaudata from the Persian Gulf. Even though 18S is known to have 

lower resolution than COI when it comes to distinguishing recently diverged species, 18S has 

been found useful for assessing species diversity in the genus Terschellingia (Bhadury et al. 

2008). 

2.5 DNA extraction, PCR amplification and sequencing 

DNA extraction followed the protocol by (Williams et al. 1992). In short, proteinase K (1 µl, 

10 g/ml) was added to each tube containing a single nematode in WLB, followed by 

incubation at 65 °C for one hour, and denaturation of the proteinase K at 95 °C for 10 

minutes. Afterwards,  tubes were centrifuged at 13,200 rpm for one minute at 20 °C and 

stored at 4 °C. 

The mitochondrial cytochrome oxidase c subunit 1 (COI) gene was amplified with primers 

LCO1490 (5’-GGTCAACAAATCATAAAGATATTGG-3’) and HC02198 (5’-

TAAACTTCAGGGTGACCAAAAAATCA-3’) (621 bp) (Folmer et al. 1994) for T. 

longicaudata, and primers JB3 (5’-TTTTTTGGGCCTGAGGTTTAT-3’) and JB5 (5’-

AGCACCTAAACTTAAAACATAATGAAAATG-3’) (380 bp) (Bowles et al. 1992) for P. 

pandispiculatus. PCR-mix was prepared for each primer set separately in total volumes of 25 

µL for T. longicaudata, containing 16.125 µL PCR grade water, 2.5 µL buffer, 2.5 µL dye, 2 

µL MgCl2, 0.5 µL dNTP (10 mM each), 0.125 µL of each primer (25 µM), 0.125 µL TopTaq 

polymerase (Qiagen, 5 U/µl) and 1 µL (T. longicaudata) or 2 µL (P. pandispiculatus) DNA. 

The PCR conditions for T. longicaudata were: initial denaturation of 1 minute at 94 °C, 5 

cycles of (94 °C for 40 s; 45 °C for 40 s; 72 °C for 45 s), 35 cycles of (94 °C for 40 s; 51 °C 

for 40 s; 72 °C for 45 s) and a final extension of 5 minutes at 72 °C. The PCR conditions for 

P. pandispiculatus were: initial denaturation of 5 min at 94 °C, 35 cycles of (94 °C for 30 s; 

50 °C for 30 s; 72 °C for 45 s) and a final extension of 10 min at 72 °C. 4 µl of each PCR 

product was loaded onto 1 % agarose gels (1 % agarose gel in 0.5 × TAE buffer) with a 

negative control to check the quality and reliability of the PCR and the size of the amplified 

product. PCR products were sequenced at Macrogen Europe (Amsterdam, The Netherlands) 

with the forward primer using the fluorescent dye terminator Sanger sequencing method. The 

newly generated sequences of Terschellingia and Ptycholaimellus have been deposited in the 

European Nucleotide Archive (EMBL-EBI/ENA) with accession numbers LT795763-

LT795772 and LT795773-LT795788, respectively." 
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For T. longicaudata, the 18S rRNA gene was amplified using two primers, MN18F (5’- 

CGCGAATRGCTCATTACAACAGC-3’) and Nem_18S_R (5’-  

GGGCGGTATCTGATCGCC-3’) (Bhadury et al., 2008). PCR-Mix was prepared in total 

volumes of 14.875 µl PCR grade water, 2.5 µL buffer, 2.5 µL dye, 2 µL MgCl2, 0.5 µL dNTP 

(10mM each), 0.250 µL of each primer (25 µM) (forward and reverse primer), 0.125 µL 

TopTaq polymerase (Qiagen, 5U/µl) and 2 µL DNA. Final volume of the PCR-mix was 25 µl. 

The conditions for T. longicaudata from the Persian Gulf were: initial denaturation of 5 min 

at 95 °C, 40 cycles of (95 °C for 1 min; 54 °C for 1 min; 72 °C for 2 min) and a final 

extension of 10 min at 72 °C. PCR products were sequenced with forward and reverse 

primers. 

 

2.6 Population genetic and phylogenetic analysis 

Sequences were assembled using the SeqMan ProTM (Lasergene®, DNASTAR), and aligned 

using ClustalW in MEGA 6 (Thompson et al. 1994). Analysis of basis statistics (e.g. number 

of different haplotypes) and molecular variance (AMOVA) (Excoffier et al., 2005) was 

performed in ARLEQUIN (Version 3.1, 2005) (Schneider et al. 1996) to test the distribution 

of genetic variability among and within populations. The significance of the variance 

components was tested by permuting haplotypes among populations (Excoffier et al. 1992). A 

minimum spanning network was created using hapstar 0.7, and was adapted to incorporate the 

frequencies of haplotypes using Excel and PowerPoint. Uncorrected pairwise distances (p-

distances) between haplotypes were calculated using MEGA 6. 

Analysis of T. longicaudata population structure and cryptic diversity on a broader 

geographical scale was based on COI and 18S rDNA sequence datasets. To explore COI 

sequence conservation in T. longicaudata, amino acid sequences of the two T. longicaudata 

haplotypes were aligned and compared with COI sequences of other species of monhysterids, 

and representative species of the major clades of nematodes. Alignments were analyzed with 

Geneious v7 (Biomatters, www.geneious.com). 

The COI dataset consisted of 101 sequences from the Persian Gulf and 50 sequences from the 

Scheldt Estuary, aligned using translation alignment in Bioedit (Hall 1999). The 18S dataset 

consisted of 128 sequences of Terschellingia, including 24 newly generated sequences from 

Iran, The Netherlands, and Vietnam, and 104 sequences from GenBank from various 

locations (United Kingdom, France, The Netherlands, Bahrain, Mexico, Malaysia and 

Taiwan) (Cook et al. 2005; Bhadury et al. 2006; Bhadury et al. 2008) (Supplementary table 
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S4-1). 18 sequences of Cyartonema elegans, Daptonema procerus, D. setosum, D. 

normandicum, Daptonema sp., Diplolaimelloides meyli, Halomonhystera disjuncta, 

Metadesmolaimus sp., Monhystera sp., Sabatieria celtica, S. punctata, Sphaerolaimus 

hirsutus, Theristus acer, T. agilis, and Theristus sp. were selected as outgroup based on 

(Meldal et al., 2007). The 18S sequences were aligned using muscle (Edgar 2004). 

Phylogenetic trees were estimated using maximum likelihood (ML) and rapid bootstrap 

analysis with RAxML under the GTRCAT model via the RAxML BlackBox web-server 

(http://embnet.vital-it.ch/raxml-bb/) with default settings (Stamatakis et al. 2008).  
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3 Results and discussion  

Recent molecular studies have indicated rampant cryptic species diversity in free-living 

marine nematodes, as well as different levels of genetic differentiation of populations at 

regional scales (reviewed in Derycke et al. 2013), comparable to the sampling scale of the 

present study (ca. 52 km of coastline). Here, we investigated genetic diversity and population 

genetic structure of two common benthic nematode species from sandy beaches in the Persian 

Gulf: Ptycholaimellus pandispiculatus and Terschellingia longicaudata. 

 

Table 4-1. Terschellingia longicaudata and Ptycholaimellus pandispiculatus. Numbers of the 

different haplotypes at six beach locations in the Persian Gulf. Sufficient individuals for 

population genetic analysis (at least 15) of T. longicaudata and P. pandispiculatus were 

obtained from six and four beaches, respectively. 

 CO1 Haplotype Loc1 Loc 4 Loc 5 Loc6 Loc 9 Loc 10 n 

T. longicaudata Haplotype1 1 0 1 0 1 2 5 

  Haplotype2 16 15 18 14 16 17 96 

 

Haplotype1 0 0 0 1 0 0 1 

P. pandispiculatus Haplotype2 0 0 0 1 0 0 1 

 

Haplotype3 0 1 0 0 0 0 1 

 

Haplotype4 0 0 0 1 0 0 1 

 

Haplotype5 0 1 0 0 0 0 1 

 

Haplotype6 0 0 0 0 1 0 1 

 

Haplotype7 0 0 0 0 1 0 1 

 

Haplotype8 1 1 0 0 0 0 2 

 

Haplotype9 2 7 0 7 3 0 19 

 

Haplotype10 0 0 0 1 0 0 1 

 

Haplotype11 8 6 0 10 7 0 31 

 

Haplotype12 0 1 0 0 0 0 1 

 

Haplotype13 1 0 0 0 0 0 1 

 

Haplotype14 0 1 0 0 0 0 1 

 

Haplotype15 0 1 0 0 0 0 1 

 

Haplotype16 1 0 0 0 0 0 1 

 

Haplotype17 0 0 0 1 0 0 1 

(n) Number of individuals. 
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3.1 Population genetic structure of Ptycholaimellus 

pandispiculatus 

The DNA alignment of the mitochondrial COI gene fragment of the 66 individuals of P. 

pandispiculatus was 381 bp long and did not contain any insertions/deletions. 21 sites (5.5 %) 

were variable, six of which represented non-synonymous substitutions (i.e. resulting in amino 

acid changes). In total, 17 haplotypes were found (Fig. 4-2, Table 4-1). Uncorrected p-

distances between haplotypes ranged between 0.003 and 0.018. Haplotypes 9 and 11 were 

considerably more frequent than the others, together comprising 75 % of all sequences. They 

were also the only ones present at all four locations. Most other haplotypes occurred as 

singletons or doubletons (Fig. 4-2). Location 4 had the highest amount of unique haplotypes 

(eight) and location 9 the least (four haplotypes). Analysis of molecular variance (AMOVA) 

did not reveal a significant population-genetic structure for P. pandispiculatus (FST = 0.013, p 

> 0.2) (Table 4-2). The genetic diversity found for P. pandispiculatus is comparable to the 

genetic diversity found in other marine nematodes on similar geographic scales. For example, 

along the Belgian North Sea coast and Scheldt Estuary (ca. 100 km), the number of COI 

haplotypes within single cryptic species of the Halomonhystera disjuncta complex ranged 

from 4 to 17, with intraspecific pairwise distances of 0.003-0.026 (with one exception due to a 

single highly divergent haplotype) (Derycke et al., 2007a). A similar number of haplotypes 

(15) was found within Litoditis marina cryptic species “PmI” along the Belgian coast, 

Western Scheldt and Eastern Scheldt (Derycke et al. 2005), while a higher haplotype diversity 

(33) was found in Thoracostoma trachygaster clade II, but this study covered a larger 

geographical scale (> 500 km) (Derycke et al. 2010a). 
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Fig. 4-2. Minimum spanning network for P. pandispiculatus from Persian Gulf beaches. 

Numbers indicate the different haplotypes, colours refer to the different locations, and the size 

of the circles is the frequency of sequences in different haplotypes. 

 

We did not find indications of population genetic structuring among the four sampled 

locations in the Strait of Hormuz, which had interdistances of 14 to 52 km (Fig. 4-1). This 

indicates substantial dispersal and gene flow in our study area. Our findings contrast with 

some recent studies on free-living marine nematodes, where subtle to strong genetic 

differentiation of nematode populations was observed on similar geographic scales (Derycke 

et al., 2013). Similarly, low (but still significant) population genetic differentiation was 

observed in the Scheldt Estuary for Bathylaimus assimilis, which is characterized by an 

endobenthic life style (Derycke et al. 2013). Passive dispersal in endobenthic species is 

expected to be lower and population genetic structuring higher than in species associated with 

exposed and transient habitats such as seaweed wrack (L. marina, H. disjuncta and T. 

trachygaster) (Derycke et al. 2005, 2007a, 2010a). Rather than by its endobenthic life style, 

the absence of genetic structuring in P. pandispiculatus may be explained by passive dispersal 

of individuals through sediment resuspension and currents in the dynamic beach habitat 

(Boeckner et al. 2009; Derycke et al. 2013). Our study area represents a relatively non-

interrupted environment of sandy beaches along a continuous stretch of coastline that lacks 

obvious dispersal barriers, and is characterized by a dominant eastward sea surface current 

(Reynolds 1993; Kämpf and Sadrinasab 2006). This contrasts with the study areas of some 

previous studies that included apparent differences in habitats such as coastal and estuarine 
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environments (Derycke et al. 2005, 2007a). Only one prior study on nematode population 

genetic structuring has entirely focused on a beach habitat: Thoracostoma trachygaster, a 

species associated with macroalgae, exhibited strong population genetic differentiation along 

the southern Californian coast, but this coincided with well-known biogeographic barriers, 

such as Point Conception and the Los Angeles Region. In between these barriers, population 

genetic structuring was absent along large stretches of coastline (ca. 180 km) (Derycke et al. 

2010a, 2013). Hydrodynamic forces of beaches result in erosion and re-suspension of 

sediments and enhance passive dispersal of endobenthic organisms (Palmer 1988; Gingold et 

al. 2010; White et al. 2010; Gingold et al. 2011; Derycke et al. 2013).  

This is even more plausible for Ptycholaimellus species which are known as epigrowth 

feeders that live near the sediment surface, and are also frequently found in re-suspended 

sediment directly above the sediment surface (Eskin and Palmer 1985; Commito and Tita 

2002).  

Finally, active movement related to body morphology, swimming behaviour and feeding 

strategy may be an important dispersal mechanism for some free-living nematodes (Thomas 

and Lana 2011), for instance because nematodes which actively enter the water column have a 

higher probability of becoming passively transported over larger distances. Ptycholaimellus 

belongs to the same nematode family (Chromadoridae) and feeding guild as genera of which 

such active emergence into the water column has been observed (Jensen 1981). 
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Fig 4-3. Terschellingia longicaudata, maximum likelihood trees inferred from (A) COI and 

(B) 18S rDNA sequences. ML bootstrap values (>50) indicated at the branches. The COI tree 

shows two divergent haplotypes: a common haplotype 1, including individuals from the 

Persian Gulf and the Netherlands, and a rare haplotype 2 including Persian Gulf individuals 

only. The 18S tree shows that both the genus Terschellingia and the species T. longicaudata 

are non-monophyletic, consisting of divergent clades. Sequences generated in this study are 

indicated in coloured background: red corresponds to specimens with the common COI 

haplotype 1 = 18S clade 1; blue corresponds to specimens with the rare COI haplotype 2, 

which formed a different branch in the 18S tree.  
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3.2 Population genetic structure and cryptic diversity of 

Terschellingia longicaudata 
The COI alignment of the 101 individuals of Terschellingia longicaudata from Iran was 621 

bp long and did not contain any gaps. These 101 individuals belonged to only 2 haplotypes, 

with 96 specimens (95.4 %) belonging to haplotype 1, and 5 specimens (4.95 %) to haplotype 

2 (Fig. 4-3A, Table 4-1). The two haplotypes differed from each other in 36 nucleotides, 10 of 

which represented non-synonymous substitutions. Uncorrected pairwise distance (p-distance) 

between both haplotypes was 0.057. Haplotype 1 was found at all six locations, while 

haplotype 2 was found in four locations: 1, 5, 9 and 10. The sequences from the 50 

individuals from The Netherlands were all identical to haplotype 1. Clearly, AMOVA did not 

reveal any genetic differentiation among the Persian Gulf populations (FST = 0.027, p > 0.9) 

(Table 4-2). The presence of the common COI haplotype in all sampled locations of the 

Persian Gulf suggests high gene flow, which is somewhat surprising given the fact that T. 

longicaudata lives endobenthic with peak abundances typically below the top 2 cm of 

sediment. This would suggest limited re-suspension in the water column and thus a low 

passive dispersal potential. However, beach hydrodynamics may regularly erode and 

resuspend sediments down to considerable depths (Bell and Sherman 1980).  

The 18S rDNA alignment of T. longicaudata (including 12 outgroup taxa) was 951 bp long, 

including 465 (48.9 %) variable sites. The ML phylogenetic analysis was congruent with the 

published 18S phylogeny in Bhadury et al. (2008), and showed that the genus Terschellingia, 

as well as the species T. longicaudata (as traditionally circumscribed based on morphology) 

were non-monophyletic. At least six distinct T. longicaudata clades were recovered, in 

addition to five singleton sequences (Fig. 4-3B). One of these clades (clade 1 in Fig. 4-3B) 

included sequences from distant localities (Europe, Iran, Mexico and Malaysia). All 

individuals with the dominant COI haplotype from The Netherlands and the Persian Gulf also 

fall within that clade, which is consistent with the COI results which showed that the 

individuals from The Netherlands and the Persian Gulf belong to the same COI haplotype 

(haplotype 1). We were only able to obtain one partial 18S sequence from a Persian Gulf 

individual with the rare COI haplotype 2 (specimen 10.13). This sequence of 342 bp long 

differed from the common 18S sequences in 11 positions, corresponding with a p-distance of 

0.033, and formed a different branch in the 18S tree that was more closely related to a T. 

longicaudata sequence from Taiwan (although strong bootstrap support was lacking) (Fig. 4-

3B). The presence of two distinct clades in the Persian Gulf that were concordantly recovered 

by the COI and 18S data, suggests the presence of two different species in the Persian Gulf. 
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Although there are no universal threshold values of genetic distances for distinguishing 

species, the large genetic distances between the two COI haplotypes (p-distance 0.057) and 

between the two 18S ribotypes (p-distance 0.033) hint at the presence of two species in the 

Persian Gulf. The intraspecific COI variation reported for some nematode species by Derycke 

et al. (2005, 2010a, b), and the threshold of 5 % COI sequence divergence (Armenteros et al. 

2014) supports our claim of two cryptic species of T. longicaudata. The genealogical 

concordance of the two unlinked loci provides further evidence for the existence of two 

distinct species (Derycke et al. 2007a; Leliaert et al. 2014). 

Our data confirms the presence of one widespread cryptic species of T. longicaudata (18S 

clade 1), which has been collected from distant locations, including Europe, Iran, Mexico and 

Malaysia. The remaining cryptic species of T. longicaudata seem to have narrower 

geographic ranges, based on the data available. Several other cryptic species of free-living 

marine nematodes have been shown to have wide geographic ranges based on molecular data 

(Derycke et al. 2008b; Bik et al. 2010).  

Admittedly, in the absence of a thorough morphological analysis of specimens of the different 

putative species of T. longicaudata, we cannot prove that they are cryptic species in the true 

sense of the word, meaning that they cannot be differentiated morphologically and/or 

morphometrically. In other marine morphospecies complexes, the discovery of substantial 

genetic divergence went ahead of the discovery of morphological differentiation. Using a 

reverse taxonomic approach, ‘cryptic’ species of the Litoditis marina and Halomonhystera 

disjuncta complexes could be differentiated based on a combination of morphometric 

measurements (Derycke et al. 2008a; Fonseca et al. 2008), whereas unique characteristics 

differentiated species within the Thoracostoma trachygaster complex (De Oliveira et al. 

2012). Given the paucity of diagnostic characters and the high morphological plasticity of 

most species of Terschellingia (Armenteros et al. 2009), an integrative approach to the 

taxonomy of this genus, combining multilocus molecular and dedicated morphological tools, 

is warranted. 
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Table 4-2. AMOVA (analysis of molecular variance) table of the genetic variability among 

and within populations for Ptycholaimellus pandispiculatus and Terschellingia longicaudata.  

Species  % FST p-value 

P. pandispiculatus among 

populations 

1.30   

   0.013 NS 

 within 

populations 

98.70   

T. longicaudata among 

populations 

2.76   

   0.027 NS 

 within 

populations 

97.24   

NS: Not significant, P>0.1  

 

In addition to the wide geographic range of a single COI haplotype, the lack of intraspecific 

genetic diversity in the COI gene could be indicative of a selective sweep, in which variation 

of the COI gene has been eliminated due to strong selective pressure on the COI gene itself, 

or due to strong natural selection on another genomic region, which eventually resulted in low 

genetic variation of the COI gene by genetic hitchhiking (Barton 2000). Selective pressure of 

the COI gene in T. longicaudata, a nematode that shows strong preferences for hypoxic 

environments, is a plausible scenario. This gene encodes the subunit 1 of the cytochrome c 

oxidase complex (a.k.a. respiratory complex IV), and is a key enzyme in aerobic metabolism. 

It is also the largest and most conserved subunit of cytochrome c oxidase (Michel et al. 1998). 

Subunit I contains two haem centres (haem a, which acts as an electron input device to the 

haem a3, and haem a3 which is part of a binuclear centre and is the site of oxygen reduction), 

in addition to two proton-conducting pathways (D- and K-pathway), and an electron transfer 

pathway (Dürr et al. 2008). The amino acid composition around these active sites may 

determine the affinity with oxygen, which may be more crucial for an organism living in 

hypoxic environments. 

In order to find clues for possible positive selection of the COI gene in T. longicaudata, we 

constructed a COI amino acid alignment of the two T. longicaudata haplotypes, 11 other 

species of monhysterid nematodes, and thirteen outgroup species representing some of the 

main nematode lineages (Fig. 4-4, supplementary Fig S4-1). A region surrounding the end of 

the D-pathway (position 167-203) includes four amino acid changes and two deletions that 

seem to be unique in T. longicaudata. We did not find evidence for divergent amino acid 

composition of T. longicaudata in the two haem centres (supplementary Fig S4-1). It should 

be noted that taxon sampling in our alignment is low and that more extensive sampling, 
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especially in the monhysterids, is needed to confirm these observations in order to find further 

indications for possible selection of COI linked to hypoxic environments. 

 

 

Fig 4-4. Part of COI amino acid alignment of the two Terschellingia longicaudata haplotypes, 

11 other species of monhysterid nematodes, and thirteen outgroup species, showing four 

amino acid changes and a double deletion that are unique in T. longicaudata. A complete 

alignment is provided in supplementary Fig. S4-1. 

 

 

4 Conclusions 

Our data indicate the absence of genetic structure of both endobenthic nematode species (T. 

longicaudata and P. pandispiculatus), which probably reflects substantial passive dispersal 

and gene flow in our study area. As a result, both populations appear to be genetically 

homogenous. As such, our first hypothesis (limited population-genetic structure for both 

species) was confirmed, whereas our second hypothesis (less population genetic structure in 

P. pandispiculatus, living at the surface of the sediment, compared to the deeper-living 

species T. longicaudata) was rejected. Genetic diversity in T. longicaudata was very low with 

only two COI haplotypes recovered (one dominant and one rare). The COI data, combined 

with 18S rDNA sequences also confirmed previous studies that T. longicaudata likely 

constitutes a complex of multiple cryptic species, with one of these species having a wide 

geographical distribution.  
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Supplementary Fig S4-1. A complete COI amino acid alignment of the two Terschellingia longicaudata haplotypes, 11 other species of 

monhysterid nematodes, and thirteen outgroup species, showing four amino acid changes and a double deletion that are unique in T. 

longicaudata. 
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Supplementary Table S4-1. Details of the voucher number, GenBank accession number, 

country and reference from where 18S of Terschellingia longicaudata was sequenced. For the 

new sequences from Iran, only unique sequences have received an accession number; the 

others (identical to one of the unique sequences) are indicated as LT*****.  

 

Species (morphospecies) 

Voucher 

number 

GenBank 

accession 

number Country Reference 

Terschellingia longicaudata s.n. AM234716 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata ArchTamar9 AM261967 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PB.2006.6 AM261974 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PT2005.1 AM941225 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PT2005.2 AM941226 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PT2005.3 AM941227 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PT2005.4 AM941228 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PT2005.5 AM941229 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PT2005.6 AM941230 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PT2005.7 AM941231 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PT2005.8 AM941232 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PT2005.9 AM941233 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PT2005.10 AM941234 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PT2005.11 AM941235 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PT2005.12 AM941236 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PT2005.13 AM941237 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PT2005.14 AM941238 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PT2005.15 AM941239 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PRH2005.1 AM941240 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PRH2005.2 AM941241 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PRH2005.3 AM941242 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PRH2005.4 AM941243 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PRH2005.5 AM941244 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PRH2005.6 AM941245 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PRH2005.7 AM941246 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PRH2005.8 AM941247 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PRH2005.9 AM941248 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PRH2005.10 AM941249 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PRH2005.11 AM941250 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PRH2005.12 AM941251 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PRH2005.13 AM941252 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PRH2005.14 AM941253 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PRH2005.15 AM941254 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PPL2005.1 AM941255 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PPL2005.2 AM941256 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PPL2005.3 AM941257 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PPL2005.4 AM941258 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PPL2005.5 AM941259 United Kingdom Bhadury et al., 2008 
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Terschellingia longicaudata PPL2005.6 AM941260 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PPL2005.7 AM941261 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PPL2005.8 AM941262 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PPL2005.9 AM941263 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PPL2005.10 AM941264 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PPL2005.11 AM941265 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PPL2005.12 AM941266 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PPL2005.13 AM941267 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PPL2005.14 AM941268 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PPL2005.15 AM941269 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PNM2005.1 AM941270 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PNM2005.2 AM941271 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PNM2005.3 AM941272 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PNM2005.4 AM941273 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PNM2005.5 AM941274 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PNM2005.6 AM941275 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PNM2005.7 AM941276 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PNM2005.8 AM941277 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PNM2005.9 AM941278 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PNM2005.10 AM941279 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PNM2005.11 AM941280 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PNM2005.12 AM941281 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PNM2005.13 AM941282 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PNM2005.14 AM941283 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PNM2005.15 AM941284 United Kingdom Bhadury et al., 2008 

Terschellingia longicaudata PC2005.1 AM941285 Mexico:Cancun Bhadury et al., 2008 

Terschellingia longicaudata PC2005.2 AM941286 Mexico:Cancun Bhadury et al., 2008 

Terschellingia longicaudata PC2005.3 AM941287 Mexico:Cancun Bhadury et al., 2008 

Terschellingia longicaudata PB2005.1 AM941288 France Brittany Bhadury et al., 2008 

Terschellingia longicaudata PB2005.2 AM941289 France Brittany Bhadury et al., 2008 

Terschellingia longicaudata PB2005.3 AM941290 France Brittany Bhadury et al., 2008 

Terschellingia longicaudata PB2005.4 AM941291 France Brittany Bhadury et al., 2008 

Terschellingia longicaudata PB2005.5 AM941292 France Brittany Bhadury et al., 2008 

Terschellingia longicaudata PM2005.1 AM941293 Malaysia Bhadury et al., 2008 

Terschellingia longicaudata PM2005.2 AM941294 Malaysia Bhadury et al., 2008 

Terschellingia longicaudata PN2005.1 AM941295 Bahrain Bhadury et al., 2008 

Terschellingia longicaudata PN2005.2 AM941296 Bahrain Bhadury et al., 2008 

Terschellingia longicaudata PN2005.3 AM941297 Bahrain Bhadury et al., 2008 

Terschellingia longicaudata PN2005.4 AM941298 Bahrain Bhadury et al., 2008 

Terschellingia longicaudata PN2005.5 AM941299 Bahrain Bhadury et al., 2008 

Terschellingia longicaudata PR2005.1 AM941300 Bahrain Bhadury et al., 2008 

Terschellingia longicaudata PR2005.2 AM941301 Bahrain Bhadury et al., 2008 

Terschellingia longicaudata PR2005.3 AM941302 Bahrain Bhadury et al., 2008 

Terschellingia longicaudata PR2005.4 AM941303 Bahrain Bhadury et al., 2008 

Terschellingia longicaudata PR2005.5 AM941304 Bahrain Bhadury et al., 2008 

Terschellingia longicaudata Xx AY854230 United Kingdom Cook et al., 2005 
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Terschellingia longicaudata Tamar5 DQ394729 United Kingdom Bhadury et al., 2006 

Terschellingia longicaudata Tamar12 DQ394736 United Kingdom Bhadury et al., 2006 

Terschellingia longicaudata Tamar13 DQ394737 United Kingdom Bhadury et al., 2006 

Terschellingia sp Tamar15 DQ394739 United Kingdom Bhadury et al., 2006 

Terschellingia longicaudata Tamar17 DQ394741 United Kingdom Bhadury et al., 2006 

Terschellingia longicaudata Tamar23 DQ394747 United Kingdom Bhadury et al., 2006 

Terschellingia longicaudata Tamar29 DQ394753 United Kingdom Bhadury et al., 2006 

Terschellingia longicaudata Tamar37 DQ394761 United Kingdom Bhadury et al., 2006 

Terschellingia longicaudata Tamar40 DQ394764 United Kingdom Bhadury et al., 2006 

Terschellingia sp Plym7 DQ394771 United Kingdom Bhadury et al., 2006 

Terschellingia sp Plym11 DQ394775 United Kingdom Bhadury et al., 2006 

Terschellingia longicaudata Plym12 DQ394776 United Kingdom Bhadury et al., 2006 

Terschellingia sp Plym39 DQ394803 United Kingdom Bhadury et al., 2006 

Terschellingia longicaudata 06Te03 GU937775 Taiwan 

Hsiao & Shih, 

unpublished 

Terschellingia longicaudata 06Te05 GU937776 Taiwan 

Hsiao & Shih, 

unpublished 

Terschellingia longicaudata 60106 GU937779 Taiwan 

Hsiao & Shih, 

unpublished 

Terschellingia longicaudata 0506G1 GU937781 Taiwan 

Hsiao & Shih, 

unpublished 

Terschellingia longicaudata 0506G2 GU937782 Taiwan 

Hsiao & Shih, 

unpublished 

Terschellingia longicaudata CB1R09 JN968242 unknown locality Fonseca et al. 2012 

Terschellingia longicaudata AH5R09 JN968249 unknown locality Fonseca et al. 2012 

Terschellingia sp dna.T9.7 LT***** Iran This study 

Terschellingia sp dna.T10.8 LT***** Iran This study 

Terschellingia sp dna.T10.4 LT***** Iran This study 

Terschellingia sp dna.T10.5 LT***** Iran This study 

Terschellingia sp dna.T10.7 LT***** Iran This study 

Terschellingia sp dna.T10.7 LT***** Iran This study 

Terschellingia sp dna.T10.5 LT***** Iran This study 

Terschellingia sp dna.T10.4 LT795768 Iran This study 

Terschellingia lissa dna.68H6K12 LT795763 Vietnam This study 

Terschellingia longicaudata dna.27H6K12 LT795764 Vietnam This study 

Terschellingia sp dna.3 LT***** Netherlands This study 

Terschellingia sp dna.48 LT***** Netherlands This study 

Terschellingia sp dna.2 LT***** Netherlands This study 

Terschellingia sp dna.47 LT***** Netherlands This study 

Terschellingia sp dna.4 LT***** Netherlands This study 

Terschellingia sp dna.6 LT***** Netherlands This study 

Terschellingia sp dna.T4.27 LT***** Iran This study 

Terschellingia sp dna.T4.8 LT***** Iran This study 

Terschellingia sp dna.T4.7 LT***** Iran This study 

Terschellingia sp dna.T1.3 LT795766 Iran This study 

Terschellingia sp dna.T4.18 LT***** Iran This study 

Terschellingia sp dna.T4.25 LT795765 Iran This study 

Terschellingia sp dna.T4.28 LT***** Iran This study 
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Teschellingia obesa dna.87H6k12 LT795767 Vietnam This study 

 

 

    Outgroup  

    Cyartonema elegans s.n. AY854203 United Kingdom 

 Daptonema procerus s.n. AF047889 unknown locality 

 Daptonema setosum 178968 AM234045 United Kingdom 

 Daptonema normandicum s.n. AY854224 United Kingdom 

 Daptonema sp NN024 LK054724 Cuba 

 Diplolaimelloides meyli s.n. AF036611 unknown locality 

 Halomonhystera disjuncta s.n. AJ966485 Netherlands 

 Metadesmolaimus sp. PDL-2005 AJ966491 Netherlands 

 Monhystera sp T4M GQ503078 New Zealand 

 Sabatieria celtica 178798 AM234626 United Kingdom 

 Sabatieria punctata s.n. AY854237 United Kingdom 

 Sphaerolaimus hirsutus 171327 AM234622 United Kingdom 

 

Theristus acer 

Wester, Scheldt 

s.n. AJ966505 Netherlands 

 Theristus acer 178943 AM234627 United Kingdom 

 Theristus agilis TherAgi1 AY284693 unknown locality 

 Theristus agilis TherAgi2 AY284694 unknown locality 

 Theristus agilis TherAgi3 AY284695 unknown locality 

 Theristus sp 1268 FJ040464 unknown locality 
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5. General discussion 

As reviewed in the introductory chapter, the Persian Gulf (PG) provides both a wealth of 

resources to humans (oil and fisheries) and a large diversity of marine habitats. Along the 

Iranian part of the PG coastline, much attention has been paid to the macrobenthos whereas 

studies on meiobenthos are totally lacking. The absence of information on meiobenthos, 

specifically on marine nematodes, of the sandy beaches of the northern PG prompted us to 

perform the present study.      

In our study, we present, for the first time, data on local and regional diversity of beach 

nematode assemblages from the Iranian part of the PG. Nematodes are usually the most 

species-rich phylum in marine soft sediments, therefore our study contributes substantially to 

the science of marine biodiversity in the PG area. The current thesis establishes the baseline 

for a new research area in Iran, that is, marine nematology research. Our obtained data could 

pave the way for capacity building and future works on benthic ecology. In the present 

chapter, the results from this thesis are discussed in the context of beach nematode diversity 

worldwide, nematodes as pollution indicators and factors influencing the population genetic 

structure of marine nematodes. Finally, we present some perspectives for future research.  

 

5.1. Marine biodiversity of the PG 

Many scientists have been interested in marine biodiversity research in the PG region, 

especially to know whether this region is a "coldspot" or "hotspot" of biodiversity. At species 

level and for some benthic groups, such as corals, algae and echinoderms, low species 

richness at both large and smaller spatial scales has been reported (Price 1982; Sheppard et al. 

1992). According to Sheppard et al. (2010), this is partly because of the relatively recent 

geological formation of the PG, but mostly because of the harsh environmental conditions. 

However, some researchers (see below) do not believe that the PG is a coldspot of 

biodiversity. For instance, Price and Iszak (2005) compared echinoderm datasets from the PG 

and Red Sea region. The authors suggested that the PG may not be the coldspot of 

biodiversity generally believed, especially if a broad set of measures is utilized, and they 

stated that any conclusions about biodiversity must be drawn after compilation and analysis of 

comprehensive datasets for many fauna and flora.  
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5.2. Nematode diversity in the PG compared to other sites 

worldwide 

Biodiversity can be viewed at various spatial scales (Gray 2000; Poiani et al. 2000), and there 

is a long history of defining reference scales at which diversity should be reported (see Gray, 

2000, for marine review). In our chapters 2 and 3, we have identified diversity at four levels: 

that of a sample, that of a station (= distance to pollution; this is the cumulative diversity over 

the replicate samples in a station, whereas the mean value of the replicates then provides an 

average sample diversity), that of a beach location (the cumulative diversity of all stations on 

a single beach) and a ‘regional’ diversity, which is the cumulative diversity across the four 

beaches studied here. Although our sample diversity as such corresponds to Whittaker’s 

(1960) original definition of sample or α diversity, the other levels are less straightforwardly 

linkable to Whittaker’s definitions.  

For comparison with other published studies, we have therefore chosen to broadly/loosely 

follow Gray’s (2000) definitions and terminology. We define the richness encountered in the 

basal unit of a study, i.e. a single sample, as the point (genus) richness, and redefine sample or 

α diversity as resulting from “more sample units within a broader area”. We define that area 

here as a beach or location. Note, therefore, that we do not define a particular ‘station’ 

diversity. The reason why we feel this is not useful for comparisons with other studies, is that 

the numbers of samples per station, and of stations per beach, undoubtedly exhibit the largest 

variation among studies. The cumulative diversity across beaches, then, yields gamma 

diversity and corresponds to ‘large area diversity’ as defined by Gray (2000). We do not 

discuss diversity at the epsilon or biogeographical province level, but in a few cases, table 5-1 

does provide a measure of ε diversity. 

Over the two sampling periods, the gamma diversity of the marine nematodes at the studied 

beaches was represented by 62 genera belonging to 24 families. Our study was restricted to 

only 4 beaches which were sampled twice with a 1-year interval, and, obviously, this may not 

be enough to identify the full set of genera present in the area. Consequently, the data are still 

incomplete and insufficient to draw firm conclusions regarding the biodiversity of marine 

nematodes in the region. Probably many nematode species remain uncovered, as indicated by 

the high proportion of genera obtained in only one of the two field samplings, and the true 

diversity is likely higher than the one observed in this thesis. In continuation, we compare the 

observed biodiversity of marine nematodes at our study sites with other sandy beach habitats 
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of similar as well as dissimilar climatic and environmental conditions. The overview of beach 

studies with which we compare is arguably not complete, so it is not exhaustive in its 

literature review. It does, however, offer representative studies from a variety of geographical 

locations, beach types, human impacts etc.  

In general, a comparison of beach meiofaunal diversity is extremely difficult due to the high 

variability in beach morphodynamics (gradients from reflective to dissipative), the tidal 

regime (macro- to microtidal), the nature of the substrate (volcanic, quartz), the seasonality 

(temperate, tropical) and the anthropogenic influence on the substrate. The variability of those 

factors is a potential driver of variations in abundance, diversity and taxonomic composition 

of beach nematode assemblages. We nevertheless present a comparative table (table 5-1) 

together with a discussion on local (= beach) and large-area (= gamma) diversity levels 

worldwide.  

Under similar climate conditions, the overall observed nematode diversity is low but 

comparable to several other anthropogenically impacted beaches. Considerably higher local 

diversity than in our study was obtained in the Gulf of California, with up to 96 genera per 

beach (Mundo-Ocampo et al. 2007; Gingold et al. 2010), and at Guanabara Bay, Rio De 

Janeiro, with 62 genera (Maria et al. 2008b), compared to 21 (Haghani) to 38 (Suro) in the 

Strait of Hormuz, when accumulating the records of both years. However, despite the 

repeated sampling in our study, sampling effort in the three above-mentioned studies still 

exceeded that in our study, since in each of the aforementioned studies transects were 

sampled across the entire high-to-low water gradient. In addition, Gingold et al. (2010) 

specifically incorporated ridges and runnels, with higher diversity in runnels. The majority of 

other studies, including ours, have focused solely on ridges. A better comparison between 

these studies and ours is possible when looking at point diversity rather than local diversity. 

Average point diversity in the studies of Maria et al. (2008b) and Gingold et al. (2010) ranged 

from 9 to 43 in the former and from 6 to 27 in the latter. The lowest genus diversity in the 

study by Gingold et al. (2010) was found at the upper beach and highest diversity in the lower 

and middle parts of the beach. Our samples were also taken from the mid intertidal, but again, 

the average point genus richness in our study (5-16) can be considered substantially lower. By 

contrast, beach (28-29 genera) and gamma diversity (40 genera) at two anthropogenically 

influenced Ecuadorian locations were very similar to those in our study (Calles Procel et al. 

2005). These beaches were more influenced by high recreational use and fishing activities. 21 

genera, the same as in Haghani, were found at a beach along the central west coast of India, 
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encompassing five stations along a gradient of sewage pollution (Nanajkar and Ingole 2010). 

Anthropogenic disturbance and pollution may thus be important causes of low nematode 

diversity on sandy beaches.  

The average local diversity at beaches in temperate regions is comparable to, or slightly 

lower than, that in (sub-)tropical beaches in California and Rio (see above), but higher than in 

our study. At three Australian sandy beaches, ranging from sheltered with seagrass vegetation 

to highly exposed and bare, a local diversity range of 40-54 genera was recorded. The gamma 

diversity, however, was very similar to that in our study, with a total of 64 genera over the 

three beaches (Hourston et al. 2005). Local diversity in this study was based on three transects 

perpendicular to the water line. Average point richness per station was, however, low and 

never exceeded 5 species at any single sampling time. At an ultra-dissipative beach at De 

Panne, Belgian coast, Gheskiere et al. (2004) registered 65 genera. Sampling included four 

transects perpendicular to the water line with nine stations from the upper to the low tide 

level. Average point diversity ranged from 8 nematode species at the upper littoral to 34 

species near the mid-intertidal. In other words, point diversity in these temperate beaches was 

similar as in the PG, and lower than in (sub)tropical beaches, whereas the higher local 

diversity in the temperate beaches compared to the PG probably reflects the sampling effort 

which better covered the whole beach. Hence, this brief overview of literature does not 

support the paradigm that benthic nematode diversity is lower in (sub-) tropical than in 

temperate areas (Alongi 1990a), at least with respect to beach nematofauna.  

Data from other climatic zones are scant. Urban-Malinga et al. (2005) found a total of only 

28 genera (gamma richness) in four Arctic beaches (two more exposed vs. two more 

sheltered), with sampling stations from two different tidal levels (the low-water line and 

closely below the drift line). In a similar sampling at two other Arctic beaches, one sheltered 

and one exposed, local genus diversities were even lower: from 8 at the sheltered beach to 

only three at the most exposed beach (Urban-Malinga et al. 2004). Such low numbers of 

genera may well be related to the harsh climatic and physical (ice cover in winter) conditions 

of the Arctic intertidal (Urban-Malinga et al. 2005).  
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Table 5-1: Overview of published studies providing information on local (= α), large-scale (= γ and (occasionally)  biogeographic province (= ε) 

diversity of beach nematode assemblages. α, γ and ε diversity are expressed as genus richness, except for the study by Gheskiere et al. (2005), 

where species richness is given. α diversity is taken as number of genera per beach location, γ as the cumulative number of genera over different 

beaches in the same region, and ε diversity as the cumulative number of genera over a larger geographical scale. We provide information on 

beach type (n.d. = not described in original study), number of beaches and number of stations per beach, presence and nature of a gradient in the 

sampling design (HL = gradient from high to low water, PL = gradient parallel to water line, L = latitudinal gradient), and presence or absence of 

temporal data. 

Reference and sampling location Beach type Number 

of 

beaches 

Number 

of 

stations 

gradient 

type 

Presence 

of 

temporal 

data 

α 

diversity 

γ 

diversity 

ε 

diversity 

Similar climate conditions 

(Gourbault and Warwick 1994) 

At Gosier, Guadeloupe, West Indies 

sheltered   1 6 Horizontal 

(PL) 

Yes 61 _ - 

Calles et al. (2005) 

Along Ecuadorian coast 

sheltered & exposed  2 1 Pollution 

(PL) 

Yes 28-29 40 _ 

Mundo-Ocampo et al. (2007) 

Two sites in the Gulf of California 

One dissipative, one 

more exposed with 

coarser substratum 

2 6 Horizontal 

(PL) 

No 55-67 80 _ 

Nanajkar and Ingole (2010), 

Goa near the Panjim city, central west coast 

of India 

sheltered  1 5 Horizontal 

(PL) 

Yes 19 _ _ 

Sahraean et al. (2017a) 

Persian Gulf, Bandar Abbas 

sheltered to 

reflective  

4 3 Pollution 

(PL) 

No 13-28 39 - 
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Gheskiere et al. (2005) 

northern coast of Poland and San Rossore 

Massaciuccoli Natural Park, Italy 

dissipative and 

reflective  

2 6 Horizontal 

(HL) 

No 56-66   108  

Moreno et al. (2006), 

Collelungo beach, in 

southern part of Tuscany, Italy 

exposed  1 4 Horizontal 

(HL) 

Yes 1 7 _ _ 

De Jesús-Navarette (2007) 

Socorro Island, Colima, Mexico 

n.d. 3 1-2 Horizontal 

(HL) 

No 2-25 26 _ 

Maria et al. (2008) 

Guanabara Bay, Rio De Janeiro, Brazil 

sheltered  3 2 Horizontal 

(HL) 

Yes 31-46 62 _ 

Gingold et al. (2010) 

upper Gulf of California 

dissipative  1 10 Horizontal 

(HL) 

No 96 _ _ 

temperate regions 

Lambshead (1986) 

Firth of Clyde, United Kingdom 

fairly sheltered, 

estuarine beaches 

5 1-2 Pollution 

(PL) 

No 33- 54 71 _ 

Nicholas and Hodda (1999) 

East coast of Australia 

exposed   1 7 Horizontal 

(HL, PL) 

Yes 48 _ _ 

(Nicholas and Trueman 2005) 

Australian sandy beach 

 

exposed  3 3-5 Horizontal 

(HL, PL) 

No 44-82 _ 100 

Sharma and Webster (1983), 

two Canadian Pacific beaches 

n.d. 2 1 - Yes 24-56 59 _ 

(Nicholas 2001), 

East coast of Australia 

exposed   1 1 _ Yes 40 _ _ 
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Gheskiere et al. (2004), 

De Panne, Belgium 

ultra-dissipative  1 9 Horizontal 

(HL) 

No 65 _ _ 

Hourston et al. (2005), 

West Australian coast 

sheltered, exposed 

and intermediate 

3 3 Horizontal 

(HL) 

Yes 40-54 64 - 

Liu et al. (2008), 

Taiping Bay of Gingdan, China 

n.d. 1 - _ Yes 75 - - 

Maria et al. (2012), 

De Panne, Belgium 

ultra-dissipative  1 10 Horizontal 

(HL) 

No 60 - - 

Lee and Riveros (2012), 

Along coast of Chili 

exposed (L) 66 1 _ No  99  

(Hua et al. 2016) 

Eastern coast of China 

 

n.d. 3 1 - No 15-24 - 34 

Other climatic zones 

Urban-Malinga et al. (2004), 

two contrasting Arctic beaches on Bjornoya 

(Bear Island) 

exposed and 

sheltered  

2 3 Horizontal 

(HL) 

No 3-8 8 _ 

Urban-Malinga et al. (2005) 

Kongsfjorden, Svalbard 

sheltered and 

exposed  

4 2 Horizontal 

(HL) 

No 4-15 28 _ 
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Usually, in non-impacted environments, grain size represents the most important factor in 

determining nematode community structure (Platt 1984). However, in our study there was no 

clear relationship between nematode abundance and diversity on the one hand and sediment 

granulometry on the other; else, Terminal – with the most ‘deviant’ sediment granulometry – 

should have had the most distinct nematofauna, which was not the case. As mentioned in the 

introductory chapter 1, the severe climatological conditions (e.g., large annual fluctuations of 

seawater temperature and high salinity) in the PG region are certainly co-responsible for the 

lower nematode diversity, and may be further aggravated by persistently high levels of 

contaminants such as hydrocarbons and metals (see chapter 1 for relevant literature). Finally, 

biological interactions (e.g., predation among nematodes) that were not measured during this 

study are also a potentially important driving force of changes in density and species 

composition (Steyaert et al. 2001; Gallucci et al. 2005). 

5.3. Nematode assemblage composition in the context of 

environmental pollution 

Intertidal organisms inhabit a transitional ecosystem between land and sea, and are therefore 

at risk from anthropogenic impacts, such as pollution, over-exploitation and sea-level rise 

resulting from global warming. Additionally, they are vulnerable due to the extreme 

fluctuations in environmental conditions (Levin et al. 2001). The PG is considered a highly 

stressful environment because of its high salinity, large seawater temperature fluctuations, 

extreme temperature maxima and high loads of anthropogenic pollutants (Abuzinada et al. 

2008; Hamza and Munawar 2009; Hassanshahian 2014) and it is believed that most 

organisms living in the PG survive at the limits of their physiological tolerance (Price 1993; 

Beech 2004). Moreover, as mentioned in chapter 1, anthropogenic pressure is hypothesized to 

be a key factor influencing the community and structure of marine nematodes in our studied 

area. Even though we did not directly measure pollution or environmental disturbance, the 

overall low diversity of nematodes indicates that the entire area experiences substantial stress, 

and the local sources of disturbance had measurable impacts on benthic community diversity 

(see chapters 2 and 3).  

One important observation from this thesis is that the same five genera (Daptonema, 

Promonhystera, Paramonhystera, Terschellingia and Ptycholaimellus) together accounted for 

more than 75% to 80% of the total nematode abundance at all beaches in 2008 and 2009, 

respectively. These genera have been reported from eutrophicated and/or polluted coastal 
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habitats in other parts of the world. This may indicate that local hydrodynamics (currents, 

wave action) homogenized the beach nematode assemblages in this area, a hypothesis further 

supported by the lack of population genetic structuring in two of these dominant nematode 

species (see chapter 4), leading to an overall dominance of those species that are successful 

across a large range of pollution impacts. An excess of organic input into the marine 

environment can create an unbalanced ecosystem with high environmental stress (Austen and 

Warwick 1995). Increased input of organic matter (for instance directly from sewage, or 

indirectly as a result of coastal eutrophication caused by nutrient enrichment) generally allows 

fewer species to coexist as a result of competitive interactions as well as low-oxygen 

conditions. Susceptible species are replaced by more tolerant species (Schratzberger and 

Warwick 1998). In the present study, fewer dominant nematode genera existed at our studied 

area. The presence of stress-tolerant nematode genera appeared particularly informative, 

making the state of sediment contamination very evident. In continuation, we provide some 

information related to the ecology and feeding behavior as well as the stress tolerance of four 

out of the five dominant genera found at our study site.  

Daptonema, Promonhystera and Paramonhystera are non-selective deposit feeders sensu 

Wieser (1953) and belong to the family of Xyalidae, a family of mostly free-living marine 

nematodes (Venekey et al. 2014a). Deposit feeders have a prismatic or conical spineless 

buccal cavity, and their food consists mainly of benthic diatoms (MPB), other microalgae, 

bacteria and perhaps non-living organic particles (Moens and Vincx 1997; Moens et al. 2004). 

Daptonema likely feeds as an omnivore, obtaining carbon partly from MPB and partly from 

organisms that feed on MPB. In fact, many marine nematodes may be opportunistic feeders 

which may shift feeding behavior in response to food availability, and may complement 

preferred resources with other, more readily available ones (Moens et al. 2014). Daptonema 

seems to prefer the surface sedimentary layer, as the maximum abundances of, e.g., 

Daptonema normandicum were recorded in the uppermost 0-2 cm sediment section, probably 

due to a decreasing trend of dissolved oxygen, sediment organic carbon, and chl-a with depth 

(Singh and Ingole 2011). Daptonema setosum was reported to migrate upward at low tide and 

downward at high tide (Steyaert et al. 2001). Such type of behavior may be a part of the 

survival strategy of nematodes, mainly to utilize the epipelic diatoms, which are the main 

food source for deposit feeders, as well as to avoid predators. The reproduction rates of 

Daptonema may be high and its growth rapid growth; hence, Daptonema is considered an 

opportunistic nematode (colonizer) (Vanaverbeke et al. 2003).  
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Given the opportunistic feeding behavior and the rapid colonizer ability, Daptonema is 

considered to be relatively stress tolerant and able to live in many different habitats. Along the 

Italian coasts, for example, Daptonema is reported to be tolerant to hydrocarbon stress (oil 

spill), trace elements and fish farming (Vezzulli et al. 2008; Moreno et al. 2011; Losi et al. 

2013; Mirto et al. 2014). In a subtropical humid region of south Brazil with intensive organic 

loads due to the biodeposition of mussel farms, assemblages consist predominantly of the 

opportunistic nematodes Daptonema, Terschellingia, and Sabatieria (Netto and Valgas 2010), 

probably because of the high microbial densities at the mussel culture bottoms (Mirto et al. 

2000). Daptonema normandicum has been reported as the most dominant (> 67%) among the 

meiobenthic nematodes at a sandy beach in the Arabian Sea in the vicinity of Panjim market 

in India (Singh and Ingole 2011). As the sampling area was located in the vicinity of a 

municipal sewage dumping site, where organic carbon was abundant (promoting the increase 

of bacteria and protozoans in the sediment), it was concluded that these sources provide the 

main food for deposit-feeders. Daptonema is among the 15 genera that have been common to 

all environments along the Brazilian coast (Venekey et al. 2010). Daptonema oxycerca is one 

of the most abundant nematode species in the marine sediments of the tidal flat at Coroa 

Grande, a tropical region in Rio de Janeiro, Brazil (Esteves 2004). The spatio-temporal study 

of D. oxycerca in this region revealed that the density of D. oxycerca was negatively 

correlated with temperature, with a peak in August (the local coldest period) (Maria et al. 

2008a). D. oxycerca was most abundant at the upper intertidal low-salinity zone, and none of 

the factors (organic matter, granulometry, and chlorophyll-a) could explain its distribution. A 

preference of D. oxycerca for the upper intertidal zone has also been shown at the Brouage 

mudflat (Marennes-Óleron Bay, France) (Rzeznik-Orignac et al. 2003). Again, none of the 

physical and biological parameters analyzed, such as chl-a, organic matter as well as heavy 

metals, was directly related to the spatial variation of D. oxycerca. The preference of 

Daptonema for organically enriched sediments seems at odds with experimental observations 

that both D. setosum and D. tenuispiculum were completely eliminated by one week of anoxia 

or even hypoxia (Steyaert et al. 2007). Similarly, the preference of Daptonema for the upper 

intertidal, where fluctuations in temperature and salinity can be large and rapid, seems hard to 

reconcile with its sensitivity to hyposmotic (= low-salinity) stress (Forster 1998), (Moens, 

unpubl. observations). Perhaps its vertical mobility (Steyaert et al. 2001) allows it to migrate 

to surface layers to obtain oxygen, and to deeper strata to escape stressful peaks in 

temperature and/or drops in salinity.  
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The genus Paramonohystera has been labeled "obligate anaerobic", indicating its survival 

under anoxic conditions (Wieser et al. 1974). The term “obligate anaerobic” may be rather 

inadequate; the near-exclusive occurrence of the genus under anoxia in the study by Wieser et 

al. (1974) may rather point at the genus being competitively stronger under conditions of low 

or no oxygen. It has also been demonstrated that Paramonohystera is tolerant to metal 

pollution (Gyedu-Ababio and Baird 2006) and resistant to glyphosate (Salem et al. 2016). In 

the latter study, the abundance of Paramonohystera sp. increased in the pesticide treatments 

up to 5 times compared to the untreated control. In any case, it is clear from the above that 

this genus thrives well in polluted or otherwise stressed environments. 

Terschellingia longicaudata (Linhomoeidae)  is a selective deposit feeder and is considered a 

bacterivorous nematode (Wieser 1953), which can be dominant in both sandy and muddy 

areas. Due to the small mouth cavity (3µm) it is unable to feed on protozoans and small 

metazoans, which makes bacteria the most probable food source (Rzeznik-Orignac et al. 

2008). Alternatively, it may obtain part or all of its nutrition from bacterial endosymbionts 

which utilize methane as a carbon source (Vafeiadou et al. 2014; Moens, unpubl. 

observations). Methane can be a common carbon source in anoxic or hypoxic sediment strata, 

and Terschellingia is known to thrive in low-oxygen conditions (Steyaert et al. 2007) and live 

in anthropogenically disturbed and polluted habitats (Lambshead 1986; Schratzberger and 

Warwick, 1998; Liu et al. 2008), with the ability to tolerate metal and hydrocarbon 

contamination (Austen and Somerfield 1997; Armenteros et al. 2009a; Beyrem et al. 2010). 

The existence of Terschellingia in many habitats supports its cosmopolitan distribution and 

this was confirmed by our study. T. longicaudata, for example, occurs in a wide range of 

habitats, such as mangroves and mudflats (Hodda and Nicholas 1985), various subtidal 

habitats (Tita et al. 2002; Schratzberger et al. 2004b; Bhadury et al. 2005; Schratzberger et al. 

2006), seagrass beds (Novak 1989) and lagoons (Villano and Warwick 1995). The presence 

of T. longicaudata in most of the marine habitats indicates its adaptability to different types of 

sediments.  

Ptycholaimellus, which belongs to the family of Chromadoridae, is an epigrowth feeder (2A, 

Wieser, 1953) using a tooth to pierce or crack diatoms, other microalgae and filamentous 

cyanobacteria (Moens and Vincx, 1997). Epigrowth feeders may also ingest bacteria. 

Ptycholaimellus is considered a typical nematode belonging to the “surface” assemblage and 

has been reported to be abundant in several habitats, such as muddy intertidal flat sediments 

(Steyaert et al. 2003; Van Colen et al. 2009) and also hard substrates (Heip et al. 1985), which 
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is probably related to their feeding on biofilms. In a Kenyan mangrove, the occurrence of 

Ptycholaimellus coincided with the increase in benthic microalgae and phytodetritus (Alongi 

1990a), and a similar observation was made at an intertidal mudflat in the Scheldt Estuary, 

The Netherlands (Van Colen et al. 2009). 

In contrast to Terschellingia with remarkable tolerance to hypoxic and anoxic conditions, the 

Ptycholaimellus species either migrate away from anoxic spots in the sediment (Franco et al. 

2008) or may experience high mortality if their sensitivity to low-oxygen conditions would 

resemble that of other Chromadoridae, like Chromadora macrolaima (Steyaert et al. 2007). 

By contrast, Ptycholaimellus have been suggested to be opportunistic species after the 

contamination by hydrocarbons and trace elements (Austen and Somerfield 1997). This could 

perhaps again relate to peaks in microphytobenthos production resulting from a decimation of 

prominent MPB grazers (see Van Colen et al., 2009). Besides, Ptycholaimellus ponticus can 

tolerate a wide range of trace elements (Somerfield et al. 1994; Austen and Somerfield 1997). 

Moreover, in the intertidal zone of the Hichirippu shallow lagoon (Japan), Ptycholaimellus sp. 

seems to be very tolerant of elevated temperatures (Yodnarasri et al. 2008).  

Although we consider natural and anthropogenic environmental stressors to be the main 

determinants of the PG nematode assemblage, other factors should also be considered. One 

important point worthy to mention is predation, a direct interaction that affects meiofaunal 

community structure (Coull 1985, 1999). In this context, some studies have addressed the 

predator-prey interactions using macrofauna as predators and meiofauna as prey (Olafsson 

2003; O’Gorman et al. 2008). Additionally, many studies have also reported on the effects of 

meiobenthic predators controlling other meiofauna and/or their prey (Moens et al. 1999; 

Moens et al. 2000; Hamels et al. 2001; Gallucci et al. 2005; dos Santos and Moens 2011). 

Even at relatively low abundances, predatory nematodes can substantially impact abundance, 

species composition and/or diversity of their prey assemblages (Moens et al. 2000; Gallucci et 

al. 2005; Moens et al. 2013). Coarser sediments typically have a higher prominence of 

carnivorous and omnivorous nematodes, perhaps because of larger interstitial spaces that 

allow more efficient foraging on prey, potentially resulting in pronounced top-down impacts 

on prey abundance and assemblage composition (Gallucci et al. 2005). In turn, a higher 

predation impact may increase prey species diversity through a release of competitive 

interactions (Worm et al. 2002), hence a high relative abundance of predacious nematodes 

may positively affect prey species diversity. In our study, the location with the highest 

nematode diversity was indeed the one with the highest proportion of predacious nematodes 
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(23.9% at Suro in 2008). However, there was no clear relationship between nematode 

abundance and diversity on the one hand and sediment granulometry on the other. The 

location with the highest nematode diversity and abundance (Suro) had the second lowest 

median and mean grain size of all beaches investigated, while the location with the lowest 

nematode densities and diversity had slightly coarser sediment. Admittedly, the differences in 

granulometry between beaches were not very marked, exception made for Terminal.  

Overall, nematode assemblages dominated by stress tolerant genera, as observed in the 

present study, are often indicative of a disturbed system. As reviewed in the first chapter, the 

marine ecosystems of the Iranian part of the PG have faced severe anthropogenic activities 

with great potential threats to the marine organisms. For example, massive harmful algal 

blooms during 2008-2009 (red tide) seen in the PG, Oman Sea and Strait of Hormuz 

originated from a phytoplankton named Cochlodinium polykrikoides (Richlen et al. 2010) and 

stayed for 9 consecutive months – alledgedly the longest-lasting algal bloom ever recorded 

across the world. It could be shown that there were higher algal densities around the crowded 

industrial cities along the Strait of Hormuz, such as Bandar Abbas and Qeshm (Hamzehei et 

al. 2012), supporting the importance of sewage outlets from major cities in eutrophication 

processes in our study area. High rates of organic matter in coastal waters in these two 

industrial zones, and the lack of a filtering system for the urban and industrial sewage, were 

considered the major causes of the high algal density. Another catastrophic event was the 

cyclone Gonu (in June 2007), which was the most intense tropical cyclone ever recorded in 

the PG. All together, these events may have had severe impacts on marine biodiversity and 

community structure in our studied area. Besides, the marine environment of Bandar Abbas 

has been subject to contamination by pollutants from a variety of other sources, such as oil-

related pollution (Hassanshahian et al. 2012; Tehrani et al. 2012; Mohebbi Nozar et al. 2014), 

heavy-metal contamination (Khoshnood et al. 2010; Rahmanpour et al. 2014; Sarhadizadeh et 

al. 2014) and urban sewage effluents (Mansourri 2016) as a result of intense industrial 

activities and urban development. All the aforementioned environmental stressors together 

with our results—low nematode diversity, the dominance of a limited number of stress-

tolerant genera—lead us to the conclusion that the studied area is an environmentally stressed 

region, continuously subject to a high degree of anthropogenic impact. 

 



GENERAL DISCUSSION 

186 
 

5.4. Population genetics 

The population genetic structure of organisms not only informs about habitat connectivity and 

gene flow (Derycke et al. 2013), it also provides clues to the resilience of populations after 

local perturbations, because well-connected populations may re-seed individuals to patches 

after local extinction events (Cowen et al. 2007; Cowen and Sponaugle 2009). The fourth 

chapter of this PhD focuses on the population-genetic patterns of two of the five dominant 

nematode species in our study, Terschellingia longicaudata and Ptycholaimellus 

pandispiculatus. Previous studies have shown that marine nematode populations from several 

intertidal habitats show significant population-genetic structuring over spatial scales of 10–

100 km (Derycke et al. 2005, 2007a, 2010a, 2013). We expected that P. pandispiculatus 

would have relatively little population–genetic structure, because, as an epigrowth-feeder, it 

tends to live at the sediment surface and hence is prone to passive transport. Furthermore, it 

has been reported that tube-construction is widespread in Ptycholaimellus species (Nehring 

1993) which may facilitate transportation and dispersal of the species. By contrast, T. 

longicaudata dwells in deeper sediment layers and was expected to have a relatively more 

pronounced population-genetic structure. However, our data did not reveal a significant 

population-genetic structure for either species indicating substantial dispersal and gene flow 

in our study area. This corroborates the conclusion mentioned under 5.3 that local 

hydrodynamics (currents, wave action) homogenized the beach nematode populations and 

assemblages in this area. Given the relatively sheltered nature of some of our beaches, this 

suggests that gene flow in more exposed beach habitats is likely even more pronounced, and 

that barriers are required to produce population genetic structure (see under 5.4.1).  

On the other hand, the two species showed very different patterns of genetic diversity: 

whereas P. pandispiculatus exhibited a genetic diversity comparable to that from other 

intertidal nematodes elsewhere, T. longicaudata showed very low genetic diversity (only 2 

COI haplotypes, one of which comprising 95% of all individuals). Below we discuss some 

possible reasons for our results.  

 

5.4.1. High dispersal, stress tolerance and high colonization ability may explain the lack 

of population genetic structure in T. longicaudata and P. pandispiculatus 

One potential explanation for the observed pattern is that T. longicaudata and P. 

pandispiculatus may be characterized by high levels of dispersal and gene flow (i.e. 
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migration). The movement of individuals away from their natural environment is defined as 

dispersal and can lead to gene flow over different spatial scales. It also affects the rates of 

genetic changes and the processes of adaptation, speciation and hence the evolution of 

organisms (Froukh and Kochzius 2007). The lack of population-genetic structuring found in 

this study may be the result of the physically dynamic nature of the beaches along our study 

area, with lots of erosion and hence passive transport. Several studies have shown that local 

hydrodynamics can potentially influence passive dispersal and gene flow in the marine 

environment (Palmer 1988; Galindo et al. 2010; White et al. 2010; Derycke et al. 2013). At 

the studied PG beaches, there are no evident physical barriers (e.g., different marine habitats, 

buildings, rivers, harbors). In more energetic environments, nematodes become re-suspended 

with sediments and re-distributed at distances dependent on the prevalent hydrodynamic 

regimes. The constant connectivity among populations may thus lead to a constant gene flow, 

explaining the lack of population structure, at least at the spatial scale studied in the present 

work. 

Another factor to be discussed is the recolonization potential of the marine nematodes. 

Considering that Ptycholaimellus and Terschellingia are probably quite stress tolerant, they 

will benefit from a competitive advantage resulting in higher colonizing abilities (Eskin and 

Palmer 1985). In order to be able to benefit from a dispersal mechanism, an individual that 

arrives in a new patch must be able to reproduce and colonize there. Soft sediments offer 

space for colonization in an always present, complex, 3-dimensional structure, and therefore 

colonization can begin immediately after a disturbance, provided the ‘propagule’ is fit for 

reproduction (Baden et al. 1998; Lee et al. 2001; Barnes and Conlan 2007). Accordingly, fast 

growth rates and the ability to reproduce before or faster than others do, will increase the 

benefits of dispersal. Fonseca-Genevois et al. (2006) reported that Ptycholaimellus colonized 

new habitats suspended above the ocean floor and attributed their arrival to periodic 

upwelling events. They also reported that passive long-distance dispersal through re-

suspension in the water column can promote quick recolonization of more distant locations. 

Van Colen et al. (2009) found Ptycholaimellus and Daptonema among the fastest colonizers 

of intertidal muddy sediment which had experienced a major anoxic event. Both genera re-

established at high abundances as soon as microphytobenthos biofilms started to recover and 

reach very high productivity, unhindered by the presence of major MPB grazers belonging to 

the macrofauna.  

In order to properly understand the colonization potential of a species, and hence the 

biological factors determining the genetic structure of nematode populations, information on 
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life-history traits is crucial (Duminil et al. 2007). Unfortunately, only limited information is 

available on the life history of most marine nematodes, including the dominant genera in our 

study area. Bongers et al. (1991) classified marine nematode genera into expected colonizers 

(c) and persisters (p) based on life-history traits. Nematodes with a cp score = 1 are extreme 

colonizers, with short generation times, high reproductive output, large population 

fluctuations, high dispersal abilities and are relatively stress tolerant, whereas those with a 

high cp (up to a max. of 5) are persisters, produce few offspring with long generation times 

and are sensitive to disturbance (Bongers and Ferris 1999). Significant population genetic 

structuring was found at small geographic scales, even for species with a cp score of 1 

(Derycke et al. 2005 ; 2007a, 2013). According to Bongers et al. (1991), T. longicaudata and 

P. pandispiculatus both have a cp score of 3 (Patrício et al. 2012); therefore, we would expect 

them to show at best intermediate population genetic structuring. However, life-history 

information for both genera is lacking, and their cp classification is therefore at best tentative. 

Moreover, the fact that both species are stress-tolerant may outweigh other factors and render 

them competitive colonizers of anthropogenically impacted environments, contributing to the 

population-genetic structure observed in the present study. 

 

5.4.2. Genetic diversity pattern suggests strong selection on CO I  

Whereas both species, P. pandispiculatus and T. longicaudata, showed low population 

genetic structure, the genetic diversity pattern was very different with P. pandispiculatus 

exhibiting a much higher population genetic diversity than T. longicaudata. While P. 

pandispiculatus had 17 COI haplotypes, T. longicaudata had only 2, one of which comprising 

95% of all individuals. Important ecological factors contributing to low genetic diversity are a 

small population size, lack of migration and hence inbreeding. The smaller the population, the 

more dramatic the fluctuation of allele frequencies, and the faster the loss of genetic variation. 

Small and isolated populations are vulnerable to inbreeding, that is, production of offspring 

from mating between close relatives. Given the high reproduction rate of marine nematodes, 

the high population abundances of both target species and the supposedly high migration rate 

at our study site, inbreeding is unlikely to be responsible for the low genetic diversity of T. 

longicaudata. Also, the comparison with other T. longicaudata specimens from the Scheldt 

Estuary, The Netherlands, revealed that all individuals there belonged to a single COI 

haplotype, actually the same as the dominant one in the PG. The fact that COI is so 

exceptionally little variable might indicate that this gene is under strong selection. 

Anthropogenic impact, such as pollution, can cause severe perturbations of the genetic 
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structure. A reduced mitochondrial diversity under conditions of chemical pollution has been 

observed in marine nematodes (Litoditis marina) (Derycke et al., 2007b), meiobenthic 

copepods (Street and Montagna 1996; Street et al. 1998) and gastropods (Kim et al. 2003). 

Pollution may also induce demographic bottlenecks, which negatively affect the viability and 

fertility of individuals. Consequently, the effective population size will be reduced, leading to 

a reduced genetic diversity. Additionally, it has been reported that suboptimal salinity, pH 

and/or nutrient levels can potentially also cause genetic isolation of natural populations (De 

Wolf et al. 2001; De Wolf et al. 2004a; De Wolf et al. 2004b). COI is key in the respiratory 

chain and Terschellingia live in hypoxic sediments. Strong selection may thus be the key 

factor leading to the observed low COI diversity.  

In conclusion, our results corroborate previous suggestions that genetic structure of marine 

nematodes, and marine invertebrates in general, are not dependent on a single factor but are 

more likely a result of multiple characteristics of the organisms and the environment, 

including morphology and life-history features, habitat characteristics and hydrodynamic 

forces (Derycke et al. 2013). 

 

5.5. Future perspectives 

As the current work was the first study dealing with marine nematodes in an important area of 

the PG, other important aspects of this neglected field of science need to be addressed through 

future research:  

1) To accelerate studies on marine nematology in Iran, there is an urgent need to develop 

capacity building at the level of human resources through the academic training programs in 

universities and respective institutes. Current Iranian nematologists have actually all focused 

on identification, taxonomy, and management of plant parasitic nematodes in the agricultural 

sector. To develop the field of marine nematology in Iran, it is essential to motivate young 

scientists to pursue careers in marine ecology and nematology in particular.  

2) Further research on other marine habitats is strongly needed to provide a comprehensive 

overview of marine nematode biodiversity in the PG region. In the present study, we worked 

only on marine nematodes inhabiting sandy beaches; however, the PG has a rich variety of 

other coastal habitats such as rocky shores, estuarine ecosystems, mangrove habitats, salt 

marshes and mudflats. This heterogeneous environment is of great ecological interest, as 
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environmental heterogeneity has been identified as a key factor for the maintenance of animal 

biodiversity in aquatic ecosystems (Levin et al. 2010).  

3) The analysis of community structure by measuring the species diversity is a popular 

ecological technique during this era and widely employed by marine ecologists. With 

increasing interest in describing the relationship between species biodiversity and ecosystem 

functioning, this kind of research is of great importance. This is all the more relevant in 

organisms like nematodes, because their assemblages typically comprise multiple species 

with supposedly similar ecology and function. The degree of redundancy in nematode 

assemblages remains a matter of debate, and requires the development of novel experimental 

designs. 

4) Given the high anthropogenic impact in the PG region, a pollution monitoring program 

should be established. This would allow to quantify pollution on the one hand and changes in 

the community state over time on the other. In line with many investigations, we would 

recommend that both macrofauna and nematodes should be used in pollution monitoring 

programs. Many studies have demonstrated the fundamental advantage of a multi-species 

approach in pollution monitoring. The inclusion of many taxonomic and functional groups 

that have a broad range of sensitivities to different environmental parameters may integrate 

different aspects of the system, revealing complementary aspects of the factors structuring the 

benthic ecosystem (Vanaverbeke et al. 2011; Patrício et al. 2012). Moreover, physico-

chemical parameters (e.g., salinity, temperature, grain size, hydrocarbons, trace metals) 

should be measured on a regular basis. A sound monitoring program could be useful to 

establish guidelines for, e.g., sewage and industrial waste water filtering. Nevertheless, the 

results of the present PhD also demonstrate that the use of nematodes for environmental 

monitoring in coastal ecosystems has limits and may require optimization in order to better 

address local situations. Moreover, it may be difficult, if not impossible, to find ‘undisturbed’ 

or ‘pristine’ reference sites with which to compare the situation in perturbed areas; hence, 

monitoring may to a large extent have to remain restricted to a follow-up of changes over time 

and/or in response to specific disturbances or pollutions. 

5) Whilst sandy beaches are relatively continuous over considerable stretches of coastline, 

and are physically dynamic and therefore more connected, other habitats in the PG are more 

discrete, less connected, and potentially much more vulnerable. Population-genetic studies on 

species from other habitats is therefore required to assess connectivity of these other habitats 
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among themselves and with other habitat types (for instance mangroves and bare tidal flats, 

beaches and shallow subtidal habitats like coral reefs, …), because this connectivity is an 

important aspect of resilience. 

6) The present study has identified nematodes to the genus and occasionally to the species 

level. More systematic identification to the species level, and this not only based on classical 

morphological but also on molecular criteria, is required for a proper assessment of diversity, 

and of the presence and significance of species endemism (for which our present study did not 

find any evidence, but also did not take a proper approach). 
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Appendix 1 

 

Photographs of five most abundant marine nematode genera found in our study: Daptonema, 

Ptycholaimellus, Terschellingia, Promonhystera  and Paramonhystera. 

 

  

Fig. Ap.1) Daptonema sp.; left: anterior part; middle: spicule apparatus and right: posterior 

part showing the tail; scale bars: 20 µm. 

 

  

Fig. Ap.2) Ptycholaimellus pandispiculatus.; left: anterior part; middle: pharyngeal bulb and 

right: posterior part showing the tail; scale bars: 20 µm.  
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Fig. Ap.3) Terschellingia longicaudata; left: anterior part with the pharyngeal bulb; middle: 

posterior part showing the tail and right: spicule apparatus; scale bars: 20 µm. 

 

 

 

  

Fig. Ap.4) Promonhystera  sp.; left: anterior part; middle: spicule apparatus and right: 

posterior part showing the tail; scale bars: 20 µm. 
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Fig. Ap.5) Paramonhystera spp.; left: anterior part; middle: spicule apparatus and right: 

posterior part showing the tail; scale bars: 20 µm. 
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Appendix 2 

 

The classification of nematodes found in the northern part of Persian Gulf. according to 

Deley et al. (2006) from phylum to family level and according to Lorenzen (1981, 1994) 

and Eyualem – Abbe et al. (2006) below family level. 

 

PHYLUM NEMATODA Potts, 1932 

 

Class ENOPLEA Inglis 1983 

Subclass ENOPLIA Pearse 1942 

Order ENOPLIDA Filipjev 1929 

 

Family Enchelidiidae Filipjev 1918  

Symplocostoma 

Calyptronema Marion 1870  

 

Family Oncholaimidae Filipjev 1916  

Metoncholaimus Filipjev 1918  

Oncholaimus Dujardin 1845  

Viscosia de Man 1890   

 

Family Oxystominidae Chitwood 1935  

Oxystomina Filipjev 1921  

 

Family Phanodermatidae Filipjev 1927  

Phanoderma 

 

Family Thoracostomopsidae Filipjev 1927  

Enoploides Ssaweljev 1912   

 

Family Tripyloididae Filipjev 1928  

Bathylaimus Cobb 1894   

Tripyloides de Man 1886  

 

Class CHROMADOREA Inglis 1983 

Subclass CHROMADORIA Pearse 1942 

Order MONHYSTERIDA Filipjev 1929 

Family Linhomoeidae Filipjev 1922  

Eleutherolaimus Filipjev 1922  
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Eumorpholaimus Schulz 1932  

Terschellingia de Man 1888  

 

Family Monhysteridae de Man 1876  

Monhystrella Cobb 1918  

Thalassomonhystera Jacobs 1987  

 

Family Sphaerolaimidae Filipjev 1918 

Doliolaimus Lorenzen 1966  

Metalinhomoeus de Man 1907  

Sphaerolaimus Bastian 1865  

 

Family Xyalidae Chitwood 1951  

Daptonema Cobb 1920  

Paramonhystera Steiner 1916  

Promonhystera Wieser 1956  

Rhynchonema Cobb 1920  

Theristus Bastian 1865   

Xyalidae sp 

 

Class CHROMADOREA Inglis 1983 

Subclass CHROMADORIA Pearse 1942 

Order ARAEOLAIMIDA De Coninck & Schuurmans Stekhoven 1933 

Family Axonolaimidae Filipjev 1918  

Axonolaimus De Man 1889   

Odontophora Butschli 1874  

Pseudolella Cobb 1920  

 

Family Comesomatidae Filipjev 1918  

Hopperia Vitiello 1969  

Sabatieria de Rouville 1903  

 

Family Diplopeltidae Filipjev 1918 

 Araeolaimus de Man 1888Araeolaimus  
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Class CHROMADOREA Inglis 1983 

Subclass CHROMADORIA Pearse 1942 

Order CHROMADORIDA Chitwood 1933 

Family Chromadoridae Filipjev 1917  

Chromadora  

Chromadorella Filipjev 1918  

Chromadorita Filipjev 1922  

Dichromadora Kreis 1929  

Hypodontolaimus de Man 1886  

Nygmatonchus 

Prochromadora Filipjev 1922  

Prochromadorella Micoletzky 1924  

Ptycholaimellus Cobb 1920  

Spilophorella Filipjev 1917   

 

Family Cyatholaimidae Filipjev 1918  

Cyatholaimus Bastian 1865  

Longicyatholaimus Micoletzky 1924   

Marylynnia Hooper 1977   

Metacyatholaimus Stekhoven 1942  

Paracanthonchus Micoletzky 1924     

Pomponema Cobb 1917  

Cyatholaimidae sp 

 

Family Ethmolaimidae Filipjev & Schuurmans Stekhoven 1941  

Paraethmolaimus Jensen 1994  

 

Family Selachinematidae Cobb 1915  

Halichoanolaimus de Man 1886    

Synonchium 

 

Class CHROMADOREA Inglis 1983 

Subclass CHROMADORIA Pearse 1942 



 

233 
 

Order DESMODORIDA De Coninck 1965 

Family Desmodoridae Filipjev 1922 

Desmodora de Man 1889  

Metachromadora Filipjev 1918  

Onyx Cobb 1891   

Spirinia Gerlach 1963)   

Polysigma Cobb 1920  

 

Order PLECTIDA Malakhov 1982 

Family Haliplectidae Chitwood 1951  

Haliplectus Cobb 1913  

 

Class CHROMADOREA Inglis 1983 

Subclass CHROMADORIA Pearse 1942 

Order PLECTIDA Malakhov 1982 

Family Leptolaimidae Örley 1880 

Deontolaimus de Man 1880  

Camacolaimus de Man 1889  

Leptolaimoides Vitiello 1971  

Leptolaimidae sp 

 

Family Tubolaimoididae Lorenzen 1981  

Tubolaimoides Gerlach 1963  

 

 

 

 

 

 

 


